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Abstract
According to the World Health Organization, millions of infections and a lot of deaths have been recorded worldwide since the
emergence of the coronavirus disease (COVID-19). Since 2020, a lot of computer science researchers have used convolutional
neural networks (CNNs) to develop interesting frameworks to detect this disease. However, poor feature extraction from the chest
X-ray images and the high computational cost of the available models introduce difficulties for an accurate and fast COVID-19
detection framework. Moreover, poor feature extraction has caused the issue of ‘the curse of dimensionality’, which will
negatively affect the performance of the model. Feature selection is typically considered as a preprocessing mechanism to find
an optimal subset of features from a given set of all features in the data mining process. Thus, the major purpose of this study is to
offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally
expensive than earlier approaches. To achieve the specified goal, we design a mechanism for feature extraction based on shallow
conventional neural network (SCNN) and used an effective method for selecting features by utilizing the newly developed
optimization algorithm, Q-Learning Embedded Sine Cosine Algorithm (QLESCA). Support vector machines (SVMs) are used as
a classifier. Five publicly available chest X-ray image datasets, consisting of 4848 COVID-19 images and 8669 non-COVID-19
images, are used to train and evaluate the proposed model. The performance of the QLESCA is evaluated against nine recent
optimization algorithms. The proposedmethod is able to achieve the highest accuracy of 97.8086%while reducing the number of
features from 100 to 38. Experiments prove that the accuracy of the model improves with the usage of the QLESCA as the
dimensionality reduction technique by selecting relevant features.
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Q-learning embedded sine cosine algorithm (QLESCA)

1 Introduction

Medical diagnosis is one of the more recent fields where com-
puter science is very beneficial, as faster detection may effec-
tively benefit from Computational Intelligence models [1, 2].
In addition, the fast spread of the COVID-19 outbreak has
boosted the demand for specialized knowledge and stoked
interest in the development of automated detection systems
that rely on artificial intelligence (AI) techniques [3–5]. AI
techniques can aid in obtaining reliable findings and are ben-
eficial for removing obstacles such as the absence of readily
available real-time test kits and a waiting period for test re-
sults. Scans of chest X-rays and chest computed tomography
(CT) reveal the chief signs of COVID-19, even when the
symptoms are minor [6–9]. This information can be used to
circumvent the limitations of certain technologies, such as the
lack of diagnostic kits. Even if CT scans are superior, X-rays
are still useful since they are less costly, quicker, and more
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generally utilized. Even in rural locations, imaging technolo-
gies are available at the majority of health clinics and labora-
tories that utilize X-ray pictures. In the absence of typical
symptoms such as fever, chest X-rays have a reasonable abil-
ity to identify the disease [10–12].

The feature selection process is critical for improving the
model’s evaluation results. Due to the high dimensionality of
the data, certain undesirable situations occur in the applied
model when the number of features is increased. These in-
clude: increased training time, and model overfitting [13].
There are three primary benefits of performing feature selec-
tion: decreased training time (fewer features means that the
algorithm can learn more quickly), increased accuracy (less
misleading data means that the model is more efficient), and
less over-fitting (higher probability of successful classifica-
tion) [14].

The extraction of features is a crucial stage in classification,
as the extracted features provide useful image information.
Deep Neural Networks are extraordinarily capable of
extracting the essential elements from a vast dataset for image
feature extraction. Consequently, these are often utilized in
computer vision algorithms [15]. Unlike standard machine
learning algorithms, which rely on manually extracted fea-
tures, CNNs can learn and represent complicated characteris-
tics automatically. The main goal at this point is to figure out
how to make sense of the raw data, which will help improve
the overall accuracy of the model [16]. By selecting effective
features through the feature selection process, such undesir-
able situations can be avoided.

The capacity to collect vast quantities of data in the modern
day is a double-edged sword. On the one hand, it allows for a
more rigorous analysis of characteristics, but on the other, it
becomes increasingly difficult to store and interpret such enor-
mous volumes of data. Thus, the importance of dimensionality
reduction strategies increases since they eliminate unneces-
sary characteristics without harming the learner’s perfor-
mance. Using an exhaustive search to pick feature subsets is
an NP-hard task. Consequently, a number of intelligent opti-
mization frameworks have been presented in the literature in
order to choose an optimal subset at significantly reduced
computational expense. The use of metaheuristics [13] to
solve optimization issues has grown in popularity due to its
capacity to efficiently search for a global optimum.
Tabularized in Table 1 is a detailed literature overview of
the prevalent metaheuristics employed in the feature selection
field.

Every species employs a unique hunting and/or migratory
strategy. Over millions of years, organisms have evolved into
their current form, where their feeding habits are ideal, result-
ing in a stable population. Consequently, the study of their
actions in nature has led to the development of optimization
algorithms that attempt to quantitatively imitate their strate-
gies. Utilizing much fewer resources, the effectiveness of such

formulations in a broad variety of issues has led to their prom-
inence as a study subject, where innovative techniques have
been developed recently. In several fields, conventional opti-
mization methods such as the Genetic Algorithm (GA) [17]
and Particle Swarm Optimization (PSO) [18] have been wide-
ly implemented.

Nevertheless, the No Free Lunch Theorem [19] makes it
clear that these traditional algorithms cannot offer the best
answers to all the optimization issues that researchers must
deal with. Thus, many metaheuristic optimization algorithms
have been successfully implemented in a wide variety of ap-
plications, and a large number of researchers have proposed
numerous algorithms, including monarch butterfly optimiza-
tion (MBO) [20], the slime mould algorithm (SMA) [21],
moth search algorithm (MSA) [22], hunger games search
(HGS) [23], Runge Kutta method (RUN) [24], colony preda-
tion algorithm (CPA) [25], and Harris hawks optimization
(HHO) [26].

The selected features that were selected via each agent of
the optimization algorithm are passed to the fitness function,
where a fitness value is obtained for each agent. The algorithm
seeks features that provide a better value than the fitted value
in each iteration. At the end of the algorithm’s running time,
the features with the highest fitness values are chosen in the
evaluation process of the model [13].

However, numerous methods for COVID-19 detection
have been proposed, and existing chest X-ray-based methods
for COVID-19 diagnosis have three major limitations. Firstly,
the complex strategy used to extract and select the features
requires more computing resources, which is a demanding
task. Secondly, existing deep learning-based methods require
a higher number of training parameters, which not only leads
to a computation burden in the classification but also leads to
over-fitting problems because of the limited availability of
COVID-19 images. Finally, due to the huge number of model
parameters and features extracted, it makes it difficult to install
on a device with limited resources (processing unit, memory,
etc.). Because of this, we came up with a simple and fast way
to find COVID-19 using shallow CNNs and a swarm optimi-
zation algorithm.

