
Feature Selection using Compact Discernibility Matrix-based

Approach in Dynamic Incomplete Decision System

According to whether the systems vary over time, the decision systems can be di-

vided into two categories: static decision systems and dynamic decision systems.

Most existing feature selection work is done for the former, few work has been

developed recently for the latter. To the best of our knowledge, when an object set

varies dynamically in incomplete decision systems, no feature selection approach

has been specially designed to select feature subset until now. In this regard, a fea-

ture selection algorithm based on compact discernibility matrix is developed. The

compact discernibility matrix is firstly introduced, which not only avoids comput-

ing the time-consuming lower approximation, but also saves more storage space

than classical discernibility matrix. Afterwards, we take the change of lower ap-

proximation as a springboard to incrementally update the compact discernibility

matrix. On the basis of updated compact discernibility matrix, an efficient fea-

ture selection algorithm is provided to compute a new feature subset, instead of

retaining the discernibility matrix from scratch to find a new feature subset. The

efficiency and effectiveness of the proposed algorithm are demonstrated by the ex-

perimental results on different data sets.

Keywords: Feature selection, Lower approximation, Dynamic incomplete

decision system, Compact discernibility matrix, Rough sets

Feature selection is necessary involved data sets containing huge numbers of

features in pattern recognition, data mining and machine learning [9, 27, 31]. Ex-

cessive irrelevant features to knowledge discovery tasks may lead to increase the

processing time and deteriorate the classification performance [3, 4, 20]. The selec-

tion of relevant and significance features is an essential preprocessing step particu-

larly for data sets with thousands of features. As we known, feature selection is an

important task to acquire compact decision rules before decision-making analysis.

Many feature selection methods have been proposed. They can be roughly divided

into two categories: wrapper [27] and filter [36] approaches. The wrapper methods
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employ a learning algorithm to evaluate the goodness of selected feature subsets

based on the predictive accuracy. However, the filter methods are independent

of learning algorithms to evaluate the significance of features. Rough set-based

feature selection does not need any preliminary or additional information about

data such as probability distributions in statistics, basic probability assignments in

Dempster-Shafer theory [34], or a grade of membership in fuzzy set theory [28,

33]. Rough sets proposed by Pawlak [5, 6] provides a theoretical foundation for

data analysis, which has been widely applied in many areas such as artificial intel-

ligence and knowledge acquisition [7-11]. The objective of feature selection is to

select a minimal feature subset that can provide the same information for classifi-

cation as the full original set of available features.

Regarding feature selection, a great number of techniques have been designed

in the framework of rough set theory until now. The techniques can be roughly

divided into three groups: positive region [30], information entropy [24, 25, 32]

and discernibility matrix [2, 6, 22, 23]. Pawlak’s classical feature selection is in-

tended to apply in complete decision systems. However, due to various factors

such as noise in the data, lack of critical information and prediction capability,

some missing values are possibly occurred in an object on some condition fea-

tures. Such decision systems are regarded as incomplete decision systems (IDSs),

in which any missing feature value is represented by special symbol “*”. In fact,

we are often faced with the IDSs in many practical applications [1, 12, 14, 19].

There is no guarantee for classical feature selection to preserve useful in the IDSs.

The key reason is that the equivalence relation in complete decision systems is

not applicable to the IDSs. From the viewpoint of information theory, Qian et al.

developed a combination entropy-based feature selection algorithm to select a fea-

ture subset [26]. Luo and Yang presented a limited dominance-based knowledge

reduction approach [18]. Meng et al. proposed a positive region-based feature

selection algorithm [15]. Kryszkiewicz proposed one of the pioneering work em-

ployed discernibility matrix in incomplete decision systems, all the feature subsets

can be derived from the constructed discernibility function [1]. Later, Leung and

Li provided a maximal consistent block technique to create a simpler discernibil-

ity function, and acquired the rules from consistent incomplete decision systems

[12]. Qian et al. applied the maximal consistent block technique to construct two

discernibility matrices for lower and upper approximation feature selection in in-

complete decision systems [19]. Among these feature selection algorithms based

on discernibility matrix, they are intuitive and concise. However, numbers of empty

matrix elements appear in the discernibility matrix may lead to waste in both the

storage space and the computational time. To overcome the deficiency, a compact

discernibility matrix is constructed in this paper. On the basis of the above anal-

yses, all the feature selection algorithms focus on the static incomplete decision
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systems.

As to dynamic characteristics of data collection, the feature set, object set and

feature values in decision systems all evolve over time. With respect to dynamic

decision systems, incremental learning approach has been demonstrated to be ef-

fective and efficient, which can avoid some redundant computations. When an ob-

ject set adds into or deletes from complete decision systems, Xu et al. designed an

incremental feature selection algorithm based on integer programming to find the

new feature subset [13]. When a single object adds into or deletes from a complete

decision system, Yang et al. developed an incremental feature selection algorithm

based on improved discernibility matrix [17]. However, there are many empty el-

ements in the matrix, which occupy much storage space and computational time.

Shu and Shen developed an efficient updated feature selection algorithm for incom-

plete decision systems with dynamically varying feature set [40]. When a single

object adds into or deletes from complete decision systems, Hu et al. designed an

incremental feature selection algorithm to find a new feature subset [21]. However,

the algorithm can not simply transplant to incomplete decision systems. In addi-

tion, when an objects set adds into or deletes from complete decision systems, Liu

et al. developed an incremental model and approach as well as its algorithm for

inducing interesting knowledge [16]. Wang et al. developed an incremental feature

selection algorithm for complete decision systems with dynamically varying data

values [41]. Different from above algorithms, we discuss the feature selection work

employed a tolerance relation in incomplete decision systems with the variation of

an object set.

Among various heuristic feature selection algorithms, the lower approximation-

based feature selection algorithm has been extensively researched in rough set the-

ory. One can extract knowledge hidden in data that represented as certain rules.

The key work of lower approximation-based feature selection algorithm is to com-

pute the tolerance classes in incomplete decision systems. A classical algorithm

for calculating the tolerance classes with the time complexity of O(|C||U |2) [1],

where |C| and |U | denotes the number of features and objects, respectively. Using

this computation of tolerance classes, the lower approximation-based feature se-

lection algorithm [26, 33] costs no less than O(|C|3|U |2) to find a feature subset.

To avoid this not computationally costless work, we consider an equivalent method

based on discernibility matrix to compute a feature subset in incomplete decision

systems. Different from the classical discernibility matrices with the storage space

of O(|C||U |2)[2, 6, 22, 23], here we propose a compact discernibility matrix, in

which only non-empty matrix elements that appear in the matrix are captured. In

this way, both storage space and computational time are saved to complete the fea-

ture selection tasks. On the basis of compact discernibility matrix, we just update

the matrix incrementally to compute a new feature subset in a dynamic incomplete
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decision system, which is more efficient than retraining the compact discernibility

matrix from scratch.

