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Abstract
Human activity recognition (HAR), using wearable sensors, is a growing area with the po-

tential to provide valuable information on patient mobility to rehabilitation specialists. Smart-

phones with accelerometer and gyroscope sensors are a convenient, minimally invasive,

and low cost approach for mobility monitoring. HAR systems typically pre-process raw sig-

nals, segment the signals, and then extract features to be used in a classifier. Feature selec-

tion is a crucial step in the process to reduce potentially large data dimensionality and

provide viable parameters to enable activity classification. Most HAR systems are custom-

ized to an individual research group, including a unique data set, classes, algorithms, and

signal features. These data sets are obtained predominantly from able-bodied participants.

In this paper, smartphone accelerometer and gyroscope sensor data were collected from

populations that can benefit from human activity recognition: able-bodied, elderly, and

stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks)

were collected for a total of 44 participants. Seventy-six signal features were calculated and

subsets of these features were selected using three filter-based, classifier-independent,

feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation

Based Filter). The feature subsets were then evaluated using three generic classifiers

(Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identi-

fied for all three populations, although the stroke population subset had some differences

from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the

feature subsets produced similar or better accuracies than classification with the entire fea-

ture set. Therefore, since these feature subsets are classifier-independent, they should be

useful for developing and improving HAR systems across and within populations.
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Introduction
Human activity monitoring and classification from wearable sensors can provide valuable
information on patient mobility outside a hospital setting. While research in this area has re-
ceived substantial attention in recent years, most research has involved able-bodied popula-
tions and proprietary hardware. An activity monitoring approach that works with ubiquitous
technologies and is applicable across clinical populations would greatly benefit evidence-based
decision making for people with mobility deficits.

Smartphones provide an ideal wearable computing environment that is convenient, easy to
use, and rich with sensors, computing power, and storage. Many human activity recognition
(HAR) systems have been developed for smartphone use [1], some using internal sensors and
others interfacing with external biological sensors [2]. When measuring posture or movement,
accelerometers and gyroscopes are popular choices since they are small, affordable, and easily
worn on the body. Most commercial smartphones include accelerometers and gyroscopes,
making them an ideal candidate for activity monitoring in real-world or rehabilitation settings.

Wearable sensors have been used to assess movement quality after stroke, such as upper ex-
tremity motion [3] or gait characteristics [4]. Activity levels, measured as the number of times
total acceleration passes a threshold or minutes per day of activity, are typically collected using
accelerometers or other body-worn sensors [5,6]. However, activity level analysis lacks contex-
tual information. A system that provides contextual information on a person’s mobility activi-
ties would be of particular interest to healthcare professionals and researchers.

The typical signal processing steps for activity recognition are pre-processing, segmentation,
feature extraction, dimensionality reduction (feature selection), and classification [7]. Features
are raw data abstractions, usually calculated over a data segment or window (ex. signal magni-
tude area[8], correlations [8–10], interquartile range [11]). While numerous features can be ex-
tracted from a signal, increasing the number of features does not necessarily increase classifier
accuracy since features may be redundant or not indicative of class (i.e., the activity being clas-
sified). Thus, feature selection is used to reduce data dimensionality and pass relevant and use-
ful features to the classifier.

As Allen et al. remarked [12], many HAR approaches exist in the literature and each re-
search group presents a particular data sample, defined classes, algorithm, and feature set.
Therefore, extracting meaningful information to guide HAR algorithm development is diffi-
cult. Cheung et al. concluded that the most promising and practical activity classification solu-
tion would use a single, waist mounted, triaxial accelerometer, and future classifiers would be
trained with larger samples from mobility impaired or older participants [13]. Smartphones
with triaxial accelerometers meet the technical and practical hardware requirements but deter-
mining the best signal processing approach is still an open question. There is also uncertainty
regarding the question of whether signal processing approaches need to be modified for differ-
ent target populations since the majority of studies have involved able-bodied participants.

Cheung et al. [13] produced an extensive review of studies between 1980 and 2010 that used
accelerometers to classify human movement. The majority of the 54 analyzed studies involved
able-bodied participants. Nine studies involved patients who had various conditions, including
Parkinson’s, back pain, and hemiparesis [13], and six studies involved elderly participants. One
study involved cardiac rehabilitation patients [14]. These studies were limited by small sample
sizes and used multiple sensors placed in various locations on the body, which can be obtrusive
and inconvenient in a real life setting. Multiple sensors are unlikely to be consistently used in
the community for long term monitoring.

A study with a larger data set (20 older adults and 32 Parkinson’s patients) evaluated a com-
mercial activity monitor, the DynaPort MoveMonitor. This device achieved an accuracy of
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65.1 to 98.9% for older adults and 57.5 to 96.9% for the Parkinson’s population, who had large
variability [15]. Allen et al used a single triaxial accelerometer, mounted at the waist of six
older healthy participants. A Gaussian mixture-model based system achieved mean accuracies
of 77.3 to 98.9% [12]. Again, this study had a small sample size. Bidargaddi et al. used wavelet
decomposition based measures to identify walking from other high intensity activities by using
a triaxial accelerometer worn on the waist of cardiac outpatients. Sensitivity of 89.14% and
specificity of 89.97% were achieved [14]. This study only differentiated walking from other ac-
tivity states. A recent smartphone study with 20 younger people and 37 older people achieved
total class sensitivity of 80.5% when trained on the older cohort and tested on the young, com-
pared to a sensitivity of 69.2% when training on the young and testing on the older cohort [16].
This demonstrated the importance of considering differing populations while developing HAR
systems.

From smartphone sensor data, many features have been identified for HAR [7]. Signal fea-
ture selection is necessary to identify the most important features and eliminate redundant fea-
tures. A feature is considered statistically relevant if removing it decreases the prediction
power, and a feature is considered redundant if another relevant feature exists with similar pre-
dicting power [17]. Feature selection methods can be categorized as filter methods, wrapper
methods, or embedded methods [18].

