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Abstract— This paper introduces novel methods for feature selec
tion (FS) based on support vector machines (SVM). The methods 
combine feature subsets produced by a variant of SVM-RFE, 
a popular feature ranking/selection algorithm based on SVM. 
Two combination strategies are proposed: union of features 
occurring frequently, and ensemble of classifiers built on single 
feature subsets. The resulting methods are applied to pattern 
proteomic data for tumor diagnostics. Results of experiments on 
three proteomic pattern datasets indicate that combining feature 
subsets affects positively the prediction accuracy of both SVM 
and SVM-RFE. A discussion about the biological interpretation 
of selected features is provided.

I. I n t r o d u c t i o n

FS can be formalized as a combinatorial optimization problem, 
finding the feature set maximizing the quality of the hypothesis 
learned from these features.

FS is viewed as a major bottleneck of supervised learning and 
data mining [1], [2]. For the sake of the learning performance, 
it is highly desirable to discard irrelevant features prior to 
learning, especially when the number of available features 
significantly outnumbers the number of examples, as is the 
case in bioinformatics.

In particular, biological experiments from laboratory tech
nologies like microarray and proteomic techniques, generate 
data with very high number of attributes, in general much 
larger than the number of examples. Therefore FS provides a 
fundamental step in the analysis of such type of data [3]. By 
selecting only a subset of attributes, the prediction accuracy 
can possibly improve and more insight in the nature of the 
prediction problem can be gained.

A number of effective FS methods for classification rank 
features and discard those whose rank is smaller than a given 
threshold [1], [4]. This threshold can be either provided by the 
user, like in [5], or automatically determined, like in [6], by 
means of the estimated rank of a new random feature.

A popular algorithm based on the above approach is SVM- 
RFE [5]. It is an iterative algorithm. Each iteration consists 
of the following two steps. First feature weights, obtained by 
training a linear SVM on the training set, are used in a scoring

function for ranking features. Next, the feature with minimum 
rank is removed from the data. In this way, a chain of feature 
subsets of decreasing size is obtained. SVM classifiers are 
trained on training sets restricted to the feature subsets, and 
the classifier with best predictive performance is selected.

In the original SVM-RFE algorithm one feature is discarded 
at each iteration. Other choices are suggested in [5], where 
at each iteration features with rank lower than a user-given 
theshold are removed. The choice of the threshold affects the 
results of SVM-RFE. Heuristics for choosing a threshold value 
have been proposed [5], [6].

In this paper the problem of choosing a threshold is 
sidestepped by considering multiple runs of SVM-RFE with 
different thresholds. Each run produces one feature subset. 
The resulting feature subsets are combined in order to obtain 
a robust result/classification. Two methods for building a 
classifier from a combination of feature subsets are proposed, 
called JOIN and ENSEMBLE. JOIN generates a classifier by 
training SVM on data restricted to those features that occur 
more than a given number of times in the list of feature subsets. 
ENSEMBLE generates a majority vote ensemble of classifiers, 
where each classifier is obtained by training SVM on data 
restricted to one feature subset. This combination strategy is 
used, e.g., in [7], where decision trees trained on data restricted 
to randomly selected feature subsets are ensembled.

JOIN and ENSEMBLE are compared experimentally with 
SVM trained on all features, and with a multistart version 
of SVM-RFE. Multistart SVM-RFE performs multiple runs 
of SVM-RFE with different thresholds, and selects among 
the resulting feature subsets the one minimizing the error (on 
hold-out set) of SVM trained on data restricted to that feature 
subset.

The four methods are applied to pattern proteomic data from 
cancer and healthy patients. This type of data is used for cancer 
detection and potential biomarker identification. Motivations 
for choosing FS methods based on linear SVM are their 
robustness with respect to high dimension input data, and the 
experimental observation that such data appear to be almost 
linearly separable (see e.g., [8], [9]).
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Experiments are conducted on three pattern proteomic data 
from prostate and ovarian cancer. On two of the three datasets 
JOIN and ENSEMBLE achieve significantly better predic
tive accuracy than SVM and multistart SVM-RFE. On the 
third dataset JOIN obtains perfect classification and the other 
methods almost perfect classification. The results indicate that 
FS methods combining feature subsets from multiple runs 
provide a robust and effective approach for feature selection 
in proteomic pattern data.