The remainder of this paper is organized as follows. In Section 2, we review

some basic concepts and relevant definitions involved in this paper. In Section 3,

some theoretical foundations are provided to associate an equivalent feature selec-

tion approach based on compact discernibility matrix. In Section 4, we firstly take

the change of lower approximation as a springboard to incrementally update the

compact discernibility matrix, then an efficient feature selection algorithm is de-

veloped. Experiments are presented to validate the efficiency and effectiveness of

the proposed algorithm in Section 5. Section 6 concludes the paper.

In this section, some basic concepts and relevant definitions in this paper are

briefly reviewed, which make preparations for further discussions.

2.1. Basic concepts

An information system is expressed as a quadruple IS = (U,A,V, f ), where,

(1) U is a non-empty finite set of objects, called the universe of course;

(2) A is a non-empty finite set of features;

(3) V is the union of feature domains, V =
⋃

a∈AVa , where Va is the value set

of feature a, indicating the domain of a;

(4) f : U ×A→ V is an information function which assigns particular values

from objects to domains of feature such as ∀a ∈ A, x ∈ U, f (x,a) ∈ Va, where

f (x,a) denotes the value of feature a for object x.

For any feature subset P⊆ A, P determines a binary relation on U , denoted by

IND(P), which is defined as follows: IND(P) = {(x,y) ∈U×U |∀a ∈ P, f (x,a) =
f (y,a)}. It can be easily known that IND(P) is an equivalence relation and it con-

structs a partition of U , denoted by U/IND(P). The equivalence class containing

x is denoted by [x]P = {y|(x,y) ∈ IND(P)}.
If there exist x ∈U and a ∈ A such that f (x,a) equals to a missing value (a null

of unknown value, denoted as “ * ”), which means for at least one feature a ∈ A ,

∗ ∈ Va. Then the information system is called an incomplete information system

(IIS). Otherwise, it is called a complete information system (CIS).

A decision system (DS) is expressed as DS = (U,C∪D,V, f ), where,

(1) C and D denote the set of condition features and the set of decision features,

respectively, C∩D =∅;

(2) V is the union of feature domain, V =VC ∪VD = {Va|a ∈C}
⋃

{Vd |d ∈ D}.
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If ∗ /∈ VD, but ∗ ∈ VC, then the decision system is called an incomplete de-

cision system (IDS). If ∗ /∈ VC and ∗ /∈ VD, then it is called a complete decision

system(CDS).

Given an incomplete information system IIS = (U,A,V, f ), for any subset of

features P ⊆ A, P determines a binary relation T R(P) on U as follows: T R(P) =
{(x,y)| f (x,a) = f (y,a) or f (x,a) = ∗ or f (y,a) = ∗, for ∀a ∈ P and x,y ∈U}. It

is easily known that T R(P) is reflexive, symmetric and intransitive. Obviously,

it is a tolerance relation. For any object x ∈ U , T R(P) determines the maximal

set of objects that are possibly indistinguishable to x with respect to P, which is

denoted by SP(x). Equivalently, SP(x) = {y|(x,y)∈ T R(P),y∈U}. And U/T R(P)
denote the family set {SP(x)|x ∈U}, which is the classification induced by P. Any

element from U/T R(P) will be called a tolerance class. Clearly, the tolerance

classes of all the objects from U do not constitute a partition. They form a cover

of U , i.e., SP(x) 6= Ø for every x ∈U , and
⋃

x∈U SP(x) =U . And for X ∈U/T R(P)
is consistent iff all the objects in X have the same decision value; otherwise, X is

inconsistent.

Given any subset of features P ⊆ A and subset X ⊆ U , the lower and upper

approximations of X in terms of tolerance relation T R(P) are defined as

aprPX = {x ∈U |SP(x)⊆ X}

and

aprPX = {x ∈U |SP(x)∩X 6= φ}.

The lower approximation is called the positive region, that is POSP(X) =
aprPX . The objects in aprPX belong to X certainly.

Let IDS = (U,C ∪D,V, f ) be an incomplete decision system and P ⊆ C ,

the objects are partitioned into r mutually exclusion crisp subsets U/IND(D) =
{D1,D2, · · · ,Dr} by the decision features D. The lower and upper approximations

with respect to P of the decision features D are defined as

aprPD = {aprP(D1),aprP(D2), · · · ,aprP(Dr)}

and

aprPD = {aprP(D1),aprP(D2), · · · ,aprP(Dr)}.

Denoted by POSP(D) =
⋃r

i=1 aprP(Di), which is called the positive region of

D with respect to the condition feature set P in the IDS.
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2.2. Feature selection in incomplete decision systems

Using tolerance relation, two definitions of feature selection in incomplete de-

cision systems are shown as follows.

Definition 1. Given an incomplete decision system IDS = (U,C∪D,V, f ), for P⊆
C . P is a selected feature subset in the incomplete decision system iff POSP(D) =
POSC(D) and POSP

′ (D) 6= POSC(D) for any P
′
⊂ P.

This definition keeps the lower approximation of target decision unchanged.

The first one ensures that lower approximation of target decisions is preserved by a

selected feature subset. Therefore, the feature subset is sufficient for preserving the

positive region of target decisions. The second condition ensures that the selected

feature subset is the minimum, i.e., each feature in the feature subset is necessary.

To bypass the time-consuming computations of positive region, we consider

constructing a discernibility matrix to complete feature selection tasks. Because

a large number of empty elements that appear in the matrix could result in mas-

sive cost to both storage space and computational time. Therefore, we construct a

compact discernibility matrix of the incomplete decision system as follows.

Definition 2. Given an incomplete decision system IDS = (U,C ∪D,V, f ), and

U/IND(D) = {D1,D2, · · · ,Dr}, the compact discernibility matrix M consists of

r−1 sub-discernibility matrices, a matrix element m(i, j) of each sub-discernibility

matrix is defined as follows.

m(i, j) =











{a ∈C : f (xi,a) 6= f (x j,a)∧ f (xi,a) 6= ∗∧ f (x j,a) 6= ∗},

when xi ∈ Dv∧ x j ∈ Dw,1≤ v < w≤ r,

/O else.

The matrix element m(i, j) means that the objects xi and x j can be discerned by

any feature in m(i, j). Obviously, only the objects xi and x j that belong to different

decision classes need to be discerned. For each sub-discernibility matrix, only

the non-empty matrix elements are captured, rather than all elements with space

complexity of O(|C||U |2) in the classical discernibility matrix [2, 6, 22], which

save much storage space of matrix. Based on the compact discernibility matrix,

the definition of feature selection is defined as follows.

Definition 3. Given an incomplete decision system IDS = (U,C∪D,V, f ), a com-

pact discernibility matrix M is constructed by Definition 2, for ∀P ⊆ C. P is a

selected feature subset in the incomplete decision system iff ∀(xi,x j) ∈ U ×U,
φ 6= m(i, j) ∈ M, such that P∩m(i, j) 6= φ ; and for ∀a ∈ P, ∃(xi,x j) ∈ U ×U ,

P′ = P−{a}, such that P′∩m(i, j) = φ .
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The first condition indicates that the feature subset P is sufficient to preserve

the classification ability which is identical to that of the whole feature set C. The

second condition means that each feature in P is individually indispensable for

preserving the classification power.