Filter methods look at the data’s general characteristics to evaluate features without involv-
ing a classifier [17]. A wrapper method uses accuracy from a specific classifier to select features.
Embedded methods incorporate feature selection as part of a classifier’s training process. Thus,
both wrapper and embedded methods produce results that are specific to the classifier used for
the task. Therefore, features weights, or feature subset selection, may only be useful to research-
ers using that particular classifier. In addition, the classifier depends on the training data set,
which is relatively small for most HAR systems.

The purpose of this study was to determine signal features that are best suited for activity
recognition using waist-worn smartphones with various populations, independent of the cho-
sen classifier. This was achieved by examining a diverse dataset, using three different popula-
tions, and using various filter methods to select signal features independent of a classifier.
Identifying feature subsets that improve activity classification will improve mobility monitor-
ing models for use in future classifiers. Feature subsets with similar classifier performance to
the full feature set should reduce computational burden, thus facilitating real-time implemen-
tations. This research is an important step in the larger aim of developing an accurate and ro-
bust HAR system for diverse populations.

Materials and Methods
A convenience sample of 15 able-bodied participants, 17 participants over the age of 65, and 12
stroke patients were involved in this study (Table 1). The able bodied group were healthy stu-
dents and staff at the Ottawa Hospital Rehabilitation Centre. The older participants were vol-
unteers who were capable of completing the mobility tasks in the study. One senior participant
walked with a limp and was awaiting surgery on their left leg. Another participant wore foot or-
thoses for the previous 2 years and had his patella replaced in 2013. He was also cautious on his
left foot due to a bunion. Another participant had arthritis in their hip, which adversely affect-
ed walking gait. Seven stroke patients had left hemiparesis and three had right hemiparesis.
Nine stroke patients had ischemic stroke and one had impairment because of a benign cerebral
tumor. Two stroke patients used one crutch and one used an ankle-foot orthosis. All partici-
pants provided written informed consent and the study was approved by the Ottawa Health
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Science Network Research Ethics Board. Participant characteristics were recorded on a data
sheet (i.e., age, sex, height, weight).

Participants performed a pre-determined set of daily living actions by moving through a
continuous test circuit that included mobility activities (walking, standing, sitting, lying, as-
cending/descending stairs, ascending/descending ramps), daily living tasks (combing hair,
brushing teeth, preparing food, eating, washing dishes), and environment changes (opening
doors, using an elevator, traversing staircase landings, walking outdoors). Digital video was re-
corded while participants performed the activities, to establish a gold standard against which
the sensor data could be compared. Activity timing was determined from the video and the
video-based time was synchronized with smartphone sensor output by shaking the phone,
thereby providing an easily recognizable accelerometer signal and video event.

Accelerometer and gyroscope data were collected using a Blackberry Z10 smartphone worn
on the right-front hip and sampled at approximately 50Hz (smartphone sample rates vary, the
Blackberry Z10 had a 3.84 Hz standard deviation [19]). Most modern smartphones contain
comparable accelerometers and are capable of 50Hz or higher sampling rates [16,20]. The
phone’s x and y axes were parallel to the phone`s face, with the z-axis pointed outward. Black-
berry sensor data included raw acceleration (x, y, z), acceleration due to gravity (x, y, z), linear
acceleration (raw acceleration minus gravity), and gyroscope data (x, y, z). The gravity signal
(acceleration due to gravity) is calculated by the BlackBerry 10 operating system, using sensor
fusion and a proprietary algorithm, and is used to determine the device’s true (gravity-free) lin-
ear acceleration. All data were collected using the TOHRC Data Logger application [21] and
then imported into Matlab to calculate all features.

For HAR in this study, six activity classes were defined and labelled from the video record-
ings: sit, stand, lie, large movements (including walking, small steps, opening doors), stairs, and
small movements (common activities of daily living that are often used in HAR studies
[12,13,15]). The sensor data was continuous and thus contained sections between each identifi-
able class, which were labelled as transition states. For feature selection, the data were labelled
by level of detail, such that each level contained only sensor data from a subset of classes. In
this way, the selected features can be used in HAR systems that have varying detail levels. The
levels were:

• Level 1: (2 classes)-Mobile, immobile (large movements and stairs labeled as mobile; sit,
stand, lie, and small movements labeled as immobile)

• Level 2 (2 classes)-Sit, stand (not including small movements)

• Level 3 (3 classes)-Sit, stand, lie

• Level 4 (2 classes)-Large movements, stairs

• Level 5 (5 classes)-Ramp up, ramp down, large movements, stairs up, stairs down

• Level 6 (2 classes)-Small movements (Yes or No, only while sitting, standing or lying)

• Level7 (21 classes)-Transition states (transition between activities, listed in S1 Appendix)

Table 1. Participant characteristics (mean and standard deviation).

Group Number of Participants Age (years) Sex (% male) Height (cm) Weight (kg)

Able-body 15 26 ± 8.9 67 173.9 ± 11.4 68.9 ± 11.1

Elderly 17 74 ± 6.3 70 166.7 ± 9.3 69.6 ± 14.6

Stroke 12 54 ± 8.9 55 170.8 ± 5.5 82.7 ± 12.6

doi:10.1371/journal.pone.0124414.t001
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Level 1 represented the lowest level of detail, and can be used for monitoring a person’s ac-
tivity level without identifying individual activities. Level 2 differentiated between sit and
stand, since these states are typically difficult to distinguish using a single waist worn acceler-
ometer, causing them to be mutually misclassified [22,23]. Sit and stand activities with small
movements, such as standing and working in the kitchen, were not included in level 2. Level 3
represented the three common immobile states (sit, stand, lie), including small movements in
these states. Level 4 separated mobile states into large movements (predominantly walking)
and stairs. Ramps were not included in level 4 since the sensor signals are typically similar to
level walking. Level 5 represented the highest level of detail, including level walking, ramps,
and stairs, to investigate features that can be considered when differentiating between activities
that can have similar signals. Level 6 represented small movements, since these are difficult to
detect using a waist worn sensor. Level 7 represented transitions between states.

