
Feature Selection in Evolving Job Shop Dispatching Rules
with Genetic Programming

Yi Mei
School of Engineering and CS

Victoria University of
Wellington

Wellington, New Zealand
yi.mei@ecs.vuw.ac.nz

Mengjie Zhang
School of Engineering and CS

Victoria University of
Wellington

Wellington, New Zealand
mengjie.zhang@ecs.vuw.ac.nz

Su Nyugen
Dep. of Business Admin.

Hoa Sen University
Ho Chi Minh City, Vietnam

nguyenphanbachsu@gmail.com

ABSTRACT
Genetic Programming (GP) has been successfully used to
automatically design dispatching rules in job shop schedul-
ing. The goal of GP is to evolve a priority function that will
be used to order the waiting jobs at each decision point, and
decide the next job to be processed. To this end, the proper
terminals (i.e. job shop features) have to be decided. When
evolving the priority function, various job shop features can
be included in the terminal set. However, not all the features
are helpful, and some features are irrelevant to the rule. In-
cluding irrelevant features into the terminal set enlarges the
search space, and makes it harder to achieve promising ar-
eas. Thus, it is important to identify the important features
and remove the irrelevant ones to improve the GP-evolved
rules. This paper proposes a domain-knowledge-free feature
ranking and selection approach. As a result, the terminal
set is significantly reduced and only the most important fea-
tures are selected. The experimental results show that using
only the selected features can lead to significantly better GP-
evolved rules on both training and unseen test instances.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Scheduling

Keywords
Combinatorial Optimization, Job Shop Scheduling, Genetic
Programming, Feature Selection

1. INTRODUCTION
Job Shop Scheduling (JSS) [20] is an important schedul-

ing problem, and has many applications in the real world
such as the manufacturing industries and resource alloca-
tion in cloud computing. Briefly speaking, JSS is to assign
the order of a set of jobs on one or more machines to achieve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908822

some desired goals such as minimizing the makespan or mean
flowtime.

In JSS, the environment can be static or dynamic. In a
static environment, all the jobs are assumed to have arrived
at the beginning of the scheduling horizon, and the informa-
tion such as the number of operations, machine orders and
processing time is known in advance. This situation is often
considered when the scheduling plan is made periodically,
e.g. weekly based on the orders arrived during the previ-
ous week. In a dynamic environment, the jobs can arrive
randomly over time. For each job, the information can only
be known upon its arrival. Although the dynamic environ-
ment is closer to reality than the static one, it is harder to
solve as it is required to change to current schedule to adapt
environment change such as new job arrivals.

Dispatching rules have been widely used in real-world JSS
problems due to their simplicity, ease of application, and in-
stantaneous response to the environment change. To put
it simply, a dispatching rule can be represented as a pri-
ority function. During the scheduling horizon, whenever a
machine becomes idle and there are operations waiting to
be processed in its queue, then the priority value of each
waiting operation is calculated by the priority function, and
the operation with the best (largest or smallest) priority
value is selected to be processed next. There have been a
large number of manually designed dispatching rules so far.
A comprehensive comparison between manual dispatching
rules can be found in [23].

As shown in literatures (e.g. [12, 22, 24]), the manually
designed dispatching rules are still not good enough, and
their performance depends highly on the job shop situa-
tion and the objective to be optimized. In recent years,
Genetic Programming (GP) has attracted more and more
research interests for automatic design of dispatching rules.
There have been a number of works proposed on evolving
dispatching rules with GP (e.g. [4, 6, 8, 15, 19]), which
successfully obtained much better rules than the manually
designed rules. Therefore, in this paper, we also focus on
evolving dispatching rules with GP.

When using GP to evolve good dispatching rules effec-
tively, one important factor is the terminals to be used. So
far, a large number of job shop features have been consid-
ered in different scenarios for optimizing different objectives.
The commonly used features include global shop-level fea-
tures (e.g. current time), job-related features (e.g. pro-
cessing time, due date, waiting time) and machine-related
features (e.g. machine ready time, work in the queue, uti-

lization level). Obviously, some of the features may be irrel-
evant with the performance of the rules. For example, if the
objective is to minimize the mean flowtime, the due date of
the jobs tends to be useless or even misleading [6]. Similarly,
the weight of the jobs is supposed to be only useful if the
objective is weighted, such as the mean weighted tardiness.

With such a large number of features, how to select the
best terminal set for GP becomes an important issue. On
the one hand, including irrelevant features will enlarge the
search space, and make it harder to reach the promising
areas. On the other hand, ignoring important features will
rule out the promising areas in the search space. The same
issue happens in features selection in machine learning, in
which it has been shown that removing irrelevant features
can help improve the classification performance.

In this paper, we aim to investigate how to select the best
terminal set for GP without adopting domain knowledge.
This is motivated by the reality in which any unknown shop
scenario (e.g. static, dynamic, flexible job shop, etc) and
objective can occur. In summary, the goals in this paper
can be listed as below.

1. Design a feature selection method for selecting the ter-
minal set of GP that does not require any domain
knowledge;

2. Employ the designed feature selection method to de-
termine the important features from all the possible
features for the representative problems including min-
imizing makespan in static environment, and mean
flowtime and mean weighted tardiness in dynamic en-
vironment;

3. Verify the correctness of the selected features by com-
paring the GP with the terminal sets before and after
the feature selection.

