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Feature Selection Inspired Classifier Ensemble

Reduction
Ren Diao, Fei Chao, Taoxin Peng, Neal Snooke and Qiang Shen

Abstract—Classifier ensembles constitute one of the main re-
search directions in machine learning and data mining. The use of
multiple classifiers generally allows better predictive performance
than that achievable with a single model. Several approaches
exist in the literature that provide means to construct and
aggregate such ensembles. However, these ensemble systems con-
tain redundant members that, if removed, may further increase
group diversity and produce better results. Smaller ensembles
also relax the memory and storage requirements, reducing
system’s run-time overhead while improving overall efficiency.
This paper extends the ideas developed for feature selection
problems in order to support classifier ensemble reduction, by
transforming ensemble predictions into training samples, and
treating classifiers as features. Also, the global heuristic harmony
search is used to select a reduced subset of such artificial features,
while attempting to maximise the feature subset evaluation.
The resulting technique is systematically evaluated using high
dimensional and large sized benchmark data sets, showing a
superior classification performance against both original, un-
reduced ensembles and randomly formed subsets.

Index Terms—Classifier ensemble reduction, feature selection,
harmony search.

I. INTRODUCTION

The main purpose of a classifier ensemble [40], [49] is to

improve the performance of single classifier systems. Different

classifiers usually make different predictions on certain sam-

ples, caused by their diverse internal models. Combining such

classifiers has become the natural way of trying to increase the

classification accuracy, by exploiting their uncorrelated errors.

Also, each ensemble member can potentially be trained using

a subset of training samples, which may reduce the computa-

tional complexity issue that arises when a single classification

algorithm is applied to very large data sets. Additionally, an

ensemble can operate in a distributed environment, where

data sets are physically separated and are cost ineffective or

technically difficult to be combined into one database, in order

to train a single classifier. A typical approach to building

classifier ensembles involves building a group of classifiers

with diverse training backgrounds [5], [19], before combining

their decisions together to produce the final prediction. Instead

of adopting a simple majority voting-based aggregation [29],

methods have also been developed that employ meta-level

learners in order to combine the outputs of the base classifiers.
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Such methods are referred to as “ensemble stacking” in the

literature [12].

The target of classifier ensemble reduction (CER) [50]

(or classifier ensemble pruning) is to reduce the amount of

redundancy in a pre-constructed classifier ensemble, in order

to form a much reduced subset of classifiers that can still

deliver the same classification results. It is an intermediate

step between ensemble construction and decision aggregation.

Efficiency is one of the obvious gains from CER. Having

a reduced number of classifiers can eliminate a portion of

run-time overheads, making the ensemble processing quicker;

having fewer models also means relaxed memory and storage

requirements. Removing redundant ensemble members may

also lead to improved diversity within the group, and further

increase the prediction accuracy of the ensemble. Existing

approaches in the literature include techniques that employ

clustering [16] to discover groups of models that share similar

predictions, and subsequently prune each cluster separately.

Others use reinforcement learning [41] and multi-label learn-

ing [38] to achieve redundancy removal. A number of similar

approaches [29], [51] focus on selecting a potentially optimal

subset of classifiers, in order to maximise a certain pre-defined

diversity measure.

The main aim of feature selection (FS) is to discover a

minimal feature subset from a problem domain while retaining

a suitably high accuracy in representing the original data [8],

[23]. Practical problems arise when analysing data that have a

very large number of features [44], [57], so-called “curse-of-

dimensionality” [2], and when it is difficult to identify and

extract patterns or rules due to the high inter-dependency

amongst individual features, or the behaviour of combined

features. Given a data set with n features, the task of FS can

be seen as a search for an “optimal” feature subset through

the competing 2n candidate subsets. Optimality is subjective

depending on the problem at hand, and a subset that is selected

as optimal using one particular evaluator may not be equivalent

to that of a subset selected by another. Various techniques

have been developed in the literature to judge the quality

of the discovered feature subsets, such as methods based on

rough sets [35], [48] and fuzzy-rough sets [4], [23], [24],

probabilistic consistency [7], and correlation analysis [17].

An unsupervised FS method [34] has also been proposed

which operates on un-labelled data. The above mentioned

techniques are often referred to as filter-based approaches

that are independent of any learning algorithm subsequently

employed. In contrast, wrapper-based [20], [27] and hybrid

algorithms [60] are often used in conjunction with a learning

or data mining algorithm, which is employed in place of an
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evaluation metric as used in the filter-based approach.