Features
Time domain features are typically used in HAR systems because they help preserve battery life
by virtue of being less computationally intensive [24]. Seventy six features (Table 2) were se-
lected from the literature and from observation of accelerometer and gyroscope pilot test data.
These features were calculated over short sliding windows (1 second, no overlap) to allow a fast
response in real time and to improve detection of short duration movements [12].

Feature files were generated from the sensor data and class files were created using the activ-
ities identified in the video recordings, and synchronized with the feature files. Each 1 second
window was considered an occurrence. For example, sitting for 5 seconds was considered 5 oc-
currences. When segmenting the data, a 2 second window was selected on either side of a
change of state to encompass the transition features; therefore, transition features were not in-
cluded in the feature selection process for the surrounding states. Class distributions at each
level are shown in Table 3. Since this is a realistic data sample representing activities of daily
living, class imbalances occur. For example, there were more instances of walking or sitting
than climbing stairs or lying down.

With a phone positioned on the front of the pelvis, the phone’s orientation when the person
is standing upright differs depending on the individual’s body type or clothing. To address this,
a quaternion based rotation matrix method was used to correct for these differences [25]. A ten
second sample of accelerometer data was collected while the participant was standing still. One
second of this sample with the smallest standard deviation was used to calculate the rotation
matrix constants. The remaining raw linear accelerometer data were multiplied by this matrix
to create a consistent linear acceleration signal that was corrected for initial phone orientation.

Feature Selection
The current study focused on filter methods for feature selection, since these methods are inde-
pendent of the selected classifier. Three filter methods were chosen: Relief-F, Correlation-based
Feature Selection (CFS), and Fast Correlation Based Filter (FCBF). These feature selection
methods do not rely on information theory, which can be biased towards features based on ac-
tivities that occur more often in the data set.

Relief F is a commonly used filter method that ranks features by weighting them based on
quality (relevance). For each instance, the algorithm finds the nearest hit (data point from
same class) and nearest misses (data points from different classes). Feature relevance is based
on how well instances from different classes and instances from the same class are distin-
guished [17,26]. Rather than providing a subset of features, Relief-F weights all features
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according to relevance. The formula used to update the weight of each feature is Eq (1).

wi ¼
XN
j¼1

ðxij � nearmissðxjÞiÞ
2

� ðxij � nearhitðxjÞiÞ2 ð1Þ

where w is the weight of the ith feature, xji is the value of the i
th feature for point xj, and N is the

total number of data points. Nearhit xj and nearmiss xj are the nearest data point to xj in the
same and different classes, respectively [17].

One concern with Relief-F is that it does not evaluate redundancy in comparison to other
features [17]. However, Relief-F has been reported to be useful in cases with strong interdepen-
dencies between fields [26]. Since Relief-F does not select a subset of features, an appropriate

Table 2. Features derived from raw sensor data.

Feature # Feature Description

1 Sum of range of linear acceleration

2 Sum of standard deviation of linear acceleration

3 Simple moving average of sum of range of linear acceleration

4 Difference to y (ygravity—zgravity—xgravity)

5, 6, 7 Range of gravity vector (x, y, z)

8,9,10 Mean of gravity vector (x, y, z)

11,12,13 Range of linear acceleration (x, y, z)

14,15,16 Mean of linear acceleration (x, y, z)

17,18,19 Kurtosis of gravity vector (x, y, z)

20 Sum of Kurtosis of gravity vector

21 Sum of standard deviation of linear acceleration

22 Sum of variances gravity (summed diagonal of covariance matrix)

23 Simple moving average of sum of variances

24 Maximum slope of simple moving average of sum of variances

25–30 Covariance matrix elements of gravity vector

31–36 Covariance matrix elements of linear acceleration vector

37–42 Covariance matrix elements of rotated linear acceleration vector [25]

43 Velocity from integral of rotated linear acceleration1 (excluding y-axis)

44 Velocity for y-axis

45,46,47 Mean Euclidean norm (Linear, rotated linear1, raw acceleration)

48,49,50 Skewness of rotated linear acceleration (x, y, z)1

51,52,53 Moving average of skewness of rotated linear acceleration (x, y, z)1

54 Sum of moving average of skewness (x, y)

55 Range of rotated linear acceleration (x)

56 Moving average of distance from rotated linear acceleration1

57,58,59 Mean absolute linear acceleration (x, y, z)

60,61,62 Harmonic mean linear acceleration (x, y, z)

63,64,65 Cumulative sum linear acceleration (x, y, z)

66 Correlation between acceleration along gravity and heading

67 Average velocity in gravity direction

68 Average velocity in heading direction

69,70,71 Gyroscope mean (x, y, z)

72,73,74 Interquartile range linear acceleration (x, y, z)

75 Zero cross rate

76 Mean cross rate

doi:10.1371/journal.pone.0124414.t002
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number of features to include in each subset was determined by processing the ranked feature
list with three common classifiers (Naïve Bayes, Support Vector Machine (SVM), j48 Decision
tree (j48)) using every possible number of features, added in order of rank. For all but 3 cases,
the accuracy achieved using the ten highest ranked features was within 5% of the maximum
accuracy achieved. Thus, subsets of the top 10 ranked features were used to compare
populations.

Correlation based Feature Selection (CFS) evaluates the relevance of features from a correla-
tion based heuristic that examines inter-correlation among features along with their ability to
predict classes [27]. Thus, CFS selects features that are highly correlated with the class and un-
correlated with each other. Feature relevance is quantified using Eq (2).

merits ¼
k �rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk� 1Þ �rff
q ð2Þ

The subset S contains k features, �rff is the average feature correlation, and �rcf is the mean fea-

ture-class correlation. This equation is a version of Pearson’s correlation with standardized var-
iables. CFS uses a “forward best first search with a stopping criterion of five consecutive fully
expanded non-improving subsets” [27].

