
0-7803-9387-2/05/$20.00 ©2005 IEEE

Feature Selection for Microarray Data Using Least 

Squares SVM and Particle Swarm Optimization 

E. K. Tang1, P. N. Suganthan*1 and X. Yao2

1 School of Electrical and Electronic Engineering 

Nanyang Technological University  

Singapore 639798  

Email: tangke@pmail.ntu.edu.sg; epnsugan@ntu.edu.sg 
2 School of Computer Science 

 University of Birmingham 

Birmingham, B15 2TT,  

United Kingdom 

Email: X.Yao@cs.bham.ac.uk 

    

Abstract-Feature selection is an important preprocessing 

technique for many pattern recognition problems. When the 

number of features is very large while the number of samples 

is relatively small as in the micro-array data analysis, feature 

selection is even more important. This paper proposes a novel 

feature selection method to perform gene selection from DNA 

microarray data. The method originates from the least 

squares support vector machine (LSSVM). The particle 

swarm optimization (PSO) algorithm is also employed to 

perform optimization. Experimental results clearly 

demonstrate good and stable performance of the proposed 

method.

I. INTRODUCTION 

Commonly addressed in the pattern classification field, feature 

selection methods eliminate irrelevant or redundant features 

and select the most informative subset of features to enhance 

the generalization performance. For three reasons, feature 

selection is even more important for the classification of gene 

expression microarray data, where feature selection is also 

referred to as gene selection. Firstly, many of the genes may 

be irrelevant or insignificant to a specific classification 

problem. Previous studies have shown that a small subset of 

genes may be sufficient for a particular biological 

classification problem [1]. Secondly, feature selection can 

reduce the data volume while retaining most of the 

discriminative information, which will reduce the 

computational and storage requirements.  Finally, feature 

selection also helps to gain deeper understanding of the 

functions of particular genes. This is very important for 

designing microarray experiments for clinical diagnosis and 

prognosis purposes. 

A typical feature selection method consists of two 

components - an evaluation criterion and a searching scheme. 

The evaluation criterion can be either the classification 

accuracy or some other quantities such as the Fisher’s ratio, 

Mahalanobis class seperability [2] or norm of the classification 

hyperplane of a support vector machine (SVM) [3]. The 

searching scheme searches the space of all possible feature 

subsets. Various searching schemes have also been well 

discussed in pattern recognition literatures, such as sequential 

forward selection (SFS), sequential floating forward selection 

(SFFS), branch and bound and so on [2]. Recently, binary 

evolutionary algorithms (EA) have also been employed as the 

searching scheme [4]. The feature subsets discovered by the 

search algorithm are evaluated with respect to the evaluation 

criterion. Finally, the feature subset yielding the optimal value 

with respect to the evaluation criterion is chosen. 

As many evaluation criteria and searching schemes are 

available, it is possible to develop many feature selection 

methods by just combining different evaluation criteria and 

searching schemes. Since, many of these combinations 

actually perform similarly, it is sufficient to perform 

comparisons with the most commonly used combinations 

instead of all possible combinations. In [1], Golub et al.

employed the weighting factor, which is a minor variant of 

Fisher’s ratio, as the evaluation criterion. The features are 

evaluated individually rather than as a subset. This scheme is 

also referred as feature ranking [3]. In [3], Guyon et al.

introduced a top-down recursive feature elimination (RFE) 

scheme, in which features were eliminated successively 

according to their influence on a support vector machine 

(SVM) based evaluation criterion. Rakotomamonjy then 

extended the work by introducing more SVM-based criteria 

[5]. Recently, Zhou and Mao proposed a new criterion named 

LS bound measure to evaluate a feature subset [6]. The LS 

bound was combined with SFS as well as SFFS schemes to 

obtain competitive results. 