To locate the “optimal” feature subset, an exhaustive method

might be used, however it is often impractical for most

data sets. Alternatively, hill-climbing based approaches are

exploited where features are added or removed one at a

time until there is no further improvement to the current

candidate solution. Although generally fast to converge, these

methods may lead to the discovery of sub-optimal subsets

[33], both in terms of the evaluation score and the subset size

[11]. To avoid such short-comings, other algorithms utilise

random search or nature inspired heuristic strategies such

as genetic algorithms [30], [56], simulated annealing [9],

and particle swarm optimisation [53] with varying degrees

of success. Harmony search (HS) [15], [31] in particular,

is a recently developed meta-heuristic algorithm that mimics

the improvisation process of music players. It imposes only

limited mathematical requirements and is insensitive to initial

value settings. Due to its simplistic structure and powerful

performance, HS has been very successful in a wide variety

of engineering [13], [47] and machine learning tasks [36], [39],

[42], and demonstrated several advantages over traditional

techniques. HS has been successfully applied to solving FS

problems [11], dynamic parameter tuning and iterative solution

refinement techniques have also been proposed to further

improve the search outcome.

In this paper, a new framework for CER is proposed which

builds upon the ideas from existing FS techniques. Inspired by

the analogies in between CER and FS, this approach attempts

to discover a subset of classifiers by eliminating redundant

group members, while maintaining (or increasing) the amount

of diversity within the original ensemble. As a result, the CER

problem is being tackled from a different angle: each ensemble

member is now transformed into an artificial feature in a newly

constructed data set, and the “feature” values are generated

by collecting the classifiers’ predictions. FS algorithms can

then be used to remove redundant features (now represent-

ing classifiers) in the present context, in order to select a

minimal classifier subset while maintaining original ensemble

diversity, and preserving ensemble prediction accuracy. The

current CER framework extends the original idea [10] that

works exclusively with the fuzzy-rough subset evaluator [24],

thus allowing many different FS evaluators and subset search

methods to be used. It is also made scalable for reducing very

large classifier ensembles.

The fusion of CER and FS techniques is of particular signif-

icance for problems that place high demands on both accuracy

and speed, including intelligent robotics and systems control

[32]. For instance, simultaneous mapping and localisation has

been recognised to be a very important task for building robots

[37]. To perform such tasks, apart from the direct use of raw

data or simple features as geometric representations, different

approaches that capture more context information have been

utilised recently [28]. It has been recognised that ensemble-

based methods may better utilise these additional cognitive

and reasoning mappings to boost the performance. In effect,

CER may be adopted to prune down the redundant, unessential

models, so that the complexity of the resultant system is

restricted to a manageable level. Also, FS has already been

successfully applied to challenging real-world problems like

Martian terrain image classification [46], and to reducing the

computational costs in vision-based robot positioning [54] and

activity recognition [52]. It is therefore, of natural appeal to

be able to integrate classifier ensemble and CER to further

enhance their potential.

The rest of this paper is laid out as follows. Section II

explains the basic structure of HS, and the HS based FS

algorithm that serves as the fundamental platform upon which

the CER system is developed. Section III introduces the key

concepts of the proposed CER framework, illustrates how it

can be modelled as an FS problem, and details the approach

developed to tackle the problem. Section IV presents the

experimentation results along with discussions. Section V

concludes the paper and proposes further work in the area.

II. FEATURE SELECTION WITH HARMONY SEARCH

HS [15] acts as a meta heuristic algorithm which attempts

to find a solution vector that optimises a given (possibly multi-

variate) cost function. In such a search process, each decision

variable (musician) generates a value (note) for finding a

global optimum (best harmony). HS has a novel stochastic

derivative (for discrete variables) based on musician’s ex-

perience, rather than gradient (for continuous variables) in

differential calculus. This section describes the HS based FS

technique (HSFS), and explains how an FS problem can be

converted into an optimisation problem, further solved by HS.

A. Key Concepts Mapping

The key concepts of HS are musicians, notes, harmonies and

harmony memory. For conventional optimisation problems,

the musicians are the decision variables of the cost function

being optimised, their values are referred to as playable notes.

Each harmony contains notes played by all musicians, or

a solution vector containing the values for each decision

attribute. The harmony memory holds a selection of played

harmonies, which can be more concretely represented by a

two dimensional matrix. The number of rows (harmonies)

are predefined and bounded by the size of harmony memory

(HMS). Each column is dedicated to one musician, it stores the

good notes previously played by the musician, and provides

the pool of playable notes (referred to hereafter as the note

domain) for future improvisations.