In this section, to avoid computing the time-consuming lower approximation-

based feature selection in incomplete decision systems, we firstly provide some

theoretical foundations to associate an equivalent feature selection based on the

compact discernibility matrix. To further reduce the computational time, two el-

ementary matrix operations are then given on the compact discernibility matrix

before selecting a feature subset.

Lemma 1. Given an incomplete decision system IDS = (U,C∪D,V, f ), a com-

pact discernibility matrix M is constructed by Definition 2, and U/IND(D) =
{D1,D2, · · · ,Dr}, for ∀P ⊆ C, if ∀φ 6= m(i, j), such that P ∩m(i, j) 6= φ , then

POSP(D) = POSC(D).

Proof. Suppose POSP(D) 6= POSC(D), there at least exists xi ∈ POSC(D) such

that SC(xi) ⊆ Di(1 ≤ i ≤ r) and SP(xi) * Di. Because SP(xi) * Di, it is obvious

that there is x j ∈ SP(xi) such that f (xi,D) 6= f (x j,D). And because SC(xi) ⊆ Di

and xi ∈ POSC(D), there exists feature ck ∈C−P such that f (xi,ck) 6= f (x j,ck)∧
f (xi,ck) 6= ∗∧ f (x j,ck) 6= ∗, according to the definition of compact discernibility

matrix, it holds that ck ∈ m(i, j)⇒ m(i, j) 6= φ . Thus there is P∩m(i, j) = φ ,

which contradicts with the above condition P∩m(i, j) 6= φ , so the hypothesis does

not hold. Therefore, we have POSP(D) = POSC(D).

Lemma 2. Given an incomplete decision system IDS = (U,C∪D,V, f ), the corre-

sponding discernibility matrix M is constructed by Definition 2, and U/IND(D) =
{D1,D2, · · · ,Dr}, for ∀P ⊆ C, if POSP(D) = POSC(D), then ∀φ 6= m(i, j), P∩
m(i, j) 6= φ holds.

Proof. For ∀P ⊆C, suppose there exists ∀φ 6= m(i, j), P∩m(i, j) = φ holds, then

there at least exists one feature ck ∈C∧ck /∈ P such that ck ∈m(i, j). According to

the definition of compact discernibility matrix, it is obvious that x j ∈ SP(xi). And

because xi,x j ∈ POSC(D) and ck ∈ m(i, j), it holds that f (xi,D) 6= f (x j,D). Thus

there are x j ∈ SP(xi)∧ f (xi,D) 6= f (x j,D), it is obvious that SP(xi)* Di(1≤ i≤ r),
i.e., xi /∈ POSP(D). Due to xi ∈ POSC(D), thus POSP(D) 6= POSC(D) holds, which

contradicts with the above condition POSP(D) = POSC(D), so the hypothesis does

not hold. Therefore, we have ∀φ 6= m(i, j), P∩m(i, j) 6= φ .
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From the above two lemmas, we easily get the following theorem to prove

the relationships between the compact discernibility matrix-based feature selection

and the lower approximation-based feature selection.

Theorem 1. The feature subset obtained by Definition 3 is equivalent to the feature

subset obtained by Definition 1.

Proof. It follows directly from Lemmas 1 and 2.

Theorem 1 shows that the same results of feature subsets holds for compact

discernibility matrix-based feature selection and lower approximation-based fea-

ture selection. The advantages of this equivalent relationship are as follows: one is

to avoid computing the time-consuming lower approximation, the other is to take

the change of lower approximation as a springboard to incrementally update the

compact discernibility matrix in dynamic incomplete decision systems. To further

reduce the computational time, two elementary matrix operations are given on the

compact discernibility matrix before selecting a feature subset as follows.

Proposition 1. Given an incomplete decision system IDS = (U,C∪D,V, f ), M is

the compact discernibility matrix of IDS, for ∀m(i, j) 6= φ , if the matrix element is

a singleton feature, then it should be reserved in the matrix M.

Proof. For ∀m(i, j) 6= φ , by the definition of compact discernibility matrix, it means

that there are at least one condition features can be used to discern the objects xi

and x j. If the matrix element is a singleton feature, it means that there is only

one condition feature used to discern the pair of objects (xi,x j), i.e., the condition

feature is indispensable. Therefore, it should be reserved in the matrix M.

Proposition 2. Given an incomplete decision system IDS = (U,C∪D,V, f ), M is

the compact discernibility matrix of IDS, for ∀m(i, j) 6= φ , if there exists another

matrix element P, such that φ 6= P ⊂ m(i, j), then the matrix element m(i, j) is

absorbed by P.

Proof. For φ 6= P ⊂ m(i, j), by this assumption, the pair of objects (xi,x j) can be

discerned by the matrix element P = P∩m(i, j). There are two cases for matrix

element P. If the matrix element P is a singleton feature, from Proposition 1, it

follows that the element P should be reserved in the matrix M. This means that the

matrix element m(i, j) is absorbed by P. If the matrix element P is not a singleton

feature, suppose the pair of objects (xi,x j) can be discerned by one feature from P,

since P ⊂ m(i, j), consequently, the same feature from m(i, j) can also be used to

discern the pair of objects (xi,x j), which means other features from m(i, j)−P do

not need to be considered. Thus it also follows that the matrix element m(i, j) is

absorbed by P. This completes the proof.
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To improve the computational efficiency of compact discernibility matrix-based

feature selection algorithm, the two above elementary matrix operations may be

considered simultaneously. Proposition 1 indicates a singleton feature must con-

tain in the selected feature subset. Proposition 2 denotes the matrix elements that

are supersets of a feature subset can be deleted.

When an object set immigrates into the incomplete decision system, if recon-

structing compact discernibility matrix to compute a new feature subset, it is often

time consuming. To overcome this shortcoming, an efficient updated feature se-

lection algorithm is provided to compute new feature subset by only renewing the

discernibility matrix in an incremental manner. We first take the change of lower

approximation as a springboard to judge whether renewing the original compact

discernibility matrix as follows.

4.1. Updating scheme for renewing the compact discernibility matrix

Given an incomplete decision system IDS = (U,C∪D,V, f ), where U = {x1,x2

, . . . ,xm}, U/T R(C)= {SC(x1), SC(x2), . . . ,SC(xm)} and U/ IND(D)= {D1,D2, . . . ,
Dr}, suppose the original feature subset is P, original lower approximation is

POSU
C (D) and original lower approximation under P is POSU

P (D). If a new ob-

ject immigrates into the system, the universe U becomes U ′ =U ∪{x}. There are

four cases with regard to a new immigration as follows.

Case 1. Forming a new tolerance class and a new decision class.

In this case, U ′/T R(C) = {SC(x1),SC(x2), . . . ,SC(xm),SC(x)}, where SC(x) =
{x}. In addition, U ′/IND(D) = {D1,D2, . . . ,Dr,Dr+1}, where Dr+1 = {x}. Obvi-

ously, it follows that SC(x)⊆ Dr+1, thus POSU ′

C (D) = POSU
C (D)∪{x}.