The Fast Correlation Based Filter (FCBF) method evaluates feature merit by examining the
predominant correlation between features and classes and selecting the predominant features
from redundant peers. By using subsets of features based on symmetrical uncertainty, the algo-
rithm can more efficiently analyze feature redundancy to perform a faster selection and achieve
a high level of dimensionality reduction (selecting a small number of features) [28].

These three filter methods were chosen because they deal with potential issues when select-
ing multiple features from a common data set. Specifically, Relief F is useful in cases with
strong interdependencies between fields and, since the features were derived primarily from
the same accelerometer sensor data, interdependencies could occur. CFS selects features that
are highly correlated with the class and uncorrelated with each other, which is desirable. Since
the features were expected to correlate with each other, it is necessary to identify features that

Table 3. Class distributions at each level.

Level Class Number of instances

1 Immobile 12841

1 Mobile 17607

2 Stand 4072

2 Sit 2756

3 Stand 8649

3 Sit 2808

3 Lie 1353

4 Large Movements 16720

4 Stairs 887

5 Large Movements 15262

5 Stairs up 582

5 Stairs down 458

5 Ramp up 438

5 Ramp down 346

6 Small moves 4577

6 None 8233

doi:10.1371/journal.pone.0124414.t003
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can be used together to increase performance, without being redundant. FCBF also compares
correlations between features, yet tends to select smaller subsets than CFS. This is ideal because
reducing computational cost by using fewer features is beneficial in a wearable system.

CFS, FCBF, and Relief-F filter methods were run in Matlab using the Arizona State Univer-
sity Feature Selection repository [17]. The algorithms were executed for each level and each
population.

Evaluation of Feature Selection
To evaluate whether the feature subsets were more effective for classification than the entire
feature set, three common classifiers were run using all features and then using the feature sub-
sets: Naïve Bayes, SVM, and j48 from the Arizona State University Feature Selection repository
[17]. For each population, leave-one out cross validation was performed (as in [16]) at each
level. Each level contained a subset of data from all participants. Data from all but one partici-
pant were used to train the classifier, which was then tested on data from the one “left out” par-
ticipant. This was repeated for each participant (i.e., cross validation) to generate an accuracy
data set for statistical analysis. A paired samples sign test was used to identify significant differ-
ences in classifier accuracy between the full feature set and feature subsets (p<0.05), since the
data were neither symmetrical nor normal. The Benjamini–Hochberg procedure was used to
correct for multiple comparisons. This classification procedure evaluated the feature selection
results and provided outcome measures to determine if the subsets should be implemented in a
HAR system.

Results
The selected features for each population are shown in Table 4, 5, and 6. In general, the CFS
method selected larger subsets that contained between 2 and 22 features, while FCBF selected
subsets with 1 to 11 features.

Features Selected by Population
For the able-bodied group (Table 4), features selected by CFS and FCBF methods were similar.
Often, the FCBF features were a subset of the features selected by CFS (levels 1, 6). This was ex-
pected since these algorithms are similar. Features 18 and 23 (y gravity kurtosis and simple
moving average of sum of gravity variances, respectively) were selected by all three algorithms

Table 4. Features selected for able bodied participants.

Level CFS FCBF Relief-F

1 3, 6, 12, 23, 27, 39, 43, 64, 66, 70, 71, 73 3, 6, 27, 39, 64, 66 1, 2, 10, 11, 12, 15, 21, 33, 54,
58

2 10, 18, 23, 47 10, 18, 23, 47 7, 12, 18, 20,23, 52, 58, 65,
66, 73,

3 4, 9, 10, 42, 68 4, 9, 10, 42, 68 17, 34, 42, 44, 52, 57, 60, 61,
712, 76

4 3, 4, 7, 8, 14, 15, 23, 24, 25, 29, 34, 42, 48,
52, 57, 68

1, 8, 14, 15, 17,
29, 52

35, 48, 51, 52, 57, 60, 65, 66,
70, 75

5 4, 5, 7, 10, 23, 28, 29, 39, 42, 56 4, 20, 28, 39 11, 16, 29,36, 42, 59, 64, 76

6 3, 4, 9, 10, 11, 35, 37, 47, 48, 52, 56, 61,
712, 64, 70

10, 37 13, 44, 49, 46, 48, 52, 58, 65,
72, 76

7 3, 23, 24, 47, 68 8 7, 11, 17, 18, 20, 48, 49, 50,
55, 75

doi:10.1371/journal.pone.0124414.t004
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to separate sitting and standing states. Only feature 42 (element (2, 3) of the rotated linear ac-
celeration covariance matrix) was selected by all three algorithms to distinguish sitting, stand-
ing, and lying states, and feature 52 (moving average skewness of rotated Y linear acceleration)
was selected by all three algorithms to determine if the person was climbing stairs or walking.
No feature was selected by all algorithms for differentiating between mobile and immobile
states, although feature 12 (range of y linear acceleration) was selected by both Relief-F and
CFS.

For elderly participants (Table 5), the features selected by FCBF were subsets of the features
selected by CFS for levels 1, 3, and 6, with only one extra feature selected when separating sit-
ting and standing (feature 28: element (1,2) of the gravity covariance matrix) and when identi-
fying the mobile state at level 5 (feature 42). All three algorithms selected feature 56 (moving
average of distance from rotated linear acceleration) to differentiate mobile and immobile
states, and feature 52 to discriminate other large movements from stairs.

For stroke participants (Table 6), all algorithms selected feature 61 (harmonic mean y linear
acceleration) to distinguish mobile and immobile states, and feature 44 (y velocity) to

Table 5. Features selected for senior participants.

