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Abstract

We introduce a framework for feature selection based on dependence maximization between the

selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence

Criterion. The key idea is that good features should be highly dependent on the labels. Our ap-

proach leads to a greedy procedure for feature selection. We show that a number of existing feature

selectors are special cases of this framework. Experiments on both artificial and real-world data

show that our feature selector works well in practice.

Keywords: kernel methods, feature selection, independence measure, Hilbert-Schmidt indepen-

dence criterion, Hilbert space embedding of distribution

1. Introduction

In data analysis we are typically given a set of observations X = {x1, . . . ,xm} ⊆ X which can be

used for a number of tasks, such as novelty detection, low-dimensional representation, or a range of
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supervised learning problems. In the latter case we also have a set of labels Y = {y1, . . . ,ym} ⊆ Y at

our disposition. Tasks include ranking, classification, regression, or sequence annotation. While not

always true in practice, we assume in the following that the data X and Y are drawn independently

and identically distributed (i.i.d.) from some underlying distribution Pr(x,y).
We often want to reduce the dimension of the data (the number of features) before the actual

learning (Guyon and Elisseeff, 2003); a larger number of features can be associated with higher data

collection cost, more difficulty in model interpretation, higher computational cost for the classifier,

and sometimes decreased generalization ability. In other words, there often exist motives in addition

to finding a well performing estimator. It is therefore important to select an informative feature

subset.

The problem of supervised feature selection can be cast as a combinatorial optimization prob-

lem. We have a full set of features, denoted by S (each element in S corresponds to one dimension

of the data). It is our aim to select a subset T ⊆ S such that this subset retains the relevant infor-

mation contained in X . Suppose the relevance of a feature subset (to the outcome) is quantified by

Q (T ), and is computed by restricting the data to the dimensions in T . Feature selection can then

be formulated as

T0 = argmax
T ⊆S

Q (T ) subject to |T | ≤ t, (1)

where | · | computes the cardinality of a set and t is an upper bound on the number of selected fea-

tures. Two important aspects of problem (1) are the choice of the criterion Q (T ) and the selection

algorithm.

1.1 Criteria for Feature Selection

A number of quality functionals Q (T ) are potential candidates for feature selection. For instance,

we could use a mutual information-related quantity or a Hilbert Space-based estimator. In any case,

the choice of Q (T ) should respect the underlying task. In the case of supervised learning, the goal

is to estimate a functional dependence f from training data such that f predicts well on test data.

Therefore, a good feature selection criterion should satisfy two conditions:

I: Q (T ) is capable of detecting desired (linear or nonlinear) functional dependence between the

data and the labels.

II: Q (T ) is concentrated with respect to the underlying measure. This guarantees with high

probability that detected functional dependence is preserved in test data.

While many feature selection criteria have been explored, not all of them take these two conditions

explicitly into account. Examples of criteria that satisfy both conditions include the leave-one-out

error bound of SVM (Weston et al., 2000) and the mutual information (Zaffalon and Hutter, 2002).

Although the latter has good theoretical justification, it requires density estimation, which is prob-

lematic for high dimensional and continuous variables. We sidestep these problems by employing

the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a). Like the mutual in-

formation, HSIC is a nonparametric dependence measure, which takes into account all modes of

dependence between the variables (not just linear correlation). Unlike some popular mutual infor-

mation estimates, however, HSIC does not require density estimation as an intermediate step, being

based on the covariance between variables mapped to reproducing kernel Hilbert spaces (RKHS).