When applied to FS, a musician is best described as an

independent expert or a “feature selector”, and the available

features translate to notes. Each musician may vote for one

feature to be included in the emerging harmony (feature

subset), which is the combined vote from all feature selectors,

indicating which features are being nominated. The entire pool

of the original features forms the range of notes shared by

all musicians. This is different from conventional applications

where variables have distinct value ranges. Multiple selectors

are allowed to choose the same feature, or they may opt to

choose none at all. The fitness function becomes a feature

subset evaluator which analyses and merits each of the new

subsets found during the search process.
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HSFS uses 4 parameters, HMS, the maximum number of

iterations K, the number of feature selectors N , and the

harmony memory considering rate (HMCR) which encourages

the feature selector to randomly choose from all available

features (instead of within its own note domain). To lessen

the drawbacks lying with the use of fixed parameter values, a

dynamic parameter adjustment scheme (for HMS and HMCR)

and an iterative refinement procedure (for N ) have been

proposed to adjust parameter values and improve solution

quality. Parameters are dynamically and gradually changed at

run time, with different settings being used for the purposes

of initial solution space exploration, intermediate solution

refinement, and fine tuning towards termination.

TABLE I
HARMONY ENCODED FEATURE SUBSETS

M1 M2 M3 M4 M5 M6 Represented Subset B

H1 a2 a1 a3 a4 a7 a10 {a1, a2, a3, a4, a7, a10}
H2 a2 a2 a2 a3 a13 − {a2, a3, a13}
H3 a2 − a2 a3→a6 a13 a4 {a2, a4, a6, a13}

Table I depicts the following three example harmonies.

H1 denotes a subset of 6 distinctive features: BH1 =
{a1, a2, a3, a4, a7, a10}. H2 shows a duplication of choices

from the first three musicians, and a discarded note (rep-

resented by −) from p6, representing a reduced subset

BH2 = {a2, a3, a13}. H3 signifies the feature subset BH3 =
{a2, a6, a4, a13}, where a3→a6 indicates that p4 originally

nominated a3, but it is forced to change its choice to a6 due

to HMCR activation.

B. Iteration Steps of HSFS

Fig. 1. Parameter Controlled Harmony Search Applied to Feature Selection

The iteration steps of HSFS are demonstrated here using the

fuzzy-rough dependency function [24] as the subset evaluator

(though other quality metrics may be used as alternatives),

accompanied by the flow diagram shown in Fig. 1.

1) Initialise Problem Domain The value ranges of the 4

parameters are defined according to the problem domain.

The subset storage containing HMS randomly generated

subsets is then initialised. This provides each feature

selector a working domain of HMS number of features,

which may include identical choices, and nulls. The

current worst harmony in the memory is hypothetically,

{a1, a2, a2, a3, a6,−} with an evaluation score of 0.5.

2) Improvise New Subset A new feature is chosen ran-

domly by each feature selector out of their working

feature domain, and together forms a new feature subset:

{a1, a4, a3, a3, a7,−}. The 5th selector did not orig-

inally have a7 in its note domain, but the HMCR

activation causes it to pick it. This newly emerged subset

has an evaluation score of 0.6.

3) Update Subset Storage This newly obtained subset

achieves a better fuzzy-rough dependency score than

that of the worst subset in the subset storage, therefore,

the new subset is included in the subset storage and

the existing worst subset is removed. The feature a7 is

also introduced to the memory for future combinations.

The comparison of subsets takes into consideration both

the dependency score and the subset size. This impro-

visation and update process repeats up to K number of

iterations in order to discover the minimal fuzzy-rough

reduct (a subset of full fuzzy-rough dependency score)

at termination.

HSFS has the strength where that a group of features

are being evaluated as a whole. A newly improvised subset

does not necessarily get included in the subset storage, just

because one of the features has a locally strong fuzzy-rough

dependency score. This is the key distinction to any of the

hill-climbing based approaches.

III. THE CLASSIFIER ENSEMBLE REDUCTION

FRAMEWORK

For most practical scenarios, the classifier ensemble is

generated and trained using a set of given training data. For

new samples, each ensemble member individually predicts a

class label, which are aggregated to provide the ensemble

decision. It is inevitable that such ensembles contain redundant

classifiers that share very similar if not identical models.

This may be caused by the shortage of training data, or the

performance limitations of the model diversifying process.

Such ensemble members, while occupying valuable system

resources, are likely to draw the same class prediction for

new samples, therefore provide very limited new information

to the group.

The ensemble reduction process, if it occurred in between

ensemble generation and aggregation, may reduce the amount

of redundancy in the system. The benefit of having a group of

classifiers is to maintain and improve the ensemble diversity.