    In the context of gene expression data analysis, different 

feature selection methods have their own advantages and 

disadvantages. For example, if the data contain D features 

(genes) and d of them are to be selected, the correlation 

coefficient methods only require D evaluations, while RFE 

scheme requires (2D-d-1)(D-d)/2 evaluations, SFS scheme 

requires (2D-d+1)d/2 evaluations and SFFS scheme requires 

even more evaluations. If we do not consider the differences 

among different evaluation criteria but only the searching 

schemes, the correlation coefficient-based individual feature 

ranking methods are usually the most efficient ones, while 

SFFS is highly time consuming. Similarly, although EAs are 

powerful optimization techniques and feature selection can be 



viewed as a binary optimization problem, binary EAs (they are

more practical than continuous EAs for binary optimization

problems) are even more time consuming than SFFS scheme.

Note that the comparison is under the assumption that

computational costs of the evaluation criteria are generally the

same for all the searching schemes. In practice, criteria

combined with RFE, SFS and SFFS, such as SVM-based

criterion and LS bound measure are more complex than

Fisher’s criterion and factor weighting measure that are 

usually employed in individual feature ranking methods, hence

correlation coefficient methods are actually even more

efficient than we have acknowledged. The efficiency is due to

the fact that they select a subset of good features rather than a

good feature subset. However, to achieve high classification

accuracy, a good feature subset is usually more important than

a subset of good features. Therefore, the correlation

coefficient-based methods generally select a sub-optimal

feature subset for classification thereby resulting in lower 

accuracy. According to different requirements, one can trade

off between accuracy and efficiency by selecting a suitable

feature selection method.

For the gene selection problem in microarray data analysis,

D is usually very large and d is relatively very small. By 

viewing feature selection methods from different aspects, a

good gene selection method should have the following

characteristics: The computational cost for a single evaluation

is low, the required number of evaluations is small and the

evaluation criterion can guarantee high classification accuracy.

Motivated by these considerations, we propose in this paper a 

novel gene selection method. The method employs an efficient

calculation of the leave-one-out (LOO) error of an LSSVM as 

the evaluation criterion. Since the LOO error is a good

estimator of the generalization performance, one can expect to

achieve good generalization performance by selecting feature

subsets with respect to the LOO error. After proposing the

efficient calculation of LOO error, we also present a scheme to 

efficiently optimize the feature subset using a continuous EA.

Although we preliminarily employ the standard particle swarm 

optimization (PSO) algorithm, other EAs can also be

employed.

The remainder of this paper is organized as follows: In

Section 2, we review the LSSVM classifier and the LS bound

gene selection method. In section 3, we describe the proposed

gene selection method. In Section 4, the proposed method is

compared and evaluated against some recent gene selection

methods on several microarray datasets. Discussions and

conclusions are presented in section 5.

II. LSSVM AND LS BOUND FEATURE SELECTION

A. LSSVM Classifier 
Proposed by Suykens et al. [7], least squares SVM is a 

modification of the standard SVM. In a classification problem,

we are given a training dataset of n training sample pairs: {xi,

yi}, i = 1, . . . , n, where xi is the ith training sample, and

y

d

i is the corresponding class label, which is either +1 or -1.

The LSSVM classifier employs a set of mapping functions

to map the input data into the reproducing kernel Hilbert 

space, where the mapping function is implicitly defined by the

kernel function: k(xi, xj)= (xi) (xj). The general framework

of the LSSVM is formulated as: 
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where, ei denotes regression error for sample xi, e = [e1, e2, . . .

, en]
T , and  is a given positive constant. The role of , just as 

that of the regularization constant C in the classical SVM, is to 

adjust the compromise between generalization and training

accuracy. By introducing Lagrangian multipliers, the solution

can be obtained by solving the following linear system:
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T
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LSSVM, b is a scalar and = [ 1, 2, . . . , n]
T. Similar to the

standard SVM, the discriminant function achieved by solving

an LSSVM takes the form:
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The main difference between the standard SVM and the

LSSVM is that for the standard SVM the equality constraints 

in (2) are replaced by inequality constraints:

iii eby 1xw (6)

By employing equality constraints instead of inequality

constraints, LSSVM can be formulated as a linear system,

which requires much less computation than a quadratic

programming problem used in the standard SVM. Empirical

results have shown that LSSVM can generally achieve

comparable classification accuracy as the standard SVM. 

