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FEATURE SELECTION IN OMICS PREDICTION PROBLEMS
USING CAT SCORES AND FALSE NONDISCOVERY

RATE CONTROL
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University of Leipzig, Tampere University of Technology and University of Leipzig

We revisit the problem of feature selection in linear discriminant analy-
sis (LDA), that is, when features are correlated. First, we introduce a
pooled centroids formulation of the multiclass LDA predictor function, in
which the relative weights of Mahalanobis-transformed predictors are given
by correlation-adjusted t-scores (cat scores). Second, for feature selection
we propose thresholding cat scores by controlling false nondiscovery rates
(FNDR). Third, training of the classifier is based on James–Stein shrinkage
estimates of correlations and variances, where regularization parameters are
chosen analytically without resampling. Overall, this results in an effective
and computationally inexpensive framework for high-dimensional prediction
with natural feature selection. The proposed shrinkage discriminant proce-
dures are implemented in the R package “sda” available from the R repository
CRAN.

1. Introduction. Class prediction of biological samples based on their ge-
netic or proteomic profile is now a routine task in genomic studies. Accordingly,
many classification methods have been developed to address the specific statis-
tical challenges presented by these data—see, for example, Schwender, Ickstadt
and Rahnenführer (2008) and Slawski, Daumer and Boulesteix (2008) for recent
reviews. In particular, the small sample size n renders difficult the training of the
classifier, and the large number of variables p makes it hard to select suitable fea-
tures for prediction.

Perhaps surprisingly, despite the many recent innovations in the field of clas-
sification methodology, including the introduction of sophisticated algorithms for
support vector machines and the proposal of ensemble methods such as random
forests, the conceptually simple approach of linear discriminant analysis (LDA)
and its sibling, diagonal discriminant analysis (DDA), remain among the most
effective procedures also in the domain of high-dimensional prediction [Efron
(2008a); Hand (2006); Efron (1975)].

In order to be applicable for high-dimensional analysis, it has been recognized
early that regularization is essential [Friedman (1989)]. Specifically, when training
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the classifier, that is, when estimating the parameters of the discriminant function
from training data, particular care needs to be taken to accurately infer the (inverse)
covariance matrix. A rather radical, yet highly effective way to regularize covari-
ance estimation in high dimensions is to set all correlations equal to zero [Bickel
and Levina (2004)]. Employing a diagonal covariance matrix reduces LDA to the
special case of diagonal discriminant analysis (DDA), also known in the machine
learning community as “naive Bayes” classification.

In addition to facilitating high-dimensional estimation of the prediction func-
tion, DDA has one further key advantage: it is straightforward to conduct feature
selection. In the DDA setting with two classes (K = 2), it can be shown that the
optimal criterion for ordering features relevant for prediction are the t-scores be-
tween the two group means [e.g., Fan and Fan (2008)], or in the multiclass setting,
the t-scores between group means and the overall centroid.

The nearest shrunken centroids (NSC) algorithm [Tibshirani et al. (2002,
2003)], commonly known by the name of “PAM” after its software implemen-
tation, is a regularized version of DDA with multiclass feature selection. The fact
that PAM has established itself as one of the most popular methods for classifica-
tion of gene expression data is ample proof that DDA-type procedures are indeed
very effective for large-scale prediction problems—see also Bickel and Levina
(2004) and Efron (2008a).

However, there are now many omics data sets where correlation among pre-
dictors is an essential feature of the data and hence cannot easily be ignored. For
example, this includes proteomics, imaging, and metabolomics data where correla-
tion among biomarkers is commonplace and induced by spatial dependencies and
by chemical similarities, respectively. Furthermore, in many transcriptome mea-
surements there are correlations among genes within a functional group or path-
way [Ackermann and Strimmer (2009)].