The rest of the paper is organized as follows: Section 2
gives the background introduction, including the problem
description, automatic dispatching rule design and feature
selection. Section 3 describes the proposed feature selection
method for selecting the key terminal set for GP in JSS.
Section 4 presents the experimental studies in different shop
scenarios and objectives. Then, Section 5 gives the conclu-
sions and future work.

2. BACKGROUND

2.1 Job Shop Scheduling
A Job Shop Scheduling (JSS) problem consists of a num-

ber of jobs J = {J1, . . . , Jn} and machinesM = {M1, . . . ,Mm}.
Each job Jj has a sequence of lj (lj ≤ m) operations Oj =
(O1j , . . . , Olj ,j), as well as an release time t0(Jj) and a due
date ρ(Jj). Each operation Oij has an eligible machine
π(Oij) ∈ M and a processing time δ(Oij). In a standard
JSS problem, a schedule is to be made under the following
constraints:

1. For each job, the order of the operations needs to be
strictly followed. That is, the starting time of Oi+1,j

cannot be earlier than the finishing time of Oij , ∀ j =
1, . . . , n. In addition, the starting time of O1j cannot
be earlier than the corresponding release time t0(Jj).

2. Operation Oij must be processed on machine π(Oij).

3. Each machine can only process one operation at the
same time.

4. The scheduling is non-preemptive, i.e. once an oper-
ation starts to be processed, its processing cannot be
paused or stopped until it has been finished.

In JSS, a schedule X can be represented as a set of pro-
cessing sequences, each for a machine. The processing se-
quence P(Mk) consists of the processings of all the oper-
ations {Oij | π(Oij) = Mk}, along with the starting time
τ(Oij). The commonly used objectives include minimiz-
ing the makespan (Cmax), total flowtime (

∑
Cj) and total

weighted tardiness (
∑
wjTj).

2.2 Automatic Design of Dispatching Rules
Dispatching rules are often used for constructing the job

shop schedule on-the-fly, especially in the dynamic environ-
ment where new jobs keep arriving over time. Specifically,
at a decision point in which at least one machine is idle
and there are operations waiting to be processed on the idle
machines, the dispatching rule is applied to calculate the pri-
ority of each waiting operation. Then, the operation with
the highest priority is selected to be processed next. For ex-
ample, in the well-known Shortest Processing Time (SPT)
rule, the operation with the shortest processing time has the
highest priority.

With respect to the definition of decision points, there are
two main categories of dispatching rules, namely the nonde-
lay rules and active rules. In nondelay rules, once a machine
becomes idle and its waiting queue is not empty, a decision
has to be made immediately and no delay is allowed. In
contrast, in active rules, the decision can be delayed to some
extent. In this paper, we only focus on the nondelay rules,
since it is simpler to use, and has achieved success in many
previous studies (e.g. [6, 15]). In this case, a dispatching
rule is essentially a priority function.

There have been a variety of manually designed rules (e.g.
[7, 10, 21]). However, their performance is not satisfactory
enough, and depends on the shop scenario and objective to
be optimized. In practice, it is difficult to choose the proper
rule that most suits the given scenario.

Automatic design of dispatching rule with hyper-heuristics
[2] is attracting more and more research interests recently as
it is capable of searching in the space of dispatching rules.
Being a hyper-heuristic, Genetic Programming (GP) [13]
has been extensively adopted to evolve more flexible pri-
ority functions, and has achieved great success in dynamic
job shop scheduling problems ([4, 6, 9, 15, 16, 19, 26]).

2.3 Feature Selection
Feature selection [5, 27] is a well-known problem in data

mining and machine learning. It aims to reduce the number
of features or attributes in the given data to remove redun-
dant information, and thus to save the training time and
cost to collect the feature values, and improve the classifica-
tion accuracy. There have been more sophisticated feature
selection methods such as the filter methods [18] and wrap-
per methods [28]. Xue et al. [27] gave a comprehensive
survey on evolutionary computation approaches to feature
selection.

In GP, Ok et al. [17] proposed an adaptive terminal selec-
tion scheme and corresponding adaptive mutation based on
the updated terminal set. Friedlander et al. [3] proposed a

feature ranking method based on frequency analysis. How-
ever, one of the drawbacks of frequency analysis is that there
may be many irrelevant occurrences of the features. For ex-
ample, in the rule (A−B)/(A−B) +C/D, both features A
and B occurred twice, which is more than C and D. How-
ever, the rule is C/D + 1, and both A and B are actually
irrelevant.

In this paper, a new feature ranking and selection method
for evolving JSS dispatching rules is proposed. The method
directly estimates the contribution of each feature to the
performance of dispatching rules rather than the frequency.
The details of the proposed approach is described in the next
section.

3. A NEW FEATURE SELECTION METHOD
FOR GENETIC PROGRAMMING IN JOB
SHOP SCHEDULING

For the sake of convenience, we list all the useful notations
in Table 1.

Table 1: The useful notations.
Notation Description

~x The vector of features.
xi ∈ ~x A feature.
g(~x) The priority function of a dispatching rule.
I A JSS instance.