The paper is organized as follows. Section II gives an overview 
of the considered FS methodology. Section III describes the 
data used in the experiments. Section IV reports on results of 
the experiments. The paper ends with a discussion and points 
to future research.

II. M e t h o d s

In linear SVM (binary) classification [10], [11] patterns of two 
classes are linearly separated by means of a maximum margin 
hyperplane, that is, the hyperplane that maximizes the sum of 
the distances between the hyperplane and its closest points of 
each of the two classes (the margin). When the classes are 
not linearly separable, a variant of SVM, called soft-margin 
SVM, is used. This SVM variant penalizes misclassification 
errors and employs a parameter (the soft-margin constant C) 
to control the cost of misclassification.

When the two classes are unbalanced, different penalty for 
misclassification can be associated to each class. This can be 
realized in SVM by means of two C parameters, Cc = C  * wc 
(for cancer class patterns) and Ch = C * wh (for healthy ones).

Training a linear SVM classifier produces a decision function 
of the form

N
f  (x i , . . . ,  XN) =  ^  WiXi +  b

i= 1
The weights wi provide information about feature relevance, 
where bigger weight size implies higher feature relevance. In 
this paper feature Xi is scored by means of the absolute value 
of Wi. Other scoring functions based on weight features are 
possible, like, e.g., w2, which is used in the original SVM-RFE 
algorithm [5].

In order to perform feature selection and to assess the method, 
the dataset is partitioned in three subsets: a train set (T), a 
hold-out set (H) and a validation set (V). The sets T, H are 
used for generating a classifier and V is used for assessing its 
predictive performance on unseen examples.

Linear SVM is used in the popular feature ranking method 
SVM-RFE, which starts with all features and generates a 
ranking by removing at each iteration a feature with worst 
weight score. The following FS method based on SVM-RFE 
is introduced.

SVM-RFE(threshold)
begin

i :=0;
F_i := {all input features} 
while (F_i not empty)

Train linear SVM on T 
restricted to F_i 

Rank the features of F_i 
F_i+1 := F_i - {threshold percent 
of features in F_i with smallest rank} 
i := i+1;

end
F* := F in {F_0,...,F_i-1} such that 

SVM_|F has minimum error 
on H restricted to F 

output = SVM_|F* 
end

SVM-RFE(threshold) discards at each iteration a percentage 
(specified by the parameter th r e s h o ld )  of the actual number 
of features. The algorithm generates a chain of feature subsets 
of decreasing size, one set at each iteration. Each subset is 
evaluated using the following scoring function:

score(F) = er r (S V  M|F) +  |F  | /N ,

where err(SVM |F) is the error on H of SVM trained on T 
restricted to F , | F | denotes the size of F , and N  the total 
number of features. The second term of the sum penalizes 
large feature subsets. A feature subset F * having minimum 
score is selected, and SVM trained on T restricted to F *, 
denoted by SVM_|F*, is returned as output.

The two methods proposed in the sequel combine feature 
subsets obtained by multiple runs of SVM-RFE(threshold) 
using different threshold values. The following pseudo-code 
describes the two algorithms, called JOIN and ENSEMBLE.

JOIN(cutoff,v1,...,vk)
begin

for theshold v in {v1, ..., vk}
F(v) = SVM-RFE(v)

end
F* := features occurring at least cutoff 

times in (F(v1), ..., F(vk)) 
output = SVM_|F* 

end

ENSEMBLE(v1,...,vk)
begin

for threshold v in {v1, ..., vk}
F(v) = SVM-RFE(v)

end
output = majority vote classifier using 

SVM_|F(v1), ... , SVM_|F(vk)
end

JOIN(cutoff,v1,...,vk) constructs one set of features from fea
ture subsets obtained by running SVM-RFE(threshold) with 
threshold value in v1,...,vk. Features occurring at least cutoff



time in the resulting list of feature subsets are selected and 
SVM is trained on T restricted to those features.