Consequently, there have been several suggestions to generalize PAM to account
for correlation. This includes the SCRDA [Guo, Hastie and Tibshirani (2007)],
Clanc [Dabney and Storey (2007)] and MLDA [Xu, Brock and Parrish (2009)]
approaches. All these methods are regularized versions of LDA, and hence offer
automatic provisions for gene-wise correlations. However, in contrast to PAM and
DDA, they lack an efficient and elegant feature selection scheme, due to problems
with multiple optima in the choice of regularization parameters (SCRDA) and the
large search space for optimal feature subsets (Clanc).

In this paper we present a framework for efficient high-dimensional LDA analy-
sis. This is based on three cornerstones. First, we employ James–Stein shrinkage
rules for training the classifier. All regularization parameters are estimated from
the data in an analytic fashion without resorting to computationally expensive re-
sampling. Second, we use correlation-adjusted t-scores (cat scores) for feature se-
lection. These scores emerge from a restructured version of the LDA equations
and enable simple and effective ranking of genes even in the presence of correla-
tion. Third, we employ false nondiscovery rate thresholding for selecting features
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for inclusion in the prediction rule. As we will show below, this is a highly effec-
tive method with similar performance to the recently proposed “higher criticism”
approach.

The remainder of the paper is organized as follows. In Sections 2–5 we detail
our framework for shrinkage discriminant analysis and variable selection. Sub-
sequently, we demonstrate the effectiveness of our approach by application to a
number of high-dimensional genomic data sets. We conclude with a discussion
and comparison to closely related approaches.

2. Linear discriminant analysis revisited.

2.1. Standard formulation. LDA starts by assuming a mixture model for the
p-dimensional data x,

f (x) =
K∑

j=1

πjf (x|j),

where each of the K classes is represented by a multivariate normal density

f (x|k) = (2π)−p/2|�|−1/2 exp
{−1

2(x − μk)
T �−1(x − μk)

}
with group-specific centroids μk and a common covariance matrix �. The prob-
ability of group k given x is computed from the a priori mixing weights πj by
application of Bayes’ theorem,

Pr(k|x) = πkf (x|k)

f (x)
.

We define here the LDA discriminant score as the log posterior dk(x) =
log{Pr(k|x)}, which after dropping terms constant across groups becomes

dLDA
k (x) = μT

k �−1x − 1
2μT

k �−1μk + log(πk).(2.1)

Due to the common covariance, dLDA
k (x) is linear in x. Prediction in LDA works

by evaluating the discriminant function at the given test sample x for all possible k,
choosing the class maximizing the posterior probability (and hence dLDA

k ).

2.2. Pooled centroid formulation. We now rewrite the standard form of the
LDA predictor function (2.1) with the aim to elucidate the influence of each in-
dividual variable in prediction. Specifically, we simply add a class-independent
constant to the discriminant function—note that this does not change in any way
the prediction. We compute the pooled mean

μpool =
K∑

j=1

nj

n
μj ,
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representing the overall centroid (nj is the sample size in group j and n = ∑K
j=1 nj

the total number of observations) and the corresponding discriminant score

dLDA
pool (x) = μT

pool�
−1x − 1

2μT
pool�

−1μpool.

The centered score

�LDA
k (x) = dLDA

k (x) − dLDA
pool (x)

can be interpreted as a log posterior ratio and is, in terms of prediction, completely
equivalent to the original dLDA

k (x). After some careful algebra, it simplifies to

�LDA
k (x) = ωT

k δk(x) + log(πk)(2.2)

with feature weight vector

ωk = P−1/2V−1/2(μk − μpool)(2.3)

and Mahalanobis-transformed predictors

δk(x) = P−1/2V−1/2
(

x − μk + μpool

2

)
.(2.4)

Here, we have made use of the variance-correlation decomposition of the covari-
ance matrix � = V1/2PV1/2, where V = diag{σ 2

1 , . . . , σ 2
p} is a diagonal matrix

containing the variances and P = (ρij ) is the correlation matrix.
A remarkable property of the above restructuring (2.2)–(2.4) of the LDA dis-

criminant function (2.1) is that both ωk and δk(x) are vectors and not matrices.
Furthermore, note that ωk is not a function of the test data x and that its compo-
nents control how much each individual variable contributes to the score �LDA

k of
group k.