Proposition 3. (1) If |SC(x)|= 1∧|Dr+1|= 1∧|SP(x)|= 1, then P is also the new

feature subset of the changed incomplete decision system.

(2) If |SC(x)|= 1∧|Dr+1|= 1∧|SP(x)|> 1, then P is not the new feature subset

of changed incomplete decision system.

Proof. (1) Since |SP(x)|= 1 and SC(x)⊆Dr+1, it follows that SP(x)⊆Dr+1. Thus

there is POSU ′

P (D) = POSU
P (D)∪{x}. Because POSU ′

C (D) = POSU
C (D)∪{x}, and

P is the original feature subset, POSU
P (D) = POSU

C (D). Therefore, POSU ′

P (D) =
POSU ′

C (D) holds. By Definition 1, it is necessary to further prove that POSU ′

P′ (D)(D) 6=

POSU ′

P (D) for any P′ ⊂ P. Because P is the original feature subset, POSU
P′(D) 6=

POSU
P (D) for any P′ ⊂ P. Since P′ ⊂ P , it follows that POSU

P′(D)⊂ POSU
P (D), and
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there is POSU ′

P′ (D) ⊆ POSU
P′(D)∪{x}. Therefore, POSU ′

P′ (D) ⊂ POSU
P (D)∪{x} =

POSU ′

P (D), so POSU ′

P′ (D) 6= POSU ′

P (D) holds for any P′ ⊂ P. Therefore, P is also

the new feature subset of the changed incomplete decision system. (2) Since

|SP(x)| > 1, there are more than one objects in SP(x) form tolerance relation with

the new object x under P. Because the tolerance relation is symmetric, it holds that

S′P(xi) = SP(xi)∪{x}. Since Dr+1 = {x}, both SP(x)* Dr+1 and SP(xi)* Dk(1≤
k ≤ r + 1) hold, where S′P(xi) is a changed tolerance class. Thus it follows that

POSU ′

P (D) = POSU
P (D)−SP(x), but we have that POSU ′

C (D) = POSU
C (D)∪{x} and

POSU
P (D) = POSU

C (D), this proves that POSU ′

P (D) 6= POSU ′

C (D). Therefore, P is

not the new feature subset of the changed incomplete decision system.

For situation (1), we do not need to update the original compact discernibility

matrix, just keep the original feature subset unchanged. However, for situation (2),

we need to update the original discernibility matrix in an incremental manner to

compute a new feature subset. The new compact discernibility matrix composed

of r sub-discernibility matrices is constructed as follows: for r− 1 original sub-

discernibility matrices, we just add the new object x to the last column of each

original sub-discernibility matrix, and modify the corresponding row; for other

matrix elements, we keep them unchanged; and a new sub-discernibility matrix is

generated between the new object x and the objects in the last decision class.

Case 2. Only forming a new tolerance class

In this case, U ′/T R(C) = {SC(x1), SC(x2), . . . ,SC(xm),SC(x)}, where SC(x) =
{x}. In addition, U ′/IND(D)= {D1,D2, . . . ,D

′
j, . . . ,Dr}, where D′j =D j∪{x}(1≤

j ≤ r). Obviously, it follows that SC(x)⊆ D′j, thus POSU ′

C (D) = POSU
C (D)∪{x}.

Proposition 4. (1) If |SC(x)| = 1∧SP(x) ⊆ Dk(1 ≤ k ≤ r), then P is also the new

feature subset of the changed incomplete decision system.

(2) If |SC(x)|= 1∧SP(x)* Dk(1≤ k≤ r), then P is not the new feature subset

of the changed incomplete decision system.

Proof. (1) Since SP(x) ⊆ Dk, it follows that POSU ′

P (D) = POSU
P (D)∪ {x}. Be-

cause POSU ′

C (D) = POSU
C (D)∪{x}, and P is the original feature subset, there is

POSU
P (D) = POSU

C (D), so POSU ′

P (D) = POSU ′

C (D) holds. By Definition 1, it is

necessary to further prove that POSU ′

P′ (D) 6= POSU ′

P (D) for any P′ ⊂ P, similarly,

this proof is similar as situation (1) of Proposition 3. Therefore, P is also the

new feature subset of the changed incomplete decision system. (2) Since SP(x) *
Dk(1 ≤ k ≤ r), which means there exists at least one object xi(1 ≤ i ≤ m) form

tolerance relation with the new object x (otherwise SP(x)⊆Dk). Because the toler-

ance relation is symmetric, there is S′P(xi) = SP(xi)∪{x}(1≤ i≤m), it also follows

that S′P(xi)* Dk(1≤ k≤ n), where S′P(xi) is a changed tolerance class. Clearly, all

of the objects with changed tolerance classes are in SP(x), this means that it holds

10



that POSU ′

P (D) = POSU ′

P (D)− SP(x). Because P is the original feature subset, it

holds that POSU
P (D) = POSU

C (D), and there is POSU ′

C (D) = POSU
C (D)∪{x}, thus

it follows that POSU ′

P (D) 6= POSU ′

C (D). Therefore, P is not the new feature subset

of changed incomplete decision system.

By the same way, for situation (1), we do not need to update the original com-

pact discernibility matrix. However, for situation (2), we need to update the origi-

nal matrix in an incremental manner. The new compact discernibility matrix M′ is

constructed as follows: for each original sub-discernibility matrix, the new object

x is added to the decision classes with the same decision value, and modify the

corresponding row; for other matrix elements, we keep them unchanged.

Case 3. Only forming a new decision class

In this case, U ′/T R(C)= {SC(x1), SC(x2), . . . ,S
′
C(xi), . . . ,SC(xm),SC(x)}, where

for any changed tolerance class S′C(xi)(1 ≤ i ≤ m), if x ∈ SC(xi), then S′C(xi) =
SC(xi)∪ {x}, and because the tolerance relation is symmetric, there is SC(x) =
SC(x)∪ {xi}. In addition, U ′/IND(D) = {D1,D2, . . . ,Dr,Dr+1}, where Dr+1 =
{x}. Obviously, both SC(x)* Dr+1 and S′C(xi)* Dk(1≤ k≤ r+1) holds. Clearly,

all of the objects with changed tolerance classes are in SC(x), thus POSU ′

C (D) =
POSU

C (D)−SC(x).

Proposition 5. If |SC(x)| > 1∧ |Dr+1| = 1, P is also the new feature subset of the

changed incomplete decision system.

