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ABSTRACT
This paper investigates gene function annotation of Yeast
by using semi-supervised multi-label learning. Multi-label
learning has been a hot topic in the bioinformatics field, but
there are many samples unlabeled. Semi-supervised learning
may be employed to utilize the unlabeled data. This paper
proposes a novel semi-supervised multi-label learning algo-
rithm COMN by combining Co-Training with ML-kNN to
utilize the unlabeled yeast gene data to improve modeling
accuracy of function annotation. Furthermore, an embed-
ded feature selection algorithm PRECOMN is proposed to
perform feature selection for COMN to remove the irrelevant
and redundant features. Experimental results on one bench-
mark data set of Yeast show COMN and PRECOMN per-
form better than the original multi-label learning algorithm
ML-kNN. Furthermore PRECOMN improves generalization
performance of COMN.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Feature Evaluation and Se-
lection; I.2.6 [Artificial Intelligence]: Learning; J.3 [Life
and Medical Science]: Biology and Genetics

General Terms
Bioinformatics, Machine Learning, Algorithms

Keywords
Semi-Supervised Learning, Multi-Label Learning, Feature
Selection, Gene Function Analysis

1. INTRODUCTION
Multi-label learning (MLL) studies how to analyze data sets
with multi-labels in one sample, which is still a challenge
problem in the bioinformatics field [1]. Multi-label problems
have been existing widely, e.g. in the Yeast data set the
gene YAL062w belongs to several different function classes
like metabolism, transcription, and protein synthesis [4]. In
all multi-label problems, the instances in the training data
set have relation with many labels, but which are unknown
for the test cases.

There are two types of tasks in supervised MLL, i.e. multi-
label classification and label ranking. In multi-label classi-
fication, we need to learn from training samples to produce
a model and output a collection of labels with respect to
the samples in the test set. Many scholars contribute to this
topic and develop a lot of algorithms [11], where ML-kNN as
an adaptation algorithm of MLL based on k nearest neigh-
bor (kNN) has achieved satisfied results. ML-kNN uses the
maximum a posteriori principle in order to determine the
label set of the test instance, based on prior and posterior
probabilities for the frequency of each label within the k
nearest neighbors [12, 11].

As the size of data set increases, there are a lot of sam-
ples without labels due to the cost, which are useless in
supervised learning. To utilize the unlabeled samples, semi-
supervised learning (SSL) is becoming a hot topic. More
and more SSL algorithms are proposed [14], of which Co-
Training series algorithms are good choices [2, 13, 8]. Here
we propose a novel semi-supervised multi-label learning al-
gorithm by combining Co-training with ML-kNN to solve
the novel application of gene function analysis.

In this paper, we improve MLL in two levels, one is com-
bining SSL to utilize the unlabeled data, the other is re-
moving irrelevant and redundant features. The rest is ar-
ranged as follows, Section 2 presents two novel algorithms,
the semi-supervised multi-label learning algorithm COMN,
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and PRECOMN with feature selection; Section 3 introduces
the used data set Yeast and multi-label measure; Results are
presented in Section 4 and conclusion in Section 5.

2. COMPUTATIONAL METHODS
2.1 COMN – a semi-supervised multi-lable learn-

ing algorithm
Multi-label learning (MLL) studies how to model the in-
stances with multi-labels, whose challenge exists in the cross
relationship among the different labels. There are multi-
label problems in the bioinformatics field, e.g. gene func-
tion annotation [4]. A lot of MLL algorithms are devel-
oped in recent years, of which one type is algorithm adap-
tation, e.g. multi-label text categorization, multi-label de-
cision tree, multi-label kernel, multi-label neural networks,
multi-label k nearest neighbor (ML-kNN) and multi-label
ensemble. ML-kNN proposed by Zhang and Zhou [12, 11]
is based on the prior and posterior probabilities for the fre-
quency of each label within the k nearest neighbors, and
determines the labels of test instances by posterior princi-
ple, which has obtained satisfied performance. Without loss
of generality, ML-kNN is employed as the baseline MLL al-
gorithm in this paper.