2.3. James–Stein shrinkage rules for learning the LDA predictor. In order to
train the LDA discriminant function [(2.1) or (2.2)], we estimate group centroids
μk by their empirical means, and otherwise rely on three different James–Stein-
type shrinkage rules. Specifically, we employ the following:

1. for the correlations P the ridge-type estimator from Schäfer and Strimmer
(2005),

2. for the variances V the shrinkage estimator from Opgen-Rhein and Strimmer
(2007), and

3. for the proportions πk the frequency estimator from Hausser and Strimmer
(2009).

All three James–Stein-type estimators are constructed by shrinking toward suitable
targets and analytically minimizing the mean squared error. The precise formulas
are given in Appendix A. For the statistical background we refer to the above
mentioned references.
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We remark that the advantages of using James–Stein rules for data analysis
have recently become (again) more appreciated in the literature, especially in the
“small n, large p” setting, where James–Stein-type estimators are very efficient
both in a statistical as well as in a computational sense. In training of the LDA pre-
dictor function by James–Stein shrinkage, we follow Dabney and Storey (2007)
and Xu, Brock and Parrish (2009), who give a comprehensive comparison with
competing approaches such as support vector machines. Slawski, Daumer and
Boulesteix (2008) also implement a shrinkage version of LDA.

3. Feature selection.

3.1. A natural variable selection score for LDA. Following Zuber and Strim-
mer (2009), we define the vector τ

adj
k of correlation-adjusted t-scores (cat scores)

to be a scaled version of the feature weight vector ωk :

τ
adj
k ≡

(
1

nk

− 1

n

)−1/2

ωk

= P−1/2 ×
{(

1

nk

− 1

n

)
V

}−1/2

(μk − μpool)(3.1)

= P−1/2τ k.

The vector τ k contains the gene-wise gene-specific t-scores between the mean of
group k and the pooled mean. Thus, the correlation-adjusted t-scores (τ adj

k ) are

decorrelated t-scores (τ k). If there is no correlation, τ
adj
k reduces to τ k . The factor

( 1
nk

− 1
n
)−1/2 in equation (3.1) standardizes the error of μ̂k − μ̂pool, and is the

same as in PAM [Tibshirani et al. (2003)]. Note the minus sign, which is due to
correlation

√
nk/n between μ̂k and μ̂pool.

1

In DDA approaches, such as PAM, regularized estimates of the t-scores τ k are
employed for feature selection. From equations (2.2)–(2.4) it follows directly that
the cat scores τ

adj
k provide the most natural generalization in the LDA setting (see

also Remark A).
As a summary score to measure the total impact of feature i ∈ {1, . . . , p}, we

use

Si =
K∑

j=1

(τ
adj
i,j )2,(3.2)

1The plus sign in the original PAM paper [Tibshirani et al. (2002), page 6567] is a typographic
error.
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that is, the squared ith component of the cat score vector τ
adj
k = (τ

adj
1,k , . . . , τ

adj
p,k)

T

summed across the K groups. For comparison, PAM uses the criterion

S
′
i = max

j=1,...,K
(|τi,j |).(3.3)

Using the squared sum of the group-specific cat scores in Si rather than taking
the maximum over the absolute values as in S

′
i has two distinct advantages. First,

the sample distribution of the estimated Si is more tractable, being approximately
χ2. Second, if a feature is discriminative with regard to more than one group, this
additional information is not disregarded.

3.2. Feature selection by controlling the false nondiscovery rate. When con-
structing an efficient classifier, it is desirable to eliminate features that provide no
useful information for discriminating among classes. The conventional but com-
putationally tedious approach is to choose the optimal threshold by estimating
the prediction error via cross-validation along a grid of possible threshold values.
Faster alternative thresholding procedures include “higher criticism” [Donoho and
Jin (2008)], “FAIR” [Fan and Fan (2008)] and “Ebay” [Efron (2008b)]. The latter
two methods are primarily developed with the correlation-free setting and t-scores
in mind (however, “Ebay” also offers correlation corrections for prediction errors).

