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Abstract
Microarray experiments are capable of measuring
the expression level of thousands of genes simulta-
neously. Dealing with this enormous amount of in-
formation requires complex computation. Support
Vector Machines (SVM) have been widely used
with great efficiency to solve classification prob-
lems that have high dimension. In this sense, it is
plausible to develop new feature selection strate-
gies for microarray data that are associated with
this type of classifier. Therefore, we propose, in this
paper, a new method for feature selection based on
an ordered search process to explore the space of
possible subsets. The algorithm, called Admissi-
ble Ordered Search (AOS), uses as evaluation func-
tion the margin values estimated for each hypothe-
sis by a SVM classifier. An important theoretical
contribution of this paper is the development of the
projected margin concept. This value is computed
as the margin vector projection on a lower dimen-
sional subspace and is used as an upper bound for
the current value of the hypothesis in the search
process. This enables great economy in runtime
and consequently efficiency in the search process
as a whole. The algorithm was tested using five
different microarray data sets yielding superior re-
sults when compared to three representative feature
selection methods.

1 Introduction
Microarray hybridization experiments can simultaneously
measure the expression level of thousands of genes. This
technology has become an important tool for understand-
ing gene function since it enables researchers to observe and
compare the behavior of genes in a genome scale. Microarray
data analyses often means dealing with few samples in a very
high dimensional space. Therefore, for discrimination stud-
ies, it is crucial that we have some way of selecting differently
expressed genes or features.

The main purpose of feature selection methods is to elim-
inate irrelevant features in order to produce relevant subsets
that are able to achieve a better generalization on classifica-
tion tasks with a significant number of variables [Ng, 1998].

In fact, there is an expectation that the generalization error
decreases as the dimension of the problem decreases, since
the VC-dimension of the classifier is reduced. In this sense,
it is possible to find, for each dimension, a classifier with a
best subset of variables that generates a better generalization,
establishing a better compromise between the expected error
and the classifier capacity. This subset represents a subset
that shows a larger value of margin considering a set of con-
straints. Feature selection methods search through subsets of
n features and try to obtain the best one of the 2n possible
candidate subsets according to some evaluation criterion.

Numerous feature selection methods based in SVM have
been proposed for classification tasks in literature [Bradley
and Mangasarian, 1998], [Weston et al., 2000], [Guyon et al.,
2002]. In general, methods that use SVM can be classified in
two categories, named wrapper and embedded methods. As
example of wrapper method, we can cite the Recursive Fea-
ture Elimination (RFE) algorithm [Guyon et al., 2002]. This
method is successfully used in microarray data analysis such
as gene selection. Unfortunately, the recursive elimination
of one variable at a time is not sufficient to detect the most
promising subset. Almost always, the algorithm finds subop-
timal solutions instead of the optimal one.

The embedded methods use large margin classifiers with
a regularization method that restricts or shrinks the magni-
tude of the features. These methods generate sparse solutions
and have been employed as an alternative to methods that
use greedy strategies or explore the search space of feature
subsets. [Weston et al., 2003] introduced a L0 formulation
for SVM which minimizes, in an approximate way, the num-
ber of non-zero variables or components of the normal vec-
tor. The algorithm, at each iteration and after a SVM train-
ing, rescales the components of the input vectors. A variant
method consists of introducing a set of scaling factors that are
used for tuning the variables relevance [Weston et al., 2000].
In this sense, the scaling parameters are adjusted by model se-
lection or by direct optimization [Vishwanathan et al., 2010].
The main drawback of these methods is in the adjustment of
the scaling factors and in solving the optimization problem
that is more difficult than a standard SVM.

In this sense, we propose the development of a new wrap-
per method, the AOS algorithm. This method uses an ordered
backward search process based on margin values, allowing
the discovery of feature subsets with superior generalization
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capacity. Different from a greedy strategy, that irrevocably re-
moves one or a group of variables at time and obtains nested
subsets of features in a suboptimal way, the AOS algorithm
explores the space of candidates with a beam search. A beam
search reduces the space of candidates, avoiding the combina-
torial explosion but preserving the chances of finding the best
constrained subset [Gupta et al., 2002]. This non-monotonic
strategy allows the identification of the correlation among the
set of variables that could be lost by greedy strategies, such
as the RFE algorithm. In order to avoid the exploration of an
exponential number of subsets, the AOS algorithm employs
a set of procedures related to branching factors and pruning
mechanisms. To the best of our knowledge, this is the first
wrapper method based on SVM that uses the margin value as
evaluation measure to control the search in subset space.