The fundamental concept and goals of CER is therefore the

same as FS. Having introduced the HSFS technique, the

following section aims to explain how a CER problem can

be converted into an FS scenario, and details the framework

proposed to efficiently perform the reduction. The overall

approach developed in this work is illustrated in Fig. 2

containing four key steps.
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Fig. 2. CER Flow Chart

A. Base Classifier Pool Generation

Forming a diverse base classifier pool (BCP) is the first

step in producing a good classifier ensemble. Any preferred

methods can be used to build the base classifiers, such as

Bagging [5] or Random Subspaces [19]. BCP can either be

created using a single classification algorithm, or through

a mixture of classifiers. Bagging randomly selects different

subsets of training samples in order to build diverse classifiers.

Differences in the training data present extra or missing infor-

mation for different classifiers, resulting in different models.

The Random Subspaces method randomly generates different

subsets of domain attributes and builds various classifiers on

top of each of such subsets. The differences between the

subsets creates different view points of the same problem [6],

typically resulting in different borders for classification. For a

single base classification algorithm, these two methods both

provide good diversities. In addition, a mixed classifier scheme

is implemented in the presented work. By selecting classifiers

from different schools of classification algorithms, the diver-

sity is naturally achieved through the various foundations of

the algorithms themselves.

B. Classifier Decision Transformation

TABLE II
DECISION MATRIX

C1 C2 · · · Ci · · · CNC

I1 D11 D21 · · · Di1 · · · DNC1

I2 D12 D22 · · · Di2 · · · DNC2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Ij D1j D2j · · · Dij · · · DNCj

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
INI

D1NI
D2NI

· · ·DiNI
· · ·DNCNI

Once the base classifiers are built, their decisions on the

training instances are also gathered. For base classifiers Ci, i =

1, 2, . . . , NC , and training instances Ij , j = 1, 2, . . . , NI ,

where NC is the total number of base classifiers, and NI is the

total number of training instances, a decision matrix as shown

in Table II can be constructed. The value Dij represents the

ith classifier’s decision on the jth instance. For supervised FS,

a class label is required for each training sample, the same

class attribute is taken from the original data set, and assigned

to each of the instances. Note that both the total number of

instances and the relations between instances and their class

labels remain unchanged. Although all attributes and values

are completely replaced by transformed classifier predictions,

the original class labels remain the same. A new data set is

therefore constructed, each column represents an artificially

generated feature, each row corresponds to a training instance,

the cell then stores the transformed feature value.

C. Feature Selection on the Transformed Data Set

HSFS is then performed on the artificial data set, evaluat-

ing the emerging feature subset using the predefined subset

evaluator (such as the fuzzy-rough dependency measure [24]).

HSFS optimises the quality of discovered subsets, while

trying to reduce subset sizes. When HS terminates, its best

harmony is translated into a feature subset and returned as

the FS result. The features then indicate their corresponding

classifiers that should be included in the learnt classifier

ensemble. For example, if the best harmony found by HS

is {−, C9, C3, C23, C3, C5, C17,−}, the translated artificial

feature subset is then {C3, C5, C9, C17, C23}. Thus, the 3rd,

5th, 9th, 17th and 23rd classifiers will be chosen from the BCP

to construct the classifier ensemble.

D. Ensemble Decision Aggregation

Once the classifier ensemble is constructed, new objects

are classified by the ensemble members, and their results are

aggregated to form the final ensemble decision output. The

Average of Probability [21] method is used in this paper. Given

ensemble members Ei, i = 1, 2, . . . , NE , and decision classes

Dj , j = 1, 2, . . . , ND, whereNE is the ensemble size and ND

is the number of decision classes, classifier decisions can be

viewed as a matrix of probability distributions {Pij}. Here,

Pij indicates prediction from classifier Ci for decision class

Dj . The final aggregated decision is the winning classifier

that has the highest averaged prediction across all classifiers,

as shown in Eq. 1.

{

NE∑

i=1

Pi1/NE ,

NE∑

i=1

Pi2/NE , . . . ,

NE∑

i=1

PiND
/NE} (1)

Note that this is effective because redundant classifiers are now

removed. As such, the usual alternative aggregation method:

Majority Vote is no longer favourable since the “majority” has

now been significantly reduced.

E. Complexity Analysis

Various factors affect the overall complexity of the proposed

CER framework, namely the performance of the base classifi-

cation algorithm and the subset evaluator. Since the proposed
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CER framework is generic and not limited to a specific

collection of methods, in the following analysis, OC(Train),

OC(Test), and OEval are used to represent the complexity of

training and testing the employed base classifier, and that of

the subset evaluator, respectively. The amount of time required

to construct the base ensemble (OBagging+OC(Train))×NC

can be rather substantial if the size of the ensemble NC is very

large. The process of generating the artificial training data set

is straightforward, requiring only OC(Test)×NC ×NI , where

NI is the number of instances.