Due to the high dimension of the features, we require an
effective optimization algorithm with the capacity to handle
high dimensions. The Q-Learning Embedded Sine Cosine
Algorithm (QLESCA) is one of the most recent optimization
algorithms proposed to deal with high-dimensional problems;
thus, the QLESCA is used for feature selection in this study.
Our team developed the QLESCA [44], which makes the
classical SCA better so it does not get stuck in local optima
and gives the algorithm more freedom to switch between ex-
ploration and exploitation phases based on the search cases.

The aim of our work is to provide a computer-based diag-
nostic model for COVID-19 that takes chest X-ray images as
the input. We initially tried to detect COVID-19 by utilizing a
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pre-trained convolutional neural network (CNN) model called
VGG19. Though it provides satisfactory results, there are cer-
tain drawbacks to using DL architecture. The use of DL
models involves a huge computational overhead and requires
an enormous number of training samples and a large amount
of training data that are not available for new pandemics like
COVID-19. We therefore used a shallow CNN (SCNN) mod-
el instead of the full VGG19 to extract dominant features from
the data before further processing. However, some of these
features may be redundant and unessential. The features
which we obtained were optimized using several feature opti-
mization algorithms. For further dimensional reduction of the
feature space, we used our novel optimization algorithm, the
QLESCA. The highlights of this work are:

1. Combination of pre-trained CNNs and a metaheuristic-
based feature selection algorithm to produce a CAD sys-
tem to detect COVID-19 in chest X-ray images.

2. A new lightweight model (SCNN-SVM) was proposed
for COVID-19 diagnosis that can overcome the
overfitting caused by deep neural network training on a
small dataset.

3. To reduce the dimensionality of the feature set obtained
from the SCNN-SVM model, an improved version of the
SCA, called the QLESCA, has been used due to the su-
perior ability of the QLESCA to solve high-dimensional
problems.

4. So far as we know, this is the first study to use a shallow
CNN-based feature extractor to pull important features
out of datasets.

5. A huge number of COVID-19 samples with 4848 images
from five public datasets (two of them published in 2022)
and detailed comparisons with nine optimization algo-
rithms are used to test the quality of the new approach.

6. This research developed a fitness equation that strikes a
balance between the number of features chosen and how
accurate the model is.

The following is the organization of this paper. The related
works are clarified in Section 2. The theoretical preliminaries
needed in the proposed model are clarified in Section 3.
Section 4 presents the proposed framework. Experimental re-
sults are clarified in Section 5. Section 6 discusses the conclu-
sion of the research findings and some future work.

2 Related work

In recent years, the application of artificial intelligence in the
automatic diagnosis of medical images has yielded promising
results. Deep convolutional neural networks have been used in
previous studies to classify chest X-ray and CT images and to
successfully diagnose common chest diseases [1, 45–47]. In
the current outbreak of COVID-19, researchers are attempting
to alleviate the epidemic through their research. Numerous
researchers are conducting studies in this area. In general,
the literature on COVID-19 diagnoses can be divided into
two categories based on: 1) different artificial intelligence
techniques, and 2) metaheuristic optimization algorithms.

Table 1 Set of metaheuristics
algorithms employed in the
feature selection field

No. Reference Optimization algorithm Year

1. [27] Binary butterfly optimization approaches 2019

2. [28] binary grey wolf algorithm 2020

3. [29] Improved Binary Grey Wolf Optimizer 2020

4. [30] Enhanced Crow Search Algorithm 2020

5. [31] An efficient binary social spider algorithm 2020

6. [32] multi population-based particle swarm optimization 2021

7. [33] Dynamic Salp swarm algorithm 2021

8. [34] binary butterfly optimization algorithm 2021

9. [35] genetic algorithms, particle swarm optimization, and artificial bee colony 2022

10. [36] grey wolf optimization algorithm 2022

11. [37] Quantum Whale Optimization Algorithm 2022

12. [38] butterfly optimization algorithm 2022

13. [39] group teaching optimization algorithm 2022

14. [40] dynamic stochastic search algorithm 2022

15. [41] Dynamic Butterfly algorithm 2022

16. [42] Binary Harris Hawks Optimization 2022

17. [43] Enhanced Gaussian bare-bones grasshopper optimization 2023

123

18632



Feature selection of pre-trained shallow CNN using the QLESCA optimizer: COVID-19 detection as a case study

2.1 COVID-19 diagnoses using different artificial
intelligence techniques

This section describes research being done to combat COVID-
19 using a variety of techniques. Abdullah et al. [48] utilized
K-means clustering in their fight against COVID-19. This was
accomplished by determining a province’s proximity or sim-
ilarity based on confirmed cases, recovered cases, and death
cases. The case study was Indonesia. Abir et al. [49] proposed
a new method to detect presymptomatic COVID-19 infection
using the resting heart rate derived from wearable devices,
such as smartwatches or fitness trackers. Based on the report-
ed findings, the diagnostic tool’s viability as an early-stage
COVID-19 detection method was demonstrated. Ahmad
et al. [50] proposed a new CNN model for COVID-19 patient
identification. The proposed CNN consists of three convolu-
tion layers (16, 128, and 256 filters), two max-pooling layers,
a flattening layer, and three fully connected layers (FCLs)
(120, 60, and 10 neurons). Due to the fact that a small dataset
was used to train and evaluate their model, image augmenta-
tion techniques have been implemented to address the issue of
data scarcity. For two classes (COVID-19 and non-COVID-
19), the proposed model achieves a 97.68% accuracy rate.
Akter et al. [51] developed an innovative deep learning model
called AD-CovNet for predicting the mortality of Alzheimer’s
patients infected with COVID-19. There were three datasets
used to evaluate the proposed model. This proposed model
had an accuracy of 97% for datasets 1 and 2 and 86% for
dataset 3. Polsinelli et al. [52] proposed a light CNN for de-
tecting COVID-19 from computer tomography (CT) imaging
of the chest. They used Bayesian optimization to select the
optimal hyperparameters for SqueezeNet. They selected three
hyperparameters in their work: initial learning rate, momen-
tum, and L2-Regularization. The proposed model achieved an
accuracy of 85.03%.

Ahuja et al. [53] analyzed the performance of four pre-
trained architectures for COVID-19 detection in CT scan im-
ages; these models included ResNet18, ResNet50, ResNet101,
and SqueezeNet. The reported result confirms that the
ResNet18 model offered superior classification accuracy com-
pared to competing models. COVIDetectioNet is a diagnosis
system proposed by Turkoglu [54]; this model comprises three
fundamental stages: feature extraction, feature selection, and
classification. In the initial phase, convolution and FCLs of
the AlexNet architecture were used to extract deep features.
In the second stage, the Relief algorithm was used to select
the most efficient features. In the third phase, a SVM was used
to classify these exceptional features. Using samples of chest
X-ray scans, Jain et al. [55] compared three pre-trained CNN
models for COVID-19 detection. These were the Inception V3,
Xception, and ResNeXt models. According to reported results,
the Xception model provides the highest detection accuracy.
Punn and Agarwal [56] investigated five CNN models for

COVID-19 detection from chest X-ray images. ResNet,
Inception-v3, Inception ResNet-v4, DenseNet169, and
NASNetLarge were the respective models. Both binary classi-
fication (normal and COVID-19) and multi-class classification
(COVID-19, pneumonia, and normal) were investigated. In
comparison to other models, NASNetLarge demonstrated su-
perior performance based on the reported results. Mukherjee
et al. [57] proposed a new CNN model with the ability to train
and test using CT and chest X-ray images collectively. This
model achieved an accuracy of 96.2% overall. Li et al. [58]
proposed a COVID-19 detection model using CT images from
a small dataset. A stacked autoencoder detector model was
proposed to significantly improve the detection model’s perfor-
mance. The results of the experiment showed that the proposed
model worked well with a small dataset and an average accu-
racy of 94.7%.