ENSEMBLE(v1,...,vk) generates a list of feature subsets 
by applying SVM-RFE(threshold) with threshold value in 
v1,...,vk. Each resulting feature subset F is used to train one 
SVM classifier on T restricted to F. The algorithm ensembles 
the trained SVM classifiers using the majority vote as classi
fication criterion.

EXAMPLE

The following toy example illustrates the application of JOIN 
and ENSEMBLE. Suppose a dataset with patterns consisting 
of four features, say 1,2,3,4, is given. Suppose the user con
siders three threshold values, say 0.1,0.2,0.3, and cutoff value
3. SVM-RFE(O.i) generates feature subset F_i. for i € [1,3]. 
Suppose F_1={1,3}, F_2={1,2,3}, F_3={1,3,4}.

ENSEMBLE(0.1,0.2,0.3) outputs classifier

S V M . |{1 ,3} U S V M . |{1 ,2,3} U S V M . |{1 ,3,4},

the ensemble classifier with majority vote consisting of the 
three SVM classifiers trained on T restricted to feature subsets
{1,3}, {1 ,2 ,3}, and {1 ,3 ,4}, respectively.

Only features 1 and 3 occur at least 3 times in (F_l, F_2, F_3). 
Then JOIN(3,0.1,0.2,0.3) produces classifier

S V M .  |{1,3},

the SVM classifier trained on T restricted to feature subset
{1,3}.

III. P r o t e o m i c  P a t t e r n  D a t a

Three proteomic pattern datasets from prostate and ovarian 
cancer are considered. The datasets are publically available 
from the NCI/CCR and FDA/CBER Clinical Proteomics Pro
gram Databank1. This type of data is obtained by surface- 
enhanced laser desorption/ionization time-of-flight mass spec- 
tronomy (SELDI-TOF MS), a recent laboratory technology 
which offers high-throughput protein profiling. It measures the 
concentration of low molecular weight peptides in complex 
mixtures, like serum (cf. e.g. [12]). Because it is relatively 
inexpensive and noninvasive, it is a promising new technology 
for classifying disease status.

SELDI-TOF MS technology produces a graph of the relative 
abundance of ionized peptides (y-axis) versus their mass-to- 
charge (m/z) ratios (X-axis). (Cf. Figure 1) The m/z ratios are 
proportional to the peptide masses, but the technique is not 
able to identify individual peptides, because different peptides 
may have the same mass and because of limitations in the 
m/z resolution. Currently the graph is represented by about 
15000 measuring points. There is no obvious relation between 
neighbour measurement points, apart from the fact that they 
refer to peptides of similar masses and that the resolution is

1 see h t t p : / / c l i n i c a l p r o t e o m i c s . s t e e m . c o m /

such that the graph should be considered a smoothed version 
of the true mass density.

Given proteomic profiles for a sample of healthy and diseased 
individuals it is desired to build a classifier for tumor diagnos
tics and to identify the protein masses that are potentially in
volved in the disease. Because of the large number of features 
(the m/z ratios) and the small sample size (the specimens), 
these two problems are tackled using heuristic algorithms for 
feature selection.

IV. E x p e r i m e n t s

The following experimental setup is used. T, H, and V contain 
50, 25, and 25 % of the data, respectively. The following 
experiments are performed.

1) Train SVM on TUH using all features.
2) Run SVM-RFE(threshold) with threshold in 

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.
3) Run JOIN(cutoff, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), with cutoff 

value in {1 ,2 ,3 ,4 ,5 }  and select the result with best 
sensitivity on H.

4) Run ENSEMBLE(0.2, 0.3, 0.4, 0.5, 0.6, 0.7).