The AOS algorithm was tested on five microarray problems
and the results were compared to three representative feature
selection methods applied to microarray data analysis. The
first is a variable ranking or filter method based on Golub cri-
teria [Golub et al., 1999]. The second is a wrapper method
known as RFE-SVM [Guyon et al., 2002] and the last one is
an embedded statistical method known as Nearest Shrunken
Centroids (NSC) [Tibshirani et al., 2003]. Although in this
paper the AOS method has been used only on microarray data
sets, your usage can be extended to any feature selection clas-
sification problem.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes some preliminary concepts related re-
spectively to the problem of binary classification and to the
theoretical basis of Support Vector Machines. Section 3 ad-
dresses the feature selection problem and exposes the three
most usual approaches to solve feature selection problems:
filter, embedded and wrapper methods and its related algo-
rithms. Section 4 presents the AOS algorithm including the
branching and pruning strategies. In section 5 all results and
computational experiments are presented and, finally, in sec-
tion 6, some considerations about the work are reported.

2 Classification
2.1 The Binary Classification Problem
Let Z = {zi = (xi, yi) : i ∈ {1, · · · ,m}} be a train-
ing set composed of points xi ∈ Rd and labels yi ∈
{−1, 1}. In addition, let Z+ and Z− be defined as the sets
{(xi, yi) ∈ Z : yi = +1} and {(xi, yi) ∈ Z : yi = −1}, re-
spectively. A binary classification problem consists of find-
ing a hyperplane, which is given by its normal vector w ∈ Rd
and a constant b ∈ R, such that the points in Z+ and Z− lie
separated in the two half spaces generated by it. That is, we
look for (w, b) such that:

yi (w · xi + b) ≥ 0, for all (xi, yi) ∈ Z.
Clearly, this hyperplane may not exist for some training

sets Z. When it exists, Z is usually called linearly separable.
We suppose that Z is linearly separable, otherwise it will be
linearly separable in a projected space with higher dimension,
commonly called feature space, represented by F .

We say that Z accepts a margin γ ≥ 0 when there is a
hyperplaneH :=

{
x ∈ Rd : w · x+ b = 0

}
such that:

yi (w · xi + b) ≥ γ, for all (xi, yi) ∈ Z.

In this case, we define two additional hyperplanes paral-
lel to H, given by H+ :=

{
x ∈ Rd : w · x+ (b− γ) = 0

}
and H− :=

{
x ∈ Rd : w · x+ (b+ γ) = 0

}
. The distance

between these two parallel hyperplanes is given by:

dist
(
H−,H+

)
=
−(b− γ) + (b+ γ)

||w||
=

2γ

||w||
.

Let γg := dist (H−,H+) /2, we call this γg the geometric
margin between the two hyperplanesH+ andH−. This way,
we say that Z accepts a geometric margin γg ≥ 0 when there
exists a hyperplane with (w, b) such that:

yi (w · xi + b) ≥ γg||w||, for all (xi, yi) ∈ Z.

2.2 Support Vector Machines – SVM
SVM are maximal margin classifiers which were first intro-
duced by [Boser et al., 1992]. This technique aims to separate
the training set by a hyperplane that maximizes the distance
from members of opposite classes. In order to obtain the max-
imal margin hyperplane that correctly classifies all patterns
in the training set, it is necessary to solve the following opti-
mization problem:

max(w,b)

(
mini

yi (w · xi + b)

||w||

)
s.t. yi (w · xi + b) > 0, for all (xi, yi) ∈ Z,

which can also be written as the equivalent problem:

max γg
s.t. yi (w · xi + b) ≥ ||w||γg, for all (xi, yi) ∈ Z.