Proof. Since SC(x) * Dr+1, S′C(xi) * Dk(1 ≤ i ≤ m,1 ≤ k ≤ r + 1), and P ⊆ C,

according to the partial relation, both SP(x) * Dr+1 and SP(xi) * Dk hold when a

new object x immigrates into the system. Clearly, all these objects are in the new

tolerance class SP(x), it follows that POSU ′

P (D) = POSU
P (D)− SP(x). In addition,

because P is the original feature subset, it follows that POSU
P (D) = POSU

C (D), and

there is POSU ′

C (D) = POSU
C (D)−SC(x), thus it holds that POSU ′

P (D) = POSU ′

C (D).
By Definition 1, it is necessary only to prove that POSU ′

P′ (D) 6= POSU ′

P (D) for

any P′ ⊂ P. Since P is the original feature subset, it follows that POSU
P′(D) 6=

POSU
P (D) for any P′ ⊂ P, by the partial relation, there is POSU

P′(D) ⊂ POSU
P (D),

thus it follows that (POSU
P′(D)−SC(x)) ⊂ (POSU

P (D)−SC(x)). Because there are

POSU
P′(D)−SC(x) = POSU ′

P′ (D) and POSU
P (D)−SC(x) = POSU ′

P (D), we can easily

obtain that POSU ′

P′ (D) ⊂ POSU ′

P (D), thus POSU ′

P′ (D) 6= POSU ′

P (D). Therefore, P is

also the new feature subset of the changed incomplete decision system.

Case 4. Neither generating a new tolerance class nor a new decision class

In this case, U ′/T R(C) = {SC(x1),SC(x2), . . . ,S
′
C(xi), . . . ,SC(xm),SC(x)}, for

any changed tolerance class SC(x
′
i)(1≤ i≤m), if x∈ SC(xi), then S′C(xi) = SC(xi)∪

{x}, and because the tolerance relation is symmetric, there is SC(x) = SC(x)∪{xi}.

11



In addition, U ′/IND(D) = {D1,D2, . . . ,D
′
j, . . . ,Dr}, where D′j = D j∪{x}(1≤ j≤

r). Here two situations may occur: a new object x is consistent with the set of

original objects; a new object x is inconsistent with the set of original objects. For

the first situation, it follows that POSU ′

C (D) = POSU
C (D)∪ {x}. For the second

situation, it follows that POSU ′

C (D) = POSU
C (D)−{xp ∈ SC(x)||S

′
C(xp)/D| 6= 1}.

Proposition 6. If |SC(x)| > 1, P is also the new feature subset of the changed

incomplete decision system.

Proof. If a new object x is consistent with the set of original objects, then x forms

tolerance relation with more than one objects. Because P is the original feature

subset, it holds that POSU
P (D) = POSU

C (D). In addition, since P ⊆ C, there is

POSU ′

P (D) = POSU
P (D)∪{x}, thus it follows that POSU ′

P (D) = POSU ′

C (D). By Def-

inition 1, it is necessary only to prove that POSU ′

P′ (D) 6= POSU ′

P (D) for any P′ ⊂ P,

similarly, this proof is the same as situation (1) in Proposition 3. If a new object

x is inconsistent with the original objects, since P ⊆ C, by the partial relation, it

holds that POSU ′

P (D) = POSU
P (D)−SC(x), thus there is POSU ′

P (D) = POSU ′

C (D). It

is necessary only to prove that POSU ′

P′ (D) 6= POSU ′

P (D) for any P′ ⊂ P, similarly,

this proof is the same as the proof in Proposition 5. As all analyzed above, P is

also the new feature subset of the changed incomplete decision system.

4.2. An efficient updated feature selection algorithm in dynamic incomplete deci-

sion systems

Based on the above considerations, we develop an efficient updated feature

selection algorithm to compute a new feature subset in a dynamically-increasing

incomplete decision system as follows.

12



Algorithm 1 An efficient feature selection algorithm based on the updated

compact discernibility matrix (Algorithm FSUM)

Input: An incomplete decision system IDS = (U,C∪D,V, f ), the original feature subset

Red and discernibility matrix M , a new object x ;

Output: A new feature subset Red′;

Begin

1. Initialize P← Red, U ′←U ∪{x};

2. Compute the tolerance classes U/T R(C) = {SC(x1),SC(x2), . . . ,SC(xm)} and the de-

cision classes U/IND(D) = {D1,D2, . . . ,Dr};

3. If x /∈ SC(xi)(1≤ i≤ m) then

4. if x /∈D j(1≤ j ≤ r) and |SP(x)|= 1 then turn to Step 21; // According to Propo-

sition 3

5. else turn to Step 10;

6. if x ∈D j(1≤ j≤ r) and SP(x)⊆Dk, then turn to Step 21; // According to Propo-

sition 4

7. else turn to Step 10;

8. Else //x ∈ SC(xi)

9. turn to Step 21; // According to Proposition 5 and Proposition 6

10. Calculate the updated discernibility matrix M′ incrementally; //According to dis-

cernibility matrix M

11. For ∀p ∈ P, if ∃p ∈ m′(v,w) then //m′(v,w) is a new matrix element in M′

12. delete all the new matrix elements that contain feature p ;

13. If (c ∈ m′(v,w)∧|c|= 1) then

14. let P = P∪{c}, and delete all the new matrix elements that contain feature c; //

According to Propositions 1 and 2

15. While (M′ 6= φ) do

16. ∀b ∈C−P, let b.count=0; // b.count denotes the frequency of feature b

17. calculate the frequency of each feature b.count;

18. select b
′
= maxb∈C−P{b.count}, and let P = P∪{b

′
};

19. delete all the new matrix elements that contain feature b
′
;

20. End while

21. Red
′
← P, return Red

′
.

End

The main framework of Algorithm FSUM is as follows: Step 2 is to compute

the tolerance classes and decision classes, the time complexity is O(|U |2|C|); Step

3-9 are to judge a new object x belongs to which case, the time complexity is

O(|U ||C|); Step 10 is to update the discernibility matrix, the time complexity is

O(|U ||C|); Step 11-12 are to delete the new matrix elements contained the features
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in P, the time complexity is O(|U ||C||P|); Step 13-14 are to add new singleton

feature into the original feature subset by only scanning the new generated matrix

elements, the time complexity is O(|U |); Step 15-20 are to add a feature of the

highest frequency from the existing features into the original feature subset, the

time complexity is O(|U ||C− P|2). This procedure is repeated until each new

generated matrix element in M′ is empty. Therefore, the total time complexity

of Algorithm FSUM is O(|U |2|C|).
To stress above findings, we compare the time complexities of feature selec-

tion algorithms to find a new feature subset in a dynamic incomplete decision sys-

tem shown as Table 1. For convenience, we denote the classical discernibility

matrix-based feature selection algorithms from [2, 6, 24] to retrain such system

as new one to compute a new feature subset as Algorithm FSCM, and the lower

approximation-based feature selection algorithm of greedy and forward [28, 35]

as Algorithm FSLA. Note that |U | and |C| denote the cardinalities of objects and

condition features in the incomplete decision system, respectively.

Table 1. Comparison of complexities description

Algorithms Computing a new feature subset

FSUM O(|U |2|C|)
FSCM O(|U |2|C|2)
FSLA O(|U |2|C|3)

From Table 1, we can see that the time complexity of Algorithm FSUM is

lower than that of Algorithms FSCM and FSLA for feature selection, especial for

microarray gene expression incomplete data sets, the number of gene features is

usually larger than the number of objects, i.e., |C| ≫ |U |. For this comparison, it

is obvious that Algorithm FSUM is more efficient to find a new feature subset in

dynamic incomplete decision systems.