B. LS Bound Feature Selection

Based on the standard SVM, Guyon et al. proposed the

SVM-RFE feature selection method [3], which has become

very popular for gene selection. In the statistical learning

theory, it is known that leave-one-out error (LOOE) gives

almost an unbiased estimation of the generalization

performance of a classifier. Hence, for a feature selection

problem, one can employ an LSSVM and calculate its LOOE

to evaluate a feature or a feature subset. The feature or feature

subset yielding the smallest LOOE will be selected. However, 

traditionally calculating the LOOE requires repeating the

whole classification procedure for n times, where n is the 

number of samples. This is too time consuming and constrains

the application of LOOE. To overcome this problem, several

approaches have been proposed to efficiently estimate the 

LOOE for the standard SVM [8]. Since the LSSVM can be



viewed as a modification of the standard SVM, recently Zhou

and Mao proposed a new evaluation criterion based on the 

LOOE of an LSSVM [6], named LS bound measure, to solve

gene selection problems. Given n samples represented by a set 

of features, the LS bound measure is defined as:
n
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where (x)+=max(0,x), and Di
min is the distance between xi and

its nearest neighbor in the reproducing kernel Hilbert space. 

This LS bound measure is proposed based on an upper bound

of the LOOE of the LSSVM, which is 
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Like many other evaluation criteria, LS bound measure can 

be combined with any one of the searching schemes such as

SFS, SFFS, RFE and so on. The gene selection algorithm

combining the LS bound with SFS is illustrated below:

(1) Initialize S to an empty set 

/*S is the set of selected genes*/

(2) Initialize C to the full gene set; 

/*C is the set of candidate genes to be selected from*/

(3) For i to d

/*d genes are to be selected*/

p=number of genes in C;

for j=1 to p

  Take gene j from set C and temporarily put into set S;

  Calculate the measure M using all genes in set S;

   End

   Select the gene with the minimal M;

   Put the selected gene into set S;

End

Since there exists a similar criterion for the standard SVM, 

one common question is whether the SVM-based criterion or

the LSSVM-based criterion is better. As we mentioned before,

computational cost is much lower for the LSSVM than for the

standard SVM. Hence, from the perspective of efficiency, 

LSSVM is better. Further, experiments on several microarray

datasets showed that combined with SFS, LS bound measure

performs only slightly worse than the SVM-RFE based on 

accuracy. Compared with the great improvement in efficiency,

LSSVM seems useful. However, (8) is only an upper bound of

the LOO error, hence (7) is valid only when the bound is tight.

If the bound is loose, (7) will give a biased estimation for the 

generalization performance and become an inaccurate

measure. As whether the bound is tight or not is likely to be an 

uncertain data dependent issue, LS bound should be applied

with caution. Our motivation is to reduce this uncertainty of

LS bound measure.

III. LSSVM BASED EVOLUTIONARY FEATURE SELECTION

We begin with an improved evaluation criterion for the 

LSSVM. As discussed above, although several efficient

measures have been proposed based on either standard SVM

or LSSVM, they are naturally estimations of the LOO error

rather than an exact value. This nature will result in possible

biased evaluation of the features, and degrade the accuracy of 

the feature selection method. Different from these measures,

our leave-one-out calculation (LOOC) measure, originates

from an exact calculation of the LOO error of an LSSVM.

This exact calculation of LOO error is presented as the Lemma

below:

Lemma 1: Given a training dataset of n training data pairs {xi,

yi} (i = 1, . . . , n), the LOO error of an LSSVM on the dataset

can be calculated by 
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diagonal element of the inverse matrix of H. i is defined in

eqn (3). The proof of Lemma 1 is presented in Appendix A.

