
SPECIAL SECTION ON DEEP LEARNING: SECURITY AND FORENSICS RESEARCH

ADVANCES AND CHALLENGES

Received November 5, 2019, accepted November 29, 2019, date of publication December 3, 2019,
date of current version December 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957429

Feature Selection for Malware Detection Based
on Reinforcement Learning

ZHIYANG FANG , JUNFENG WANG , JIAXUAN GENG , AND XUAN KAN
College of Computer Science, Sichuan University, Chengdu 610065, China

Corresponding author: Junfeng Wang (wangjf@scu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2019QY1404 and Grant

2018YFB0804503, in part by the National Natural Science Foundation of China under Grant U1836103, and in part by the Technology

Research and Development Program of Sichuan, China, under Grant 2017GZDZX0002 and Grant 19ZDZX0024.

ABSTRACT Machine learning based malware detection has been proved great success in the past few

years. Most of the conventional methods are based on supervised learning, which relies on static features

with labels. While selecting static features requires both human expertise and labor. New selections, which

fix features from a wide range, are handcrafted by careful manual experimentation or modified from

existing methods. Despite their success, the static features are still hard to be determined. In this paper,

a Deep Q-learning based Feature Selection Architecture (DQFSA) is introduced to cover the deficiencies

of traditional methods. The proposed architecture automatically selects a small set of highly differentiated

features for malware detection task without human intervention. DQFSA trains an agent through Q-learning

to maximize the expected accuracy of the classifiers on a validation dataset by sequentially interacting with

the features space. The agent, based on an ǫ-greedy exploration strategy and experience replay, explores a

large but finite space of possible actions and iteratively discovers selections with improved performance on

the learning task. Actions are a set of reasonable choices, which indicate whether a feature is chosen or not.

Extensive experimental results indicate that the proposed DQFSA outperforms existing baseline approaches

for feature selection on malware detection with minimum features, improves the generalization performance

of the learning model and reduces human intervention. More specifically, the proposed architecture’s

underlying representation is robust enough for re-calibrating models to other domains of information

security.

INDEX TERMS Feature selection, malware detection, deep reinforcement learning, Q-learning.

I. INTRODUCTION

Malware is malicious code which designed to compromise

information security by gathering sensitive information from

computer system or making unauthorized access to com-

puter system. The proliferation of malware variants means

that detecting malware is one of the biggest challenges in

information security [1]–[4]. To tackle the malware detection

problem, many researchers invented new methods to pro-

tect computer system. Generally, they characterized training

samples by extracting diverse features from programs files.

Classification algorithms use these features and trained to

complete this task.

Typically, common feature extraction methods mainly

depend on signature [5], format structure [6], raw binary

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Qin.

features [7], multi-view features [8] and so on. These afore-

mentioned methods partially capture the distinguishable

information between benign and malicious programs. While

selecting features, a detector constructor may confront the

following challenges:

• the features extracting process can rarely done automat-

ically and mainly based on human experience;

• the extracted features can not comprehensively cover the

key distinguishing characteristics of samples;

• a wide range of indicators can gain better detection

achievement, but lead to redundancy and slow down the

training speed.

The number of possible choices makes the combination space

of features extremely large and hence, infeasible for an

exhaustive manual search.

In this work, a general architecture (DQFSA) using deep

Q-learning to automatically select features for classifying

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 176177

https://orcid.org/0000-0001-6502-8053
https://orcid.org/0000-0003-1699-2270
https://orcid.org/0000-0001-7550-3970
https://orcid.org/0000-0003-4289-8106

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

malware is proposed. The novel Q-learning agent whose goal

is to discover an optimal feature set that performs well on

malware classification without human intervention. The task

of learning agent is to sequentially pick features for amachine

learning model. Furthermore, the classification accuracy of

the given machine learning model is served as reward to

feed to agent for determining proper features. By using the

ǫ-greedy strategy, agent learns through random exploration

and slowly begins to exploit its findings to select optimal

indicators. Based on priority experience replay [9], the learn-

ing process is accelerated by repeated memory sampling.