Here, we advocate using the false discovery rate (FDR) framework to select
features for classification. We emphasize, however, that in the problem of con-
structing classifiers the FDR approach cannot be applied in the same fashion as
in differential expression. In the latter case, the aim is to compile a set of genes
one has confidence in to be differentially expressed. This is controlled by the FDR
criterion. In contrast, when furnishing classifiers, one aims at identifying with con-
fidence the set of null features that are not informative with regard to group sep-
aration, in order to eliminate them from the classifier. This is controlled by the
false nondiscovery rate, FNDR. For a discussion of the relation between FDR and
FNDR see, for example, Strimmer (2008).

This subtle but important distinction is best illustrated by referring to Figure 1,
which plots the local FDR fdr(Si) = Prob(“null”|Si) computed for (and from) the
statistic Si of feature i. In a list of differentially expressed genes we decide to
include, say, genes i with fdr(Si) < 0.2. A similar constraint on the local false
nondiscovery rate, fndr(Si) < 0.2, gives a confidence set of the null genes. The
local false discovery and local false nondiscovery rates add up to one, fndr(Si) =
1 − fdr(Si). Hence, the set of features to be retained in the classifier have local
false discovery rates smaller than 0.8—instead of 0.2. Thus, the features included
in the predictor form a superset of the differentially expressed variables. A similar
argument applies when using distribution-based Fdr (q-values) and Fndr values.

In short, our proposal is to identify the null features by controlling (local)
FNDR, and subsequently using all features except the identified null set in predic-
tion. For estimating FDR quantities, we use the semiparametric approach outlined
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FIG. 1. Local false discovery rates as a function of the summary score Si . There are three distinct
areas: an acceptance and a rejection zone, which are separated by a “buffer zone” in the middle.
Note that the features to be included in the classifier by FNDR control of the null genes form a
superset of the differentially expressed genes controlled by FDR.

in Strimmer (2008). Note that this and other FDR procedures assume that there
are enough null features so that the null model can be properly estimated [Efron
(2004)].

4. Special cases.

4.1. Two groups. For K = 2 the cat score τ
adj
k between the group centroid and

the pooled mean reduces to the cat score between the two means:

τ
adj
1 = P−1/2 ×

{(
1

n1
− 1

n1 + n2

)
V

}−1/2(
μ1 −

(
n1

n
μ1 + n2

n
μ2

))

= P−1/2 ×
{(

1

n1
+ 1

n2

)
V

}−1/2

(μ1 − μ2).

Note that τ
adj
1 = −τ

adj
2 . The feature selection score Si reduces to the squared cat

score between the two means; cf. Table 1. Likewise, for K = 2 the difference

TABLE 1
The general feature selection score Si and special cases thereof

Si = K arbitrary K = 2

Correlation present:
∑K

j=1(τ
adj
i,j )2 2(τ

adj
i )2

No correlation (P = I):
∑K

j=1 τ2
i,j 2τ2

i
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�LDA
1 (x)−�LDA

2 (x) reduces to ωT δ(x)+ log(π1
π2

) with ω = P−1/2V−1/2(μ1 −μ2)

and δ(x) = P−1/2V−1/2(x − μ1+μ2
2 ).

For extensive discussion of the two group case, including comparison of gene
rankings with many other test statistics, we refer to Zuber and Strimmer (2009).

4.2. Vanishing correlation. In case of no correlation (P = I), the cat scores
reduce (by construction) to standard t-scores between the two centroids of inter-
est, either between the group and the pooled mean (general K) or between the
two groups (K = 2). The gene summary Si reduces to the sum of the respective
squared t-scores (Table 1). The discriminant function reduces to the standard form
of diagonal discriminant analysis. The pooled centroids formulation of LDA re-
duces to that of PAM (except for the shrinkage of the means present in PAM but
not in our approach).