Defining γg||w|| = 1 as the value of the minimal functional
margin, [Vapnik, 1995] derived the classic SVM formulation
that minimizes Euclidean norm of the vector:

min
1

2
||w||2

s.t. yi (w · xi + b) ≥ 1, for all (xi, yi) ∈ Z.
In order to facilitate the solution of this problem, it is

convenient to relax the inequality constraints introducing a
set of nonnegative Lagrangean multipliers αi, where i ∈
{1, · · · ,m}. Incorporating the relaxed constraints, we obtain
the Lagrangean function:

L (w, b, α) =
1

2
||w||2 −

∑
i

αiyi (w · xi + b) +
∑
i

αi.

This function needs to be minimized with respect to w and
b, and maximized with respect to α, subject to αi ≥ 0, ∀i ∈
{1, · · · ,m}. This solution can be found through the maxi-
mization of a strictly dual function, where the parameters w
and b are substituted. This particular dual formulation of the
problem is called Wolfe’s dual. In this way, we obtain the
dual formulation of the SVM problem written only as a func-
tion of the multipliers α:

max L(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj 〈xi, xj〉

s.t.
{ ∑

i αiyi = 0

αi ≥ 0, ∀i ∈ {1, · · · ,m} .
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Solving this problem and obtaining the values α∗, we can
construct the normal vector solution:

w∗ =
∑
i

α∗i yixi, ∀i ∈ {1, · · · ,m} .

Support Vector Machines in their strict dual formulation
are a quadratic optimization problem which requires an opti-
mization solver for batch solutions. However, SVM can also
be solved through an iterative analytical process called Se-
quential Minimal Optimization (SMO) [Platt, 1999], which
we decided to employ throughout this work.

3 Feature Selection
3.1 Feature Selection as Heuristic Search
A convenient paradigm to deal with the combinatorial aspect
of the feature selection problem is the heuristic search, where
each hypothesis in the search space represents a subset of fea-
tures. According to [Jain and Zongker, 1997] these methods
can be classified as deterministic or stochastic and optimal or
suboptimal. The optimal methods seek to find a global op-
timal solution. Clearly, an exhaustive search in the space is
unfeasible due to memory and time constraints, since there
exist 2n subsets, where n represents the number of features
of original set. The branch and bound algorithm, proposed by
[Narendra and Fukunaga, 1977], can be used as alternative to
an exhaustive search. This method requires a monotone eval-
uation function and produces a single deterministic solution.
However, the worst case complexity of the algorithm is expo-
nential.

The suboptimal methods can be divided in those that main-
tain just one current subset and those that maintain a set of
candidates. The most important group of feature selection
methods that maintain one current subset is the sequential
search, which starts with one solution and iteratively adds or
removes one feature until a stop criterion is achieved. These
methods can be classified into two groups: forward or back-
ward elimination. The RFE algorithm [Guyon et al., 2002]
is a classical example of sequential backward elimination
method.

On the other hand, there are those methods that maintain
a set of candidates. The main representative method of this
group is the best-first search as well as its restricted version
called beam search, which preserves a “beam” or promising
set of hypothesis in order to maintain the tractability of the
problem in large search spaces. These methods maintain a
queue of candidate solutions. Also, we have the stochastic
methods, where the most representatives are the genetic algo-
rithms, introduced by [Siedlecki and Sklansky, 1989].

According to [Blum and Langley, 1997], there may be
three types of interaction, defining three classes of methods:
those that embed the selection with the induction algorithm,
those that use selection to filter features passed to induc-
tion and those that consider the feature selection process as
a wrapper around the induction process.

3.2 Embedded Methods
The strategies of these methods are based on the fact that the
inductor algorithm can internally promote its own choice of

relevant variables. Thus, the process of variable selection is
part of the training process as a whole. According to [Guyon
and Elisseeff, 2003], these methods can be more efficient than
wrapper methods in two important aspects: it does not need
to divide the training data in two subsets, training and vali-
dation, and it reaches a solution faster by avoiding retraining
the predictor.

Nearest Shrunken Centroid (NSC) is a statistical method
that uses denoised version of the centroids as prototypes for
each class for classification tasks. It was proposed by [Tibshi-
rani et al., 2002] and applied on multiple cancer types diag-
nostic with the discriminate analysis of microarray data sets.
Nearest centroid classification takes a new sample and com-
pares to the Euclidean distance of each class centroids. The
class whose centroid is closest is the predicted class for this
new sample. NSC makes one important modification com-
pared to unsrhunken nearest centroid classification. It shrinks
each class centroid toward the overall centroid for all classes
by a threshold ∆ before making the prediction. This amount
can be determined by cross-validation technique.