By comparing (8) and (9), one can find the computational

cost is approximately the same for the upper bound in (8) and

the exact calculation in (9) since both of them only require a 

single training procedure on the whole dataset. Therefore (9) is 

obviously an improvement over (8) since the consideration of

whether the bound is tight or not is no longer necessary if

exact calculation can be implemented with the same

computational cost. Further, we can also observe from (9) that

the LOOE is actually determined by the term 1- i/(H
-1)ii.

Large positive value of this term means that sample xi can be 

easily classified to the correct class in the LOO procedure and

visa versa. Based on this observation, our LOOC measure is 

defined as: 
n

i iii /exp
LOOC
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Different from (7), we employed the logistic function in our

measure. The reason is that by employing the logistic function,

the LOOC ranges between (0,1), which can be viewed as a

probability that represent the generalization performance of a 

classifier and can be useful for possible post-processing

procedure. Logistic function is also commonly used to transfer

output of an SVM-type classifier into a specific region. For

more details on this issue, please refer to [9].

Now we have presented the evaluation criterion, a searching

scheme is also required for a gene selection method. A direct

application of our LOOC measure is to combine it with 

traditional schemes, just like the LS bound measure. However, 

we have discussed that those schemes will be very time

consuming when the number of features is large, which is true

for microarray data. An alternative is to introduce a vector v of

scaling factors into the kernel matrix, and modify k(xi, xj) as 

k(vT
xi, v

T
xj). Introducing scaling factors is not a totally new

idea in SVM based feature selection methods. In [5], this

scheme is employed for an SVM based feature selection

method. The method works similarly to SVM-RFE: SVM is 

optimized iteratively with respect to the scaling factors, in 

each iteration, the feature corresponding to the scaling factor

that has the smallest absolute value is removed. Some other

related works are also presented in [5]. However, in these 



works, introducing scaling factor is simply for defining a new 

evaluation criteria, the searching scheme of traditional SVM-

RFE method is still employed. Furthermore, the 

dimensionality of v is the number of candidate features. 

Hence, optimization of either SVM or LSSVM with respect to 

v will be formulated as a very high dimensional optimization 

problem for microarray data, which may be very difficult to 

solve. Therefore, in contrast to the previous works, in this 

work we consider employing this idea to reduce the 

computational cost. To settle the high dimensionality problem, 

a principle component analysis (PCA) is applied to the 

original data first. In pattern recognition field, PCA is a 

popular technique for dimensionality reduction. It transfers 

high dimensional data to a lower dimensional space. Because 

the number of samples in microarray data is usually very small 

when compared to the number of genes, the PCA procedure 

reduces the number of features significantly, which typically 

equals the number of samples. After that, scaling factors are 

assigned to features of the transformed data and optimization 

can now be carried out much more efficiently. The basic 

particle swarm optimization (PSO) algorithm [11] is employed 

in our method to optimize these scaling factors. Finally, the 

scaling factors of the original genes can be well approximated 

by simple linear algebra operations. 

By computing the scaling factors, we obtain a ranking score 

for each gene by just taking the absolute value of the scaling 

factors. The larger the score, the more important the 

corresponding gene will be for constructing the kernel matrix, 

which determines the solution of LSSVM. Therefore, selection 

can be easily carried out based on these scores. In 

experimental study, we choose the features with the largest 

ranking scores. The gene selection method, named LSSVM 

based evolutionary feature selection (LSEFS) is summarized 

as follows: 

Initialization: Let X and PX be original data and PCA 

transformed data. Denoting T, v and pv as the transformation 

matrix of PCA procedure, scaling vector for the original data 

and transformed data respectively. 

(1) PCA procedure 

PX=TX;

(2) Introduce pv, such that k(xi, xj) becomes k(pv
T(Txi),

pv
T(Txj)).  Optimize (10) with respect to pv using a PSO 

algorithm.  