2.2 COVID-19 detection using metaheuristic
algorithms

This section describes research utilizing metaheuristic optimi-
zation algorithms for feature selection to combat COVID-19.
Two types of approaches are presented: the first approach
evaluates the performance of an optimization algorithm for
selecting efficient features, while the second presents a model
for extracting features and using an optimization algorithm to
select a subset of extracted features. This second approach is
thought to be a new area of research, and it is important in this
manuscript because it shows the proposed architecture.

2.2.1 Handcrafted features

Too et al. [59] presented an enhancement to the Binary
Dragonfly Algorithm (BDA) for feature selection. The pro-
posed algorithm is called the Hyper Learning Binary
Dragonfly Algorithm (HLBDA), which enhances the BDA
by using a hyper learning strategy. The proposed algorithm
was evaluated using datasets from the University of
California, Irvine (UCI) repository and Arizona State
University. Also, the proposed method was applied to the
COVID-19 dataset. The COVID-19 dataset comprised 15 fea-
tures. The HLBDA aims to forecast death and recovery con-
ditions. Piri et al. [60] used a discrete gorilla troop optimizer
(DAGTO) for medical sector feature selection. Based on the
number and type of objective functions for identifying relevant
features, four variants of the proposed method were proposed
in this study: (1) single objective, (2) bi-objective (wrapper),
(3) bi-objective (filter wrapper hybrid), and (4) tri-objective
(filter wrapper hybrid). To evaluate these four variants, ten
medical datasets were utilized. The integration of both filter
and wrapper approaches yielded the smallest number of fea-
tures and the highest recognition accuracy, according to the
evaluation results. Additionally, to demonstrate the superiority
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of the proposed method, the COVID-19 dataset was utilized to
predict the health of COVID-19 patients. An enhancement to
the whale optimization algorithm (WOA) was proposed by
Shahraki et al. [61] to tackle the feature selection problem.
The performance of the proposed algorithm was benchmarked
on the COVID-19 dataset based on the reported results. The
results showed that the E-WOA can find the optimum subset
of features in the COVID-19 dataset. The Simulated
Annealing (SA) and Generalized Normal Distribution
Optimizer (GNDO) were combined to create the Binary
Simulated Normal Distribution Optimizer (BSNDO) by
Ahmed et al. [62]. The BSNDO algorithm was tested using
18 well-known UCI datasets. Additionally, it was utilized for
feature selection for classification purposes on a COVID-19
dataset. According to the results that were reported, the sug-
gested method worked well as a feature selection method.

2.2.2 Features extracted based on CNNs

In the literature, there is a collection of research efforts aimed
at resolving the problem of selecting features extracted via
CNNs using metaheuristic optimization algorithms. Another
motivation for this paper was the scarcity of research on fea-
ture extraction using CNN models, especially regarding the
COVID-19 problem in the literature. To address this, a variety
of studies are presented in this section to address a variety of
issues, but all of them share a common thread: they all use
optimization algorithms to select features extracted via CNNs.
In a lot of studies, different metaheuristic optimization tech-
niques are used. The point at which the features of CNNs were
taken from each study is different.

Canayaz [13] proposed amodel for COVID-19 detection in
chest X-ray images. This approach utilized a dataset compris-
ing three classes: COVID-19, normal, and pneumonia, each of
which contained 364 images. Four deep learning models were
used to extract features from the dataset: AlexNet, VGG19,
GoogleNet, and ResNet. Then, two metaheuristic algorithms,
binary PSO (BPSO) and binary GWO (BGWO) were used to
select the best possible features. Finally, they were classified
using a SVM after combining the features obtained during the
feature selection phase. The proposed approach achieved an
overall accuracy of 99.38% based on the reported results.
Fatani et al. [16] proposed a model for an intrusion detection
system for the Internet of Things. They developed a CNN-
based feature extraction mechanism. Following that, they pre-
sented an alternative approach to feature selection utilizing the
Aquila optimizer (AQU). Four publicly available benchmark
datasets were used to evaluate the developed approach: BoT-
IoT, NSL-KDD, CIC2017, and KDD99. They use a light fea-
ture extraction approach based on a CNN to extract features
from the datasets used in this study. The proposed CNN con-
sists of two convolutional layers, two pooling layers, and four
FCLs. Each Conv has 64 filters and the kernel size is three.

Max-pooling is used in the first Conv, while average-pooling
is used in the second. FCL1, FCL2, and FCL3 are fully con-
nected layers with a total of 128, 128, and 64 neurons. FCL1,
FCL2, and FCL3 serve as feature extraction layers that output the
learned features from the raw input, while FCL4 serves as the
final FCL that outputs the classification predictions. The K-
nearest neighbour (KNN) classifier is then used to determine
the efficiency of the determined feature. The results demonstrate
that the proposed approach possesses superior performance.

Abd Elaziz et al. [63] have developed a framework for detect-
ing COVID-19 cases using X-ray and CT images. This model
was evaluated using three datasets. When MobileNetV3 was
used to extract features, they replaced the top two output layers
of the MobileNetV3 model used for image classification
with a 1 × 1 point-wise convolution of size 128. The AQU
optimizer was utilized to select a subset of extracted features.
Sahlol et al. [14] proposed a classification scheme for white
blood cell leukaemia based on the statistically enhanced Salp
Swarm Algorithm (SESSA). They extracted features using
VGG19. Given that the input image has the shape (224, 224,
3), the final layer produced by VGG19 has the shape (7, 7,
512). This indicates that VGG19 returns a feature vector con-
taining 7 × 7 × 512 = 25,088 features. The SESSA then
works to eliminate unnecessary and noisy features. SESSA
optimization selected only 1087 features out of 25,088 extract-
ed with VGG19, while simultaneously improving in accuracy.
The determined features were fed into SVM for classification.