5. Remarks.

REMARK A (Definition of feature weights). The definition of feature weights
according to equation (2.3) is most natural. Other ways of splitting up the prod-
uct ωT

k δk(x) lead to various inconsistencies. For example, instead of using ωk =
�−1/2(μk − μpool), it has been suggested to consider �−1(μk − μpool), for exam-
ple, in Witten and Tibshirani (2009), page 627. However, this choice implies that
for the case of no correlation variable selection would be based on V−1(μk −μpool)

rather than on t-scores.
Furthermore, dividing the inverse correlation P−1 equally between equations

(2.3) and (2.4) greatly simplifies interpretation: feature selection takes place on
the level of centered, scaled as well as decorrelated predictors δk(x). Note that
this interpretation is not hampered by the fact that the decorrelation involves all
features, because typically there is no substantial correlation between nonnull and
null features, so that the overall correlation matrix decomposes into correlation
within null and within nonnull variables.

REMARK B (Grouping of features). Using cat scores for feature selection also
greatly facilitates the grouping of features. Specifically, adding the squared cat
scores of each feature contained in a given set (e.g., gene sets specified by bio-
chemical pathways) leads to Hotelling’s T 2; see Zuber and Strimmer (2009). Note
that if another decomposition than that of equation (2.3) and (2.4) was used, the
connection of cat scores with Hotelling’s T 2 would be lost.

REMARK C (FDR methods for feature selection). The usefulness of false dis-
covery rates for feature selection in prediction is disputed, for example, in Donoho
and Jin (2008). What we show here is that the unfavorable performance is due to
naive application of FDR, leading to the elimination of too many predictors. If in-
stead FNDR is controlled to determine the null-features to be excluded from the
discriminant function, then much more efficient prediction rules are obtained.
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REMARK D (Fast computation of matrix square root). The inverse square root
of the correlation matrix, required in equations (2.1) and (3.1), can be computed
very efficiently for the James–Stein shrinkage estimator; see Zuber and Strimmer
(2009) for details.

REMARK E (Normalizing the null model). Estimating false discovery rates
using summary scores Si (3.2) assumes as null model a χ2-distribution with un-
known parameters. To employ standard FDR software, we apply the cube-root
transformation, which provides a normalizing transform for the χ2-distribution
[Wilson and Hilferty (1931)].

6. Results. We now illustrate our shrinkage DDA and LDA approaches with
variable selection using cat scores and FNDR control by analyzing a number of ref-
erence data examples, and compare our results with that of competing approaches.
We also investigate the performance of FNDR feature selection in comparison with
that of “higher criticism” [Donoho and Jin (2008)].

6.1. Singh et al. (2002) gene expression data. First, we investigated the
prostate cancer data set of Singh et al. (2002). This consists of gene expression
measurements of p = 6033 genes for n = 102 patients, of which 52 are cancer
patients and 50 are healthy (thus, K = 2). To facilitate cross-comparison, we ana-
lyzed the data exactly in form as used in Efron (2008a). Our results are summarized
in Table 2, and corresponding violin plots [Hintze and Nelson (1998)] are shown
in Figure 2.

Initially, we assumed zero correlation and applied the shrinkage DDA method.
By controlling the local FNDR to be smaller or equal than 0.2, we determined that
5867 genes were null genes, hence, that 166 genes needed to be included in the
prediction rule. For comparison, a local FDR cutoff on the same level yielded only

TABLE 2
Prediction errors and number of selected features for Singh
et al. (2002) gene expression data. The number in the round

brackets is the estimated standard error

Method Prediction Error Features

Ebay 0.092 51
DDA-FDR 0.1682 (0.0093) 53
LDA-FDR 0.0989 (0.0056) 62
LDA-FNDR 0.0550 (0.0048) 131
DDA-FNDR 0.0640 (0.0049) 166
PAM 0.0859 (0.0063) 172–482
DDA-ALL 0.3327 (0.0099) 6033

The prediction error of Ebay is taken from Efron (2008a).
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FIG. 2. Violin plots of prediction error rates of various classification methods for the Singh et al.
(2002) data. The violin plot is a generalization of the box plot, showing the median and upper and
lower quartiles, as well as the density. Underlying each plot are 200 estimates of prediction error
computed from the 200 splits arising from balanced 10-fold cross-validation with 20 repetitions. The
number in round brackets indicates the number of selected features. See also Table 2.