Ten random partitions of the dataset in T,H,V are generated. 
Performance is measured by means of average, over ten 
V’s, sensitivity (number of cancer samples correctly classified 
divided by total number of cancer samples) and specificity 
(number of healthy samples correctly classified divided by 
total number of healthy samples).

The implementation of the methods uses the LIBSVM library 
for SVM by Chang and Lin.

A. Prostate Dataset

This dataset consists of 322 patterns, containing measurements 
from 69 cancer patients and 253 healthy (or with a benign 
disease) persons. Each pattern consists of 15154 features 
(m/z values). The sizes of T,H and V are 162, 80 and 80, 
respectively.

The following values are used in all experiments: C =
1,wc =  1000, wh =  0.005. These values have been chosen 
after conducting few experiments on one training set. No 
exhaustive cross validation for selecting these values has 
been performed. Observe that a much higher misclassification 
penalty is assigned to cancer patterns in order to bias the 
classifier to diagnose correctly (early) cancer patients.

It is interesting to investigate whether results of SVM-RFE 
depend on the choice of the threshold. Table I shows, for 
each dataset partition, threshold number t  and performance 
of the SVM-RFE(0.t) achieving best sensitivity on V. The 
results indicate that the threshold value yielding best sensitivity 
depends on the partition.

Figure 2 plots average sensitivity and specificity over the 
10 V’s versus threshold values. Sensitivity seems to improve 
when bigger thresholds are used till the threshold value

http://clinicalproteomics.steem.com/


m/z values

Fig. 1. A protein profile generated by SELDI-TOF MS of a patient with ovarian cancer.

4
X 10

SENSITIVITY SPECIFICITY THRESHOLD NR 0.96

0.9412 0.8889 5
1.0000 0.9206 3 0.94
0.8235 0.9524 6
1.0000 0.8571 3
0.8824 0.8730 2 0.92

0.8824 0.9683 6
1.0000 0.9206 4 0.9

1.0000 0.9683 4
0.9412 0.9206 2
0.8235 0.8730 4 0.88

TABLE I
Prostate dataset. Each  row contains the follow ing  results on

ONE DATASET PARTITION: SENSITIVITY, SPECIFICITY FOR THE 
THRESHOLD NUMBER (THIRD COLUMN) ACHIEVING BEST SENSITIVITY 

(ON THE VALIDATION SET). AVERAGE SENSITIVITY OVER THE 10 
PARTITIONS IS 0.9294 (VARIANCE IS 0.0052), AVERAGE SPECIFICITY IS 

0.9143 (VARIANCE IS 0.0016).

- sensitivity 
specificity

i 0.45 ( 
theshold value

Fig. 2. Prostate dataset. SVM-RFE average sensitivity and specificity versus 
threshold.

becomes too big causing a drastic decrease in sensitivity. 
Specificity does not show a clear trend related to threshold.

Results of experiments with the four methods are reported in 
Table II. SVM alone achieves best specificity, while sensitivity 
improves when FS methods are used, with best sensitivity 
obtained by JOIN and ENSEMBLE.

Means of the results are compared using the Student's paired 
t-test. Mean sensitivity of both JOIN and ENSEMBLE are 
significantly better than those of SVM-RFE and SVM.

No significant difference is obtained when results of SVM- 
RFE and SVM are compared with those of Table I. This shows 
that JOIN and ENSEMBLE achieve performance comparable 
to SVM-RFE equipped with an oracle able to choose the 
threshold yielding best sensitivity on future examples (exam
ples in V).

In summary, on this dataset JOIN and ENSEMBLE have the 
beneficial effect of improving the capability of the baseline 
SVM classifier to detect cancer patterns at the price of 
increasing the number of misclassified healthy patterns.