HSFS requires OEval ×K to perform the subset search, as

the total number of evaluations is controlled by the maximum

number of iterations K. Note that the subset evaluation itself

can be time consuming for high dimensional data (large sized

ensembles). As for the complexity of the HS algorithm: the

initialisation requires O(N× HMS) operations to randomly fill

the subset storage, and the improvisation process is of the order

O(N × K) because every feature selector needs to produce

a new feature at every iteration. Finally, the complexity of

predicting the class label for any new sample is OC(Test)×NE ,

here NE is the size of the reduced ensemble.

IV. EXPERIMENTATION

To demonstrate the capability of the proposed CER frame-

work, a number of experiments have been carried out. The

implementation works closely with the WEKA [55] data ming

software which provides software realisation of the algorithms

employed, and an efficient platform for comparative evalua-

tion. The main ensemble construction method adopted is the

Bagging [5] approach, and the base classification algorithm

used is C4.5 [55]. The Correlation Based FS [17] (CFS), the

Probabilistic Consistency Based FS [7] (PCFS), and the FS

technique developed using fuzzy-rough set theory [24] (FRFS)

are employed as the feature subset evaluators. The HSFS

algorithm then works together with the various evaluators to

identify quality feature (classifier) subsets. In order to show the

scalability of the framework, the base ensembles are created

in 3 different sizes, 50, 100, and 200.

A collection of real-valued UCI [14] benchmark data sets

are used in the experiments, a number of which are large

in size and high in dimension and hence, present significant

challenges to the construction and reduction of ensembles. The

parameters used in the experiments and the information of

the data sets are summarised in Table III. Stratified 10-fold

cross-validation (10-FCV) is employed for data validation.

The construction of the base classifier ensemble, and the

ensemble reduction process are both performed using the same

training fold, so that the reduced subset of classifiers can be

compared using the same unseen testing data. The stratification

of the data prior to its division into different folds ensures

that each class label has equal representation in all folds,

thereby helping to alleviate bias/variance problems [3]. The

experimental outcomes presented are averaged values of 10

different 10-FCV runs (i.e., 100 outcomes), in order to lessen

the impact of random factors within the heuristic algorithms.

TABLE III
HS PARAMETER SETTINGS AND DATA SET INFORMATION

HMS # Musicians HMCR K

10-20 # features 0.5-1 1000

Data set Features Instances Decisions

arrhythmia 280 452 16
cleveland 14 297 5
ecoli 8 336 8
glass 9 214 6
heart 13 270 2
ionosphere 35 230 2
letter 16 20000 26
libras 91 360 15
magic 10 19020 2
ozone 73 2536 2
secom 591 1567 2
sonar 61 208 2
water 39 390 3
waveform 41 5000 3
wine 14 178 3

A. Reduction Performance for C4.5 Based Ensembles

In this set of experiments, the BCP is built using C4.5 [55]

as the base algorithm. Table IV summarises the obtained 3

sets of results for CFS, PCFS, and FRFS respectively, after

applying CER, as compared against the results of using: (1) the

base algorithm itself, (2) the full base classifier pool, and (3)

randomly formed ensembles. Entries annotated in bold indicate

that the selected ensemble performance is either statistically

equivalent or improved significantly when compared against

the original ensemble, using paired t-test with two-tailed

threshold p = 0.01.

Two general observations can be drawn across all three set-

ups: (1) The prediction accuracies of the constructed classifier

ensembles are universally superior than that achievable by

a single C4.5 classifier. Most of the data sets that revealed

the most performance increase are either large in size or

high in dimension. This confirms the benefit of employing

classifier ensembles. (2) All FS techniques tested demonstrate

substantial ensemble size reduction, showing clear evidence of

dimensionality reduction.

For the original ensembles of size 50, the CFS evaluator

performs very well. In 9 out of 13 tested data sets, CFS

achieves comparable or better classification accuracy when

compared against the original ensemble. The FRFS evaluator

also delivers good accuracies in 5 data sets while having fairly

small reduced ensembles. The PCFS only produces equally

good solutions for the cleveland and ozone data sets, however,

it has the most noticeable ensemble size reduction power.

Better classification performance is achieved by the reduced

ensembles for the cleveland, glass, letter, and water data sets.