(3) Since k(pv
T(T xi), pv

T(T xj)) is the same as k((pv
T
T)xi,

      (pv
T
T)xj), v can now be computed as 

v= (pv
T
T)T=T

T
pv, and the ranking score vector is abs(v)

(4) Features corresponding to the d largest elements of the 

      ranking score vector are selected. 

IV. EXPERIMENTAL RESULTS 

In this paper, we compare our method with three other gene 

selection methods, namely LS bound combined with SFS 

scheme, Mahalanobis class separability measure combined 

with SFFS scheme (MAHSFFS) and the SVM-RFE method. 

We apply the gene selection algorithms to three microarray 

datasets: ALL-AML Leukemia (Leukemia), Hepatocellular 

Carcinoma (Carcinoma) and High-grade Golima (Golima). 

Table I summarizes some basic information of these datasets. 

They can be obtained from [10]. All the genes are 

standardized to zero mean and unit standard deviation. As the 

dimensionality of these microarray data is huge, and many of 

the genes are irrelevant to the classification task, we 

performed a pre-selection procedure to reduce the searching 

space and computational time. For each dataset, we selected 

top 1000 genes based on Fisher’s ratio. Zhou and Mao also 

employed the same pre-selection scheme [6]. All the 

simulations and experiments in this paper are based on the pre-

selected genes.  

TABLE I 

BASIC INFORMATION OF THE 3 MICROARRAY DATASETS 

Dataset Number of Samples Number of genes 

Leukemia 72 7129

Carcinoma 60 7129

Golima 50 12625 

To assess performance of different feature selection 

methods, in some previous works researchers randomly split 

the original data into a training set and a testing set. The gene 

selection was then performed on the training set while the 

selected features were assessed on the testing set. However, 

this approach is not reliable due to the small sample size of 

microarray data. In our experiment, we employ the B.632+ 

bootstrap estimator to assess the performance of gene selection 

methods [12]. The balanced bootstrap samples are generated 

with K=200. In particular, the training sets are generated by re-

sampling with replacement from the original dataset. Samples 

that are not contained in a training set go to the corresponding 

testing set. Each sample in the original dataset is made to 

appear exactly K times in the balanced bootstrap training sets.  

In our experiments, for all the four gene selection methods, 

parameters of the LSSVM are tuned by 5-fold cross-validation 

on the training set. The performances of the methods are 

evaluated on gene subsets with number of genes ranging from 

1 to 50. Two parameters need to be defined in advance to 

employ PSO in our LSEFS algorithm. They are the number of 

particles, and the number of generations. Since D and d are 

1000 and 50 respectively, the LS bound with SFS scheme 

requires 48775 evaluations to select 50 features. Number of 

evaluations of MAHSFFS partially depends on the dataset, but 

it will definitely be larger than the SFS scheme, while the 

computational cost for a single evaluation using Mahalanobis 

class separability is comparable to LS bound and our measure. 

SVM-RFE requires only 1950 evaluations, but the 

computational cost of a single evaluation is much larger for 

SVM-RFE than for the other three methods. Based on these 

considerations, we set the number of particles and the number 

of generations at 50 and 200 respectively. Hence, 10000 

evaluations are required for our LSEFS algorithm to select 50 

features. Under this situation, our method requires the least 

overall computational cost among the four methods. 

The results are presented in Figures 1 to 3. One can observe 

that our LSEFS algorithm performs well on all the three 

datasets. For Leukemia dataset, LSEFS performs almost the 

same as the LS bound SFS method, but obviously better than 



SVM-RFE and MAHSFFS. For Carcinoma and Golima

datasets, our method performs consistently better than all the 

other three methods. Since the overall computational cost of

our method is no more than the other three methods, our

LSEFS is competitive as a gene selection algorithm.

Fig. 1. .632 Error rates for the Leukemia dataset.

Fig. 2. .632 Error rate for the Carcinoma dataset. 

Fig. 3. .632 Error rate for the Golima dataset.