This architecture discovers less features automatically for

detection. Detection accuracy is mainly used to access the

performance of this architecture. The results demonstrate that

proposed method competitive against the means that leverage

more features. In this study, the static Windows portable

executable (PE) malicious software are used as the training

samples to validate the proposed DQFSA.

Moreover, it worth mentioning that the proposed method

in this paper is not limited to the software with portable

executable format, and furthermore it can be extended to other

sorts of malware. Considering that the advantage—trial-and-

error search—of the reinforcement learning, this DQFSA can

be applied to other selection tasks.

The rest of this paper is organized as follows: Section II

discusses the related work. Section III gives a glance at

the overall framework. Sections IV describes the proposed

DQFSA in details. Section V presents the experimental setup

and numerical simulation results. Section VI concludes the

paper.

II. RELATED WORK

A. FEATURE SELECTION METHODS

In the traditional static malware detection, feature extrac-

tion methods can be roughly divided into signature feature

extraction, format information extraction, unstructured fea-

ture extraction and multiple abstract feature extraction [10].

The signature-based methods had achieved admirable results

as the earliest malware detection technique [5], [11]. These

methods extract some field of the header or calculate an

unique number, which similar to hash code, from a known

malware file. The extracted attributes, usually called signa-

ture features, are stored to the database to verify a new file

malicious or not. However, this technique can never detect

new malware for the novel signature features are the only

basis of discrimination.

According to Peter [12], malware is different from benign

software in static structure characteristics. Some heuristic

detection methods used static structure characteristics as a

part of the features. However, some structural features could

not distinguish benign software andmalware, or even affected

the detection results and speed. Some scholars had proposed a

series methods for the extracting process of malware features.

In the studies [13], the static structured features and some sta-

tistical features of PE files were used as the basic feature set,

and several dimensionality reduction technique were applied

to filter the original features. The detection rate exceeded

99%. Raman et al. [6] divided the characteristics of PE file

into 7 parts and select 7 features from each of these part. The

training was carried out with IBk, J48, J48 Graft, PART, Ran-

dom Forest and Ridor classifier respectively. Finally, under

the J48 classify algorithm, the true positive rate (TP Rate)

reached 98.56% and the false positive rate (FP Rate) reached

5.68%. Recently, Kim et al. [14] extracted totally 87 fea-

tures from the header of PE file. After using a variety of

different classifiers for comparison, a considerable result was

achieved. However, the domain knowledge is needed when

extracting format features for a sample.

Some researchers introduced the unstructured features,

namely the n-grams features, to the malware detection. In the

context of malware detection, n-grams are all substrings of a

larger string. Generally, a string is simply split into substrings

of fixed length N . Many studies [15]–[18] based on n-grams

features shared the same procedure. A file scanned by slide

window to generate the original n-grams features and the

most relevant n-grams features were chosen as the input

of the machine learning algorithms. Numerous experiments

were done to determine a combination of fixed length N ,

the number of n-grams features and classification algorithm.

The results of these experiments indicated that the detection

based on this kind of features are not likely to obtain out-

standing performance. Different from the studies mentioned

above, Raff et al. [19] combined the deep learning method

and the malware detection task, and proposed a LSTM-based

model. They simply extracted n-grams features from the

header of PE file, which latterly acted as the input of the deep

learning model. Finally, the highest accuracy of this model

reached 90%.

Due to the drawbacks of single view features, some

researchers intuitively proposed multi-view features. A rea-

sonable explanation is that the n-grams features and for-

mat features partially capture the distinguishable information

between benign software andmalware. Each types of features

has its own inherent strength and weakness. The more feature

views are used, the comprehensive information of a software

can be presented. In studies [7], [8], [20], the features used

in classifier were extracted from different views. Truth is

that this feature extraction method can obviously improve

detection level.

B. REINFORCEMENT LEARNING

In recent years, reinforcement learning technology has

demonstrated its outstanding capabilities in certain fields. For

instance, methods using deep Q-learning network have been

successful in automatically game-playing [21] and human

level control [22]. In addition, some research [23], [24] cre-

atively applied reinforcement learning methods to the field

of information security. Inspired by the research [25], which

trained a reinforcement learning model to design the archi-

tecture of CNN for the task of image classification, we pre-

viously proposed a DQEAF framework using reinforcement

learning to evade anti-malware engines [26].