Level CFS FCBF Relief-F

1 3, 7, 12, 22, 23, 25, 33, 35, 38, 44, 44, 57, 55,
56, 58, 58, 64, 66, 70, 71, 73, 74

25, 56, 58 15, 16,19, 44, 56,57, 59,
65, 66, 75

2 4, 10, 15, 24, 44 10, 15, 24, 28 1, 2, 3, 7, 11, 27, 30, 66,
67, 71

3 4, 10, 42, 45 4, 10, 42 16, 32, 47, 57, 56,
58,712, 64, 65, 76

4 4, 9, 10, 15, 20, 23, 24, 25, 27, 29, 38, 41, 44,
47, 48, 49, 52, 54, 66, 68

4, 29, 39, 44, 52,
61 63, 66

1, 12, 14, 18, 49, 50, 52,
63, 66, 76

5 4, 22, 24, 25, 29, 43, 44, 49, 52, 54, 66 4, 29, 42, 43, 44,
52

12, 14, 25, 40, 42, 63,
64, 67, 71, 72

6 3, 4, 8, 10, 11, 51, 56, 60, 61, 70, 72, 76 4, 11 22, 27, 43, 57, 56, 66,
68, 69, 73, 75

7 9, 44, 45, 48, 51, 72 4 13, 14, 15, 19, 40, 44,
50, 64, 67, 72

doi:10.1371/journal.pone.0124414.t005

Table 6. Features selected for stroke participants.

Level CFS FCBF Relief-F

1 3, 5, 6, 23, 25, 32, 38, 43, 49, 57, 56, 61,
68, 69, 70, 71, 74, 76

3, 25, 27, 32, 57, 61, 63,
65, 66, 76

7, 45, 48, 52, 54, 55, 56,
61, 66, 68

2 9, 10, 38, 47, 66, 68 26, 66, 70 1, 2, 5, 11, 12, 13, 14,
15, 28

3 4, 10, 44, 67 726: 10, 44 17, 18, 20, 44, 50, 51,
57, 64, 65

4 4, 18, 24, 29, 31, 47, 48, 52, 56 18, 24, 52, 56 14, 17, 19, 35, 37, 39,
41, 48, 63

5 3, 4, 7, 10, 16, 17, 18, 20, 24, 25, 29, 39,
47, 48, 47, 54, 56, 58, 59

10, 20, 29, 39, 63 2, 5, 21, 33, 34, 49, 46,
59, 74

6 10, 30, 47, 48, 67, 70, 72 70, 76 15, 17, 18, 20, 44, 49,
51, 57, 65

7 47, 48 30 11, 15, 43, 44, 49, 55,
58, 72, 76

doi:10.1371/journal.pone.0124414.t006

Feature Selection for Smartphone-Based Human Activity Recognition

PLOS ONE | DOI:10.1371/journal.pone.0124414 April 17, 2015 9 / 18



differentiate sitting, standing, and lying down. The stroke group had the least agreement be-
tween algorithms for selected features.

Table 7 compares common features selected across populations by CFS. The CFS algorithm
selected common features for all populations at every detail level, except for transitions.
Table 8 shows the classifier accuracy for all features and the feature subset from CFS. Classifier
performance was unchanged or significantly improved when using the selected feature subsets,
meaning that redundant features were eliminated without sacrificing classification accuracy.
As an example, Table 9 shows confusion tables for each classifier, run on the entire Level 3
dataset (all populations) using all features and using the CFS feature subset. For level 3, it can
be considered that the cost of misclassifying a sitting state as standing is higher than the cost of
misclassifying a sitting state as lying down, since lying down and sitting are both sedentary
states with little energy expenditure.

Table 10 shows the common features selected between populations by the FCBF algorithm
and Table 11 shows the classifier accuracy for all features and the FCBF feature subset. Since
FCBF subsets were smaller, there were fewer common features between populations than CFS.
Four of 168 cases showed decreased classifier performance, though three of the accuracy differ-
ences were 1.6% or less, which is not clinically significant. The other case was a change from
22.50 to 17.41% accuracy; however, both results were low and likely unacceptable for making
decisions on a person’s mobility status. These results were from the transition data set (level 7),
which was not well identified using any of the classifiers. All other cases showed unchanged or
significantly improved classifier performance, demonstrating that redundant features were
eliminated without sacrificing classification accuracy.

Table 12 shows the common features selected across populations by Relief-F. Despite com-
paring populations with a larger subset of ten features, less than three features were common
between populations.

Analysis of results
Level 1: Mobile, immobile states. When distinguishing between mobile and immobile

states, the “simple moving average of sum of range of linear acceleration” (feature 3), “simple
moving average of the sum of variances of the gravity vector” (feature 23), mean gyroscope out-
put on the y and z axes (features 70, 71), and correlation between acceleration in gravity and
heading direction (feature 66) were selected by multiple algorithms across populations.

The CFS method selected features 3 and 23 for all populations and FCBF selected feature 3
for both able bodied and stroke populations. Both of these features are moving averages, which
filter the raw signal to provide a more consistent, smoothed feature. Filtering makes the

Table 7. Common features selected across populations using CFS.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Able bodied and Senior

3, 12, 23, 64, 66, 70, 71, 73 10 4, 10, 42 4, 15, 23, 24, 25, 29, 52, 68 4, 29 3, 4, 10, 11, 56, 61, 70 n/a

Able bodied and stroke patients

3, 6, 23, 43, 70, 71 10 4, 10 4, 24, 29, 52 4, 7, 10, 29, 39, 56 10, 70 n/a

Stroke patients and senior

3, 23, 25, 38, 57, 56, 70, 71, 74 10 4, 10 4, 24, 29, 52 4, 24, 25, 29, 54 10, 70, 72 n/a

All three populations

3, 23, 70, 71 10 4, 10 4, 24, 29, 52 4, 29 10, 70 n/a

doi:10.1371/journal.pone.0124414.t007
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features more effective in differentiating between states at a broad level of detail; however,
these features were not selected for the higher detail levels.

Mean gyroscope output on the y and z axes (features 70, 71) were selected by CFS for all
populations. Since many HAR systems employ only accelerometers, informative gyroscope

Table 8. Classifier accuracy with all features and with selected feature subset using CFS.