1394



FEATURE SELECTION VIA DEPENDENCE MAXIMIZATION

HSIC has good uniform convergence guarantees, and an unbiased empirical estimate. As we show

in Section 2, HSIC satisfies conditions I and II required for Q (T ).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2003), unless the criterion is

easily decomposable or has properties which make approximate optimization easier, for example,

submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Many algorithms transform (1) into

a continuous problem by introducing weights on the dimensions (Weston et al., 2000; Bradley and

Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These methods perform well for linearly sep-

arable problems. For nonlinear problems, however, the optimisation usually becomes non-convex

and a local optimum does not necessarily provide good features. Greedy approaches, such as for-

ward selection and backward elimination, are often used to tackle problem (1) directly. Forward

selection tries to increase Q (T ) as much as possible for each inclusion of features, and backward

elimination tries to achieve this for each deletion of features (Guyon et al., 2002). Although for-

ward selection is computationally more efficient, backward elimination provides better features in

general since the features are assessed within the context of all others present. See Section 7 for

experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employed for feature selection

using either a weighting scheme, forward selection or backward selection, or even a mix of several

strategies. While the main focus of this paper is on the backward elimination strategy, we also

discuss the other selection strategies. As we shall see, several specific choices of kernel function

will lead to well known feature selection and feature rating methods. Note that backward elimination

using HSIC (BAHSIC) is a filter method for feature selection. It selects features independent of a

particular classifier. Such decoupling not only facilitates subsequent feature interpretation but also

speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regression problems.

Most other feature selection methods are only formulated either for binary classification or regres-

sion. Multiclass extensions of these methods are usually achieved using a one-versus-the-rest strat-

egy. Still fewer methods handle classification and regression cases at the same time. BAHSIC, on

the other hand, accommodates all these cases and unsupervised feature selection in a principled

way: by choosing different kernels, BAHSIC not only subsumes many existing methods as special

cases, but also allows us to define new feature selectors. This versatility is due to the generality of

HSIC. The current work is built on earlier presentations by Song et al. (2007b,a). Compared with

this earlier work, the present study contains more detailed proofs of the main theorems, proofs of

secondary theorems omitted due to space constraints, and a number of additional experiments.

Our paper is structured as follows. In Section 2, we introduce the Hilbert-Schmidt Indepen-

dence criterion. We provide both biased and unbiased empirical estimates, as well as more efficient

approximate empirical estimates. In addition, we prove the empirical estimate converges in prob-

ability, and provide its asymptotic distribution. Section 3 contains a brief description of notation

for the remainder of the paper. Section 4 presents our two feature selection algorithms, based re-

spectively on forward selection and backwards elimination. Section 5 presents a number of variants

of BAHSIC obtained via different kernel choices, with a focus on using the appropriate kernel for

the underlying task (e.g., two-class classification, multiclass classification, and regression). Section

6 gives an overview of a variety of feature selection approaches, which can be shown to employ
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particular variants of HSIC as their feature relevance criterion. Finally, Sections 7–9 contain our ex-

periments, where we apply HSIC to a number of domains, including real and artificial benchmarks,

brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and then generalize to the de-

tection of more general kinds of dependence. Consider spaces X ⊂ R
d and Y ⊂ R

l , on which we

jointly sample observations (x,y) from a distribution Pr(x,y). Denote by Cxy the covariance matrix

Cxy = Exy

[

xy⊤
]

−Ex [x]Ey

[

y⊤
]

, (2)

which contains all second order dependence between the random variables. A statistic that effi-

ciently summarizes the degree of linear correlation between x and y is the Frobenius norm of Cxy.

Given the singular values σi of Cxy the norm is defined as

‖Cxy‖2
Frob :=∑

i

σ2
i = trCxyC

⊤
xy .

This quantity is zero if and only if there exists no linear dependence between x and y. This statistic

is limited in several respects, however, of which we mention two: first, dependence can exist in

forms other than that detectable via covariance (and even when a second order relation exists, the

full extent of the dependence between x and y may only be apparent when nonlinear effects are

included). Second, the restriction to subsets of Rd excludes many interesting kinds of variables,

such as strings and class labels. In the next section, we generalize the notion of covariance to

nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In general X and Y will be two domains from which we draw samples (x,y): these may be real val-

ued, vector valued, class labels, strings (Lodhi et al., 2002), graphs (Gärtner et al., 2003), dynamical

systems (Vishwanathan et al., 2007), parse trees (Collins and Duffy, 2001), images (Schölkopf,

1997), and any other domain on which kernels can be defined. See Schölkopf et al. (2004) and

Schölkopf and Smola (2002) for further references.