53 genes, lacking the 103 genes in the “buffer zone” between the two cutoffs (cf.
Figure 1). Note that we recommend using the larger FNDR-based feature set, not
just the 53 genes considered to be differentially expressed.

We estimated the prediction error of the resulting classification rule using bal-
anced 10-fold cross-validation with 20 repetitions. For each of the in total 200
splits we trained a new prediction rule and estimated new feature rankings and
FDR statistics, thereby including the selection process in the error estimate to avoid
overoptimistic results [Ambroise and McLachlan (2002)]. The number of selected
features shown in Table 2 is based on the complete data. However, for estimation
of prediction error for each of the splits a new set of features was determined.

For the FNDR-based cutoff with 166 included features, we obtained an estimate
of the prediction error of 0.0640, whereas for the naive FDR cutoff resulting in 53
predictors, the error is much higher (0.1682). For comparison, we also computed
the error using all 6033 features, yielding a massive 0.3327. The PAM program
selected between 172 and 482 genes for inclusion in its predictor with error rate
0.0859 (note that the number of selected features by the PAM algorithm is highly
variable and differs from run to run even for the same data set). According to Efron
(2008a), the Ebay approach used 51 genes for prediction with error rate 0.092.

If correlation was taken into account, that is, if the order of ranking was deter-
mined by cat rather than t-scores, interestingly both the number of differentially
expressed genes and of the null genes increases, implying that the “buffer zone”
shown in Figure 1 becomes smaller. Thus, the LDA classifier with FNDR cutoff
contained for this data fewer predictors (131) but at the same time nevertheless
achieved the smallest overall prediction error (Figure 2).



LDA FEATURE SELECTION 513

TABLE 3
Estimated prediction errors for several multiclass reference data sets

Data Method Prediction error Features DE

Lymphoma DDA-FNDR 0.0517 (0.0062) 162 0
(K = 3, n = 62, LDA-FNDR 0.0036 (0.0018) 392 55

p = 4026) PAM 0.0254 (0.0045) 2796–3201

SRBCT DDA-FNDR 0.0007 (0.0007) 90 62
(K = 4, n = 63, LDA-FNDR 0.0000 (0.0000) 89 76

p = 2308) PAM 0.0145 (0.0034) 39–87

Brain DDA-FNDR 0.1892 (0.0146) 33 8
(K = 5, n = 42, LDA-FNDR 0.1525 (0.0120) 102 23

p = 5597) PAM 0.1939 (0.0112) 197–5597

The last column (DE) shows the number of differentially expressed genes, which equals
the number of significant features if FDR rather than FNDR is used as criterion.

6.2. Performance for multiclass reference data sets. For extended comparison
we applied our approach to a number of further reference data sets. In particular,
we analyzed gene expression data for lymphoma [Alizadeh et al. (2000)], small
round blue cell tumors (SRBCT) [Khan et al. (2001)] and brain cancer [Pomeroy
et al. (2002)]. The data sets have in common that all contain more than two classes,
thus allowing to study the multi-class summary statistic (3.2). A summary of the
results obtained by shrinkage LDA/DDA and FNDR feature selection and by PAM
is given in Table 3.

The Khan et al. (2001) data are very easy to classify. All methods performed
equally well on this data, with no substantial difference between the LDA and
DDA approaches.

For the lymphoma data set the PAM approach failed to identify a compact set of
predictive features. In contrast, the FNDR approach selects a comparatively small
number of genes both in the LDA and DDA case. Intriguingly, for this data there
were no differentially expressed genes, if correlation is ignored, yet the FNDR
criterion yielded 162 nonnull features.

The brain data set is the largest and most difficult data set. Again, the PAM ap-
proach failed to determine a stable set of features, whereas FNDR control yielded a
compact set of informative predictors. Here, as well as for the lymphoma data, the
LDA approach clearly outperformed the DDA approaches in terms of prediction
error.