S(g(~x); I) The schedule obtained by applying g(~x) to I.
f(S) The value of objective f(·) of the schedule S.

φI(g(~x)) The fitness of g(~x) on an instance set I.

In the table, the fitness φI(g(~x)) of a priority function
g(~x) in terms of the objective f(·) on a set of instances I is
generally defined as the average normalized objective value
over the instances. That is,

φI(g(~x)) =
1

|I|
∑
I∈I

f(S(g(~x); I))

f̂(I)
, (1)

where f̂(I) is the reference objective value of the instance

I. Ideally, f̂(I) should be the optimal objective value. In
practice, since the optimal value is usually unknown, it can
be set to the (1) theoretical lower bound, (2) best-known
result, or (3) the objective value of some reference rule such
as SPT, EDD and FDD.

Before describing the proposed feature selection method,
we first define the feature removal in priority function as
follows.

Definition 1. Given a priority function g(~x), where ~x =
(x1, . . . , xn) is the vector of features, then the removal of
feature xi from g(~x) is defined as fixing xi to 1 in g(~x).

For the sake of convenience, let g(~x \ xi) be the priority
function after removing xi, then

g(~x \ xi) = g(~x|xi = 1). (2)

For example, for the PT+WINQ rule, after removing the
WINQ feature, the priority function becomes PT+1. Note
that the priority function is only used to sort the waiting
operations. Thus, including any constant in the priority
function will not change the order of the waiting operations,
and thus not change the final solution. Therefore, the rule

with the priority function of (PT+1) is equivalent to the
SPT rule.

Here, the fixed value of 1 is chosen as a rule of thumb.
Note that the basic arithmetic operators include addition,
subtraction, multiplication and protected division (return-
ing 1 for a/0), fixing the variables to 1 is suitable for multipli-
cation and protected division, since a× 1 = a, and a/1 = a.
Obviously, a+ 1 and a− 1 give the same order of the wait-
ing operations as a. Thus, the value of 1 is also suitable for
addition and subtraction.

Given a priority function g(~x), after removing a specific
feature xi, the following three possible situations may hap-
pen.

1. If xi is not a variable of g(~x), then g(~x) keeps the same
after the removal;

2. If xi is one of the irrelevant variables of g(~x), then
g(~x) is simplified after the removal, but is essentially
the same;

3. If xi is one of the relevant variables of g(~x), then g(~x)
is changed after the removal.

To illustrate this, suppose we have a rule whose priority
function is g(A,B,C,D,E) = (A−B)/(A−B)+C/D. First,
feature E is not a variable of the priority function. Then the
priority function will be the same after removing E. Second,
since g(A,B,C,D) = C/D+ 1, which is equivalent to C/D,
features A and B are irrelevant, and removing them will
simplify the priority function without changing its behavior.
Finally, the priority function will be changed after removing
C or D.

Based on the above discussions, we define the contribution
ζI(xi; g(~x)) of a feature xi to a priority function g(~x) on a
set of JSS instances I as follows.

ζI(xi; g(~x)) = φI(g(~x \ xi))− φI(g(~x)). (3)

In other words, the contribution of the feature xi to the
priority function g(~x) is the difference between the fitness
values before and after removing xi from g(~x). A positive
value of ζI(xi; g(~x)) indicates that after removing xi, the
new dispatching rule will generate worse schedules for the
tested JSS instances. Furthermore, a larger value implies
that the performance of the dispatching rule deteriorates
more after removing the feature xi, i.e. xi makes more con-
tribution to g(~x). Similarly, a negative ζI(xi; g(~x)) value
implies that xi makes a negative contribution to g(~x), and
removing it can lead to an improvement on the performance.
If ζI(xi; g(~x)) = 0, then xi makes no contribution, and is ir-
relevant.

Based on Eq. (3), we can define the relevance ΥΩ(xi) of a
feature xi for evolving dispatching rules under the given shop
scenario Ω to be optimized. Here, a shop scenario stands
for a certain job shop model and objective. For example,
the static job shop with the objective of makespan is one
scenario, and the dynamic job shop with the objective of
mean flowtime is another scenario. A scenario consists of
infinite instances.

Intuitively, if a feature xi is more relevant, then it tends
to make more contribution to the rules that perform well
in the shop scenario. Therefore, ΥΩ(xi) is defined based on
the contribution to the best rules found by GP. To increase
our confidence, we calculate ΥΩ(xi) based on multiple runs
instead of a single run as follows.

Step 1. Select a set of training instances Itrain ⊆ Ω;

Step 2. Apply GP to evolve dispatching rules using all the
features ~x as the terminal set;

Step 3. Conduct λ independent GP runs, and obtain λ best
rules g∗1(~x), . . . , g∗λ(~x), each for a single run;

Step 4. For each rule g∗k(~x) and each feature xi ∈ ~x, calcu-
late the contribution ζItrain(xi, g

∗
k(~x)) of xi to g∗k(~x)

by Eq. (3);

Step 5. Set ΥΩ(xi) to the median value of all the ζItrain(xi, g
∗
k(~x))

values (k = 1, . . . , λ).