We define a (possibly nonlinear) mapping φ : X → F from each x ∈ X to a feature space F
(and an analogous map ψ : Y → G wherever needed). In this case we may write the inner product

between the features via the positive definite kernel functions

k(x,x′) :=
〈

φ(x),φ(x′)
〉

and l(y,y′) :=
〈

ψ(y),ψ(y′)
〉

.

The kernels k and l are associated uniquely with respective reproducing kernel Hilbert spaces F
and G (although the feature maps φ and ψ may not be unique). For instance, if X = R

d , then this

could be as simple as a set of polynomials of order up to b in the components of x, with kernel

k(x,x′) = (〈x,x′〉+a)b. Other kernels, like the Gaussian RBF kernel correspond to infinitely large

feature spaces. We need never evaluate these feature representations explicitly, however.
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We may now define a cross-covariance operator1 between these feature maps, in accordance

with Baker (1973) and Fukumizu et al. (2004): this is a linear operator Cxy : G 7−→ F such that

Cxy := Exy [(φ(x)−µx)⊗ (ψ(y)−µy)] where µx = Ex[φ(x)] and µy = Ey[ψ(y)].

Here ⊗ denotes the tensor product. We need to extend the notion of a Frobenius norm to operators.

This leads us to the Hilbert-Schmidt norm, which is given by the trace of CxyC⊤xy . For operators with

discrete spectrum this amounts to computing the ℓ2 norm of the singular values. We use the square of

the Hilbert-Schmidt norm of the cross-covariance operator (HSIC), ‖Cxy‖2
HS as our feature selection

criterion Q (T ). Gretton et al. (2005a) show that HSIC can be expressed in terms of kernels as

HSIC(F ,G ,Pr
xy
) := ‖Cxy‖2

HS (3)

=Exx′yy′ [k(x,x
′)l(y,y′)]+Exx′ [k(x,x

′)]Eyy′ [l(y,y
′)]−2Exy[Ex′ [k(x,x

′)]Ey′ [l(y,y
′)]].

This allows us to compute a measure of dependence between x and y simply by taking expectations

over a set of kernel functions k and l with respect to the joint and marginal distributions in x and y

without the need to perform density estimation (as may be needed for entropy based methods).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote by Z = (X ,Y ) the set of observations {(x1,y1), . . . ,(xm,ym)} which are drawn iid from

the joint distribution Prxy. We denote by EZ the expectation with respect Z as drawn from Prxy.

Moreover, K,L ∈ R
m×m are kernel matrices containing entries Ki j = k(xi,x j) and Li j = l(yi,y j).

Finally, H = I−m−111 ∈ R
m×m is a centering matrix which projects onto the space orthogonal to

the vector 1.

Gretton et al. (2005a) derive estimators of HSIC(F ,G ,Prxy) which have O(m−1) bias and they

show that this estimator is well concentrated by means of appropriate tail bounds. For completeness

we briefly restate this estimator and its properties below.

Theorem 1 (Biased estimator of HSIC Gretton et al., 2005a) The estimator

HSIC0(F ,G ,Z) := (m−1)−2 trKHLH (4)

has bias O(m−1), that is, HSIC(F ,G ,Prxy)−EZ [HSIC0(F ,G ,Z)] = O(m−1).

This bias arises from the self-interaction terms which are present in HSIC0, that is, we still have

O(m) terms of the form Ki jLil and K jiLli present in the sum, which leads to the O(m−1) bias.

To address this, we now devise an unbiased estimator which removes those additional terms while

ensuring proper normalization. Our proposed estimator has the form

HSIC1(F ,G ,Z) :=
1

m(m−3)

[

tr(K̃L̃)+
1⊤K̃11⊤L̃1

(m−1)(m−2)
− 2

m−2
1⊤K̃L̃1

]

, (5)

where K̃ and L̃ are related to K and L by K̃i j = (1−δi j)Ki j and L̃i j = (1−δi j)Li j (i.e., the diagonal

entries of K̃ and L̃ are set to zero).