This shrinkage has two advantages: it can make the clas-
sifier more accurate by reducing the effect of noisy attributes
and it makes automatic feature selection. A feature is elimi-
nated if the same is shrunk to zero for all classes.

3.3 Filter Methods and Statistical Scores
These methods introduce a separate process in feature se-
lection that occurs before the induction process and is inde-
pendent of the chosen predictor. Hence, [John et al., 1994]
named then as filter methods, since they filter the irrelevant
attributes. The preprocessing step can be used to reduce the
space dimensionality and overcome overfitting [Guyon and
Elisseeff, 2003]. Filter methods generally establish a ranking
of variables based on a statistical score. The most popular
is the criterion proposed by [Golub et al., 1999] also called
signal-to-noise. This measure expresses the difference be-
tween the expected values of one variable of two classes di-
vided by the sum of their standard deviation. The greater this
value, the greater is the importance of the associated variable.
If we define µ1 and µ2 as the mean of the two classes, and σ1
and σ2 as their standard deviation, we can define the Golub’s
G score as follows:

G =
|µ1 − µ2|
σ1 + σ2

The major drawback of this method is that the score val-
ues are computed for each feature individually without tak-
ing into account the interdependence between them. Also,
this approach can produce better results for one predictor and
worse for the others.

However, also exists a different filter approach to feature
selection that uses a correlation heuristic to evaluate the merit
of feature subsets, named Correlation-based Feature Selec-
tion (CFS), coupled with a heuristic search. CFS starts from
the empty set of features and employs a forward best-first
search to reach the best subset [Hall and Smith, 1999]. This
final subset of features is not redundant among them and the
same time correlated with the class to be predicted.
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3.4 Wrapper Methods
In contrast to the approach of the filter methods, wrapper
methods are based on the fact that the inductors can gener-
ate important information regarding the relevance of the set
of features. Therefore, it makes use of the inductor algorithm
for evaluate the candidate subsets. In general, this method
can be expensive because the inductor algorithm is executed
for each candidate subset that needs to be evaluated.

In order to implement this method, a wide range of search
strategies can be used, as we have seen before. These strate-
gies include greedy, best-first, branch-and-bound, genetic al-
gorithm and others. The validation of subset candidates can
be done by using a validation set or a model evaluation such
as k-fold cross-validation test.

An example of wrapper method is the RFE that uses as in-
ductor the SVM algorithm [Guyon et al., 2002]. The basic
idea of this method is the recursive elimination of features as-
sociated with the smallest component of the normal vector,
since they do not have much influence on the positioning of
the hyperplane. At each step of the process, a fixed number of
features are eliminated and the SVM classifier is retrained. In
[Guyon et al., 2002] is mentioned that the recursive elimina-
tion of one feature at a time generates nested classifiers with
less expected error.

4 Admissible Ordered Search – AOS
4.1 State Space and Heuristic Search
The AOS algorithm is a wrapper method that uses as predic-
tor a large margin classifier, such as SVM, and explores the
subsets space with an ordered beam search that we simply call
best-first. It finds for each dimension the single classifier that
has the largest margin. The feature subset of this classifier is
a minimal set according to the criterion of the margin maxi-
mization. Therefore, there is no alternative subset of the same
cardinality able to provide a classifier with a larger margin.

In a process of ordered search, we ensure the admissibility
of the algorithm if the evaluation function is monotone [Hart
et al., 1968]. For maximization problems this function needs
to be monotone decreasing. Therefore, since we are look-
ing for maximizing the margin, we consider as merit of each
candidate hypothesis the final value of the margin obtained
by the classifier associated with the respective subset of vari-
ables. The admissibility of the process is preserved by the
fact that the margin values are always decreasing when the
dimension is reduced. Let γd−1gj represents the real value of
the maximal or largest margin associated with the child hy-
pothesis that excludes the jth variable. Let γdg represents the
real value of the maximal margin associated with the father’s
hypothesis. Then, in a lower dimension space with d − 1
variables we have: γd−1gj ≤ γdg ,∀j.