The number of runs λ is user-defined, and we set it to 30
here as a rule of thumb. The relevance value of each feature
is set to the median of the contribution values over multiple
runs (Step 5). This way, a zero relevance implies that the
feature makes no contribution for at least half of the time
in the best rule found by GP.

Then, one can select the key terminals to be used in GP
based on the ΥΩ(xi) for each xi ∈ ~x. For example, one
can simply select the features whose relevance is larger than
zero, as they make a positive contribution for at least half
of the best rules found by GP.

3.1 An Offline Feature-Selection-based Genetic
Programming

Based on the proposed feature ranking and selection ap-
proach, we propose an offline Feature-Selection-based GP
(FS-GP). The framework of FS-GP consists of three stages.
In the first stage, 30 independent runs of the standard GP
with the entire feature set are conducted to get 30 best rules.
Then, in the second stage, the relevance ΥΩ(xi) of each fea-
ture xi is calculated based on the 30 best rules, and a new
key terminal set ~x∗ is formed by selecting the features whose
relevance is larger than zero. Finally, in the third stage, the
standard GP with the terminal set of ~x∗ is conducted again
to obtain the new rules. The algorithm is offline, since the
feature selection is carried out in the first two stages, which
can be considered as a preprocessing phase.

To distinguish from the general term of GP, the GP with
the Entire Terminal set is referred to as ET-GP hereafter.

4. EXPERIMENTAL STUDIES
In this section, three commonly investigated job shop sce-

narios [6, 15] are considered as the testbed. The first sce-
nario is the static job shop scheduling that minimizes the
makespan. The second scenario is the dynamic job shop
scheduling that minimizes the mean flowtime. The third
scenario is the dynamic job shop scheduling that minimizes
the mean weighted tardiness. The scenarios are denoted as
sjs-ms, djs-mft and djs-mwt, respectively.

For the sjs-ms scenario, the Taillard benchmark [25] in-
stances were used to form the training and test sets. Specif-
ically, the total 80 instances were divided into two groups,
one with the odd indices (1, . . . , 79), and the other with the
even indices (2, . . . , 80). For the sake of convenience, the
two groups are denoted as T-odd and T-even, respectively.

For the djs-mft and djs-mwt scenarios, a dynamic JSS
simulation system is adopted to generated the job arrival
events. In the simulation system, the key parameters include
the number of machines, the number of jobs before stopping,

the number of warmup jobs, the number of operations of
each job, the arrival time and due date of each job and
the eligible machine and processing time of each operation.
Here, the parameter settings are described in Table 2. The
setting is the same as that in [6] except that the due date
factor is set to 1.3 rather than 4.0 to generate tighter due
dates.

Table 2: The parameters in the dynamic JSS simu-
lation system.

Parameter Value

#machines 10
#jobs 2500 for training, and 5000 for test

#warmup jobs 20% of the total number of jobs
#operations per job missing, full1

Utilization level
{0.95, 0.8} for training

0.95, 0.9, 0.85 or 0.8 for testing
Due date 1.3 times the total processing time

Eligible machine Uniform distribution
Processing time Uniform distribution between 1 and 49

In the table, there are two utilization levels (0.95 and 0.8)
and two settings of the number of operations (missing and
full) in the training set. Thus, there are four different train-
ing configurations. Here we generate a single replication for
each configuration, but change the random seed in each gen-
eration of the GP process to improve the generalizability of
the rules. The training set is the same as that used by Hilde-
brandt et al. [6]. Thus we call it the H2010 set. For each
test configuration, 20 replications were generated to reflect
the real distribution better.

Given the above parameter settings, we created a set of
experiments whose training and test sets are described in
Table 3.

Table 3: The designed experiments.

Experiment Training set Test set

sjs-ms-1 T-odd (40 instances) T-even (40 instances)
sjs-ms-2 T-even (40 instances) T-odd (40 instances)

djs-mft-1 H2010 (4 replications) 0.95-missing (20 replications)
djs-mft-2 H2010 (4 replications) 0.9-missing (20 replications)
djs-mft-3 H2010 (4 replications) 0.85-missing (20 replications)
djs-mft-4 H2010 (4 replications) 0.8-missing (20 replications)
djs-mft-5 H2010 (4 replications) 0.95-full (20 replications)
djs-mft-6 H2010 (4 replications) 0.9-full (20 replications)
djs-mft-7 H2010 (4 replications) 0.85-full (20 replications)
djs-mft-8 H2010 (4 replications) 0.8-full (20 replications)

djs-mwt-1 H2010 (4 replications) 0.95-missing (20 replications)
djs-mwt-2 H2010 (4 replications) 0.9-missing (20 replications)
djs-mwt-3 H2010 (4 replications) 0.85-missing (20 replications)
djs-mwt-4 H2010 (4 replications) 0.8-missing (20 replications)
djs-mwt-5 H2010 (4 replications) 0.95-full (20 replications)
djs-mwt-6 H2010 (4 replications) 0.9-full (20 replications)
djs-mwt-7 H2010 (4 replications) 0.85-full (20 replications)
djs-mwt-8 H2010 (4 replications) 0.8-full (20 replications)

4.1 Parameter Setting of Genetic Programming
First, the terminal set of GP is to be determined. An

overview of the promising features for generating priority
functions is given in [11]. For the basic JSS model, the
commonly used features are listed in Table 4.