176178 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 1. DQFSA model structure.

Considering that rarely researches has previously used

reinforcement learning to select features for malware classi-

fication, a reinforcement learning-based model is proposed.

This work focuses on the following points and has made

some improvements: (1) The introduced method automati-

cally selects features for malware detection which greatly

reducesmanual intervention; (2) Less features are determined

to fulfill the detection task compared with other similar work;

III. FRAMEWORK OVERVIEW

As is shown in Figure 1, the proposed DQFSA embodies

three important parts, data set collection and preprocess-

ing part, original feature extraction part and reinforcement

learning-based training part. In the data set collection and pre-

processing part, the malware data comes fromVirusTotal data

set. Our benign samples are collected from the program files

directory of Windows 10 operating system. The raw samples

are proprocessed by data processingmodule to exclude the PE

file which can not be analyzed. The original feature extraction

method mainly focuses on two kinds of features, the format

features of PE file and n-grams features of PE file. Finally,

the feature vectors are used as the input of the reinforcement

learning-based model. The agent chooses some features to

determine a sample malicious or not. Then the environment

feeds the reward, which is the accuracy of classification under

the features selected by agent, back to the agent. After multi-

ple rounds of training, the agent have the ability to choose an

optimal subset of original features that makes the accuracy of

detection task highest.

The reinforcement learning-based model is the key part of

our malware detection model. For each iteration, the agent

begins by sampling features conditioned on a predefined

behavior distribution and the agent’s prior experience. Sub-

sequently, the features are selected to fed to the classifier.

That classifier is then trained on a specific task. The features

and performance, e.g., validation accuracy, are then stored in

the agent’s replay buffer. Finally, the agent uses its memo-

ries to learn about the space of associated features through

Q-learning network. Our goal is to make the proposed rein-

forcement learning-based model select the best feature subset

easily and detect the malware efficiently.

IV. FEATURE SELECTION WITH

REINFORCEMENT LEARNING

For this model, the primary task is to train a learning agent

to sequentially choose features for classification. With the

assumption that a feature performs well in one classification

task should also attribute to the result of another classification

VOLUME 7, 2019 176179

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 1. List of format features.

task, so the feature selection process can be modeled as

a Markov Decision Process. Under the ǫ-greedy strategy,

the agent sequentially chooses features until it arrives a ter-

mination state. The specifics of DQFSA will be presented in

the rest of this section.

A. THE ENVIRONMENT

The environment is a key element in reinforcement learn-

ing, it represents the external observed by the agent [27].

In DQFSA, the environment is responsible for observing the

selected features from original features and sensitive to each

step of action. The original features are mainly derived from

The format features and bytes n-grams features.

1) FORMAT FEATURES

The PE files under Windows platform share an unified struc-

ture [28]. Generally, the file contains many headers and sev-

eral sections so that the Windows OS knows how to load and

run the executable code. The malware have the same format,

but they do exist some differences in format information.

Therefore, the format information attributes to the accuracy

of detection. The studies [13], [19], [29] used different format

information of PE file to fulfill the detection task. Based on

the research [13], a total of 204 format features are deter-

mined. The details of the selected format features are shown

in Table 1.

2) N-GRAMS FEATURES

For the PE file can also be considered as byte sequences,

some scholars intuitively thought that the malware may have

some similarity in the byte form. In researches [16], [18],

the n-grams features were employed to malware detection.

Inspired by text classification, some researchers thought

some n-grams features have high frequencies in malware,

while it can be rarely detected in the benign software. Accord-

ing to the study [8], the malware detector showed the best

performance when the value of N is set to 4. In addition,

the TF (term frequency)− IDF (inverse document frequency)

measure is commonly used to weight n-grams features and

obtained by multiplying TF and IDF . The definition of TF

according to Equation (1).