From the aspect of storage spaces between the compact discernibility matrix

and the classical discernibility matrix, the compact discernibility matrix only cap-

tures the non-empty matrix elements rather than all elements, thus the storage space

of constructing the compact matrix is O(|C|(|U |2−∑
r
i=1 |Di|

2)). However, the clas-

sical discernibility matrix is constructed as follows: the total numbers of rows and

columns are both |U |, each matrix element m(i, j) of the matrix corresponding to

objects xi and x j includes the conditional features in which the feature values of

two objects can discern. Thus the storage space of constructing the classical ma-

trix is O(|C||U |2) . Therefore, using the compact discernibility matrix, the search

space is greatly compressed and the computational load is reduced in feature selec-

tion tasks, especially for the incomplete decision systems with imbalance decision

classes.

14



The objective of the following experiments is to show the efficiency and effec-

tiveness of the proposed feature selection algorithm for selecting a feature subset.

Data sets used in the experiments are outlined in Table 2, which are downloaded

from UCI Machine Learning Repository [29]. For the data sets with missing val-

ues, the missing values of which are represented by the set of all possible values of

each attribute. For the artificial dataset, the feature values of which are generated

randomly from 0 to 9. All the experiments are conducted on a PC with Windows 7,

Intel (R) Core(TM) Duo CPU 2.93 GHz and 4GB memory. Algorithms are coded

in C++ and the software being used is Microsoft Visual 2008.

In the following, there are three objectives to conduct the experiments. One

is to show the feasibility of compact discernibility matrix. The other is to test the

computational efficiency of the proposed feature selection algorithm to find a new

feature subset. Another is to evaluate the classification performance of selected

feature subsets from feature selection phase.

Table 2: The detailed information of the data sets used in the comparison

ID Data sets Samples Features Classes

1 Lung Cancer 32 56 3

2 Hepatitis 155 19 2

3 Soybean-large 307 35 19

4 Voting Records 435 16 2

5 Breast Cancer Wisconsin 699 10 2

6 Mushroom 8124 22 2

7 Aritificial Dataset 1000 5000 10

5.1. Feasibility of compact discernibility matrix

In this subsection, we will show the feasibility of the proposed compact dis-

cernibility matrix in feature selection tasks. For each data set shown in Table 2,

Algorithms FSCM, FSUM and FSLA mentioned in Section 4.2 are employed to

find new feature subsets, respectively. A comparative study in terms of feature

subset size and running time is executed on the seven data sets. Note that the main

difference between Algorithms FSCM and FSUM is the construction of discerni-

bility matrix. Table 3 compares the subset size and running time for Algorithms

FSCM, FSUM and FSLA.
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Table 3. Comparison of feature subset size and running time

Feature Subset Size Running Time(s)

ID FSUM FSLA FSCM FSUM FSLA FSCM

1 4 4 4 4.315 9.506 7.248

2 7 7 7 6.487 21.242 15.183

3 13 12 13 17.520 40.038 28.915

4 9 9 9 7.729 18.641 13.704

5 4 4 4 9.510 20.278 18.133

6 5 4 5 131.634 390.575 284.370

7 18 17 18 192.953 807.406 515.368

From Table 3, it is easy to see that all the results of feature subset size by the

three feature selection algorithms are similar or equal, which verifies the validity of

the compact discernibility matrix in feature selection tasks. In addition, it is clear

from the running time figures that Algorithms FSUM and FSCM run considerably

faster than FSLA, the main reason is that FSUM and FSCM do not need to compute

the time-consuming lower approximation in the data sets. However, the running

time of Algorithm FSUM is smaller than that of FSCM. This primarily, can be

attributed to the data sets with imbalance decision classes such that much time is

not taken in calculating the pairwise-comparison of objects that belong to the same

decision classes. For data set Hepatitis, the number of the first decision class is

32, while that of the second decision class is 123, and for data set Breast Cancer

Wisconsin, the number of the first decision class is 458, while that of the second

decision class is 241. The imbalance of the decision classes in the two data sets is

obvious. The comparative results between FSUM and FSCM in terms of running

time demonstrate that the discernibility matrix in feature selection tasks is indeed

compact, such that the running time is saved. Therefore, we can get the conclusion

that the compact discernibility matrix is feasible from the experimental results.

5.2. Efficiency of proposed feature selection algorithm

To illustrate the computational efficiency of proposed feature selection algo-

rithm for selecting a new feature subset from a dynamically-increasing incomplete

decision system. In what follows, FSUM is experimentally evaluated with four al-

gorithms, two are FSCM and FSLA respectively, and other two leading feature se-

lection methods, statistical approach chi-square [37] (denoted by FSCS) and infor-

mation theoretic approach mutual information [38, 39] (denoted by FSMI). Since

the number of features selected by FSCS and FSMI is different, for the sake of

impartiality, we select the same quantity of features and the selected features are

ordered in a descending sequence by their priorities. To distinguish the running

time, for each data set shown in Table 2, 75% objects are taken as the original data
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set, and 25% objects are divided into five equal parts of equal size. The first part

is regarded as the first immigrational object set, the combination of the first im-

migrational object set and the second part is viewed as the second immigrational

object set, ...., the combination of all five parts is viewed as the fifth immigrational

object set. In the following figure, the x-coordinate pertains to the size of data set,

while the y-coordinate concerns the running time, the running time is expressed in

seconds.
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Fig.1. Comparison of running time among different feature selection algorithms
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It can be observed from Fig.1 that the larger size of immigrational object set

is, the longer running time of the five algorithms is. But the curves are not strictly

monotonic for FSCM and FSLA, specifically, the curves fluctuate significantly.

Take FSCM as an illustration, as the size of data set from 85% to 90% in data set

Hepatitis, the running time decreases. As to some other data sets, the same phe-

nomenon can be seen. The main reason is that the number of selected features is

different in the data sets is different. Clearly, we can see from each data set that the

running time of FSLA and FSMI approach is longer than that of other methods, the

reason can be explained by the fact that the running time of lower approximation in

FSLA is relatively expensive, and the computation of mutual information in FSML

costs much time. One can also observe that the curve corresponds to FSUM in-

creases the most slowly among the five approaches when an immigrational object

set adds to the data sets, furthermore, the effect is more obvious for large-scale

incomplete data sets. This phenomenon coincides with the incremental manner

on feature selection, FSUM avoids some recalculations, making use of previous

computational results, such that the time efficiency of computing new feature sub-

set is improved. And the curve corresponds to FSUM increases slowly in some

data sets, such as data set Mushroom, as the size of data set from 80% to 85%,

the running time is nearly the same. The reason is explained as the immigrational

object set may result in the lower approximation unchanged, such that the origi-

nal selected feature subset remains constant. Consequently, the time efficiency is

improved. The phenomenon indicates that the variation of lower approximation

and incremental manner have great influence on feature selection in dynamic in-

complete data sets. From the above experimental results, we can affirm that the

proposed feature selection algorithm outperforms four state-of-the-art algorithms

in dynamic incomplete decision systems.