The non-terminal set is {+,−,×, /,min,max, ifte}. The
first three are traditional arithmetic operations. The func-
tion / is the protected division, which returns 1 if the denom-
inator is 0. The function min (max) takes two arguments

Table 4: The commonly used features for designing
dispatching rules for the basic JSS model.

Notation Description

NOW The current time.
PT Processing time of the operation.
IPT Inverse of the processing time.

NOPT Processing time of the next operation.
ORT Ready time of the operation.
MRT Ready/Idle time of the machine.

NMRT Ready time of the next machine.
WIQ Work in the current queue.

WINQ Work in the next queue.
NOIQ Number of operations in the current queue.

NOINQ Number of operations in next queue.
WKR Work remaining (including the current operation).
NOR Number of operations remaining.
FDD Flow due date of the operation.
DD Due date of the job.
W Weight of the job.

and returns the smaller (larger) one. The ifte function takes
three arguments a, b and c in order. If a > 0, then it returns
b. Otherwise, it returns c.

As described in Eq. (1), the fitness of dispatching rules
depends on the reference rule ĝ. Here, ĝ is set to the FDD
rule for minimzing the makespan and mean flowtime, and
WATC for minimizing the mean weighted tardiness.

Then, the other parameter settings of GP is given in Table
5. The algorithm was implemented by ECJ [14], and the
standard parameter settings were adopted.

Table 5: The parameters of GP.

Parameter Value

Population size 1024
Number of generations 51

Maximal depth 8
Crossover rate 0.85
Mutation rate 0.1

Reproduction rate 0.05

4.2 Feature Relevance
First, we investigate the relevance of the features in dif-

ferent shop scenarios and objectives. Fig. 1 shows the
relevance of each feature over the 30 independent runs on
the T-odd training set in terms of makespan. One can see
that WKR has the largest relevance (nearly 0.12), followed
by PT, which is about 0.05. There are 8 features whose
relevance is almost zero (NOIQ, WIQ, IPT, NOPT, ORT,
MNRT, NOR, and W), indicating that they made no con-
tribution to the best rule in at least half of the time.

Fig. 2 shows the relevance of the features on the T-
even training set in terms of makespan. A slightly different
pattern on the relevance of the features is shown. Specifi-
cally, WKR, PT and WINQ to be the most important three
features. There are more irrelevant features (NOINQ and
FDD) for the T-even training set. This might be because
the T-even instances are simpler than the T-odd instances.

Based on Figs. 1 and 2, we select the features that are
relevant for at least one of the T-odd and T-even training
sets. Note that in the Taillard instances, all the jobs arrive at
time 0, and the total processing time of each job is the sum
of the flow due date (FDD) and the work remaining (WKR)
minus the processing time. That is, DD = 1.3 × (FDD
+ WKR - PT). Thus, DD is considered to be redundant

Figure 1: The relevance of each feature over the 30
independent runs of ET-GP on the T-odd training
set in terms of makespan.

Figure 2: The relevance of each feature over the 30
independent runs of ET-GP on the T-even training
set in terms of makespan.

when FDD, WKR and PT are all selected. In addition, the
relevance of NOR is considered to be too small, and thus
NOR is removed as well. As a result, we select NOW, MRT,
PT, WKR, WINQ, NOINQ, and FDD for static job shop
scheduling that minimizes the makespan.

Fig. 3 shows the relevance of the features for the dynamic
job shop scheduling that minimizes the mean flowtime. One
can see that in this scenario, only 5 out of the total 16 fea-
tures made solid contribution to the best rules. PT, NOPT
and WINQ are much more relevant than WKR and NOINQ.
All the other 11 features are irrelevant (with zero relevance
value). Therefore, we select PT, NOPT, WKR, WINQ and
NOINQ in this case.

Fig. 4 shows the feature relevance for the dynamic job
shop scheduling minimizing the mean weighted tardiness.
In this case, MRT, PT, NOPT, WINQ, NOINQ and W are
the important features to be selected, of which PT and W
are the most important ones. All the other 10 features are
irrelevant in terms of the definition of ΥΩ(xi).

In summary, we have the following observations based on
the results:

1. Most of the candidate features are irrelevant to the
best rules (priority functions) found by ET-GP;

2. The relevance of features depends on the job shop sce-
nario and objective to be optimized. For example,
WKR and FDD are the key features when minimiz-

Figure 3: The relevance of each feature over the 30
independent runs of ET-GP on the H2010 training
set in terms of mean flowtime.

Figure 4: The relevance of each feature over the 30
independent runs of ET-GP on the H2010 training
set in terms of mean weighted tardiness.

ing makespan for static job shop scheduling, while is
weakly relevant or irrelevant in the case of dynamic
job shop scheduling;

3. There are still some key features (e.g. PT and WINQ)
that are important for all the tested scenarios.

As a result, the selected key terminal sets for the above
three job shop scenarios are summarized in Table 6.

Table 6: The key terminal set for the three job shop
scenarios.