Features Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Able bodied

Bayes All 97.31 94.93 77.93 72.32 85.58 78.16 20.11

Selected 97.52 95.62 94.42 81.94 94.32 82.72 21.87

Sig 0.146 0.754 0.001 0.001 0.013 0.118 0.180

SVM All 63.62 74.05 73.47 84.97 94.90 72.06 22.50

Selected 86.79 96.70 88.12 84.97 94.90 78.72 20.25

Sig < 0.001 < 0.001 0.001 1.000 1.000 0.180 0.549

j48 All 94.69 96.85 95.02 71.38 90.52 78.16 20.36

Selected 97.27 96.40 95.07 75.24 92.80 81.97 22.04

Sig 0.581 1.000 0.109 0.035 1.000 0.302 0.791

Senior

Bayes All 94.45 86.75 79.02 76.57 91.57 82.61 17.85

Selected 95.08 85.54 88.88 89.56 94.73 87.44 24.50

Sig 0.001 1.000 0.002 < 0.001 < 0.001 < 0.001 < 0.001

SVM All 65.57 67.81 70.14 91.07 94.49 67.14 18.38

Selected 88.42 77.82 70.45 91.07 94.51 63.35 21.48

Sig < 0.001 0.143 0.210 1.000 1.000 0.143 0.332

j48 All 94.37 81.12 87.31 85.39 93.92 84.05 22.84

Selected 94.78 80.87 85.87 87.68 94.55 83.51 23.19

Sig 0.143 0.454 0.049 0.210 0.629 0.629 0.804

Stroke

Bayes All 96.18 76.35 77.88 74.31 83.05 75.42 26.98

Selected 96.49 82.49 86.61 85.66 90.69 83.18 29.52

Sig 0.039 0.180 0.012 0.012 0.012 0.227 0.344

SVM All 67.14 61.02 66.38 90.59 95.97 64.09 26.58

Selected 92.07 55.57 65.35 90.59 95.97 66.85 29.73

Sig 0.001 0.125 1.000 1.000 1.000 1.000 0.065

j48 All 94.56 81.63 82.90 81.87 93.00 79.52 22.09

Selected 95.20 84.07 80.23 85.89 94.76 77.37 23.40

Sig 0.549 1.000 1.000 0.549 1.000 1.000 0.549

All Populations

Bayes All 95.62 84.81 78.36 76.74 87.18 78.26 11.97

Selected 96.02 85.99 89.00 84.19 92.17 84.01 22.28

Sig < 0.001 0.617 0.165 1.000 1.000 < 0.001 0.522

SVM All 66.90 68.38 70.76 88.82 95.01 68.59 21.35

Selected 90.59 67.59 72.82 88.82 95.01 77.99 21.51

Sig 0.029 1.000 0.118 0.874 0.871 0.877 0.127

j48 All 94.97 86.20 89.53 83.02 92.65 81.83 20.98

Selected 95.84 85.30 88.52 84.01 93.16 82.44 20.12

Sig 0.549 1.000 0.754 0.065 0.549 1.000 0.227

Bold cells show significant differences after correction for multiple tests.

doi:10.1371/journal.pone.0124414.t008
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data are unavailable for activity classification. Most commercial smartphones have gyroscopes
built in, making gyroscope data accessible and feasible.

Feature 66 was selected by two algorithms for each population, but without consistent re-
sults, and examines the relationship between vertical and horizontal accelerations. This feature
has been used to differentiate between activities that translate along a single axis, such as walk-
ing, from activities that translate along multiple axes, such as stair climbing [18]. Since acceler-
ation in an immobile state would exist predominantly in one direction, between axis
correlations would be small, which explains why feature 66 was selected at level 1. Interestingly,
feature 66 was not selected for all groups. Some people may perform mobile activities, such as
walking with pathological gait, with smaller correlations between acceleration axes (i.e., mobile
and immobile states both having smaller correlations), which would result in this feature not
being consistently selected across populations.

Level 2: Sit, stand and Level 3: Sit, stand, lie. When distinguishing between sitting, stand-
ing, and lying down, feature 10 (mean z gravity vector) and feature 4 (difference to y gravity)
were repeatedly selected across populations.

For differentiating sitting and standing, the CFS method selected feature 10 for all popula-
tions. This feature is related to the phone’s orientation, thus feature 10 is a reasonable choice
for differentiating between sitting and standing since the pelvis angle changes during these ac-
tivities. This feature was selected by FCBF for able bodied and senior participants, but not
stroke. The mean y-gravity vector also changes with phone orientation; however, these changes
are small in comparison to the initial value in an upright position (roughly 9.81 m/s2). This
small change would not have been identified as significant, which could be why the mean y
gravity vector was not selected repeatedly, as opposed to mean z gravity that was near zero
when upright.

Table 9. Confusion Tables for all populations at Level 3 using all features and feature subsets selected by CFS (each instance represents 1
second).

Bayes SVM j48

Features Class Stand Sit Lie Stand Sit Lie Stand Sit Lie

All Stand 2135 219 7 2576 468 221 2522 52 1

Sit 441 635 0 0 388 0 54 804 2

Lie 0 2 404 0 0 190 0 0 408

CFS
subset

Stand 2526 240 0 2546 47 8 2544 72 1

Sit 50 612 3 30 809 0 32 784 1

Lie 0 4 408 0 0 403 0 0 409

doi:10.1371/journal.pone.0124414.t009

Table 10. Common features between populations using FCBF.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Able bodied and Senior

n/a 10 10, 4, 42 29, 52 4 n/a n/a

Able bodied and stroke patients

3, 27, 66 n/a 10 52 39, 20 n/a n/a

Stroke patients and senior

25 n/a 10 52 29 n/a n/a

All three populations

n/a n/a 10 52 n/a n/a n/a

doi:10.1371/journal.pone.0124414.t010
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Interestingly, feature 4 (difference to y gravity) was selected for all populations by CFS when
including “Lie” as a class (level 3), even though feature 4 was only selected for the senior popu-
lation when differentiating solely between sit and stand (level 2). This suggests that, if the pelvis
remains relatively upright for sit and stand, the z-axis gravity vector (feature 10) is better at

Table 11. Classifier accuracy with all features and with selected feature subset using FCBF.