To the best of our knowledge, the results here obtained on this 
dataset are the best so far reported in the literature. However, 
one has to consider that a fair comparison is not possible, due 
to the different experimental setups used in different works. In 
the first paper that analyzed this dataset, [13], the authors used 
only one data partition in train and test set, and obtained 0.95 
sensitivity and 0 .78 specificity. They use a FS method based 
on genetic algorithms that optimizes the class label coherence 
of the clustering obtained using a self-organizing method. 
In [8], a wrapper FS method based on genetic algorithms 
is introduced, which uses SVM as baseline classifier. The 
algorithm achieves average sensitivity equal to 0.63 and 0.95



METHOD AVG SENSITIVITY AVG SPECIFICITY

SVM

SVM-RFE

JOIN

ENSEMBLE

0.7824 (0.0062) 

0.8471 (0.0094) 

0.9647 (0.0009) 

0.9529 (0.0029)

0.9698 (0.0011) 

0.9270 (0.0028) 

0.9016 (0.0022) 

0.8905 (0.0055)

SENSITIVITY SPECIFICITY THRESHOLD NR
0.9200 0.8929 3
1.0000 0.8929 4
0.9600 0.8571 2
1.0000 0.8929 3
0.9200 0.8929 2
0.9200 1.0000 3
1.0000 0.9286 2
0.9200 1.0000 4
0.9200 0.9643 2
0.9200 0.9643 4TABLE II

Prostate Dataset. Average sen sitivity  and  specificity  (w ith

VARIANCE BETWEEN BRACKETS) OVER THE 10 VALIDATION SETS.

specificity. The algorithm searches for small feature subsets of 
maximum size equal to 20.

Figure 6 shows location and frequency of the features selected 
by SVM-RFE(t), t in {0.2,0.3,0.4,0.5,0.6,0.7} on the 10 T’s. 
SVM-RFE selected a total of 1430 features, which have been 
used in JOIN and ENSEMBLE. The corresponding m/z values 
appear to be located in few segments of neighbour m/z values.

B. Ovarian Datasets

We consider two ovarian datasets. The following SVM pa
rameter values are used for all experiments: C =  10, wc =  
10, wh =  0.5. Class misclassification penalties smaller than 
those used for the prostate dataset are chosen because these 
datasets are not as skewed as the prostate one.

1) Dataset (4-03-02): The ovarian dataset (date 4-03-02) 
consists of 215 samples, with 100 healthy, 15 benign and 100 
cancer patterns. Each pattern consists of 15154 features (m/z 
values). This dataset was generated by repeating the study of 
[14] using a different type of chip, the WCX2 chip. Samples 
were processed by hand and the baseline was subtracted, thus 
possibly creating negative intensities. T,H and V contain 108, 
54 and 53 patterns, respectively.

Results reported in Table III indicate that on this dataset the 
threshold yielding best sensitivity on Vdepends on the data 
split.

Figure 3 plots average sensitivity and specificity over the 10 
validation sets versus threshold values. Both average sensi
tivity and specificity show irregular trend, with a peak of 
specificity for threshold 0.6, which corresponds to a drop of 
sensitivity.

Table IV contains results of experiments. On this dataset, all 
methods achieve similar sensitivity, and significantly better 
specificity of JOIN (p=0.005) and ENSEMBLE (p=0.01) over 
SVM-RFE.

Figure 7 shows the plot of m/z values versus number of 
occurrences of features selected over all the runs. SVM-RFE 
selected a total of 991 features, which have been used in JOIN 
and ENSEMBLE.

This dataset was first analyzed by means of the commercial

TABLE III
Ovarian dataset (4-03-02). Each row contains the follow ing

RESULTS ON ONE DATASET PARTITION: SENSITIVITY, SPECIFICITY FOR 
THE THRESHOLD NUMBER (THIRD COLUMN) ACHIEVING BEST 

SENSITIVITY (ON THE VALIDATION SET). AVERAGE SENSITIVITY OVER 
THE 10 PARTITIONS IS 0.9480 (VARIANCE IS 0.0014 ), AVERAGE 

SPECIFICITY IS 0.9286 (VARIANCE IS 0.0026)

Fig. 3. Ovarian dataset (4-03-02). SVM-RFE average sensitivity and 
specificity versus threshold.

package PROTEOME QUEST, which integrates ideas of [13] 
in a software package. Perfect sensitivity and 0.97 specificity 
was reported.