To further demonstrate the time efficiency of FSUM on large-scale data set

where the number of features is significantly greater than the number of samples,

for the Artificial Dataset, we select 500 objects as the original data set, the remain-

ing objects are divided into ten parts of equal size, each time 50 objects are added

to the data set. We compare the running time of the five feature selection algorithm

with the size of data set from 500 to 1000. Fig.2 displays the detailed trend of the

five algorithms in terms of running time as the size of the data set.
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Fig.2. Running time of different algorithms on the Artificial Dataset

From Fig.2, we can see that FSUM spends less time than other four feature

selection methods on the Artificial Dataset. Clearly, FSUM exhibits the best time

efficiency on this data set and FSLA performs the worst. The running times of

FSCS and FSCM are close, but the former is slightly lower than the latter. The

experimental result indicates that FSUM has stronger competitiveness in feature

selection from dynamic large-scale data sets with numbers of features in terms of

time efficiency.
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5.3. Comparative analysis of classification performance

In the sequence of experiments, two classifiers are employed to evaluate the

classification performance of selected feature subsets from feature selection phase:

C4.5 and Support Vector Machine (SVM). After feature selection by above vari-

ous feature selection methods, the data sets are reduced according to the selected

feature subsets. The reduced datasets are then classified using the two classifiers.

As to SVM, the pre-processing step includes encoding all categorical features into

binary attributes and scaling each numerical feature to be in the range [0, 1]. Tables

4 and 5 display the average classification accuracy as a percentage obtained using

10 cross-validation. Because the main difference between FSUM and FSCM is

the time efficiency in feature selection, they select the same feature subsets, which

keep the same classification performance with each other. Thus here we no longer

focus on the classification accuracies of FSCM.



Table 4. C4.5 performance of the subsets of selected features with different feature

selection algorithms

Classifier C4.5

ID Data sets FSUM FSLA FSCS FSMI

1 Lung Cancer 86.15±1.02 84.07±1.56 85.42±0.95 80.73±1.13

2 Hepatitis 81.35±0.67 79.55±0.91 82.18±0.50 79.07±0.84

3 Soybean-large 90.26±1.43 87.91±1.68 89.39±1.61 85.42±1.75

4 Voting Records 93.85±1.10 90.33±1.05 91.95±1.32 90.54±1.49

5 Breast Cancer Wisconsin 78.54±0.38 76.02±0.59 79.11±0.78 74.21±0.51

6 Mushroom 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

7 Aritificial Dataset 97.45±0.28 95.96±0.31 97.02±0.51 96.84±0.65

Table 5. SVM performance of the subsets of selected features with different feature

selection algorithms

Classifier SVM

ID Data sets FSUM FSLA FSCS FSMI

1 Lung Cancer 89.13±0.76 85.25±0.30 86.94±0.85 82.71±0.55

2 Hepatitis 82.99±1.09 81.02±1.26 82.97±1.13 80.65±1.41

3 Soybean-large 93.28±0.50 88.57±0.33 94.15±0.69 89.03±0.72

4 Voting Records 92.76±0.91 86.38±0.54 87.05±1.10 90.89±0.78

5 Breast Cancer Wisconsin 85.15±1.64 82.66±2.01 84.32±1.95 77.90±1.83

6 Mushroom 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

7 Aritificial Dataset 99.43±0.15 99.78±0.47 99.01±0.42 97.95±0.80

The comparison results from Table 4 show that for the C4.5 classifier, the

feature subset selected by FSUM obtains the highest classification accuracy four

times, while FSCS attains the highest accuracy two times. It also can be observed

from Table 5 that FSUM exhibits the highest classification accuracy of the SVM

classifier in most of the data sets. Out of seven data sets, FSUM achieves highest

classification accuracy in four data sets, while both FSLA and FSCS attain high-

est classification accuracy in one data set. However, the classification accuracies

obtained by the SVM classifier are higher than those obtained by the C4.5 classi-

fier. This experimental result can be explained in that the selected feature subsets

from each data set are well suited to the SVM classifier. From the results shown

in Tables 4 and 5, we can draw a conclusion that the classification performance of

FSUM is better than that of other feature selection algorithms in most of the data

sets irrespective of classifiers used. The better performance of FSUM is achieved

due to the fact that FSUM can select relevant and significant features from dynamic

incomplete data more efficiently than other feature selection algorithms. From the
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standard deviations reported in Tables 4 and 5, it also can be seen that FSUM has

a better robustness than other feature selection algorithms in most of the data sets.

All the experimental results mentioned above demonstrate the efficiency and

effectiveness of the proposed feature selection algorithm, which provides a useful

approach for feature selection from dynamic incomplete decision systems.

Research on feature selection in dynamic incomplete decision systems has

shown its importance in real-life applications. In this paper, we have developed

an efficient updated feature selection algorithm based on the proposed compact

discernibility matrix. In the compact discernibility matrix, only non-empty ma-

trix elements are captured, such that the computational time is saved to complete

the feature selection task in a dynamically-increasing incomplete decision system.

The experimental results pertaining to different data sets have substantiated the

proposed algorithm is effective and efficient in dynamic incomplete decision sys-

tems. In future work, we will focus on how to calculate a new feature subset when

an object set in other complex incomplete decision systems evolves over time, such

as dominance information decision systems, incomplete information systems with

fuzzy decision.

21

6. CONCLUSIONS

REFERENCES

1. M. Kryszkiewicz, “Rough set approach to incomplete information systems,”

Information Sciences, vol.112, 1998, pp.39-49.

2. A. Skowron and C. Rauszer, “The discernibility matrices and functions

in information systems,” in:R.Slowinski(Ed.). Intelligent Decision Support,

Handbook of Applications and Advances of the Rough Sets Theory, Kluwer,

Dordrecht, 1992.

3. Q.H. Hu, Z.X. Xie and D.R. Yu, “Hybrid attribute reduction based on a

novel fuzzy-rough model and information granulation,” Pattern Recognition,

vol.40, 2007, pp.3509-3521.

4. Y.H. Qian, J.Y. Liang and C.Y. Dang, “Incomplete multi-granulations rough

set,” IEEE Transactions on Systems, Man and Cybernetics: Part A, vol.40,

2010, pp.420-431.

5. N.S. Jaddi and S. Abdullah, “Nonlinear great deluge algorithm for rough set

attribute reduction”, Journal of Information Science and Engineering, vol.29,

2013, pp.49-62.



22

6. Z. Pawlak and A. Skowron, “Rough sets and Boolean reasoning”, Information

Sciences, vol.177, 2007, pp.41-73.

7. Y.H. Qian, J.Y. Liang, W. Pedrycz and C.Y. Dang, “Positive approximation:

An accelerator for attribute reduction in rough set theory,” Artificial Intelli-

gence, vol.174, 2010, pp.597-618.

8. M. Kryszkiewicz and P. Lasek, “FUN: fast discovery of minimal sets of at-

tributes functionally determining a decision attribute,” Lecture Notes in Com-

puter Science, vol.4585, 2007, pp.320-331.