Features Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Able bodied

Bayes All 97.31 94.93 77.93 72.32 85.58 78.16 20.11

Selected 97.43 95.62 94.42 82.90 94.83 78.01 21.26

Sig 0.549 0.754 0.001 0.001 0.035 0.607 0.791

SVM All 63.62 74.05 73.47 84.97 94.90 72.06 22.50

Selected 82.84 96.70 88.12 84.56 94.70 72.05 17.41

Sig < 0.001 < 0.001 0.001 0.031 0.031 1.000 < 0.001

j48 All 94.69 96.85 95.02 71.38 90.52 78.16 20.36

Selected 97.12 96.40 95.07 77.80 93.73 77.84 16.24

Sig 0.581 1.000 0.109 0.180 0.302 0.791 0.607

Senior

Bayes All 94.45 86.75 79.02 76.57 91.57 82.61 17.85

Selected 95.51 84.24 88.88 92.09 95.82 85.75 24.49

Sig 0.013 1.000 0.002 < 0.001 < 0.001 0.049 0.210

SVM All 65.57 67.81 70.14 91.07 94.49 67.14 18.38

Selected 88.51 72.37 70.45 91.07 94.30 62.79 21.13

Sig < 0.001 0.454 0.210 1.000 0.039 0.332 0.332

j48 All 94.37 81.12 87.31 85.39 93.92 84.05 22.84

Selected 94.93 86.52 85.87 87.56 93.96 84.23 19.57

Sig 0.077 0.332 0.049 0.332 1.000 1.000 0.210

Stroke

Bayes All 96.18 76.35 77.88 74.31 83.05 75.42 26.98

Selected 96.72 76.34 81.34 88.17 95.35 75.80 31.48

Sig 0.021 0.227 1.000 0.001 0.001 1.000 0.109

SVM All 67.14 61.02 66.38 90.59 95.97 64.09 26.58

Selected 77.31 70.81 64.75 88.97 95.95 73.40 24.57

Sig 0.001 0.344 0.549 0.001 0.109 0.065 0.549

j48 All 94.56 81.63 82.90 81.87 93.00 79.52 22.09

Selected 95.66 88.13 79.61 87.66 94.32 76.96 24.76

Sig 1.000 0.754 0.065 0.549 1.000 1.000 0.227

All populations

Bayes All 95.62 84.81 78.36 76.74 87.18 78.26 11.97

Selected 96.27 80.75 88.09 88.88 94.29 79.34 19.70

Sig < 0.001 0.061 < 0.001 < 0.001 < 0.001 0.360 < 0.001

SVM All 66.90 68.38 70.76 88.82 95.01 68.59 21.35

Selected 90.44 73.76 88.02 87.58 94.67 77.28 19.96

Sig < 0.001 0.118 < 0.001 < 0.001 < 0.001 0.003 0.877

j48 All 94.97 86.20 89.53 83.02 92.65 81.83 20.98

Selected 96.04 86.20 88.80 86.73 94.62 80.20 17.63

Sig 0.021 0.417 0.082 0.003 0.268 0.200 0.090

Bold cells show significant differences after correction for multiple tests.

doi:10.1371/journal.pone.0124414.t011
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differentiating between these smaller changes in phone orientation than feature 4. For level 3,
FCBF selected feature 4 for able bodied and senior populations, but not stroke patients.

For the Relief-F subset, no features were selected for all populations when comparing sitting,
standing and lying (level 3). The features that ranked well were those that examined a single ac-
celeration axis (cumulative sum of y linear acceleration, skewness of z acceleration, kurtosis of
x-gravity etc.). Since these activities affect pelvis orientation, a combination of features examin-
ing behaviour along different axes can indicate the person’s state. Interestingly, the features se-
lected by Relief-F were not similar to the ones selected by CFS and FCBF at level 3. When
implementing these features in a HAR system, the CFS and FCBF subsets could be considered
first since these selection algorithms take feature redundancy into consideration.

Level 4: Large movements, stairs. When distinguishing stair climbing from other large
movements, four features were selected for all populations by the CFS method: feature 4 (dif-
ference to y gravity), feature 24 (maximum slope of simple moving average of sum of vari-
ances), feature 29 (element (1, 3) of the gravity vector’s covariance matrix) and Feature 52
(moving average of the skewness of the rotated y linear acceleration). Feature 52 was also se-
lected for all populations by FCBF.

Feature 4 relates to pelvis orientation. A person who walks upright, but leans forward when
navigating stairs could exhibit a change in pelvis orientation. Feature 24 (maximum slope of
simple moving average of sum of variances) describes how the acceleration variance increases
or decreases, which would change if the person slows down or speeds up while climbing stairs.
Feature 29 describes how the variance along different axes change together, and feature 52 de-
scribes the asymmetry of a person’s vertical acceleration, making them viable features to identi-
fy the difference in the direction of motion between stair climbing and walking.

Level 5: Ramp up, ramp down, large movements, stairs up, stairs down. Similarly to
Level 4, feature 4 (difference to y gravity) and feature 29 (element (1, 3) of the gravity vector’s
covariance matrix) were selected by CFS for all populations. These features describe how the
acceleration axes relate to each another, which is directly affected by changes in pelvis orienta-
tion and the direction of movement (i.e., if a person moved up a staircase or ramp). FCBF did
not select any features that were common to all populations, although features 4 and 29 were
selected for two populations each, agreeing with CFS selections. Interestingly, level 5 accuracy
tended to be better than level 4. Therefore, different features should be used to classify stair as-
cent and descent, rather than combining ascent and descent into one class.

Level 6: Small movements. For all populations, feature 10 (mean z gravity vector) and fea-
ture 70 (mean gyroscope on y-axis) were selected by CFS. Since these classes describe when a
person is slightly moving while seated, standing, or lying down, these motions can be charac-
terized by pelvis rotation, as measured by the gyroscope. The mean z gravity vector is along the

Table 12. Common features ranked in the top ten across populations using Relief-F.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Able bodied and Senior

15 66, 76, 62 66, 52 64,42 n/a 50

Able bodied and stroke patients

54 12 17 35, 48, 75 59 44, 48, 65 11, 49, 55, 75

Stroke patients and senior

56, 66 1,2,11 57, 64 14, 63 n/a 57 15, 44, 72

All three populations

n/a n/a n/a n/a n/a n/a n/a

doi:10.1371/journal.pone.0124414.t012
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phone’s forward axis, which changes when a person leans in to accomplish a small movement
task, such as making toast or eating dinner.