Semi-supervised learning (SSL) techniques utilize the unla-
beled samples to help improve generalization performance of
base learners [14], of which Co-Training series algorithms are
state-of-arts [2, 13, 8]. Co-Training was proposed by Blum
and Mitchell [2], which supposes there are two independent
and redundant views or feature sets in the data set, this is
very strict. CoReg is proposed by using a pair of heterogy-
nous learners with different parameters, i.e. a pair of kNNs
with different distance metrics [13]. Based on Co-Reg, FES-
COT is proposed to solve classification with feature selection
for modeling of quantitive structure activity relationship [8].
FESCOT uses a pair of heterogynous learners with different
parameters, i.e. a pair of kNNs with different distance met-
rics. kNN is used as base learners. There are two reasons,
one is CoReg is a loop, it needs to repeat training the learn-
ers, its computational complexity is high. If kNN is used,
training is ignored. The other is that CoReg needs to esti-
mate the confidence interval, where kNN is efficient to do.
Here ML-kNN is used as base learners of MLL for SSL which
inherits the advantages of kNN.

In this paper, we fuse both state-of-arts algorithms of ML-
kNN [12] and FESCOT [8] to constitute a novel algorithm
named COMN (Co-Training ML-kNN). As shown in Algo-
rithm 1, COMN inherits the idea of FESCOT and CoReg
[13], which is trained on the same data set by using a pair of
ML-kNN [12] classifiers with two different sets of parameters.
Both classifiers label the unlabeled instances and fertilize the
training data set for each other. The final prediction results
are determined by fusing both classifiers. COMN adapts the
previous algorithms as follows:

• In COMN, ∆u is defined as

∆u = hlossN(xu)(h)− hlossN(xu)(h
′)

where N(xu) represents that the set of k instances near
the unlabeled instance xu, h means the original clas-
sifier, h′ means the classifier trained on the new train-

ing data set with the newly labeled instances which
are originally unlabeled. Ŷu are prediction results pro-
duced from the original classifier. hloss Mean the mea-
sure function of hamming loss as in Section 3.

• Labels of an new instance x are determined by fus-
ing both final ML-kNN learners, output of COMN is
changed to be:

~ru(l) = ~r
1
u(l) + ~r

2
u(l), l ∈ Y

~yu(l) = 1,when ~ru(l) > 1; ~yu(l) = 0, otherwise

where ~r1u(l) and ~r2u(l) represent the evaluation values
produced from the pair of ML-kNN classifiers respec-
tively. ~ru(l) means the final evaluation value produced
by the whole semi-supervised learner, COMN here.
~yu(l) means the relation between the instance l with
the set of instances yu, it is 1, when l ∈ yu; otherwise
0.

In Algorithm 1, please refer to ML-kNN [12] for the calcu-
lation method of P (H) and P (E|H).

2.2 PRECOMN – feature selection for COMN
In data sets, there are irrelevant and/or redundant features,
which hurt the prediction performance. Feature selection is
needed in the learning process. Supervised feature selection
utilizes the labels to improve prediction performance, while
in semi-supervised learning, there are some instances with-
out labels. Feature selection for SSL is still a challenge, only
in FESCOT, embedded feature selection is proposed for SSL
[8].

Feature selection meets the challenge from multi-labels, few
works have been done. Researchers transform the multi-
label problems to single label ones, then perform feature
selection [3, 10]. MEFS is proposed by using the embedded
feature selection model and has obtained better performance
that other feature extraction methods like PCA, LSI and
MDDM on Yahoo web pages data sets [5].

We continue the embedded model employed in FESCOT [8]
and MEFS [5] and propose a novel algorithm PRECOMN
to perform feature selection for COMN. PRECOMN is the
abbreviation of Prediction Risk based Embedded feature se-
lection for COMN where the sequential backward search al-
gorithm is employed to search feature subsets and the pre-
diction risk criterion [9] is to evaluate feature subsets. Pre-
diction risk has been used in other learners like neural net-
works [9], support vector machines [7], ensemble learning [6],
semi-supervised learning [8] and multi-label learning [5] and
obtained satisfied results. Here it is defined as:

Si = avgprec(x)− avgprec(xi) (1)

where avgprec is the computational function of Average pre-
cision as in Section 3, and avgprec(xi) means the Average
precision value on the training data set with the ith feature
being replaced by its average value.