For the medium (100) sized ensembles, both CFS and

FRFS produce good results in 7 data sets, however, none

of which significantly improves the ensemble classification

accuracy. Although PCFS only achieves best performance for

the cleveland data set, it manages to improve the averaged

accuracy by 1.7% across all 10× 10 reduced ensembles, with

an averaged size of 6.7. Note that for the ozone and sonar data

sets, the reduced ensembles discovered by CFS and FRFS both



6

TABLE IV
C4.5 CLASSIFICATION ACCURACY RESULTS, BOLD FIGURES INDICATE STATISTICALLY EVUIVALENT OR BETTER PERFORMANCE WHEN COMPARED

TO THE UNREDUCED ENSEMBLES

Base Ensembles of Size 50
CFS PCFS FRFS Random Full Base C4.5

Data set Acc.% Size Acc.% Size Acc.% Size Acc.% Size Acc.% Size Acc.%

arrhythmia 74.59 21.6 71.93 5.3 74.81 26.3 73.71 10 74.47 50 66.39
cleveland 55.54 25.8 56.57 5.7 56.60 13.6 54.16 10 54.90 50 50.21
ecoli 84.55 11.6 83.95 6.8 83.96 23.8 83.94 10 84.24 50 81.88
glass 74.46 15.0 66.45 4.6 76.71 11.9 72.94 10 70.24 50 70.15
ionosphere 91.30 10.8 90.00 3.2 90.43 3.1 90.00 10 90.87 50 87.39
letter 93.85 40.5 93.10 11 93.54 21.5 92.29 10 93.68 50 87.92
libras 79.44 23.2 74.72 3.5 78.89 15.4 77.78 10 81.67 50 71.39
magic 87.50 29.1 87.38 38.7 87.45 37.6 87.45 10 87.47 50 85.04
ozone 93.88 26.2 94.12 12.3 93.96 43 93.40 10 94.00 50 92.94
secom 93.30 35.9 92.79 6.3 92.92 6.3 93.11 10 93.24 50 89.28
sonar 75.31 24.5 71.93 3.3 71.05 3.2 72.45 10 75.88 50 70.05
water 87.69 20.9 83.33 4 84.61 6.1 84.87 10 86.67 50 80.00
waveform 82.92 42.2 81.50 8.7 82.47 11 81.00 10 82.98 50 75.50

Base Ensembles of Size 100

arrhythmia 73.91 28.3 73.04 5.2 74.37 22.3 73.26 20 74.47 100 66.39
cleveland 54.56 30.4 58.26 6.7 54.46 11.8 55.56 20 56.56 100 50.21
ecoli 84.85 13.7 85.76 6.4 85.16 24.2 84.84 20 84.25 100 81.88
glass 71.60 16.5 70.58 4.5 74.31 11.7 72.53 20 74.42 100 70.15
ionosphere 89.13 14.3 90.43 3.1 84.35 3.2 90.87 20 91.74 100 87.39
letter 93.99 58.6 93.23 11 93.58 27.6 93.21 20 93.66 100 87.92
libras 80.83 33.0 74.17 3.5 77.78 15.3 77.22 20 80.28 100 71.39
magic 87.56 38.1 87.44 38.9 87.56 40.1 87.32 20 87.56 100 85.04
ozone 94.24 31.8 93.84 13.5 94.16 74.2 94.16 20 94.16 100 92.94
secom 93.43 59.4 93.04 6.2 92.51 6.1 93.00 20 93.30 100 89.28
sonar 75.36 30.4 72.88 3.8 75.36 3.5 72.93 20 75.36 100 70.05
water 87.18 25.7 85.64 4.7 86.15 6.2 87.18 20 86.92 100 80.00
waveform 83.20 71 80.88 9 83.33 11 82.90 20 83.42 100 75.50

Base Ensembles of Size 200

arrhythmia 75.47 39.9 72.80 5.7 73.04 21.3 74.37 40 75.25 200 66.39
cleveland 57.93 45 52.56 5.8 55.24 11.9 55.54 40 54.90 200 50.21
ecoli 83.96 24.5 83.94 6.6 84.29 24.3 84.86 40 84.54 200 81.88
glass 72.53 25.9 72.97 4.8 72.49 11.6 72.08 40 73.94 200 70.15
ionosphere 90.87 20 86.09 3.2 90.87 3.6 89.57 40 91.74 200 87.39
letter 94.17 72.8 93.33 10.6 93.71 32.07 93.56 40 93.82 200 87.92
libras 81.67 41 74.17 4 81.11 15.1 79.17 40 79.44 200 71.39
magic 87.64 44.8 87.62 36.5 87.52 41.8 87.34 40 87.63 200 85.04
ozone 94.55 45 93.65 28.9 94.49 143 94.40 40 94.24 200 92.94
secom 93.36 95.7 92.92 6.2 93.38 6 93.30 40 93.36 200 89.28
sonar 78.69 45.8 73.36 4.1 74.31 4.5 74.88 40 75.83 200 70.05
water 87.95 38.6 83.33 4.3 85.87 6.8 86.67 40 87.95 200 80.00
waveform 83.12 107.2 81.06 9.3 82.40 12 82.76 40 83.48 200 75.50

Average 82.72 36.5 80.89 9.2 82.03 20.9 81.81 23.3 82.63 116.7 77.55
Equal/better 26/39 4/39 17/39 7/39 - -

show very similar averaged accuracy, which is almost identical

to that of the original full ensembles. This may indicate that the

key ensembles members are certainly present in the reduced

subsets, while FRFS eliminates the most redundancy (average

reduced ensemble size is 3.5) for the sonar data set.