TF =
ni,j

∑
k nk,j

(1)

where ni,j is the number of occurrences of specific n-grams in

jth sample and
∑

k nk,j represents the number of occurrences

of all n-grams in jth sample. The IDF is defined as

IDFi = log
|D|

|j : ti ∈ dj|
(2)

where |D| is the total number of samples and |j : ti ∈ dj| is

the number of samples which contain a specific n-grams. The

intuition of IDF lies on that if the number of samples which

contain feature ti is small, i.e., the value of IDF is quite large,

the feature ti may contribute to classification result. In order

to prevent the excessive features from affecting the efficiency

of training, we counted theDF (document frequency) of each

feature. The DF is defined as the number of samples which

contain a specific n-grams. We filtered a specific n-gram fea-

ture out if itsDF value is quite small, for it does not contribute

to the detection result. The proposed method selects 400 n-

grams features with the highest DF value.

Figure 2 shows the entire process of original feature extrac-

tion intuitively.

176180 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 2. The process of original features.

B. THE ACTION SPACE

The action space represents a set of actions that the agent can

choose from, which is similar to all the responses reacted by

human to a certain stimulus from the outside world [30]. The

action space in the proposed framework can be defined as:

{a : a ∈ N ∧ a ≤ |F |} (3)

where N represents all the alternative original features to be

selected and a termination state to be selected. |F | represent

the index of the action which selects the final terminal action.

When a < |F |, action ameans to set the element with index a

in the environment state to 1. When a = |F |, action a means

that the agent stops the selection procedure. In other words,

the environment is instructed to enter the termination state.

Each time the agent observes the state from the current

environment, it immediately takes an allowable action from

the action space based on a given strategy.

• (1) We restrict the agent from taking certain actions

to both limit the state-action space and make learning

feasible.

• (2) We allow the agent to terminate a path at any

point, i.e., it may choose a termination state from any

non-termination state.

• (3) If the agent takes action a before, the action a is not

allowed to be taken any longer, i.e., one feature can not

be selected twice.

By restricting the range of features (consisting of 1 × 604

dimensional), the agent is left with a finite but large space

of associated features to search from. The agent continu-

ously searches for actions based on the strategy by means

of loop until it finds a legal action and then indicates to the

environment.

C. THE REWARD

The reward mechanism of reinforcement learning distin-

guishes it from supervised learning. It will only give feedback

to the agent a positive or negative evaluation, rather than tell

the agent what the correct action is [27]. It must represent

the changes that the environment has made after the agent

performs the corresponding action in the current state, and the

gap between the target. In this case, the target can be specif-

ically defined as selecting a set of features which maximizes

the detection accuracy.

When the agent performs an action and acts on the envi-

ronment, the environment gets a new state. According to

the current state, the environment picks the features up and

feeds to the classifier. Consequently, the classifier screens

the corresponding features from the samples to fulfill the

classification task. As with most classification problems,

the evaluation criterion is the classification accuracy of each

model. Accordingly, the accuracy of classifier is served as

reward. During the training phase of classifier, the 10-fold

cross-validation is used.

D. THE TRAINING PROCEDURE

The training process is illustrated in Training Algo-

rithm (Algorithm 1) integrated with Testing Algorithm

(Algorithm 2) to generate models with an efficient selection

of discriminative indicators.

Exploration and exploitation policy are common used in

the reinforcement learning algorithm, which allows themodel

to gain more from the training process [31]. Exploration

refers to random choice of features to explore more possi-

bilities. Exploitation is the choice of the best feature that has

been selected to improve the model. Here ǫ−greedy policy is

employed, which practices a random action with a probability

ǫ and selects the most valuable action with a probability 1−ǫ

otherwise. The value of ǫ decreases from 1.0 to 0.3 in steps

during training epochs progress according to Equation (4).

Where n is the current training step and N is the total number

of training steps.

ǫn = 1.0 −
n

N
(4)

In DQFSA, the agent is set to explore half of max epochs

in order to make agent explore as much as possible and

promote the performance of agent. Equation (5) is introduced

for enabling the agent to explore according to the strategy

mentioned above

ǫdecay_steps = ̥ ∗ N/2 (5)

where ǫdecay_steps represents how many steps it takes for

epsilon to decrease and ̥ is the number of maximum

features.