The control strategy of the best-first algorithm is imple-
mented with the insertion of candidate hypotheses, called
states, in a priority queue structure, often called list of open
states, ranked by the value of margins. Since the order of the
selected features of a hypothesis does not matter, there will be
some redundancy. This redundancy that generates replicated
hypothesis is prevented by the use of a hash table.

4.2 Projected Margin
As stated before, we use the margin’s value as the evaluation
criteria. However, if we use the real value of the margin we
have to solve a margin maximization problem for each gener-
ated hypothesis. Instead, we used an upper bound or an opti-
mistic estimate of this margin that maintain the admissibility.
This value is the projected margin, i.e., the value obtained by
performing the projection of the margin using as direction the
normal vector in a lower dimension space associated with the
elimination of one feature. In this sense, if we insert in the
priority queue a state with projected margin value we can, if
appropriate, prune the same, without affecting the admissibil-
ity of the process.

First, we define the geometric margin in Rd space as:

γdg = γdg
w

||w||
.

Let γd−1pj denotes the projected margin in Rd−1 space of
a candidate hypothesis with d-1 features considering that the
jth feature is excluded. This value is computed as follows:

γd−1pj =
γdg
||w||

∑
k 6=j

w2
k

 1
2

.

We can easily observe that if the jth component of the nor-
mal vector is zero the projected margin in Rd−1 space will
have the same value of the superior margin associated with
the father hypothesis in Rd space. Therefore, we maintain
the admissibility of the process, ensuring that:

γd−1gj ≤ γd−1pj ≤ γdg ,∀j.

Hence, we can use the projected margin as an upper limit
for the real geometric maximal margin of the hypothesis in
the associated space. This use can be considered as an admis-
sible heuristic for the evaluation function of the states, since
its value will be always an optimistic estimate against the real
value. For each iteration of the algorithm, the hypothesis re-
lated to the current largest margin value is selected from pri-
ority queue, regardless of its dimension, to be expanded and
generate new hypothesis in a space of one less dimension.
This way, we can verify two possible situations:

First: for the case where the value of the margin is the pro-
jected margin, we calculate its real value through the solution
of a margin maximization problem and compare it to the sec-
ond highest value of the priority queue. If it is still the best
option, we remove it from the queue, and generate its child
hypothesis. Otherwise we replace the projected margin value
by the real value computed and reinsert it into the queue.

Second: for the case where the margin value of the chosen
hypothesis is already the real value, we remove this state and
generate its child hypothesis.

4.3 Branching Factor
In order to select which hypothesis would be generated, we
adopted the elimination of the smallest components of the
normal vector as used in RFE-SVM [Guyon et al., 2002].
However, instead of eliminating just one feature, generating
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only one nested hypothesis, we select two or three smallest
features to eliminate, obtaining the respective number of child
hypotheses. Therefore, using a branching factor higher than
one allows the algorithm to explore the variables interdepen-
dence. It is possible to verify that, removing only the small-
est component related to the least projected margin will not
always result in the best geometric margin for a problem with
dimension reduced to d− 1.

We can observe that the magnitude of the normal vector
components, |wj |, has a direct relation with the projected
margin value in a space where the jth feature is removed.
Therefore, if we choose a variable related to a normal vector
component with zero value, we have the same value between
the projected margin and the real maximum margin in the as-
sociated subspace. In this case, it is not necessary to solve the
margin maximization problem.

4.4 Pruning Strategies
In order to control the combinatorial explosion, we introduce
an adaptive heuristic pruning scheme based on a greedy strat-
egy that uses the RFE algorithm as a deep-first search to gen-
erate a lower bound for margins values at determined pruning
depth. Therefore, every time we close the first state of each
dimension, we recompute the value of the margin in a lower
dimension in order to define a new lower bound that is used
to eliminate candidate hypothesis that has inferior projected
or real margin values.

In addition, as second scheme, we keep in the priority
queue only a current subset of promising hypotheses. There-
fore, when a new lower bound is generated, we remove states
related to the hypothesis that have a dimension value higher
than the last dimension reached plus a cut depth parameter.