For the large sized ensembles, CFS shows clear lead in

terms of the overall quality of the reduced ensembles, scoring

equal classification accuracy for 6 data sets, and delivers an

improvement in ensemble accuracy for the cleveland, letter,

libras, and sonar data sets. This experimentally demonstrates

the capability and benefit of employing the proposed CER

framework in dealing with large sized ensembles with large,

complex data sets. Note that CFS not only picks important

features (correlated with the class), but removes redundant

ones (inter-correlated with other features). This characteristic

may have contributed to the identification of higher quality

features (classifiers). For several data sets, the sizes of the

ensembles reduced using CFS are considerably larger than

those obtained by the other two evaluation measures. This

may have led to the observed ensemble performance. FRFS

also produces good quality ensembles with much reduced

size, showing its strength in redundancy removal. PCFS is

not competitive in this set of experiment, this may have been

caused by its (perhaps overly) aggressive reduction behaviour,

which may have resulted in certain quality ensemble members

being ignored.



7

TABLE V
MIXED CLASSIFIERS USING BAGGING

Data set Full FRFS U-FRFS

cleveland 54.94 52.92 (11.2) 54.27 (9.32)
ecoli 87.67 86.66 (15.98) 85.77 (8.7)
glass 71.12 69.62 (12.2) 69.62 (9.2)
heart 82.07 75.40 (8.76) 77.62 (8.42)
ionosphere 87.73 88.17 (8.36) 88.17 (8.56)
sonar 80.96 73.55 (8.5) 80.76 (8.68)
water 78.15 78.71 (9.26) 78.20 (8.72)
wine 98.31 97.52 (7.74) 97.40 (7.46)

TABLE VI
MIXED CLASSIFIERS USING RANDOM SUBSPACES

Data set Full FRFS U-FRFS

cleveland 56.57 57.85 (11.82) 57.10 (9.08)
ecoli 79.17 84.64 (12.16) 84.40 (7.8)
glass 75.61 71.50 (11.28) 73.08 (8.18)
heart 82.44 80.89 (7.96) 80.44 (8.16)
ionosphere 89.30 87.39 (8.1) 88.00 (7.58)
sonar 82.69 86.06 (7.86) 83.17 (7.88)
water 80.26 80.41 (9.16) 80.92 (8.04)
wine 98.09 97.53 (7.82) 97.75 (7.46)

B. Alternative Ensemble Construction Approaches

For the following set of experiments comparing supervised

(FRFS) against un-supervised [34] (U-FRFS) FS approaches,

a total of 10 different base algorithms are selected, one or

two distinctive classifiers from each representative classifier

groups, including fuzzy-based Fuzzy Nearest Neighbour [26]

(FNN), Fuzzy-Rough Nearest Neighbour [22], Vaguely Quan-

tified Fuzzy-Rough NN [22], lazy-based IBk [1], tree-based

C4.5 [55], REPTree [55], rule-based JRip [55], PART [55],

Naive Bayes [25] and Multilayer Perceptron [18]. Bagging and

Random Subspaces [19] are then used to create differentiation

between classifiers to fill the total BCP of 50. Tables V and

VI show the experimental results, using these two methods re-

spectively. Due to the considerable system resource required to

construct and maintain the base ensembles, and the complexity

invovled in fuzzy-rough set-based feature subset evaluation,

this set of experimentations are carried out using ensembles

of size 50 with lower dimension benchmark data sets.

For mixed classifiers created using Bagging, the FRFS

method find ensembles with much greater size variation. For

the ecoli data set in particular, the averaged ensemble size is

15.98. The results indicate that many distinctive features (i.e.

good diversity classifiers) are present, This particular ensemble

also results in the highest accuracy for ecoli compared against

other approaches, with 87.67% BCP accuracy, and 86.66%
ensemble accuracy. A large performance decrease is also

noticed for the sonar data set. Interestingly, the unsupervised

FRFS achieves better overall performance than its supervised

counterpart, with smaller selected ensemble sizes.