1. We abuse the notation here by using the same subscript in the operator Cxy as in the covariance matrix of (2), even

though we now refer to the covariance between feature maps.
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Theorem 2 (Unbiased estimator of HSIC) The estimator HSIC1 is unbiased, that is, we have

EZ [HSIC1(F ,G ,Z)] = HSIC(F ,G ,Prxy).

Proof We prove the claim by constructing unbiased estimators for each term in (3). Note that we

have three types of expectations, namely ExyEx′y′ , a partially decoupled expectation ExyEx′Ey′ , and

ExEyEx′Ey′ , which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we need to take care to avoid

using the same discrete indices more than once for independent random variables. In other words,

when taking expectations over n independent random variables, we need n-tuples of indices where

each index occurs exactly once. We define the sets imn to be the collections of indices satisfying this

property. By simple combinatorics one can see that their cardinalities are given by the Pochhammer

symbols (m)n =
m!

(m−n)! . Jointly drawn random variables, on the other hand, share the same index.

For the joint expectation over pairs we have

ExyEx′y′
[

k(x,x′)l(y,y′)
]

= (m)−1
2 EZ

[

∑
(i, j)∈im2

Ki jLi j

]

= (m)−1
2 EZ

[

trK̃L̃
]

. (6)

Recall that we set K̃ii = L̃ii = 0. In the case of the expectation over three independent terms

ExyEx′Ey′ [k(x,x
′)l(y,y′)] we obtain

(m)−1
3 EZ

[

∑
(i, j,q)∈im3

Ki jLiq

]

= (m)−1
3 EZ

[

1⊤K̃L̃1− trK̃L̃
]

. (7)

For four independent random variables ExEyEx′Ey′ [k(x,x
′)l(y,y′)],

(m)−1
4 EZ

[

∑
(i, j,q,r)∈im4

Ki jLqr

]

= (m)−1
4 EZ

[

1⊤K̃11⊤L̃1−41⊤K̃L̃1+2trK̃L̃
]

. (8)

To obtain an expression for HSIC we only need to take linear combinations using (3). Collecting

terms related to trK̃L̃, 1⊤K̃L̃1, and 1⊤K̃11⊤L̃1 yields

HSIC(F ,G ,Pr
xy
) =

1

m(m−3)
EZ

[

trK̃L̃+
1⊤K̃11⊤L̃1

(m−1)(m−2)
− 2

m−2
1⊤K̃L̃1

]

. (9)

This is the expected value of HSIC1[F ,G ,Z].

Note that neither HSIC0 nor HSIC1 require any explicit regularization parameters, unlike earlier

work on kernel dependence estimation. Rather, the regularization is implicit in the choice of the

kernels. While in general the biased HSIC is acceptable for estimating dependence, bias becomes a

significant problem for diagonally dominant kernels. These occur mainly in the context of sequence

analysis such as texts and biological data. Experiments on such data (Quadrianto et al., 2009) show

that bias removal is essential to obtain good results.

For suitable kernels HSIC(F ,G ,Prxy) = 0 if and only if x and y are independent. Hence the

empirical estimate HSIC1 can be used to design nonparametric tests of independence. A key feature

is that HSIC1 itself is unbiased and its computation is simple. Compare this to quantities based

on the mutual information, which requires sophisticated bias correction strategies (e.g., Nemenman

et al., 2002).

Previous work used HSIC to measure independence between two sets of random variables

(Feuerverger, 1993; Gretton et al., 2005a). Here we use it to select a subset T from the first full

set of random variables S . We next describe properties of HSIC which support its use as a feature

selection criterion.