When we use these strategies and a reduced branching fac-
tor, the admissible property, in theory, is lost. However, we
gain in practice much computational speed. This is necessary
to reduce the search space and deal with combinatorial explo-
sion avoiding an exponential search [Gupta et al., 2002]. The
obtained results demonstrated that the use of a higher branch-
ing factor, greater than three, does not make possible to obtain
better results. If we define the pruning depth to be one, the
AOS algorithm becomes equivalent to RFE strategy. Hence,
when adopting this pruning schema we are implementing a
flexible RFE. It is important to observe that, when we close
the first hypothesis that reaches a certain dimension we find
the classifier of largest margin related to this number of vari-
ables. Also, a cross-validation estimate of the expected error
could be computed with this classifier. It could be used as a
stop criterion of the algorithm since it represents the general-
ization performance of this hypothesis.

4.5 Pseudocode
Pseudocode 1 describes the AOS algorithm.

5 Experiments and Results
5.1 Data Sets
In order to analyze the results, we used five data sets derived
from microarray experiments and were related to cancer stud-
ies. All data sets used in this paper are contained in the UCI

Algorithm 1: Admissible Ordered Search – AOS
Input: training set Z = {(xi, yi)} : i ∈ {1, . . . ,m};
features set F = {1, 2, 3, . . . , d};
branching factor b;
pruning depth p;
cut depth c;
stop level s;
Output: last opened state;

1 begin
2 initiate heap H and hash table HT ;
3 compute the solution using SVM for the initial state

Sinit with feature set F ;
4 level← d;
5 insert Sinit into H;
6 while level > s and H is not empty do
7 get the best hypothesis S from H;
8 if S only has a projected margin then
9 compute the real margin for S using SVM;

10 if solution using SVM has converged then
11 insert S into H;
12 end if
13 else
14 if dimension of state S is equal to level then
15 use RFE to depth level-p and find the

new value for lower;
16 cut from H every state with margin value

less then lower;
17 cut from H every state with level more

then level+c;
18 level← level − 1;
19 end if
20 for i← 1 to b do
21 create new state S′ with feature set

F ′ = F − {fi};
22 compute γpj for S′;
23 if γpj > lower and F ′ is not in HT then
24 insert F ′ into HT ;
25 insert S′ into H;
26 end if
27 end for
28 end if
29 end while
30 return last opened state;
31 end

Machine Learning Repository [Bache and Lichman, 2013],
or referenced by [Golub et al., 1999], [Alon et al., 1999] or
[Singh et al., 2002], and are shown in table 1.

5.2 Performance Comparison on Data Sets
We compared the performance of the AOS algorithm to three
different methods of feature selection. We used the filter
method that uses Golub score coupled with a SVM classi-
fier, the statistical NSC method and the wrapper monotone
method RFE. Also, we report the results about validation and
test errors and the margin values using the SMO algorithm
without variables elimination, to compare with original data.
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Table 1: Data sets information.
Set Features Samples

Pos. Neg. Total

Colon 2000 22 40 62
Leukemia 7129 47 25 72
Prostate 12600 50 52 102
Breast 12625 10 14 24

DLBCL 5468 58 19 77

For Golub’s method we eliminated one feature at a time
and the process was interrupted when we reach a non separa-
ble instance of data set. Hence, the margin value associated
with the algorithm is the value produced by the SMO solution
with the referred subset of features.

For NSC method we used the ‘pamr’ package, the
method’s version for the R language, referenced by [Tibshi-
rani et al., 2003]. For the ∆ threshold, we used a value that
finds the minimal subset of features without affect the vali-
dation and test error. These choices represent a trade-off be-
tween the capacity and the complexity of the classifier. If we
overly shrink the centroids, we can produce hypotheses that
do not correctly classify the data.

For AOS and RFE methods we used as classifier the SMO
algorithm. For RFE we proceed in a similar fashion of
Golub’s method eliminating one feature at a time. For AOS
tests, we set the pruning and cut depths to 5 and the branch-
ing factor to 3. As stop criterion for AOS and RFE, we use
the same procedure adopted in Golub’s method. That is, we
interrupted the process when we reached a nonlinear instance.

As microarray data sets have higher dimensions, we
adopted for AOS analysis the RFE until it reaches the dimen-
sion 100. This is necessary to make the process of feature se-
lection feasible. Thenceforward, we use the search algorithm
to explore the 2100 possible subsets. In order to validate this
strategy we conduct an experiment with the Colon dataset that
has 2000 attributes. The obtained results were the same as we
restrict the dimension to 100, demonstrating that the feature
selection problem has a monotone nature when the dimen-
sion is higher. In this situation it is not necessary to explore
the variable correlation to reach best constrained subsets.