Perfect predictive accuracy is reported in [15]. This method 
first applies a standardization and smoothing to each data 
pattern, next ranks features using a univariate FS method 
and selects a threshold by means of random field theory. 
The resulting features are incrementally added to a 5-NN 
classifier and the features yielding best possible classification 
are selected.

The better performance of [15] and [13] is possibly due to the 
non-linear classifiers used in the methods.

2) Dataset (8-07-02): The ovarian dataset (date 8-07-02) con
sists of 253 samples, with 91 control and 162 ovarian cancer 
including early stage cancer samples. This dataset is the most 
recent of the two ovarian datasets. The chips were prepared 
using robotic instrument. The baseline was not subtracted. 
Each pattern consists of 15152 features (m/z values). The train,



METHOD AVG SENSITIVITY AVG SPECIFICITY

SVM

SVM-RFE

JOIN

ENSEMBLE

0.9280 (0.0028) 

0.9200 ( 0.0018) 

0.9200 ( 0.0018) 

0.9200 ( 0.0011)

0.9500 (0.0020) 

0.9250 ( 0.0032) 

0.9679 (0.001) 

0.9750 (0.001)

TABLE IV
OVARIAN DATASET (4-03-02). AVERAGE SENSITIVITY AND SPECIFICITY 
(WITH VARIANCE BETWEEN BRACKETS) OVER THE 10 VALIDATION SETS.

hold-out and validation set contains 127, 54 and 62 patterns, 
respectively.

The results reported in Tables V, VI indicate that the two 
classes of this dataset can be linearly separated. Threshold 0.2 
can be used on each data splitting, achieving perfect sensitivity.

SENSITIVITY SPECIFICITY THRESHOLD NR
1.0000 1.0000 2
1.0000 0.9545 2
1.0000 1.0000 2
1.0000 1.0000 2
1.0000 1.0000 2
1.0000 0.9545 2
1.0000 0.9545 2
1.0000 1.0000 2
1.0000 1.0000 2
1.0000 1.0000 2

TABLE V
Ovarian  dataset (8-07-02). Each  row  contains the follow ing

RESULTS ON ONE DATASET PARTITION: SENSITIVITY, SPECIFICITY FOR 
THE THRESHOLD NUMBER (THIRD COLUMN) ACHIEVING BEST 

SENSITIVITY (ON THE VALIDATION SET).

METHOD AVG SENSITIVITY AVG SPECIFICITY

SVM 1 (0) 0.9955 (0.0002)

SVM-RFE 1 (0) 0.9864 (0.0005)

JOIN 1 (0) 1 (0)

ENSEMBLE 1 (0) 0.9909 (0.0004)

TABLE VI
OVARIAN DATASET (8-07-02). AVERAGE SENSITIVITY AND SPECIFICITY 
(WITH VARIANCE BETWEEN BRACKETS) OVER THE 10 VALIDATION SETS.

Figure 4 plots average sensitivity and specificity over the 10 
validation sets versus threshold value. Sensitivity seems to 
have the opposite trend than the one of the prostate dataset: 
it is first equal to 1, then decreases a bit and then it reaches 
again the maximum at threshold 0.7. Specificity exhibits a dual 
behaviour, with a drastic drop for threshold 0.7.

Results of experiments reported in Table VI show that all four

Fig. 4. Ovarian dataset (8-07-02). SVM-RFE average sensitivity and 
specificity versus threshold.

methods have perfect or almost perfect predictive accuracy. 
However, JOIN is the most robust method, yielding perfect 
classification over all data partitions.

Figure 8 shows location and frequency of features selected by 
SVM-RFE. SVM-RFE selected a total of 187 features, which 
have been used in JOIN and ENSEMBLE. The corresponding 
m/z values appear mostly located in the segment [0,1000].