VOLUME 7, 2019 176181

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

Algorithm 1 Training Algorithm

1: Initialize Memory M to capacity S

2: Initialize two identical networks, action-value Q and

target-value Q̂,

with random weights θ and weights θ̂ = θ respectively

3: for episode = 1 to N do

4: Initialize s0 state array as zero vector of length 604

5: for t = 1 to ̥ do

6: With probability ǫ using equation (4) select a ran-

dom action at or choose at = argmaxa Q(st , a; θ)

7: Transform st by action at to st+1

observe reward rt+1

8: Store transition (st , at , rt+1, st+1) with priority

9: Every U step reset θ̂ = θ

10: if done then

11: break

12: end if

13: end for

14: if episode mod EVALUATE_INTERVAL == 0 then

15: Run Testing Algorithm and get classification accu-

racy CA

16: Store Q and Q̂ to a new model m

17: if CA > MAX_ACC then

18: break

19: end if

20: end if

21: end for

Algorithm 2 Testing Algorithm

1: Initialize classification accuracy CA = 0

2: for i = 1 to ̥ do

3: Compute Q̂ and choose at = argmaxa Q̂(st , a; θ̂)

4: Transform st by action at to st+1

observe reward rt+1

5: if done then

6: break

7: end if

8: end for

9: Compute the value of CA

10: return CA

During the entire training process (starting at ǫ = 1.0),

we maintain a replay dictionary which stores (1) the selected

features and (2) classification accuracy, for all of the sampled

features. If a set of features that has already been trained

is re-sampled, it is not re-trained, but instead the previously

found validation accuracy is presented to the agent. Inspired

by prioritized experience replay [9], our framework takes the

priority of transitions into consideration and transitions with

high classification accuracy can be replayed more frequently.

This strategy gives the agent more opportunities to learn to

select better features, rather than just limits to the initial

learning experience. Figure 3 shows the Markov Decision

Process for feature selection.

V. PERFORMANCE EVALUATION

A. EXPERIMENT SETUP

The Double Deep Q-learning Network used in proposed

method have less training parameters, while it has other

specific parameters to set. The detail description and setting

of parameters are shown in Table 2. During training phase,

the discount factor is defined as 1, because the same actions

always lead to the same reward, i.e., the order of feature

selection does not affect the accuracy.

All the experiments carried out in NVIDIA DGX Sta-

tion with an Intel Xeon E5-2698 (2.2GHz), GPU is Tesla

V100. We used python 3.7.3 to preprocess the sample,

Scikit-learn 0.21.2 to build machine learning based classifier,

Chainerrl 0.7.0 to build double deep Q-learning network. The

evaluation criterion of the model is accuracy (AUC).

Source codes of the Q-learning neural network, the mal-

ware binary feature extraction, framework details and suc-

cessfully trained model based on chainerrl are available at

https://github.com/fanmcgrady/select-features.

B. DATASET DESCRIPTION AND PREPROCESSING

The PE files used in this experiment are divided into benign

and malicious categories. Benign PE files come from the Pro-

gram Files directories inWindows 10 operating system, total-

ing 10152, and malicious files from the VirusTotal dataset

for a total of 12371. Considering the stability and robustness

of subsequent experiments, all the samples are parsed and

those who can not be analyzed will be filtered out. Finally,

about 12146 malicious samples and 9057 benign samples are

remained after this procedure.

The data used in the experiment are characterized by the

original features and their labels (benign or malicious), so the

samples need to convert to vectors before sent to the rein-

forcement learning model. A python-based pefile toolkit is

used for analyzing PE files. We used this toolkit to implement

a python script. The job of this script is to extract the original

format features of samples. For the parts that are not included

in the file (such as some files lack some sections), all the

features of this part are denoted by 0. Once a sample are

screened, one 1 × 204 dimensional vector will be created.