6.3. Comparison with “higher criticism” feature selection. Using the data ex-
amples above, we demonstrated that feature selection based on simple FDR cutoffs
is not sufficient for prediction. In particular, if features are weak and sparse, it may
easily happen that no predictor has sufficiently small false discovery rate to be
called significant (cf. the lymphoma data).
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TABLE 4
Estimated prediction errors employing higher criticism as feature selection criterion

Data Method Prediction error Features local FDR

Prostate DDA-HC 0.0707 (0.0055) 129 0.69
LDA-HC 0.0497 (0.0045) 116 0.73

Lymphoma DDA-HC 0.0185 (0.0038) 179 1.00
LDA-HC 0.0000 (0.0000) 345 0.78

SRBCT DDA-HC 0.0035 (0.0016) 138 1.00
LDA-HC 0.0007 (0.0007) 174 1.00

Brain DDA-HC 0.1572 (0.0118) 33 0.77
LDA-HC 0.1417 (0.0108) 131 1.00

The last column (local FDR) shows the local FDR of the least significant feature.

In such a setting Donoho and Jin (2008) suggest as alternative to FDR-based
thresholding the “higher criticism” (HC) approach. The HC criterion is based on
p-values. For each feature, the p-value is centered and standardized using the esti-
mated mean and variance of the corresponding order statistic. The optimal thresh-
old is determined as the maximum of the absolute HC scores within a fraction (say,
10%) of the top ranking features [Donoho and Jin (2008)].

Our feature selection approach based on FNDR control shares with HC that we
aim to overcome the limitations resulting from naive application of FDR-based
feature selection. For this reason, it is instructive to investigate our shrinkage pre-
diction rule in combination with the HC thresholding procedure. The p-values
underlying the HC objective function were obtained by fitting a two-component
mixture model, so that the same empirical null model was used as in the FDR
analysis.

The results are given in Table 4. Again, in all cases the LDA approach using cat
scores for feature selection leads to smaller prediction error than employing DDA
and t-scores. Remarkably, the performance of the FNDR and HC approach are on
an equal level, implying that efficient feature selection is indeed possible within the
FDR framework. The set of features selected by HC is, on average, a bit smaller
than that chosen by FNDR, and larger than the FDR-based set, which indicates
that the HC threshold is typically situated in the “buffer zone” of Figure 1.

7. Discussion.

7.1. Shrinkage discriminant analysis and feature selection. In this paper we
have revisited high-dimensional shrinkage discriminant analysis and presented a
very efficient procedure for prediction. Our approach contains three distinct ele-
ments:

• the use of James–Stein shrinkage for training the predictor,
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• feature ranking based on cat scores, and
• feature selection based on FNDR thresholding.

Employing James–Stein shrinkage estimators is efficient both from a statistical as
well as from a computational perspective. Note that shrinkage is used here only as
a means to improve the estimated parameters, but not for model selection as in the
approaches by Tibshirani et al. (2002) and Guo, Hastie and Tibshirani (2007).

The correlation-adjusted t-score (cat score) emerges as a natural gene rank-
ing criterion in the presence of correlation among predictors [Zuber and Strimmer
(2009)]. Here we have shown how to employ cat scores in the multi-class LDA
setting and demonstrated on high-dimensional data that using cat scores rather
than t-scores leads to a more effective choice of predictors. We note that the order
of ranking induced by the cat and t-scores, respectively, may differ substantially.
Hence, univariate thresholding procedures to select interesting features will differ,
even if the testing procedures account for dependencies.

Finally, we propose feature selection by controlling FNDR rather than FDR
and show that this is as efficient in terms of predictive accuracy as when “higher
criticism” is employed. Moreover, we explain why variable selection based on
FDR leads to inferior prediction rules.

7.2. Recommendations. For extremely high-dimensional data, estimating cor-
relation is very difficult, hence, in this instance we recommend to conduct diago-
nal discriminant analysis [see also Bickel and Levina (2004)]. From our analysis
it is clear the shrinkage DDA as proposed here, combined with variable selection
by control of FNDR or HC, is most effective. In contrast to the PAM approach,
no randomization procedures are involved and, hence, the prediction rule and the
number of selected features are stable.