A two-stage pipeline composed of feature extraction
followed by feature selection (FS) for the detection of
COVID-19 from CT scan images has been proposed by
Bandyopadhyay et al. [64]. For feature extraction, the
DenseNet201 architecture was utilized. In this research, they
decided to extract the features from a global pooling layer
which produces a 1D vector of dimension 1920. This vector
represents the extracted features which are used in the next
stage of FS. To eliminate the non-informative and redundant
features, they proposed a hybrid Harris hawks optimization
(HHO) algorithm combined with Simulated Annealing (SA),
and chaotic initialization was employed. This hybrid algo-
rithm is called the CHHO+SA. A KNN classifier has been
employed for calculating the accuracy of the proposed meth-
od. Based on the reported results, the proposed algorithm was
able to reduce the number of features chosen by about 75%.

The aforementioned papers are summarized in Table 2, which
is included below. This table details the number of features used
and the CNN part from which they were extracted.

3 Theoretical preliminaries

The purpose of this section is to expose readers to some fun-
damental principles that will serve as a foundation for the rest
of the article.
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3.1 VGG19

VGG19 is a CNN model developed at the University of
Oxford by K. Simonyan and A. Zisserman [65]. Onmore than
14 million image datasets comprising 1000 classes in
ImageNet, the model achieved 92.7% top-5 test accuracy.
This model outperformed AlexNet by employing 3 × 3 core
size filters instead of large core size filters. In the first layer,
the input size is 224 × 224. VGG19 consists of a 19-layer
network with 16 convolutional layers, five max-pooling
layers, and three FCLs for feature extraction: “FC6”, “FC7”,
and “FC8”. Each “FC6” and “FC7” consists of 4096 neurons,
whereas “FC8” has only 1000 neurons [13, 66]. The basic
architecture of the VGG19 model is illustrated in Fig. 1.

VGG19was selected in this study to conduct our experiments
in the process of detection of COVID-19 based on its superior

performance overmany pre-trained CNNmodels for COVID-19
detection based on the literature [67, 68]. Seven different CNN
models (VGG19, DenseNet121, InceptionV3, ResNetV2,
Inception-ResNet-V2, Xception, MobileNetV2) were used by
Hemdan et al. [67] to detect COVID-19 from chest X-ray im-
ages. These models were validated on 50 X-ray images (25
Normal and 25 COVID-19 cases). The VGG19 and
DenseNet201models achieved the best performance. Balaha
et al. [68] developed a technique for COVID-19 detection in
chest CT images. To optimize the CNN hyperparameters, they
used HHO. They compared nine pre-trained CNNs in this study.
These models were ResNet50, ResNet101, VGG16, VGG19,
Xception, MobileNetV1, MobileNetV2, DenseNet121, and
DenseNet169. HHO was tasked with the responsibility of deter-
mining the optimal hyperparameters. The dropout ratio, learning
ratio, and batch size were all used as hyperparameters. VGG-19

Table 2 Brief description of the metaheuristic optimization algorithms used to select features extracted via CNN

Reference Optimizer CNN Number of features Features were obtained from Classifier type

[13] BPSO Alexnet 1000 FC8 SVM
VGG19 FC8

GoogleNet loss3-classifier

ResNet FC1000

[13] BGWO Alexnet 1000 FC8 SVM
VGG19 FC8

GoogleNet loss3-classifier

ResNet FC1000

[16] AQU CNN from Scratch 64 FC3 KNN

[63] AQU MobileNetV3 128 1×1 point-wise convolution KNN

[14] SESSA VGG19 25,088 The last convolutional layer at VGG19 SVM

[64] CHHO+SA DenseNet201 1920 global pooling layer KNN

Fig. 1 VGG19 architecture
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reported the best value using the Stochastic Gradient Descent
(SGD) parameters optimizer, 32 batch size, 56% dropout ratio,
and 80% learning ratio.

3.2 Q-learning embedded sine cosine algorithm

A recent population-based optimizer is the QLESCA [44].
The QLESCA is an innovative variant of the Sine Cosine
Algorithm (SCA) [69]. Because the conventional SCA has a
number of flaws, including stagnation at local optimums, a
slow convergence curve, and an inefficient balance between
exploration and exploitation search modes, the QLESCA pro-
poses intelligently controlling SCA parameters using an em-
bedded Q-learning algorithm at runtime to mitigate these lim-
itations. Each QLESCA agent possesses its own Q-table and
evolves independently. The Q-table contains nine distinct
states based on population density and distance from the lead-
er of the population. Therefore, Q-table generates nine distinct
actions (Action 1 to Action 9) to regulate QLESCA parame-
ters, including r1 and r3. These QLESCA parameters are re-
sponsible for switching between adaptive exploration and ex-
ploitation and vice versa. A well-performing agent receives a
reward for each action, while a poorly performing agent re-
ceives a penalty. This algorithm, like other population-based
metaheuristics, starts with a set of random solutions, and then
each solution updates its position based on the simple mathe-
matical functions of sine and cosine as in Eq. (1).

X t
i ¼

X besti þ r1 sin r2ð Þ r3P−X bestið Þ; r4 < 0:5
X besti þ r1 cos r2ð Þ r3P−X bestið Þ; r4≥0:5

�
ð1Þ

where X_besti is the best position discovered by the current
solution in the i-th dimension at the t-th iteration, | | indicates
the absolute value, Pt

i represents the position of the best solu-
tion discovered among all solutions ever discovered by all
agents and is called the destination solution, r1 and r3 are
calculated through Eqs. (2) and (3), r2 is a random variable
in the range [0, 2π], and r4 is a random number between [0, 1]
and used to switch between sine and cosine equally.

The proposed QLESCA incorporates Q-learning into SCA.
Basically, the Q-learning technique is embedded in order to
control the values of the SCA parameters, namely r1 and r3. r1
controls the amount of jump, and r3 is responsible for the
destination’s contribution level (P).

Under the control of Q-learning, the r1 variable will be
given a random value that belongs to one of three scales,
namely Low (from 0 to 0.666), Medium (from 0.667 to
1.332), and High (from 1.333 to 2). So, when r1 is low, the
SCA algorithm will be in the exploitation mode. On the other
hand, it performs search exploration when r1 is High.
However, on a Medium scale, it will work in two scenarios.
If the randomly generated value of r1 (from 0.667 to 0.999)

works in exploitation mode, while r1 values in the range from
1 to 1.332, will work in the exploration phase.

For the r3 parameter, it is also like r1 being in the range
from 0 to 2 with three intervals: Low (from 0 to 0.666),
Medium (from 0.667 to 1.332), and High (from 1.333 to 2).
The architecture of the Q-table has nine actions, including
(r1 = L, r3 = L), (r1 = L, r3 = M), (r1 = L, r3 = H), (r1 =
M, r3 = L),(r1 = M, r3 = M), (r1 = M, r3 = H), (r1 = H, r3 =
L), (r1 = H, r3 = M), and (r1 = H, r3 = H).

r1 ¼ r1 minþ r1 max−r1 minð ÞU 0; 1ð Þ ð2Þ
r3 ¼ r3 minþ r3 max−r3 minð ÞU 0; 1ð Þ ð3Þ

Two indicators were used to measure population status and
individual agent location with respect to destination (P).
These indicators are population density and distance. It should
be noted that the range of these indicators will be in the range
of [0,1] and this is further categorized into three ranges, which
are Low (from 0 to 0.333), Medium (from 0.334 to 0.666), and
High (from 0.667 to 1). Table 3 shows the combination of
various ranges with their respective action and state.