V. DISCUSSION and CONCLUSION

Although LSEFS has shown good performance, there may

be opportunities for further improvements. For example, by 

employing PCA to reduce dimensionality of the optimization

problem involved, we manage to solve the problem more

efficiently by PSO. However, PSO is not the only optimization

method that is applicable. In practice, selection of optimization

technique should be based on some underlying properties of

the problem itself. For example, if the problem is unimodal

and easy to solve, a simple gradient descent method, which is 

more efficient than EAs, is sufficient to achieve the solution.

On the other hand, if the problem is multimodal and complex,

a simple EA such as PSO may not work well and a more

powerful EA should be considered.

Most of traditional searching schemes that we have

mentioned in the previous sections require significantly more

evaluations when D and d increase. For example, if we

consider the Leukemia dataset with 1000 genes, selecting

d=100 genes requires 95050 evaluations, much larger than

48775 for selecting d=50 genes. On the contrary, 10000

evaluations are sufficient for our method, the same as for

selecting 50 features. Similar scenario can be observed when

we increase the value of D.  The reason lies on the underlying

mechanism of LSEFS whose computational complexity is 

dominated by the number of samples rather than the number of 

features. Once the scaling factors have been computed, we can

select any number of features without further evaluation.

Hence our method is more scalable compared with the other

methods.

In this paper, we present a new evaluation criterion for gene

selection. Then we propose a new searching scheme to 

combine with the proposed criterion. The proposed searching

scheme allows using continuous EAs more efficiently to solve 

the gene selection problem. The resultant method, named

LSEFS, possesses both better generalization performance and

lesser computational cost when compared to three state-of-the-

art feature selection methods. It can also better scale to dataset

with very large number of genes, which is particularly

important for microarray data analysis.

APENDIX A 

Note: Some denotations in this appendix may be different

from those in the previous sections. Further, all results of this

proof is applicable to samples in the kernel space, but for

simplicity, we only use x instead of k(x).

Solution of the linear system (3) consists of the Lagrangian

multipliers i ’s and b. When employing the whole training set

to train the LS-SVM, we use to denote the corresponding

Lagrangian multiplier of a training pair (x

0
p

p, yp). In the LOO

procedure, wp and bp denote the w and b computed using the

training set without xp, hence the LOO error of LS-SVM on xp

can be written as:
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Based on this expression, we first propose the following

Lemma:

Lemma 2: For any training sample xp and the

corresponding , the following equality holds:0
p

xw
T

ppppp minby 01
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Proof of Lemma 2: The solution of for an LS-SVM can be 

achieved by solving the following optimization problem:
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and (A3), the following inequality holds. 
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Similarly, since 0 maximizes the function (A1) under

constraint (A2), the following inequality holds:
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In the leave-one-out procedure, we define the set Tp as a 

constrained linear combination of all the n-1 training samples 
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We also define the quantity Sp as the distance between xp and 

this set: 
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By setting , we can rewrite S1p p as: 
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Finally, we define
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Hence, Lemma 2 is proved.

Proof of Lemma 1: To calculate Sbp, we need to solve the

quadratic problem below: 

T
bp minS  subject to (A13)
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Since  is symmetric and positive definite, (A14) can be 

modified as
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By introducing a Lagrange multiplier µ, we further modify

problem (A14) as
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where , , and 

is the submatrix of H with row and column p removed.

B is the pth column of H with the pth entry removed and

1=[1,1,1…1]
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From the fact that the optimal value of  is , it follows: 
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Since for a block matrix:
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and by sorting the matrix H (change the position of rows and

columns in the matrix, so that the pth row and column become

the first row and column respectively), we get 
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Because  is obtained by changing the positions of rows and

columns in the matrix H,  is just the entry ,

which gives 

~

H

11

1

)(
~

H pp)( 1H

ppbp )/(S 11 H (A18)

From equation (A18), we finally get 
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Therefore, Lemma 1 is proved.
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