Scenario Key Terminal Set

sjs-ms NOW, MRT, PT, WKR, WINQ, NOINQ, FDD
djs-mft PT, NOPT, WKR, WINQ, NOINQ
djs-mwt MRT, PT, NOPT, WINQ, NOINQ, W

4.3 Results with Key Terminal Sets
After obtaining the key terminal sets, we conduct GP

again to evolve rules that only consists of the key terminals.
By using fewer terminals, the evolved rules are expected to
be simpler, more understandable and generalizable. As de-
scribed in Section 3.1, the resultant GP is referred to as
FS-GP.

Tables 7–9 show the test performance of ET-GP, FS-GP
and some other representative benchmark rules in the three

investigated job shop scenarios. The test performance of a
rule A is defined as the percentage deviation from the ref-
erence value, i.e. 100 · (φItest(A) − 1), where φItest(A) is
defined in Eq. (1). For sjs-ms, the reference makespan val-
ues of the Taillard instances were obtained from the lower
bounds given on the website of JSS [1]. For djs-mft and djs-
mwt, the reference values were set to the test performance
of the FDD and WATC rules, respectively. In the tables,
Wilcoxon rank sum test was conducted between the results
of ET-GP and FS-GP, and the statistically significantly bet-
ter one is marked in bold.

From the tables, one can see that both ET-GP and FS-GP
achieved much better results than the compared benchmark
rules, which demonstrates the advantage of automatically
evolving dispatching rules using GP (negative value indi-
cates an advantage over the reference rule). In addition,
FS-GP performed significantly better than ET-GP on most
of the experiments (sjs-ms-2, 6 out of the total 8 djs-mft ex-
periments and all the 8 djs-mwt experiments). This shows
that selecting only the key features in GP can significantly
improve the test performance of the GP-evolved rules.

Since FS-GP achieved better test performance than ET-
GP, it is interesting to know whether such advantage is
caused by better training performance or better generaliz-
ability (difference between training and test performances).
To this end, Table 10 shows the average training and test
performance of ET-GP and FS-GP in the three experiment
sets. For the djs-mft and djs-mwt experiments, we combined
the 8 experiments together, and only reported the mean test
performance, since they used the same training set, and thus
obtained the same rules. It can be seen that the better test
performance of FS-GP is due to the better training perfor-
mance. This indicates that using a smaller number of ter-
minals can reduce the search space, and restrict the search
within more promising areas.

4.4 Analysis on the Evolved Dispatching Rules
To investigate the complexity and interpretability of the

GP-evolved rules, we first simplify the rules according to the
following principles.

• Replace a+0 (0+a), a−0, a×1 (1×a), a/1, min(a, a),
max(a, a), ifte(∗, a, a) with a;

• Replace a− a with 0, replace a/0 with 1;

• Replace a/IPT with a×PT, replace PT× IPT (IPT×
PT) with 1, replace a× IPT (IPT× a) with a/PT;

• Replace ifte(a, b, c) with b if a is always positive (e.g.
PT, W, WKR), and with c if a is always non-positive
(e.g. 0−PT);

After the above simplification, we analyze the rules by
calculating their depth, size (number of nodes) and leaves
(number of terminals). Table 11 gives the mean and stan-
dard deviation of the depth, size and leaves of the best rules
obtained by the 30 independent runs of ET-GP and FS-GP
in the djs-mwt experiment. Surprisingly, it can be seen that
FS-GP seems to obtain more complex rules than ET-GP,
with higher values on depth, size and leaves.

Eqs. (4) and (5) shows two example rules obtained by ET-
GP and FS-GP in the djs-mwt experiments, respectively. It
can be seen that the two rules have similar complexity af-
ter the simplification. However, g1 adopts many features

Table 7: The test performance (% relative to the lower bounds) of the GP-evolved rules with and without
terminal selection along with the benchmark rules in the static job shop scenario that minimizes the makespan.

Experiment SPT OPFSLK/PT;FDD 2PT+LWKR+FDD 2PT+WINQ+NPT ET-GP FS-GP

sjs-ms-1 26.88 19.98 14.81 25.38 12.48 ± 0.65 12.37 ± 0.52
sjs-ms-2 26.74 20.12 16.90 25.50 13.76 ± 0.58 13.47 ± 0.32

Table 8: The test performance (% relative to that of FDD) of the GP-evolved rules with and without terminal
selection along with the benchmark rules for minimizing the mean flowtime of different dynamic job shop
instances.

Experiment Util. Ops. SPT OPFSLK/PT;FDD 2PT+LWKR+FDD 2PT+WINQ+NPT ET-GP FS-GP

djs-mft-1 0.95 missing -6.37 2.68 20.67 -19.43 -27.29 ± 0.92 -27.67 ± 0.80
djs-mft-2 0.9 missing -6.58 5.30 24.27 -14.35 -20.67 ± 0.54 -21.14 ± 0.67
djs-mft-3 0.85 missing -6.30 4.45 18.02 -9.83 -14.75 ± 0.36 -15.11 ± 0.42
djs-mft-4 0.8 missing -4.24 4.26 13.04 -6.51 -10.24 ± 0.33 -10.42 ± 0.23
djs-mft-5 0.95 full -4.30 3.72 24.16 -13.52 -21.90 ± 0.59 -22.15 ± 0.83
djs-mft-6 0.9 full -4.85 5.01 22.92 -9.38 -15.28 ± 0.55 -15.68 ± 0.55
djs-mft-7 0.85 full -4.09 4.49 16.13 -6.98 -11.07 ± 0.47 -11.45 ± 0.31
djs-mft-8 0.8 full -3.67 3.48 11.11 -5.44 -8.40 ± 0.38 -8.62 ± 0.22

Table 9: The test performance (% relative to that of WATC) of the GP-evolved rules with and without
terminal selection along with the benchmark rules for minimizing the mean weighted tardiness of different
dynamic job shop instances.