Another python script is used for extracting byte 4-grams

features. The steps of extraction process are listed as fol-

lowed. Firstly, the PE files are converted to hexadecimal

files which could be used for generate byte subsequence.

Secondly, the slide window method is introduced to handle

hexadecimal files to produce 4-grams features, e.g., if the

hexadecimal sequence are "4D5A90", the 4-grams byte fea-

tures screened by slide window are "4D5A", "D5A9" and

"5A90". The DF criterion is used to select 400 4-grams

features which have highest DF value. The script eventually

generate a 1 × 400 dimensional vector for each sample, and

it is extended to the format feature vector. Finally, the label

176182 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 3. Markov decision process for feature selection.

TABLE 2. Major parameter setting in the training algorithm.

of sample is appended to the joint vector, 1 for malware and

0 for benign software. For the convenience of training, a CSV

format file is created to save the original features and the label

of each sample. In this CSV file, one line represent a sample,

which is a 1 × 605 dimensional vector.

C. RESULTS

1) COMPARISON WITH DIFFERENT CLASSIFIERS

In order to demonstrate the performance of DQFSA convinc-

ingly, we conducted a series of comparative experiments to

find the combination of least possible features and classifiers.

As is shown in Figure 4 to 8, the vertical axis represents the

classification accuracy, the horizontal axis represents the max

number of features selected by reinforcement learning-based

algorithm for the detection. More precisely, for the pur-

pose of making learning procedure efficient and meaningful,

the number of features selected by agent is limited from

5 to 15. The accuracy of using all features is also denoted

as a reference.

It can be seen from Figure 4 to 8, when the number of

selected feature is small, the accuracy is only about 96%.

As the number of selected features increases, the accuracy can

be gradually improved. Finally, each classifier can achieve the

highest accuracy, exceeds 99%,when using about 11 features.

In addition, on the given dataset, the combination of KNN

classifier with 11 features selected was the best combina-

tion out of the other combinations tried. Compared with the

VOLUME 7, 2019 176183

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 3. Evaluation details with different classifiers.

FIGURE 4. Accuracy of models with KNN.

FIGURE 5. Accuracy of models with DecisionTree.

experiments base on using all features, an optimal minimum

feature set is automatically determined by DQFSA to fulfill

the detection task and achieve a competitive performance.

Namely, the proposed method has certain practicability and

feasibility. The details of evaluation are shown in Table 3.

In Table 5, we present the top five models’ features details

selected by DQFSA, along with their prediction accuracy

gained on the validation dataset.

FIGURE 6. Accuracy of models with RandomForest.

FIGURE 7. Accuracy of models with Naive Bayes.

2) COMPARISON WITH RELATED WORK

In the experimentsmentioned above, ourmethod shows better

capacity on different classifiers. In order to make a compre-

hensive comparison between the proposed DQFSA and tradi-

tional methods, this work conduct a comparative experiment

base on the same dataset. According to Raman et al. [6],

Bai et al. [13], Kim et al. [14], researchers have leveraged

relevant detection features for the task of classification.

The number of features and detection performance corre-

sponding to each methodology are shown in Table 4.

176184 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 4. Comparison with related work.

TABLE 5. Feature selection details of our top 5 models.

As it can be seen in Table 4, some classifiers achieve a

higher accuracy with fewer features. Further more, due to

the reduction of features, the time for extracting features and

training is shorter.

VOLUME 7, 2019 176185

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 8. Accuracy of models with SVM.

Our framework is compared against the related work men-

tioned above and enhance the accuracy of validation dataset

by using KNN, SVM and Naive Bayes classifiers. The results

demonstrate that reinforcement learning can be applied to

malware detection with further improved performance com-

pared to traditional methods.

VI. CONCLUSION

This paper proposed an architecture named DQFSA using

reinforcement learning to implement feature selection task.

The highly differentiated features selected can be fed to

supervised-learning algorithms to classify malware. The core

component of DQFSA is an AI agent, which is constantly

interacting with samples feature space without human inter-

vention. The agent could choose optimal sequences of rea-

sonable features deliberately by deep reinforcement learn-

ing, which aims to maximize the accuracy of detection.