1398



FEATURE SELECTION VIA DEPENDENCE MAXIMIZATION

2.3 HSIC Detects Arbitrary Dependence (Property I)

Whenever F ,G are RKHSs with characteristic kernels k, l (in the sense of Fukumizu et al., 2008;

Sriperumbudur et al., 2008, 2010), then HSIC(F ,G ,Prxy) = 0 if and only if x and y are indepen-

dent.2 In terms of feature selection, a characteristic kernel such as the Gaussian RBF kernel or the

Laplace kernel permits HSIC to detect any dependence between X and Y . HSIC is zero only if

features and labels are independent. Clearly we want to reach the opposite result, namely strong

dependence between features and labels. Hence we try to select features that maximize HSIC.

Likewise, whenever we want to select a subset of features from X we will try to retain maximal

dependence between X and its reduced version.

Note that non-characteristic and non-universal kernels can also be used for HSIC, although

they may not guarantee that all dependence is detected. Different kernels incorporate distinctive

prior knowledge into the dependence estimation, and they focus HSIC on dependence of a certain

type. For instance, a linear kernel requires HSIC to seek only second order dependence, whereas a

polynomial kernel of degree b restricts HSIC to test for dependences of degree (up to) b. Clearly

HSIC is capable of finding and exploiting dependence of a much more general nature by kernels on

graphs, strings, or other discrete domains. We return to this issue in Section 5, where we describe

the different kernels that are suited to different underlying classification tasks.

2.4 HSIC is Concentrated (Property II)

HSIC1, the estimator in (5), can be alternatively formulated using U-statistics (Hoeffding, 1948).

This reformulation allows us to derive a uniform convergence bound for HSIC1. Thus for a given

set of features, the feature quality evaluated using HSIC1 closely reflects its population counterpart

HSIC.

Theorem 3 (U-statistic of HSIC) HSIC1 can be rewritten in terms of a U-statistic

HSIC1(F ,G ,Z) = (m)−1
4 ∑

(i, j,q,r)∈im4

h(i, j,q,r), (10)

where the kernel h of the U-statistic is defined by

h(i, j,q,r) =
1

24

(i, j,q,r)

∑
(s,t,u,v)

Kst [Lst +Luv−2Lsu] (11)

=
1

6

(i, j,q,r)

∑
(s≺t),(u≺v)

Kst [Lst +Luv]−
1

12

(i, j,q,r)

∑
(s,t,u)

KstLsu. (12)

Here the first sum represents all 4! = 24 quadruples (s, t,u,v) which can be selected without re-

placement from (i, j,q,r). Likewise the sum over (s, t,u) is the sum over all triples chosen without

replacement. Finally, the sum over (s ≺ t),(u ≺ v) has the additional condition that the order im-

posed by (i, j,q,r) is preserved. That is (i,q) and ( j,r) are valid pairs, whereas (q, i) or (r,q) are

not.

2. This result is more general than the earlier result of Gretton et al. (2005a, Theorem 4), which states that when F ,G
are RKHSs with universal kernels k, l in the sense of Steinwart (2001), on respective compact domains X and Y ,

then HSIC(F ,G ,Prxy) = 0 if and only if x and y are independent. Universal kernels are characteristic on compact

domains, however characteristic kernels also exist on non-compact domains.
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Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

HSIC1(F ,G ,Z) = (m)−1
4 ∑

(i, j,q,r)∈im4

(Ki jLi j +Ki jLqr−2Ki jLiq) . (13)

In this form, however, the kernel h(i, j,q,r) = Ki jLi j +Ki jLqr − 2Ki jLiq is not symmetric in its

arguments. For instance h(i, j,q,r) 6= h(q, j,r, i). The same holds for other permutations of the

indices. Thus, we replace the kernel with a symmetrized version, which yields

h(i, j,q,r) :=
1

4!

(i, j,q,r)

∑
(s,t,u,v)

(KstLst +KstLuv−2KstLsu) (14)

where the sum in (14) represents all ordered quadruples (s, t,u,v) selected without replacement from

(i, j,q,r).
This kernel can be simplified, since Kst = Kts and Lst = Lts. The first one only contains terms

LstKst , hence the indices (u,v) are irrelevant. Exploiting symmetry we may impose (s≺ t) without

loss of generality. The same holds for the second term. The third term remains unchanged, which

completes the proof.