Experiment Util. Ops. WEDD WMDD WSPT W(CR+SPT) WCOVERT ET-GP FS-GP

djs-mwt-1 0.95 missing 30.97 4.55 0.04 -0.44 -0.52 -11.38 ± 1.58 -12.65 ± 1.10
djs-mwt-2 0.9 missing 39.63 8.28 0.35 0.40 0.92 -8.33 ± 1.04 -9.12 ± 0.96
djs-mwt-3 0.85 missing 36.49 9.27 0.37 0.32 0.27 -5.81 ± 0.85 -6.58 ± 0.94
djs-mwt-4 0.8 missing 33.35 10.71 0.23 0.32 0.04 -4.11 ± 0.77 -4.76 ± 0.79
djs-mwt-5 0.95 full 37.75 6.77 0.18 0.02 -0.32 -9.32 ± 1.46 -10.50 ± 1.11
djs-mwt-6 0.9 full 39.22 9.44 0.18 1.08 0.51 -6.63 ± 0.99 -7.41 ± 1.04
djs-mwt-7 0.85 full 34.69 10.33 -0.13 0.28 0.08 -5.10 ± 0.80 -5.73 ± 1.02
djs-mwt-8 0.8 full 31.98 11.24 0.08 0.38 0.01 -4.00 ± 0.72 -4.53 ± 0.85

Table 10: The average training and test performance
of ET-GP and FS-GP for different experiment sets.

Experiment Algorithm Training Perf. Test Perf.

sjs-ms-1
ET-GP 12.13 ± 0.41 12.48 ± 0.65
FS-GP 12.07 ± 0.35 12.37 ± 0.52

sjs-ms-2
ET-GP 10.74 ± 0.43 13.76 ± 0.58
FS-GP 10.67 ± 0.26 13.47 ± 0.32

djs-mft
ET-GP -19.41 ± 0.60 -16.20 ± 0.52
FS-GP -19.66 ± 0.57 -16.53 ± 0.50

djs-mwt
ET-GP -10.37 ± 0.96 -6.83 ± 1.03
FS-GP -11.05 ± 0.76 -7.66 ± 0.98

Table 11: The mean and standard deviation of the
depth, size and leaves of the best rules obtained by
the 30 runs of ET-GP and FS-GP in the djs-mwt
experiment.

Depth Size Leaves

ET-GP 7.8(0.4) 55.2(19.4) 28.8(10.2)
FS-GP 7.9(0.3) 61.2(19.5) 32.5(10.7)

that are out of the key feature set (e.g. FDD, NOIQ, NOR,
NMRT). Thus, the actual part that contributes to the prior-
ity function in g1 is much smaller than that in g2. In addi-
tion, although looking complex, g2 contains many meaning-
ful building blocks such as PT/W and WINQ/W that are
known to perform well for minimizing the mean weighted
tardiness for dynamic JSS. As a result, the performance of

g1 is worse than that of g2 on both the training set (−9.16
versus −10.46) and test set (e.g. −8.44 versus −10.47 in the
djs-mwt-5 experiment).

g1 = ifte(((NOPT− FDD) + (FDD−NOIQ)), (NOINQ

+(PT+NOINQ)), (PT+NOINQ))×(max(((NOIQ+MRT)/W),

(((FDD×NOIQ)/(NOR/W))× (max(PT, IPT)/NMRT)))

−min(((MRT/W)/W), (min(NOINQ,FDD) + (PT+

NOINQ)))), (4)

g2 = (((min((WINQ/W), (NOPT×W))+(PT+(PT/W)))

/W)×(MRT/(W/PT)))×max((((PT/W)+(PT+(NOPT×W)))

×(ifte(NOINQ,W,PT)×(((WINQ/W)/ifte(NOINQ,WINQ,

MRT))/ifte(NOINQ,WINQ,MRT)))), ((PT + (PT/W))+

(WINQ/W))). (5)

In summary, the analysis on the evolved rules obtained by
ET-GP and FS-GP shows that by selecting the key feature
set, FS-GP focuses more on the promising regions in the
search space, and is easier to find meaningful building blocks
than ET-GP.

5. CONCLUSION AND FUTURE WORK
In this paper, we designed a domain-knowledge-free fea-

ture selection method for evolving dispatching rules using
GP. The proposed method is based on the contribution or
relevance of each feature to the priority function of the evolved
rules. Based on the proposed feature selection method,

we further designed a feature-selection-based GP (FS-GP),
which learns the importance of the features offline. The
experimental results show that selecting only the identified
key terminals can lead to significantly better performance
on both training and test sets. The analysis on the evolved
rules reveals that FS-GP is more capable of finding more
useful building blocks that contributes more to the perfor-
mance of the rules.