4 Proposed framework

This section describes the overall structure of the developed
COVID-19 detection method. As shown in Fig. 2, the pro-
posed method has three phases: feature extraction, feature
selection, and testing. During the feature extraction phase,
SCNN is used to pull out the features, which are then split
into the training set and the testing set. In the feature selection
phase, the QLESCAwill work on the training set to determine
the subset of features that has the highest fitness value. This
phase is repeated until it reaches the maximum number of
iterations, and then the best features detected pass to the test-
ing phase. In the testing phase, the detected features are eval-
uated through a testing set. The flow chart of the proposed
feature selection method is illustrated in Fig. 3.

4.1 Feature extraction phase

In this phase, a shallow CNNmodel is used for feature extrac-
tion. SCNN has been previously stated in our study [70], and

Table 3 Indicator of actions and states

Action 1 2 3 4 5 6 7 8 9
State

Den H H H M M M L L L

Dis H M L H M L H M L
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the shallow CNN (SCNN) model had the highest accuracy
compared with the deep CNN model. The SCNN model has
the smallest number of layers (the first two VGG19 layers). It
is computationally efficient because it has a limited number of
layers, which means that it has a small number of parameters.
As a result, when resources are limited, the shallow CNN
architecture is a better fit. [71]. Also, as demonstrated in [72,
73], deeper models performed slightly better with larger
datasets, but shallow CNNs performed better with smaller
datasets. As a result, the SCNN model was chosen in this
research in order to apply the QLESCA and thus improve its
accuracy and overall performance. It is worth mentioning here
that we used a pre-trained model of VGG19 trained on the
ImageNet dataset to avoid training the model from scratch and
speed up the learning process.

As can be seen in the original VGG19, it has FCLs follow-
ed by a SoftMax classifier that can classify 1000 different
objects. Typically, the fully connected layer is utilized to fur-
ther purify the features recovered by the convolutional layer,
and so it plays a critical role in mapping the distributed feature
to the sample space representation [74]. Here in the shallow
architecture, to classify the features that were extracted via
SCNN layers, a fully connected layer should be added.
Since the output of the SCNN’s final layer is a three-
dimensional matrix, flattening it entails unrolling all of its

values into a vector. Prior to submission to a fully connected
layer, a flattened layer is required. Additionally, the majority
of SCNN models in the literature use a SVM as the classifier
due to its efficiency and minimal hyperparameter tuning re-
quirements, which make the model less prone to overfitting
and the experiment highly reproducible [75]. As a result, the
proposed model includes a SCNN, FL, and FCL for feature
extraction and SVM for classification, as can be seen in Fig. 4.

4.2 Feature selection phase

In this phase, QLESCA is used to select a subset of features from
the training set. This section contains three parts: 1) the formula-
tion of the fitness equation 2) the QLESCA for feature selection;
and 3) the computational complexity of the proposed methodol-
ogy. In the first part, the designed fitness equation is introduced,
while the second part will clarify the steps of the feature selection
algorithm, and the last part presents the complexity.

4.2.1 Formulation of fitness equation

In optimization algorithms, fitness evaluation is very impor-
tant and reflects the objective of the problem that the optimi-
zation algorithm intends to solve. It is considered a vital com-
ponent in order to design the correct fitness equation. So, in
this subsection, we will give a simple explanation of the pro-
posed fitness equation.

The QLESCA trains the SVM using a subset of features
from the FCL and 20 images (10 COVID-19 and 10 normal).
In other words, the QLESCA looks for two important items:

1. Significant features that aid the SVM to achieve higher
classification accuracy. The QLESCAwants to use as few
features as possible while still achieving the best possible
classification accuracy.

2. Selecting 20 images (10 COVID-19 and 10 normal) to
feed into the SCNN.

Figure 5 shows the concept of calculating the fitness equation
in the proposed model. It depends on two factors: classification
accuracy and the number of selected features. In other words, the
best fitness is one that has high accuracy with a small number of
selected features. Eq.)4(shows the fitness function used to eval-
uate each QLESCA search agent.

Fitness; F ¼ K* α*A−β* S Features=T Featuresð Þð Þ ð4Þ
where A denotes accuracy and S_Features denotes the number of
selected features. The parameters α ϵ [0,1] and β = (1 - α)
correspond to the importance of classification accuracy and the
number of selected features, respectively, on the fitness function
[59, 76]. T_Features is the total number of features in the FCL
(total number of features that are extracted via the SCNN).

Fig. 2 Steps of the QLESCA for the feature selection problem
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Finally, the fitness result ismultiplied byK = −1 to convert it to a
negative value, as the optimization algorithm seeks theminimum
value.

The position vector X of every search agent is a D-
dimensional vector that represents the QLESCA search
agent’s position. As a consequence, each vector X denotes
features extracted via the SCNN. In this study, the FCL is
used as a feature extraction layer to output the learned
features from the raw input, which contains a total of 100

neurons (100 features). Additionally, the QLESCA must
choose only 20 images (10 COVID-19 and 10 normal).
Each search agent has 120 variables (i.e., x1 to x120), which
are listed in Table 4 with their respective ranges. Since
each dimension of vector X has a different definition and
a different range of values, Fig. 6 illustrates the vector X of
every search agent.

For the first 100 variables, the QLESCA searches for a
range from 0 to 1 because it works on generating random

Fig. 3 Flowchart of the proposed
method

Fig. 4 Feature extraction using a
SCNN
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numbers, with each number generated if less than 0.5 shifted
to 0 and otherwise shifted to 1, and this was produced using
Eq. (5). For example, if x12 = 0, it means that feature number
12 is turned off, and if it equals 1, it is turned on. The same is
true for the other values (from x1 to x100). For the second part
(from x101 to x120), the number is rounded to the nearest inte-
ger number, and this was produced using Eq. (6). For

example, if x113 = 98.7, it means that the selected image is
99. The same is true for the other values in this range.

X i ¼ 1 if X i≥0:5
0 otherwise

�
i ¼ 1;…; 100f g ð5Þ

X i ¼ round X ið Þ i ¼ 101;…; 120f g ð6Þ

Fig. 5 Calculation of fitness
evaluation in the proposed feature
selection model

Table 4 The encoding of vectorX
for every QLESCA search agent Variables Hyperparameters Search range

X1 Feature number 1 in the fully connected layer [0,1]

X2 Feature number 2 in the fully connected layer [0,1]

X3 Feature number 3 in the fully connected layer [0,1]

. . .

. . .

. . .

. . .

. . .