Level 7: Transitions. No features were common to all populations when classifying transi-
tions. Due to the short duration of transition states and movement variability between individ-
uals, it is difficult to identify consistent features across multiple people or groups. Since
transitions are defined by the two activities performed at the start and end of the transition pe-
riod, other methods could be considered to classify a transition (i.e., without using specific
transition features).

Discussion
Smartphone signal features that were consistent across able-bodied, elderly, and stroke groups
were successfully identified. This established viable HAR feature subsets that can be used with
waist-worn smartphones. Evaluation of these subsets with generic classifiers showed improve-
ments in activity recognition accuracy. This indicates that the features eliminated in the feature
selection process were redundant and did not significantly contribute to classifier accuracy.
Thus, with appropriate feature subset selection, equivalent classifier performance can be ob-
tained with a reduced feature set, effectively reducing computation burden on the HAR.

When differentiating between sitting, standing, and lying down, the mean gravity signal
along the phone’s z-axis was repeatedly selected across populations. This is similar to results
obtained by Cruz-Silva et al. [20], who ranked mean horizontal acceleration third and mean z
acceleration 15th out of 159 features for HAR (gravity vector was not included). For our study,
the feature selection algorithms found the gravity signal to be more relevant, and the redundant
mean acceleration signal was therefore excluded (i.e., the gravity signal along the z-axis and
mean horizontal acceleration may be similar for the target activities). Maurer et al. [11] also se-
lected mean acceleration in the z-axis for HAR, although neither Cruz-Silva nor Maurer sepa-
rated their data into different levels. The mean z-axis gravity feature is related to the phone’s
orientation, which changes as the pelvis rotates when transitioning between immobile states,
such as sitting or lying down. The mean z gravity feature was not selected by FCBF for the
stroke group, who may have a different posture when standing that lead to incorrect classifica-
tion as sitting [29].

Skewness (asymmetry) of the rotated linear acceleration along the phone’s y-axis was select-
ed by CFS and FCBF for differentiating between large movements and stairs. This result is sup-
ported by Hache et al. [30] who identified vertical skewness as a viable feature for identifying
stair ascent or descent. In future work, other activities that produce vertical acceleration (i.e.,
jumping, hopping, jogging, etc.) could be included to verify if skewness would remain a viable
feature. Acceleration covariance was frequently selected when detecting ramp and stair ascent
or descent. This feature measures how acceleration axes change together, which is affected by
the person’s orientation as they move on an incline.

Differentiating between stair navigation and walking is difficult for HAR systems that only
use one sensor location. Pelvis movements are similar for both activities, making it difficult to
derive useful information from motion sensors such as accelerometers and gyroscopes. Classi-
fication accuracy is typically lower for stair recognition than other activities when using HAR
systems with a single sensor location, such as a smartphone [9,31,32]. This is supported by the
lower classification accuracies found at level 4.

While this research identified features that were commonly selected across populations, di-
versity between populations did occur for many features. For example, features selected for the
stroke group tended to differ from the able-bodied and elderly groups. This may be due to the
inhomogeneity of the stroke participants, whose mobility levels varied and some people used

Feature Selection for Smartphone-Based Human Activity Recognition

PLOS ONE | DOI:10.1371/journal.pone.0124414 April 17, 2015 15 / 18



crutches and arm slings. Nine stroke patients had right hemiparesis, thereby reducing pelvis
movement on the right side where the phone was attached, affecting sensor and feature output.
Also, many stroke participants attached the holster to cotton pants that had an elastic waist
strap, which may have provided an inferior anchor point compared to the leather belts and fit-
ted pants that the able bodied and elderly populations typically wore. This may increase sensor
signal variability for stroke participants and demonstrates the importance of including the tar-
get group when training and evaluating HAR systems, so that a classifier is not tailored to an
inappropriate sample set.

The highest accuracies were achieved using feature subsets selected by the CFS algorithm.
Some limitations exist in the current study. While the feature selection methods were designed
to compensate for class imbalances in the feature set, selective sampling before performing fea-
ture selection could improve results in future work. The classifiers were used to evaluate the
quality of the selected feature subsets; however, they were not customized to the specific HAR
application. When implementing the features selected in this study in HAR classifiers, it is rec-
ommended that the classifier be tailored to the specific needs of the situation. Three separate
populations were included in this study, but the total sample set was small at 44 participants.
Larger data sets could contribute to future work.

Conclusion
This research selected smartphone signal feature subsets for human activity recognition that
were applicable across able bodied, elderly, and stroke populations. Three filter-based feature
selection methods were used so that identification of useful features could be performed inde-
pendent of the classifier. This information can guide future smartphone-based HAR system de-
velopment among the targeted users, regardless of the classifier. In particular, the following
signal features were effective across multiples populations: (i) acceleration features using simple
moving averages and correlations of acceleration along different axes, as well as mean gyro-
scope output on the y and z axes, to distinguish between immobile and mobile states; (ii) gravi-
ty signal mean in the phone’s forward direction and the difference between the phone’s y
gravity to the x and z gravity signals when distinguishing between sit, stand, and lie; (iii) the
gravity signal range in the forward direction for differentiating between sitting and standing;
(iv) skewness of the rotated linear acceleration along the y-axis for classifying stair climbing
from other large movements; (v) acceleration covariance when detecting ramp and stair ascent
or descent; (vi) mean gyroscope signal on the y-axis for detecting small movements.

Future research could expand on the study results through feature selection with different
pathological populations, such as amputees or people with neurological disorders, since differ-
ent gait patterns may identify additional features to be included in a generalized feature set.
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