Experiments show that the proposed DQFSA discovers fea-

tures for malware detection competitive against the base-

line means that use more features. In the future work,

we will apply our framework to other selection tasks, for

the advantage—trial-and-error search—of the reinforcement

learning.

REFERENCES

[1] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey on the usage of machine

learning techniques for malware analysis,’’Comput. Secur., vol. 81, 2017.

[2] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, ‘‘Machine-

learning aided static malware analysis: A survey and tutorial,’’ in Cyber

Threat Intelligence. Berlin, Germany: Springer, 2018, pp. 7–45.

[3] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, ‘‘Survey on malware detec-

tion methods,’’ in Proc. 3rd Hackers’ Workshop Comput. Internet Secur.

(IITKHACK), Mar. 2009, pp. 74–79.

[4] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, ‘‘A survey on

heuristic malware detection techniques,’’ in Proc. 5th Conf. Inf. Knowl.

Technol., May 2013, pp. 113–120.

[5] R.W. Lo, K. N. Levitt, and R. A. Olsson, ‘‘MCF: Amalicious code filter,’’

Comput. Secur., vol. 14, no. 6, pp. 541–566, 1995.

[6] K. Raman, ‘‘Selecting features to classify malware,’’ InfoSec Southwest,

to be published.

[7] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection

using two dimensional binary program features,’’ in Proc. 10th Int. Conf.

Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[8] J. Bai and J. Wang, ‘‘Improving malware detection using multi-

view ensemble learning,’’ Secur. Commun. Netw., vol. 9, no. 17,

pp. 4227–4241, 2016.
[9] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experi-

ence replay,’’ 2015, arXiv:1511.05952. [Online]. Available: https://arxiv.

org/abs/1511.05952
[10] H. El Merabet and A. Hajraoui, ‘‘A survey of malware detection tech-

niques based on machine learning,’’ Int. J. Adv. Comput. Sci. Appl.,

vol. 10, no. 1, pp. 366–373, 2019.
[11] J. O. Kephart, ‘‘Automatic extraction of computer virus signatures,’’

in Proc. 4th Virus Bull. Int. Conf., Abingdon, England, 1994,

pp. 178–184.
[12] P. Szőr, The Art of Computer Virus Research and Defense. Upper Saddle

River, NJ, USA: Pearson Education, 2005.
[13] J. Bai, J. Wang, and G. Zou, ‘‘A malware detection scheme based

on mining format information,’’ Sci. World J., vol. 2014, Jun. 2014,

Art. no. 260905.
[14] S. Kim, ‘‘PE header analysis for malware detection,’’ M.S. thesis, 2018,

vol. 624.
[15] J. Z. Kolter and M. A. Maloof, ‘‘Learning to detect malicious executables

in the wild,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, Aug. 2004, pp. 470–478.
[16] D. K. S. Reddy and A. K. Pujari, ‘‘N-gram analysis for computer

virus detection,’’ J. Comput. Virology, vol. 2, no. 3, pp. 231–239,

Dec. 2006.
[17] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer, ‘‘Apply-

ingmachine learning techniques for detection of malicious code in

networktraffic,’’ in Proc. Annu. Conf. Artif. Intell. Berlin, Germany:

Springer, 2007, pp. 44–50.
[18] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, ‘‘N-grams-based

file signatures for malware detection,’’ in Proc. ICEIS, vol. 2, May 2009,

pp. 317–320.
[19] E. Raff, J. Sylvester, and C. Nicholas, ‘‘Learning the pe header, malware

detection with minimal domain knowledge,’’ in Proc. 10th ACM Work-

shop Artif. Intell. Secur. AISec, Nov. 2017, pp. 121–132.
[20] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, ‘‘Data miningmethods

for detection of new malicious executables,’’ in Proc. IEEE Symp. Secur.