X98 Feature number 98 in the fully connected layer [0,1]

X99 Feature number 99 in the fully connected layer [0,1]

X100 Feature number 100 in the fully connected layer [0,1]

X101 COVID-19 image number [0,403]

X102 COVID-19 image number [0, 403]

. . .

. . .

. . .

X109 COVID-19 image number [0, 403]

X110 COVID-19 image number [0, 403]

X111 Normal image number [0, 1108]

X112 Normal image number [0, 1108]

. . .

. . .

. . .

X119 Normal image number [0, 1108]

X120 Normal image number [0, 1108]
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4.2.2 QLESCA steps for feature selection

The principal steps of feature selection are outlined in
Algorithm 1,which provides a detailed description of themethod
presented for selecting features. As shown, the QLESCA is ini-
tialized by setting the maximum number of iterations (T), the
number of search agents (N), and the dataset used by this model.
Then the QLESCA operates on the training set by generating the
first random X, converting it by using Eqs. (5) and (6) and cal-
culating the fitness using Eq. (4). The Q-table is updated based
on the fitness results for each agent, and the update process is
based on reward and penalty. The search agent will receive a
reward if its current result is superior to the previous result and
a penalty if its result is weaker compared to the previous result.
This process is repeated until the maximum number of iterations
is reached. At that point, the algorithm ends, and the best values
in X represent the best-selected features that are sent to the testing
phase to be tested on the testing set.

Algorithm 1 Proposed feature selection for COVID-19 detection

4.2.3 Computational complexity of the proposed
methodology

The computational complexity of the QLESCA-SCNN-
SVM approach is estimated as a performance indicator that
mainly depends on three steps: (1) position update using Q-
Learning, (2) selecting the best features using the QLESCA,
and (3) SVM classifier training time. Therefore, the com-
plexity can be mathematically represented as O(CQL +
CQLESCA−SCNN + CSVM), where O denotes the worst-case
time complexity, and CQL, CQLESCA-SCNN, and CSVM indi-
cate the complexity of Q-Learning implementation while
modifying the location of each QLESCA search agent, the
QLESCA-SCNN feature selection method, and the execu-
tion time of the SVM classifier in the training phase, respec-
tively. Determining the computational complexity of many
metaheuristic algorithms typically involves the analyses of
three components [40]:

Fig. 6 Structure of vector X for
every QLESCA search agent
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The computational complexity of initializing the popula-
tion is bounded by O CQL:N:Dð Þ :

The computational complexity of evaluating the fitness
values of the initial population is bounded by O
N:CQLESCA−SCNN :CSVM

� �
:

& The computational complexity of the main loop is bound-
ed by

O CQL:N :Tmax:Dþ N :Tmax:CQLESCA−SCNN :CSVM
� �

:

Here, the overall complexity is represented in terms of the
number of iterations (Tmax), population size (N), feature size
(D), and training time of the classifier (CSVM). To specify the
total computational complexity for the proposed approach by
considering only the most complex terms, the computational
complexity of the main loop can be considered as the total
computational complexity.

4.3 Testing phase

In this phase, as can be seen in Fig. 7, the best selected features
(X) that are discovered during the feature extraction phase are
used to evaluate the testing set, and the features of the testing
set are reduced based on the selected features (X). Then sev-
eral performance measures are employed to compute the qual-
ity of the proposed approach to COVID-19 detection. All
testing results are presented in the experimental results
section.

5 Experimental results

This section evaluates the quality of the proposed feature ex-
traction method for COVID-19 detection.

5.1 Dataset description

In this study, to train, test, and compare our proposed model to
others, a dataset of 2159 chest X-ray images [77] were used.
The dataset was divided into two groups: 576 COVID-19 sam-
ples and 1583 healthy (Normal) samples. This is referred to as
Dataset 1. To conduct the evaluation, Dataset 1 was randomly
divided into 70% for training and 30% for testing, as indicated
in Table 5. After applying the proposed metaheuristic
optimization-CNN model to Dataset 1 and determining which
CNN architecture is the best, this discovered CNN model was
tested on another four datasets referred to as Dataset 2, Dataset
3, Dataset 4, and Dataset 5 in order to determine the strength
and stability of the proposed model. Dataset 2 contained 2183
images, 600 of which were COVID-19 [78] and 1583 were
Normal [79]. Dataset 3 [80] contained 4551 images, 1281 of
which were COVID-19 and 3270 were Normal. Dataset 4 [81]
is a recent dataset published on 15 June 2022, containing 3428
images, 1626 of which are COVID-19 and 1802 are Normal.
Dataset 5 [82] is a recent dataset published on 3 October 2022,
containing 1196 images, 765 of which are COVID-19 and 431
are Normal. Figure 8 displays a few COVID-19 samples as
well as healthy chest X-ray images.

5.2 Evaluation metrics

The specifications of the machine utilized in this study are listed in
Table 6 below.Accuracy, precision, specificity, sensitivity (Recall),
and F1-score were the five metrics used to evaluate models [87,
88]. These metrics were calculated using Eqs. (7) to (11).

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ � 100% ð7Þ
Precision ¼ TP= TPþ FPð Þ � 100% ð8Þ
Specificity ¼ TN= TNþ FPð Þ � 100% ð9Þ
Sensitivity Recallð Þ ¼ TP= TPþ FNð Þ � 100% ð10Þ
F1 Score ¼ 2TP= 2TPþ FPþ FNð Þ � 100% ð11Þ

Fig. 7 The testing Phase
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Here, TP (true positives) denotes correctly predicted
COVID-19 cases, FP (false positives) denotes Normal cases
classified as COVID-19 by a model, TN (true negatives) de-
notes Normal cases classified as Normal cases, and FN (false
negatives) denotes COVID-19 cases classified as Normal
cases.

The performance of the QLESCA as an FS method was
tested by comparing its results from the same proposed ap-
proach with those of nine recent optimization algorithms.
These algorithms are the Sine Cosine Algorithm (SCA) [69],
Opposition-Based Sine Cosine Algorithm (OBSCA) [89],
Hybridization of SCA with Differential Evolution (DE)
termed SCADE [90], Multi-Strategy SCA Algorithm
(MSCA) [91], Arithmetic Optimization Algorithm (AOA)
[92], Horse Herd Optimization Algorithm: A nature-inspired
algorithm for high-dimensional optimization problems (HOA)
[93], Farmland Fertility Algorithm (FFA) [94], African
Vultures Optimization Algorithm (AVOA) [95], Artificial
Gorilla Troops Optimizer (AGO) [96], and Q-learning
Embedded Sine Cosine Algorithm (QLESCA) [44].

All of these algorithms were run with the settings shown in
Table 7. As can be seen, the initial populations of these algo-
rithms were not identical. While all the algorithms use a large
population of search agents (30), only the QLESCA uses a
small population of search agents (5) because its concept is
based on a micro population. In order to make a fair

comparison between these metaheuristic algorithms, the fit-
ness counter parameter was utilized. The purpose of the fitness
counter is to provide all algorithms with an equal opportunity
to evaluate the objective function. For example, if SCA has 30
agents and this algorithm is executed 100 times, each agent
will check the objective function at each iteration. That means
30 * 100 equals 3000 times in total. But in the case of the
QLESCA, there are only five agents, which should give it the
same opportunity to evaluate the objective function as SCA
(3000 times). In this manner, all algorithms will function
equally.