9. P. C. Wang, “Highly scalable rough set reducts generation,” Journal of Infor-

mation Science and Engineering, vol.23, 2007, pp.1281-1298.

10. I. Kim, Y.Y. Chu, J.Z. Watada, J.Y. Wu and W. Pedrycz, “A DNA-based algo-

rithm for minimizing decision rules: a rough sets approach,” IEEE Transac-

tions on Nanobioscience, vol.10, 2011, pp.139-151.

11. M.L. Othman, I. Aris, S.M. Abdullah, M.L. Ali and M.R. Othman, “Knowl-

edge discovery in distance relay event report: a comparative data-mining

strategy of rough set theory with decision tree,” IEEE Transactions on Power

Delivery, vol.25, 2010, pp.2264-2287.

12. Y. Leung and D.Y. Li, “Maximal consistent block technique for rule acqui-

sition in incomplete information systems,” Information Sciences, vol.153,

2003, pp.85-106.

13. Y.T. Xu, L.S. Wang and R.Y. Zhang, “A dynamic attribute reduction algorithm

based on 0-1 integer programming,” Knowledge-Based Systems, vol.24, 2011,

pp.1341-1347.

14. J.W. Grzymala-Busse, “Data with missing attribute values: generalization of

indiscernibility relation and rule reduction. Transactions on Rough Set I”,

Lecture Notes in Computer Science, vol.3100, Spring-Verlag, Berlin, 2004.

15. Z.Q. Meng and Z.Z. Shi, “A fast approach to attribute reduction in incom-

plete decision systems with tolerance relation-based rough sets,” Information

Sciences

D. Liu, T. Li, D. Ruan and W. Zou, “An incremental approach for inducing

knowledge from dynamic information systems,” Fundamenta Informaticae,

vol.94, 2009, pp.245-260.

16.



23

17. M.Yang, “An incremental updating algorithm for attribute reduction based on

improved discernibility matrix,” Chinese Journal of Computers, vol.30, 2007,

pp.815-822.

18. G.Z. Luo and X.B. Yang, “Limited dominance-based rough set model and

knowledge reductions in incomplete decision system,” Journal of Information

Science and Engineering, vol.26, 2010, pp.2199-211.

19. Y.H. Qian, J.Y. Liang, D.Y. Li, F. Wang and N.N. Ma, “Approximation reduc-

tion in inconsistent incomplete decision tables,” Knowledge-Based Systems,

vol.23, 2010, pp.427-433.

20. N.M. Parthalain, Q. Shen and R. Jensen, “A distance measure approach to

exploring the rough set boundary region for attribute reduction,” IEEE Trans-

actions on Knowledge and Data Engineering, vol.22, 2010, pp.305-317.

21. F. Hu, G.Y. Wang, H. Huang and Y. Wu, “Incremental attribute reduction

based on elementary sets,” in Proceeding of the 10th International Confer-

ence on Rough sets, Fuzzy sets, Data mining and Granular computing, 2005,

pp.185-193.

22. Y. Zhao, Y.Y. Yao and F. Luo, “Data analysis based on discernibility and

indiscernibility,” Information Sciences, vol.177, 2007, pp.4959-4976.

23. K.M. Gupta, W.A. David and M. Philip, “Rough set feature selection al-

gorithms for textual case-based classification,” in: T.R.Roth-Berghofer, et

al.(Eds), Lecture Notes in Artificial Intelligence vol.4106, 2006, pp.166-181.

24. F.F. Xu, D.Q. Miao and L.Wei, “Fuzzy-rough attribute reduction via mutual

information with an application to cancer classification,” Computers & Math-

ematics with Applications, vol.57, 2009, pp.1010-1017.

25. D. Tian, X.J. Zeng and J. Keane, “Core-generating approximate minimum

entropy discretization for rough set feature selection in pattern classification,”

International Journal of Approximate Reasoning, vol.52, 2011, pp.863–880.

26. Y.H. Qian, J.Y. Liang and F. Wang, “A new method for measuring the uncer-

tainty in incomplete information systems,” International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based Systems, vol.17, 2009, pp.855-880.

R. Kohavi and G.H. John, “Wrappers for feature subset selection,” Artificial

Intelligence, vol.97, 1997, pp.273-324.

27.



24

28. E.C.C. Tsang, D.G. Chen, D.S. Yeung, X.Z. Wang and J.W.T. Lee, “Attribute

reduction using fuzzy rough sets,” IEEE Transactions on Fuzzy Systems,

vol.16, 2008, pp.1130-1141.

29. UCI Machine Learning Repository, http://archive.ics.uci.edu/ ml/datasets.

html.

30. Y.H. Qian, J.Y. Liang and C.Y. Dang, “Converse approximation and rule ex-

traction from decision tables in rough set theory,” Computers & Mathematics

with Applications, vol.55, 2008, pp.1754-1765.

31. M. Hall and G. Holmes, “Benchmarking attribute selection techniques for

discrete class data mining,” IEEE Transactions on Knowledge and Data En-

gineering, vol.15, 2003, pp.1437-1447.

32. L. Sun, J.C. Xu and Y. Tian, “Feature selection using rough entropy-based un-

certainty measures in incomplete decision systems,” Knowledge-Based Sys-

tems, vol.36, 2012, pp.206-216.

33. R. Jensen and Q. Shen, “Fuzzy-rough sets assisted attribute selection,” IEEE

Transactions on Fuzzy Systems, vol.15, 2007, pp.73-89.

34. W.Z. Wu, M. Zhang, H.Z. Li, and J.S. Mi, “Knowledge reduction in random

information systems via Dempster–Shafer theory of evidence,” Information

Sciences, vol.174, 2005, pp.143-164.

35. T.Li, and D.Ruan, “A rough sets based characteristic relation approach for

dynamic attribute generalization in data mining,” Knowledge-Based Systems,

vol.20, 2007, pp.485-494.

36. S. Das, “Filters, wrappers and a boosting-based hybrid for feature selec-

tion,” in Proceedings of the Eighteenth International Conference on Machine

Learning, 2001, pp.74-81.

37. X. Jin, A. Xu, R. Bie and P. Guo, “Machine learning techniques and chi-

square feature selection for cancer classification using SAGE gene expression

profiles,” Lecture Notes in Computer Science, vol.3916, 2006, pp.106-115.

38. D.Huang and T.W.S.Chow, “Effective feature selection scheme using mutual

information”, Neurocomputing, vol.63, 2004, pp.325-343.

39. R.Battiti, “Using mutual information for selecting features in supervised neu-

ral net learning,” IEEE Transactions on Neural Network, vol.5, 1994, pp.537-

550.



25

40. W.H.Shu and H. Shen, “Updating attribute reduction in incomplete decision

systems with the variation of attribute set ,” International Journal of Approx-

imate Reasoning, 2013, In Press.

41. F.Wang, J.Y. Liang, et al., “Attribute reduction for dynamic data sets,” Applied

Soft Computing, vol.13, 2013, pp. 676-689.