Privacy. S&P, May 2000, pp. 38–49.
[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement

learning,’’ 2013, arXiv:1312.5602. [Online]. Available: https://arxiv.

org/abs/1312.5602
[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level

control through deep reinforcement learning,’’ Nature, vol. 518,

no. 7540, p. 529, 2015.
[23] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, ‘‘Learn-

ing to evade static PE machine learning malware models via rein-

forcement learning,’’ 2018, arXiv:1801.08917. [Online]. Available:

https://arxiv.org/abs/1801.08917
[24] C. Wu, J. Shi, Y. Yang, and W. Li, ‘‘Enhancing machine learn-

ing based malware detection model by reinforcement learning,’’ in

Proc. 8th Int. Conf. Commun. Netw. Secur. ICCNS, Nov. 2018,

pp. 74–78.
[25] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network

architectures using reinforcement learning,’’ 2016arXiv:1611.02167.

[Online]. Available: https://arxiv.org/abs/1611.02167
[26] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, ‘‘Evading anti-

malware engines with deep reinforcement learning,’’ IEEE Access, vol. 7,

pp. 48867–48879, 2019.
[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction.

Cambridge, MA, USA: MIT Press, 2018.
[28] M. Pietrek, ‘‘Inside windows-an in-depth look into the win32 portable

executable file format,’’ MSDN Mag., vol. 17, no. 2, pp. 1–4, 2002.
[29] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, ‘‘PE-Miner:

Mining structural information to detect malicious executables in real-

time,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection, 2009,

pp. 121–141.
[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

vol. 2, no. 4. Cambridge, MA, USA: MIT Press, 1998.
[31] M. Coggan, ‘‘Exploration and exploitation in reinforcement learning,’’

CRA-W DMP Project at Comput. Sci., McGill Univ., Montreal, QC,

Canada, Tech. Rep., 2004.

176186 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

ZHIYANG FANG received the M.S. degree in

computer science and technology from Sichuan

University, Chengdu, Sichuan, in 2009, where he

is currently pursuing the Ph.D. degree in com-

puter science and technology. He is currently

involved in research work on information security.

His research interest includes software security.

JUNFENG WANG received the M.S. degree

in computer application technology from the

Chongqing University of Posts and Telecommu-

nications, Chongqing, in 2001, and the Ph.D.

degree in computer science from the Univer-

sity of Electronic Science and Technology of

China, Chengdu, in 2004. From July 2004 to

August 2006, he held a postdoctoral position at

the Institute of Software, Chinese Academy of

Sciences. Since August 2006, he has been a Pro-

fessor with the College of Computer Science and the School of Aeronautics

and Astronautics, Sichuan University. His recent research interests include

network and information security, spatial information networks, and data

mining. He is currently serving as an Associate Editor for IEEE ACCESS,

the IEEE INTERNET of THINGS, and Security and Communication Networks.

JIAXUAN GENG received the bachelor’s degree

in computer science and technology from the

Chongqing University of Posts and Telecommu-

nications, Chongqing, in 2018. He is currently

pursuing the M.S. degree in computer science

and technology with Sichuan University, China.

He is expected to get the degree, in 2021.

His research interests include software security

and cybersecurity.

XUAN KAN received the M.S. degree in com-

puter science and technology from Sichuan

University, Sichuan, in 2017. She is currently

involved in research work on information security.

Her research interest includes software security.

VOLUME 7, 2019 176187

	INTRODUCTION
	RELATED WORK
	FEATURE SELECTION METHODS
	REINFORCEMENT LEARNING

	FRAMEWORK OVERVIEW
	FEATURE SELECTION WITH REINFORCEMENT LEARNING
	THE ENVIRONMENT
	FORMAT FEATURES
	N-GRAMS FEATURES

	THE ACTION SPACE
	THE REWARD
	THE TRAINING PROCEDURE

	PERFORMANCE EVALUATION
	EXPERIMENT SETUP
	DATASET DESCRIPTION AND PREPROCESSING
	RESULTS
	COMPARISON WITH DIFFERENT CLASSIFIERS
	COMPARISON WITH RELATED WORK

	CONCLUSION
	REFERENCES
	Biographies
	ZHIYANG FANG
	JUNFENG WANG
	JIAXUAN GENG
	XUAN KAN