The Random Subspaces based mixed classifier scheme

produces better base pools in 7 out of 9 cases. Both FRFS

and U-FRFS find smaller ensembles on average than the case

where Bagging is used. Neither method suffers from extreme

performance decrease following reduction unlike the results

obtained when a single base algorithm is employed. Despite

having a BCP that under performs for the ecoli data set, both

methods manage to achieve an increase of 5% in accuracy. The

quality of the mixed classifier group is lower than that of the

C4.5 based single algorithm approach for several data sets.

This is largely caused by the employment of non-optimised

base classifiers. It can be expected that the results achievable

after optimisation would be even better.

C. Discussion

Although the execution time of the experimented ap-

proaches have not been precisely recorded and presented, it

is observed during the study that data sets with large number

of instances such as the ozone, secom, and waveform data

sets, all require substantial amount of time for the reduction

process. This observation agrees with the complexity analysis

in Section III-E: the reduction process relies on the efficacy

of the evaluators (which may not scale linearly with the

number of training instances), and thus, for huge data sets,

it may be beneficial to choose the lighter weight evaluators

(such as CFS). However, since the reduction process itself

can be performed independently and separately from the main

ensemble prediction process, CER is generally treated as a pre-

processing step (similar to FS) for the ensemble classification,

or a post-processing refinement procedure for the generated

raw ensembles. The time complexity for such process is less

crucial and has less impact.

The experimental evaluation also reveals that different eval-

uators show distinctive characteristics when producing the

reduced ensemble. For example, PCFS consistently delivers

very compact ensembles (with less than 10 members for most

data sets). CFS excels in terms of ensemble classification

accuracy but with much larger sized subsets. FRFS is balanced

between ensemble accuracy and dimensionality reduction,

with very occasional large solutions (the ozone data set). The

un-supervised method also produces comparable results to its

supervised counterparts.

Note that for a number of experimented data sets, per-

forming CER does not always yield subsets with equal or

better performance. This might have been caused by the

employed filter-based FS approaches (which do not cross-

examine against the original data in terms of classification

accuracy). How concepts developed by existing wrapper-based

and hybrid FS techniques may be applied to further improve

the framework remains active research. The information lost

(even the redundant classifiers) through reduction may also be

the cause for such decrease in performance. Similar behaviours

have also been observed in the FS problem domain. The

quality (such as size and variance) of the training data also

plays a very important role in CER, the classifiers that were

deemed redundant by the subset evaluators may in fact carry

important internal models, which are just not sufficiently

reflected by the available training samples.

V. CONCLUSION

This paper has presented a new approach to CER. It works

by applying FS techniques to minimising redundancy in an

artificial data set, generated via transforming a given classifier
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ensemble’s decision matrix. The aim is to further reduce

the size of an ensemble, while maintaining and improving

classification accuracy and efficiency. Experimental compar-

ative studies show that several existing FS approaches can

entail good solutions by the use of the proposed approach.

Reduced ensembles are found with comparable classification

accuracies as the original ensembles, and in most cases provide

good improvements over the performance achievable by the

base algorithms. The characteristics of the results also vary

depending on the employed FS evaluator.

Although promising, much can be done to further improve

the potential of the presented work. Of particular interest to

the authors is the formulation of alternative decision matrix

transformation procedures. Many state-of-the-art classifiers are

capable of producing a likelihood distribution that a particular

instance may belong to the available classes, and the class with

highest probability is usually taken as the final prediction. This

probability distribution may contain more information, and is

potentially more suitable to be used as the artificial feature

values (instead of the final prediction). In addition, other

statistical information from the classifiers such as variance,

may also be good candidates for use as part of the artificially

generated features, in order to create a more comprehensive

data set for FS. Further experimental evaluation of this work

on substantially larger practical problems, such as Martian

rock classification [45], [46] and weather forecasting [43],

remains as active research. This will help to better understand

and validate the characteristics of the employed feature subset

evaluators. Investigations are also necessary into the under-

lying reasons why different FS techniques deliver distinctive

characteristics, in either simplifying the complexity of the leant

ensembles, or improving overall ensemble prediction accuracy.

Finally, it is worth noting that, instead of the feature subset

evaluators adopted in this paper, the proposed approach can

be readily generalised to work with other FS techniques (such

as feature importance ranking methods), and with alternative

heuristic search strategies. The reduction process may be

performed in conjunction with diversity enhancing methods

such as ensemble selection [40], [49], making the final solution

diverse as well as compact. The approach presented in this

paper is conceptually similar to that taken for the development

of parsimonious fuzzy models [58], [59]. It would be beneficial

to have a closer examination in the underlying ideas of

such similar work, in an effort to build compact systems of

improved generalisation and interpretability.
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