5.3 Results and discussion

In this subsection, all the experiment results for the proposed
model are presented in order to determine the optimal fitness
value. Also, 1) a statistical test analysis was conducted, 2) the
QLESCA-SCNN-SVM model was tested using four different
datasets, and 3) the limitations of the proposed method were
presented. Table 8 displays the best, mean, median, worst, and
standard deviation values for all algorithms tested. According
to the reported results, the QLESCA outperformed the other
algorithms, with a fitness evaluationmean of −0.9957. Further
analysis was examined by plotting the convergence curve of
the QLESCA as compared with other evaluated algorithms, as
shown in Fig. 9. The horizontal axis denotes the 103 iterations,
and the vertical axis represents the best score obtained.

Table 5 The datasets that were
involved in this research Dataset Category Number of images Training set Testing set

Dataset 1 [77] COVID-19 576 403 173

healthy (Normal) 1583 1108 475

Dataset 2 [78, 79] COVID-19 600 – 600

healthy (Normal) 1583 – 1583

Dataset 3 [80] COVID-19 1281 – 1281

healthy (Normal) 3270 – 3270

Dataset 4 [81, 83, 84] COVID-19 1626 – 1626

healthy (Normal) 1802 – 1802

Dataset 5 [82, 85, 86] COVID-19 765 – 765

healthy (Normal) 431 – 431

Fig. 8 Various Normal and
COVID-19 case chest X-ray
images
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The proposed models were assessed using a variety of ma-
chine learning (ML) classification metrics, including accura-
cy, precision, specificity, sensitivity (recall), and F1-score.
Table 9 shows the average experimental results for features
that were optimized with the QLESCA, other optimization
algorithms, or not at all. The QLESCA attained the highest
average of accuracy, sensitivity, and F1-score overall among
the comparative optimization algorithms. It received average
scores of 97.8086, 94.7399, and 95.9064, respectively.

The confusion matrix for each model is depicted in Fig. 10.
This figure provides an overview of how all of the images
were classified and where the majority of the misclassification

occurred. According to this figure, the QLESCA had the
highest COVID-19 detection rate, with 164 images and nine
misclassifications. The QLESCA achieved the lowest mis-
classification of COVID-19 when compared to the other
approaches.

The number of features chosen by the optimization algo-
rithms is shown in Table 10. As shown, the HOA achieved the
fewest number of features, reducing the number from 100 to
24, while the QLESCA, SCA, MSCA, OBSCA, SCADE,
AOA, AVOA, FFA, and GTO received 38, 26, 34, 43, 46,
34, 29, 49, and 32 respectively.

Despite the fact that the HOA, AOA, SCA, and MSCA
used fewer features than the QLESCA, the QLESCA
achieved: a) the best convergence curve during model train-
ing. b) a maximum detection accuracy of 97.8086%) the
greatest number of correctly positive COVID-19, which is
important in medical image processing due to its link to public
health.

5.3.1 Statistical test analysis

This section statistically compares the suggested strategy
against alternative methods to determine its superiority. The
analysis employed the Wilcoxon rank-sum test [97]. The sig-
nificance level was set to 0.05, which indicates that if the p
value was less than 0.05, the result would be accepted (95%
confidence level). The Wilcoxon rank-sum test results are
presented in Table 11. In this table, the QLESCA optimizer’s

Table 6 The detailed settings of the utilized system

Hardware

CPU Frequency RAM GPU SSD Hard drive

Intel(R) Core (TM) i5-9400F 2.90 GHz 16 GB Nvidia GeForce RTX 2070 Super 476 GB 1 TB

Software

Operating system Language

Windows 10 MATLAB R2021a

Table 7 Algorithms’ parameter settings

Method Population size Maximum no. of iteration Other parameters

QLESCA 5 103 α = 0.9 and γ = 0.1 All the parameters are set as in [44]

SCA 30 103 a = 2. All the parameters are set as in [69]

MSCA 30 103 a = 2; μ = 4; F = random in [0.2, 0.8]; Pc = 0.8. All the parameters are set as in [91]

SCADE 30 103 a = 2; F = random in [0.2, 0.8]; Pc = 0.8. All the parameters are set as in [91]

OBSCA 30 103 a = 2. All the parameters are set as in [91]

AOA 30 103 α = 5 and μ = 0.5. All the parameters are set as in [92]

HOA 30 103 All the parameters are set as in [93]

AVOA 30 103 All the parameters are set as in [94]

FFA 30 103 All the parameters are set as in [95]

GTO 30 103 All the parameters are set as in [96]

Table 8 Results of the comparison between the QLESCA and state-of-
the-art algorithms

Algorithm Best Mean Median Worst STD

QLESCA −0.9999 −0.9957 −0.9952 −0.9952 0.0015
SCA −0.9953 −0.9939 −0.9952 −0.9906 0.0022
MSCA −0.9952 −0.9920 −0.9906 −0.9906 0.0022
OBSCA −0.9952 −0.9925 −0.9906 −0.9906 0.0024
SCADE −0.9906 −0.9892 −0.9906 −0.9860 0.0022
AOA −0.9952 −0.9920 −0.9906 −0.9906 0.0022
HOA −0.9953 −0.9939 −0.9952 −0.9906 0.0022
AVOA −0.9999 −0.9948 −0.9952 −0.99063 0.0026
FFA −0.9952 −0.9906 −0.9906 −0.9860 0.0022
GTO −0.9953 −0.991998 −0.99062 −0.9906 0.0022

Boldface is used to highlight the best result achieved
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performance is compared against various optimization
methods, including the SCA, MSCA, OBSCA, SCADE,
AOA, HOA, AVOA, FFA, and GTO.