In the future, to improve training efficiency, we will in-
vestigate online learning (estimating the importance of the
features during the GP process), and adaptively select the
terminals during the GP process. In addition, identifying
useful building blocks (sub-trees) into the terminal set will
further help the search to find more promising regions.

6. REFERENCES
[1] Job shop scheduling. http://optimizizer.com/TA.php.

[2] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,
G. Ochoa, E. Özcan, and R. Qu. Hyper-heuristics: A
survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013.

[3] A. Friedlander, K. Neshatian, and M. Zhang.
Meta-learning and feature ranking using genetic
programming for classification: Variable terminal
weighting. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC), pages 941–948.
IEEE, 2011.

[4] C. D. Geiger and R. Uzsoy. Learning effective
dispatching rules for batch processor scheduling.
International Journal of Production Research,
46(6):1431–1454, 2008.

[5] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. The Journal of Machine
Learning Research, 3:1157–1182, 2003.

[6] T. Hildebrandt, J. Heger, and B. Scholz-Reiter.
Towards improved dispatching rules for complex shop
floor scenarios: a genetic programming approach. In
Proceedings of Genetic and Evolutionary Computation
Conference, pages 257–264. ACM, 2010.

[7] O. Holthaus and C. Rajendran. Efficient dispatching
rules for scheduling in a job shop. International
Journal of Production Economics, 48(1):87–105, 1997.

[8] D. Jakobović and L. Budin. Dynamic scheduling with
genetic programming. In Genetic Programming, pages
73–84. Springer, 2006.

[9] D. Jakobović and K. Marasović. Evolving priority
scheduling heuristics with genetic programming.
Applied Soft Computing, 12(9):2781–2789, 2012.

[10] M. Jayamohan and C. Rajendran. New dispatching
rules for shop scheduling: a step forward. International
Journal of Production Research, 38(3):563–586, 2000.

[11] B. Jürgen, S. Nguyen, C. W. Pickardt, and M. Zhang.
Automated design of production scheduling heuristics:
A review. IEEE Transactions on Evolutionary
Computation, 2015.

[12] A. S. Kiran and M. L. Smith. Simulation studies in
job shop sheduling—i a survey. Computers &
Industrial Engineering, 8(2):87–93, 1984.

[13] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[14] S. Luke et al. A java-based evolutionary computation
research system.
https://cs.gmu.edu/˜eclab/projects/ecj/.

[15] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan. A
computational study of representations in genetic
programming to evolve dispatching rules for the job
shop scheduling problem. IEEE Transactions on
Evolutionary Computation, 17(5):621–639, 2013.

[16] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan.
Automatic design of scheduling policies for dynamic
multi-objective job shop scheduling via cooperative
coevolution genetic programming. IEEE Transactions
on Evolutionary Computation, 18(2):193–208, 2014.

[17] S. Ok, K. Miyashita, and S. Nishihara. Improving
performance of gp by adaptive terminal selection. In
PRICAI 2000 Topics in Artificial Intelligence, pages
435–445. Springer, 2000.

[18] H. Peng, F. Long, and C. Ding. Feature selection
based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226–1238, 2005.

[19] C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger,
and B. Scholz-Reiter. Evolutionary generation of
dispatching rule sets for complex dynamic scheduling
problems. International Journal of Production
Economics, 145(1):67–77, 2013.

[20] M. L. Pinedo. Scheduling: theory, algorithms, and
systems. Springer Science & Business Media, 2012.

[21] C. Rajendran and O. Holthaus. A comparative study
of dispatching rules in dynamic flowshops and
jobshops. European Journal of Operational Research,
116(1):156–170, 1999.

[22] R. Ramasesh. Dynamic job shop scheduling: a survey
of simulation research. Omega, 18(1):43–57, 1990.

[23] V. Sels, N. Gheysen, and M. Vanhoucke. A comparison
of priority rules for the job shop scheduling problem
under different flow time-and tardiness-related
objective functions. International Journal of
Production Research, 50(15):4255–4270, 2012.

[24] V. Subramaniam, T. Ramesh, G. Lee, Y. Wong, and
G. Hong. Job shop scheduling with dynamic fuzzy
selection of dispatching rules. The International
Journal of Advanced Manufacturing Technology,
16(10):759–764, 2000.

[25] E. D. Taillard. Benchmarks for basic scheduling
problems. European Journal of Operational Research,
64(2):278–285, 1993.

[26] J. C. Tay and N. B. Ho. Evolving dispatching rules
using genetic programming for solving multi-objective
flexible job-shop problems. Computers & Industrial
Engineering, 54(3):453–473, 2008.

[27] B. Xue, M. Zhang, W. Browne, and X. Yao. A survey
on evolutionary computation approaches to feature
selection. IEEE Transactions on Evolutionary
Computation, 2015.

[28] B. Xue, M. Zhang, and W. N. Browne. Particle swarm
optimization for feature selection in classification: A
multi-objective approach. IEEE Transactions on
Cybernetics, 43(6):1656–1671, 2013.