In order to test the algorithms on the data sets and validate
their results, we divided the data sets in 2 subsets, 2/3 for
the feature selection process and 1/3 for estimating the pre-
diction or test error. In order to estimate the validation error
related to the training set we used the k-fold cross-validation
[Kohavi, 1995]. In order to estimate the final validation er-
ror, we maintain the percentage of data points of each class
and compute the mean error from 10 executions of a 10-fold
cross-validation. For more accurate comparisons we selected,
for each base, always the same training and test sets and al-
ways the same 10 subsets for cross-validations, preserving the
generating seed associated to the randomness process.

Table 2 shows the results related to performance compar-
ison of AOS algorithm. The results demonstrate that AOS
algorithm had a superior performance in almost all data sets
reaching subsets of features with inferior cardinality and good
power of generalization. In some experiments the AOS algo-
rithm finds final subsets with very lower cardinality as so-

lution. These solutions naturally can present validation and
test errors with higher values compared to greedy strategies.
In order to deal with this problem, in Leukemia dataset we
made performance comparison between the AOS and RFE
algorithms for the same number of features. In this modi-
fied experiment, the AOS algorithm reaches a higher margin
value (2362.388), a lower 10-fold error (0.00%) and a same
validation error (4.17%).

Table 2: Comparison on data sets.
Set Algorithm F γ 10-fold Test

C
ol

on

SVM 2000 1529.516 16.55% 19.05%
Golub 9 59.396 19.30% 19.05%
NSC 7 — 21.95% 19.05%
RFE 4 44.748 11.95% 14.29%
AOS 4 105.900 5.65% 14.29%

L
eu

ke
m

ia

SVM 7129 18181.530 0.00% 8.33%
Golub 5 97.609 8.60% 12.50%
NSC 4 — 6.25% 12.50%
RFE 3 1398.465 4.05% 4.17%
AOS 2 647.368 2.05% 8.33%

Pr
os

ta
te

SVM 12600 529.011 14.82% 5.88%
Golub 15 16.143 17.43% 8.82%
NSC 3 — 13.24% 5.88%
RFE 5 2.648 8.62% 5.88%
AOS 4 18.912 2.69% 2.94%

B
re

as
t

SVM 12625 5222.205 26.50% 12.50%
Golub 2 191.930 8.50% 12.50%
NSC 2 — 43.75% 50.00%
RFE 2 394.356 0.00% 12.50%
AOS 2 413.664 0.00% 12.50%

D
L

B
C

L

SVM 5468 14688.808 2.93% 7.69%
Golub 11 479.156 14.43% 19.23%
NSC 10 — 15.68% 15.38%
RFE 4 1323.384 2.70% 23.08%
AOS 2 269.738 0.83% 7.69%

6 Discussion
The feature selection problem has no trivial solution. For
each type of problem one method seems to be more ade-
quate than the others. Consequently, it is possible that does
not exist consensus in this issue, in order to affirm that one
method is better than the other. Nevertheless, we proposed
in this work a novel and promising wrapper method that uses
a large margin classifier as predictor. As a compromise be-
tween greedy methods and exhaustive search we use an or-
dered beam search algorithm that allows the exploration of
subsets of variables in the combinatorial space of the feature
selection problem.

Despite some good results, the RFE-SVM method remains
as a greedy sub-optimal method generating nested subsets
and likely missing the best correlation among variables. Fea-
ture ranking or filter methods are proposed as selection mech-
anisms because of its simplicity and scalability. However, the
major drawback is that these methods evaluate each variable
in independent form. In this sense, we emphasize the words
of [Guyon and Elisseeff, 2003]: “A variable that is completely
useless by itself can provide a significant performance im-
provement when taken with others”.

The results obtained by the AOS algorithm were very sat-
isfactory, both in obtaining subsets of inferior cardinality or
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in quality of generalization. In this way, it is important to
remember that the algorithm is able to find the maximal mar-
gin classifier at each dimension of the problem. Finally, we
would like to mention that the algorithm employs techniques
from Heuristic Search and Machine Learning.
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