As can be observed, all estimated p values are less than
0.05, except for the SCA and HOA, which do not differ sig-
nificantly from the QLESCA. The main reason for these re-
sults is dependent on the method of calculating the fitness
value. According to Eq. (4), fitness has two main components:
the accuracy value and the number of selected features. When
the number of selected features is high, it reduces the total

value of fitness, while it increases it when the search agent
selects a smaller number of features. Because (SCA and
HOA) agents are unable to find a good solution (best features
that increase the accuracy of the model), they tend to set the
dimension of the solution (vectorX1–100) to zero, which results
in the features being turned off, thereby reducing the number
of features. So, both the SCA and HOA selected the lowest
number of features, 26 and 24, respectively, compared with
the 38 features selected by the QLESCA. That effect of p
values despite the fact that the SCA and HOA do not

Fig. 9 Average performances of
the state-of-the-art algorithms on
SCNN-SVM. The QLESCA per-
forms better than the others

Table 9 Performance comparison between the QLESCA and other approaches

Model TP TN FP FN Accuracy
(%)

Precision
(%)

Specificity
(%)

Sensitivity / Recall (%) F1-score
(%)

The proposed approach
(QLESCA-SCNN-SVM)

164 470 5 9 97.8086 97.0414 98.9263 94.7399 95.9064

SCA-SCNN-SVM 163 469 6 10 97.4228 96.4497 98.6737 93.9884 95.3216

MSCA-SCNN-SVM 161 469 6 12 97.2840 96.4072 98.7579 93.2370 94.7059

OBSCA-SCNN-SVM 161 470 5 12 97.3765 96.9880 98.9474 93.0636 94.9853

SCADE-SCNN-SVM 162 470 5 11 97.5000 97.0060 98.8842 93.6994 95.2941

AOA-SCNN-SVM 162 469 6 11 97.3457 96.4286 98.6947 93.6416 95.0147

HOA-SCNN-SVM 162 469 6 11 97.3765 96.4286 98.8211 93.4104 95.0147

AVOA-SCNN-SVM 162 469 6 11 97.3765 96.4286 98.8211 93.4104 95.0147

FFA-SCNN-SVM 161 469 6 12 97.25309 96.4072 98.84211 92.89017 94.7059

GTO-SCNN-SVM 160 470 5 13 97.20679 96.9697 98.90526 92.54335 94.6746

SCNN-SVM 153 474 1 20 96.7590 99.3500 99.7890 88.4390 93.5780
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QLESCA-SCNN-SVM SCA-SCNN-SVM

MSCA-SCNN-SVM OBSCA-SCNN-SVM

SCADE-SCNN-SVM AOA-SCNN-SVM

Fig. 10 Confusion matrix for all models
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HOA-SCNN-SVM AVOA-SCNN-SVM

MVS-NNCS-OTGMVS-NNCS-AFF

SCNN-SVM

Fig. 10 (continued)
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significantly differ from the QLESCA, was that these algo-
rithms faced overfitting problems when evaluated on testing
data and failed to achieve the highest accuracy results as were
achieved by the QLESCA. This proves that the features that
are selected by these algorithms are not too relevant and some
of them affect the accuracy of the model in the evaluation
process.

5.3.2 Additional evaluation

To ensure that the proposed method is stable, the best features
selected by the QLESCA that achieved the highest accuracy
on Dataset 1 were evaluated on four additional datasets
(Dataset 2, Dataset 3, Dataset 4, and Dataset 5). Table 12
summarizes the experimental results of QLESCA-SCNN-
SVM on four distinct datasets. The confusion matrix is
depicted in Fig. 11. In Dataset 2, the model correctly detected
560 COVID-19 cases with 40 misclassifications and 1563
normal cases with 20 misclassifications. This model correctly
identified COVID-19 in Dataset 3 with 1202 images and 79
misclassified images. It also correctly identified normal im-
ages with 3227 normal images and 43misclassified images. In
Dataset 4, the model correctly detected 1545 COVID-19 cases
with 81 misclassifications and 1781 normal cases with 21
misclassifications. In Dataset 5, the model correctly detected
739 COVID-19 cases with 26 misclassifications and 426 nor-
mal cases with five misclassifications.

5.3.3 The limitations of the proposed method

After presenting the results of the proposedmodel, it would be
appropriate to discuss the method’s limitations. Due to the
high computational cost of fitness evaluation during model
training, the proposed approach is still facing the following
drawbacks.

1. The model was trained with only a maximum of 1000
fitness evaluations, and a larger number of iterations will
result in a huge training time.

2. The above constraint in the maximum number of fitness
evaluations prevents the Q-table of the QLESCA having
sufficient time to be built/trained well.

3. The proposed approach has used a limited number of
training images (20 images) for training the SVM which
effects the performances of the classifier, and it is better to
have a large number of training images such as 100 im-
ages per class.

Table 10 Number of features chosen by the optimization algorithms

Model Number of Features

The proposed approach (QLESCA-SCNN-SVM) 38

SCA-SCNN-SVM 26

MSCA-SCNN-SVM 34

OBSCA-SCNN-SVM 43

SCADE-SCNN-SVM 46

AOA-SCNN-SVM 34

HOA-SCNN-SVM 24

AVOA-SCNN-SVM 29

FFA-SCNN-SVM 49

GTO-SCNN-SVM 32

SCNN-SVM 100

Table 11 Wilcoxon
rank-sum of the
QLESCA against other
optimizers (P < 0.05)

Model p-value

SCA-SCNN-SVM 0.8200

MSCA-SCNN-SVM 0.0060

OBSCA-SCNN-SVM 0.0005

SCADE-SCNN-SVM 0.0002

AOA-SCNN-SVM 0.0130

HOA-SCNN-SVM 0.3840

AVOA-SCNN-SVM 0.0210

FFA-SCNN-SVM 0.0030

GTO-SCNN-SVM 0.0410

Table 12 The experimental results of QLESCA-SCNN-SVM achieved on other datasets

TP TN FP FN Accuracy
(%)

Precision
(%)

Specificity
(%)

Sensitivity / Recall
(%)

F1-score
(%)

Dataset 2 560 1563 20 40 97.2515 96.5517 98.7366 93.3333 94.9153

Dataset 3 1202 3227 43 79 97.3193 96.5462 98.6850 93.8329 95.1702

Dataset 4 1545 1781 21 81 97.0245 98.6590 98.8346 95.0185 96.8045

Dataset 5 739 426 5 26 97.4080 99.3280 98.8399 96.6013 97.9457
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6 Conclusions and future works

This study developed a framework to detect COVID-19 cases
from chest X-ray images. The proposed framework depends on
a combination of the shallow VGG19 model and a
metaheuristic optimization algorithm. A shallow VGG19 was
used to extract the features. By contrast, a recent optimization
algorithm named Q-Learning Embedded Sine Cosine
Algorithm (QLESCA) was used for feature selection. An effi-
cient fitness equation has been proposed that ensures the bal-
ance between the overall accuracy of the model and the number
of selected features. The QLESCA was compared to nine re-
cent optimization algorithms, and the results of the comparison
demonstrated the superior performance of the proposedmethod
based on theQLESCA over the other comparative optimization
algorithms, with an accuracy of 97.8086% and a reduction in
the number of features from 100 to 38. For additional evalua-
tion, four recent datasets were used to evaluate the selected

features by the QLESCA, and both of them achieved a high
degree of accuracy of greater than 97%.

In future work, we intend to: 1) test our model on other
medical image datasets such as breast cancer, skin cancer, and
so on; 2) due to the model’s lighter weight, we intend to
deploy it on IoT devices, mobile phones, and drones that
farmers can use to detect diseased crops early and prevent
the disease’s spread; and 3) the same methodology can be
used to investigate other types of pre-trained CNNs such as
GoogleNet, ResNet, DenseNet, and so on.
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