In all other cases we recommend a full shrinkage LDA analysis, with feature
selection based on cat scores. While this approach is computationally more ex-
pensive than the shrinkage DDA approach, it has a significant impact on predic-
tive accuracy. Typically, in comparison with DDA, taking account of correlation
either leads to more compact feature sets or improved prediction error, or both.
Furthermore, relative to competing full LDA approaches, such as Guo, Hastie and
Tibshirani (2007), our procedure is computationally fast, due to the avoidance of
computer-intensive procedures such as resampling.

APPENDIX A: JAMES–STEIN SHRINKAGE ESTIMATORS FOR
TRAINING THE LDA PREDICTOR

For “small n, large p” inference of the LDA predictor function (2.1) and (2.2)
and the cat score (3.1) we rely on three different James–Stein-type estimators.

The correlation matrix is estimated by shrinking empirical correlations rij to-
ward zero,

rshrink
ij = (1 − λ̂1)rij ,
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with estimated intensity

λ̂1 = min
(

1,

∑
i �=j V̂ar(rij )∑

i �=j r2
ij

)

[Schäfer and Strimmer (2005)].
The variances are estimated by shrinking the empirical estimates vi toward their

median,

vshrink
i = λ̂2vmedian + (1 − λ̂2)vi,

using

λ̂2 = min
(

1,

∑p
i=1 V̂ar(vi)∑p

i=1(vi − vmedian)2

)

[Opgen-Rhein and Strimmer (2007)].
The class frequencies are estimated following Hausser and Strimmer (2009) by

π̂ shrink
j = λ̂3

1

K
+ (1 − λ̂3)

nj

n
,

using

λ̂3 = 1 − ∑K
j=1(nj /n)2

(n − 1)
∑K

j=1(1/K − nj/n)2
.

APPENDIX B: RELATIONSHIP TO OTHER DDA AND LDA APPROACHES

Our proposed shrinkage discriminant approach is closely linked to a number of
recently proposed methods.

NSC. The NSC/PAM classification rule was first presented in Tibshirani et al.
(2002) and later discussed in more statistical detail in Tibshirani et al. (2003). PAM
is a DDA approach, so no gene-wise correlations are taken into account. Genes are
ranked according to equation (3.3), and feature selection is determined by soft-
thresholding, using prediction error estimated by cross-validation as optimality
criterion.

Ebay. The “Ebay” approach of Efron (2008a) is also a DDA approach. Feature
selection is based on an empirical Bayes model that links prediction error with
false discovery rates. Thus, it is very similar to PAM but computationally and
statistically more efficient. In addition, the “Ebay” algorithm provides correlation
corrections of prediction errors; see Section 5 in Efron (2008b).
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Clanc and MLDA. The “Clanc” algorithm is described in Dabney and Storey
(2007) and the “modified LDA” (MLDA) in Xu, Brock and Parrish (2009). Both
methods are based on the LDA framework, and both use James–Stein shrinkage
to estimate the pooled covariance matrix. MLDA uses standard t-scores for fea-
ture selection, whereas Clanc employs a greedy algorithm search to find optimal
subsets of features based on a multivariate criterion.

SCRDA. The “shrunken centroids regularized discriminant analysis”
(SCRDA) procedure is described in Guo, Hastie and Tibshirani (2007) and uses a
similar soft-thresholding procedure for variable selection as PAM. The covariance
matrix is estimated by a ridge estimator. Regularization and feature selection pa-
rameters are simultaneously determined by cross-validation. The main issues with
SCRDA are the computational expense and problems in finding unique parameters
[Guo, Hastie and Tibshirani (2007)].

APPENDIX C: COMPUTER IMPLEMENTATION

We have implemented the proposed shrinkage discriminant procedures (both
DDA and LDA) and the associated FNDR and higher criticism variable selection
in the R package “sda,” which is freely available under the terms of the GNU
General Public License (version 3 or later) from CRAN (http://cran.r-project.org/
web/packages/sda/).
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