Suppose n is the original number of features, d is the target
dimension, D = (X,Y ) = {L ∪ U} including the feature set
X and the label set Y represents the data set fusing the la-
beled data set L and unlabeled U , length(u) is the feature
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Algorithm 1 The COMN Algorithm

Input: Labeled data L

Unlabeled Data U ,
Test instance t,
Number of nearest neighbor k1 and k2,
Maximum number of iterations T ,
Parameter of distance metric d1 and d2,
Smooth parameters s1 and s2

Output: Label vector ~yt,
Ranking labels ~rt

1: Begin

% Train the learner on L and U

2: L1 ← L; L2 ← L

3: Get U ′ by randomly choosing from U

4: h1 ← ML-kNN(L1, k1, d1, s1),
h2 ← ML-kNN(L2, k2, d2, s2)

5: Calculate the prior probability Pj(H
l
b) and posterior

probability Pj(E
l
j |H

l
b)(j ∈ {1, 2}) by using ML-kNN

6: for i = 1 to T do

7: for j = 1 to 2 do

8: for any xu ∈ U ′ do

9: Ŷu ← hj(xu)
10: N(xu)← Neighbors(xu, Lj , kj , dj)

11: h′
j ← ML-kNN(Lj ∪ (xu, Ŷu), kj , dj , sj) Recalcu-

late the prior probability P ′
j(H

l
b) and posterior

probability P ′
j(E

l
j |H

l
b)

12: ∆u = hlossN(xu)(hj)− hlossN(xu)(h
′
j)

13: end for

14: if ∆u > 0 then

15: x̃j ← arg maxxu∈U′ ∆u; Ỹj ← hj(x̃j)

16:
∏

j ← {(x̃j , Ỹj)}; U
′ ← U ′ −

∏
j ;

17: else

18:
∏

j
← Φ

19: end if

20: end for

21: L1 ← L1 ∪
∏

2; L2 ← L2 ∪
∏

1

22: if L1 and L2 are changed then

23: h1 ← ML-kNN(L1, k1, d1, s1)
h2 ← ML-kNN(L2, k2, d2, s2)

24: Recalculate the prior probability Pj(H
l
b) and pos-

terior probability Pj(E
l
j |H

l
b)(j ∈ {1, 2})

25: Reconstitute U ′ by randomly choosing from U

26: end if

27: end for

% Test on the instance t

28: for l ∈ Y do

29: for j = 1 to 2 do

30: ~C
j
t (l) =

∑
a∈Nj(t)

~Ya(l)

31: ~r
j
t (l) =

Pj(H
l
1)P (El

Ĉ
j
t (l)

|Hl
1)

∑
b∈{0,1} Pj(H

l
b
)Pj(E

l

~C
j
t (l)

|Hl
b
)
;

32: end for

33: ~rt(l) = ~r1t (l) + ~r2t (l)
34: if ~rt(l) > 1 then

35: ~yt(l) = 1
36: else

37: ~yt(l) = 0
38: end if

39: end for

40: End

number of a feature vector u. PRECOMN is shown in Al-
gorithm 2, whose main idea is to rank the features by using
prediction risk, and then to evaluate the feature subsets with
different number of top features by using COMN, at last to
choose the number of features with the best performance of
COMN as the output.

Algorithm 2 The PRECOMN algorithm

Input: Data set D = {L ∪ U}
Output: Number of selected features d,

Feature subset D′

1: Begin

2: Initialize the remaining feature list vector u = [1, ..., n],
the removed feature list vector r = [], the evaluation
result on the validation set e = []

3: Randomly choose 10% to form validation set Dv from
training set D

4: for length(u) > 0 do

5: Dt = D(:, u), Dv = Dv(:, u)
6: Train COMN on Dt and Validate COMN on Dv ,

Obtain ev = avgprecDv
and update e = [ev , e]

7: Calculate the prediction risk value S by using equa-
tion (1) for all features