This dataset was first analyzed using PROTEOME QUEST and 
then in a number of other works, e.g., [8], [9], [15]-[17], 
using different feature selection methods. As expected, on 
this dataset all methods obtained perfect or almost perfect 
predictive performance.

SVM-RFE applied to the two ovarian datasets selects a number 
of common m/z values in the intervals [0,1000], around 4000, 
8000 and 9000. However, the ovarian (4-03-02) dataset is not 
linearly separable and SVM seems to require more features in 
order to obtain good performance.

V. D i s c u s s i o n

Results of the experiments indicate that feature selection 
based on linear SVM provides an effective tool for cancer 
diagnostics, achieving improved results on the prostate dataset 
and perfect prediction accuracy on the most recent ovarian 
dataset. Moreover, join and ensemble of feature sets obtained 
from multiple runs of SVM-RFE over different thresholds 
affects positively the predictive performance of the classifier.

An ideal (early stage) tumor diagnostic tool should have 
perfect sensitivity and specificity. This ideal behaviour is only 
realized by JOIN on one dataset (ovarian dataset (8-07-02)).

It is not easy to provide a biological interpretation of the 
selected features, due to the fact that the identity of the relative 
molecules is not known. This is a crucial aspect of the critical 
position of some researchers with respect to this technology 
[18], [19].



Comparing the three figures 6, 7 8 plotting feature frequencies 
versus m/z values, we can see that most selected features 
occur in the range [0,1000] for each dataset. This can be 
explained by the fact that a proteomic pattern contains much 
more molecules with small m/z values, as shown in Figure
5. Other five regions contain features selected in all three 
datasets, roughly in neighbourhoods of m/z values 4000, 4700, 
7000, 8000, and 9300.

It would be interesting to investigate which proteins have mass 
consistent with these m/z values, see whether such proteins 
include known potential biomarkers, and use these proteins as 
leads in the search for novel biomarkers [16].

Fig. 5. Histogram of m/z values.

VI. C o n c l u s i o n

This paper analyzed three proteomic pattern datasets from 
prostate and ovarian cancer. Two novel FS methods have been 
introduced that combine feature subsets generated by SVM- 
RFE using different thresholds. These methods have been com
pared with the baseline SVM classifier and multistart SVM- 
RFE. Results of experiments show that join and ensemble of 
feature subsets affect positively the predictive performance of 
linear SVM classifiers.

The FS methods introduced in this paper employ specific 
feature and model scoring functions, namely the absolute value 
of feature weights produced by linear SVM and penalized 
hold-out error, respectively. It is interesting to investigate how 
FS methods are sensitive to the choice of scoring functions.

In [5], the authors observe that SVM critically depends on hav
ing clean data and show an example where outliers influence 
SVM-based feature relevance. It is interesting to investigate 
whether outliers can be identified in pattern proteomic data 
before applying SVM-based FS methods.

SVM has been used throughout this investigation for feature 
ranking/selection and for classification. However, JOIN and 
ENSEMBLE can be applied to feature subsets produced by 
any other method. In particular, the ensemble FR technique

(ERF) recently introduced in [20] and analyzed in [21] could 
be used.

Finally, an issue related to the particular type of data used 
in this paper concerns data preprocessing. Smoothing and 
standardization procedures could be designed, which incor
porate prior knowledge about the laboratory technology used 
to generate proteomic patterns (cf., e.g., [15]).
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Fig. 6. Prostate dataset. Location versus frequency of features selected by SVM-RFE(t), t in {0.2, 0.3, 0 .4,0.5, 0.6, 0.7} on the 10 training sets.
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Fig. 7. Ovarian dataset 4-03-02. Location versus frequency of features selected by SVM-RFE(t), t in {0.2, 0.3, 0.4, 0 .5 ,0.6, 0.7} on the 10 training sets.
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Fig. 8. Ovarian dataset. Location versus frequency of features selected by SVM-RFE(t), t in {0.2, 0 .3 ,0.4, 0.5, 0.6, 0.7} on the 10 training sets.