8: Find the worst feature h = arg max(S)
9: Update the removed feature list r = [u(h), r] and up-

date u = u− {u(h)}
10: end for

11: Find the best feature subset h = arg max(e) and pro-
duce the subset by ub = [r(1 : h)]

12: Obtain the number of the best feature subset d =
length(ub) and produce the best training subset D′ =
D(:, ub)

13: End

3. DATA SETS AND MEASURE
Two proposed novel algorithms COMN and PRECOMN are
tested on one benchmark data set of Yeast.

The Yeast data set is in microarray, there are 2147 instances,
each one has 103 features. There are 14 labels, the average
is 4.24 [4].

The measure of multi-label learning is more complex than
single label, five popular measures are used in this paper, i.e.
hamming loss, one-error, coverage, ranking loss and average
precision [12].

4. RESULTS AND DISCUSSIONS
Two novel algorithms, COMN and PRECOMN are com-
pared with ML-kNN [12] on the real world application of
gene function annotation of Yeast. Settings of COMN, PRE-
COMN and ML-kNN are the same. k1 = 10, k2 = 12,
d1 = 2, d2 = 5, s1 = s2 = 1 and the euclidean distance is
used in all the three learners.

On Yeast, 75% of samples are used as the training set, and
the rest 25% are test, so there are 1610 samples for training
and 537 for test. Then 50% of training set are set as labeled,
i.e. 805 samples, while the other 50% are unlabeled. 10%
of 805 labeled training samples are randomly chosen as the
validation set for PRECOMN, i.e. 81 samples. The split and
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experiment are repeated 10 times. Experimental results are
averaged on the obtained 10 times results. Results on Yeast
are listed in Table 1.

Table 1: Statistical results on Yeast by using ML-

kNN, COMN, and PRECOMN

Criterion ML-kNN COMN PRECOMN
Hamming loss↓ 0.212 0.203 0.195
One-error↓ 0.25 0.242 0.232
Coverage↓ 6.848 6.563 6.297
Ranking loss↓ 0.183 0.176 0.169
Average precision↑ 0.835 0.869 0.894

From Table 1, we can see that: 1) On the four measures
of hamming loss, one-error, coverage and ranking loss, the
smaller results, the better classifiers. Results of COMN and
PRECOMN are all better than those of ML-kNN, while re-
sults of PRECOMN are better than those of COMN. So
PRECOMN is the best classifier of all. 2) On the average
precision measure, the higher, the better of the classifiers.
The same phenomena take place on three classifiers, PRE-
COMN performs absolutely better than COMN and ML-
kNN does.

Results are out of our expectation, PRECOMN performs the
best of all three classifiers on all five measures and all three
data sets. COMN performs better than ML-kNN does on all
five measures and all three data sets. The improvements of
COMN from ML-kNN and PRECOMN from COMN are ap-
parent. Experimental results indicates that semi-supervised
learning may improve the generalization performance of ML-
kNN, multi-label learners. Furthermore, irrelevant and re-
dundant features really and greatly hurt performance of
semi-supervised multi-label learning algorithms, a great need
to remove the irrelevant and redundant features before learn-
ing is raised for semi-supervised multi-label learning algo-
rithms.

5. CONCLUSIONS
This paper studies semi-supervised multi-label learning, propos-
ing two novel algorithms COMN and PRECOMN to solve
the semi-supervised multi-label data sets with irrelevant and
redundant features. Experimental results on one bench-
mark data sets show COMN works well with semi-supervised
multi-label data sets, and PRECOMN further improves its
generalization performance when there are irrelevant and
redundant features. This proves that semi-supervised learn-
ing improves the performance of multi-label learning when
there are unlabeled samples. Both semi-supervised learn-
ing and multi-label learning algorithms suffer from irrele-
vant features, feature selection is needed in semi-supervised
multi-label learning.

This paper just proves that feature selection for semi-supervised
multi-label learning does work, future works are needed to
improve this paper. Firstly, introducing more multi-label
learning algorithms into semi-supervised learning may boost
its performance. Secondly, an efficient heuristic feature sub-
set criterion for semi-supervised multi-label learning is valu-
able.
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