We now show that HSIC1(F ,G ,Z) is concentrated and that it converges to HSIC(F ,G ,Prxy) with

rate 1/
√

m. The latter is a slight improvement over the convergence of the biased estimator

HSIC0(F ,G ,Z), proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume k, l are bounded almost everywhere by 1, and are

non-negative. Then for m > 1 and all δ> 0, with probability at least 1−δ for all Prxy

∣

∣

∣
HSIC1(F ,G ,Z)−HSIC(F ,G ,Pr

xy
)
∣

∣

∣
≤ 8
√

log(2/δ)/m.

Proof [Sketch] By virtue of (10) we see immediately that HSIC1 is a U-statistic of order 4, where

each term is contained in [−2,2]. Applying Hoeffding’s bound for U-statistics as in Gretton et al.

(2005a) proves the result.

If k and l were just bounded by 1 in terms of absolute value the bound of Theorem 4 would be worse

by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 gives worst case bounds on the deviation between HSIC and HSIC1. In many instances,

however, an indication of this difference in typical cases is needed. In particular, we would like

to know the limiting distribution of HSIC1 for large sample sizes. We now show that HSIC1 is

asymptotically normal, and we derive its variance. These results are also useful since they allow us

to formulate statistics for a significance test.

Theorem 5 (Asymptotic Normality) If E[h2]< ∞, and data and labels are not independent,3 then

as m → ∞, HSIC1 converges in distribution to a Gaussian random variable with mean

3. This is a subtle but important point: if the data and labels are independent, then the U-statistic is degenerate, and the

null distribution takes a different form. See Gretton et al. (2008) and (Serfling, 1980, Section 5.5).
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HSIC(F ,G ,Prxy) and estimated variance

σ2
HSIC1

=
16

m

(

R−HSIC2
1

)

where R =
1

m

m

∑
i=1

(

(m−1)−1
3 ∑

( j,q,r)∈im3 \{i}
h(i, j,q,r)

)2

, (15)

where imn \{i} denotes the set of all n-tuples drawn without replacement from {1, . . . ,m}\{i}.

Proof [Sketch] This follows directly from Serfling (1980, Theorem B, p. 193), which shows asymp-

totic normality of U-statistics.

Unfortunately (15) is expensive to compute by means of an explicit summation: even computing

the kernel h of the U-statistic itself is a nontrivial task. For practical purposes we need an expres-

sion which can exploit fast matrix operations. As we shall see, σ2
HSIC1

can be computed in O(m2),

given the matrices K̃ and L̃. To do so, we first form a vector h with its ith entry corresponding to

∑( j,q,r)∈im3 \{i} h(i, j,q,r). Collecting terms in (11) related to matrices K̃ and L̃, h can be written as

h =(m−2)2(K̃◦ L̃)1+(m−2)
(

(trK̃L̃)1− K̃L̃1− L̃K̃1
)

−m(K̃1)◦ (L̃1)

+(1⊤L̃1)K̃1+(1⊤K̃1)L̃1− (1⊤K̃L̃1)1

where ◦ denotes elementwise matrix multiplication. Then R in (15) can be computed as R =
(4m)−1(m− 1)−2

3 h⊤h. Combining this with the the unbiased estimator in (5) leads to the matrix

computation of σ2
HSIC1

.

2.6 Computation

In this section, we first analyze the complexity of computing estimators for Hilbert-Schmidt Inde-

pendence Criterion. We then propose efficient methods for approximately computing these estima-

tors which are linear in the number of examples.

2.6.1 EXACT COMPUTATION OF HSIC0 AND HSIC1

Note that both HSIC0 and HSIC1 are simple to compute, since only the kernel matrices K and L are

needed, and no density estimation is involved. Assume that computing an entry in K and L takes

constant time, then computing the full matrix takes O(m2) time. In term of the sample size m, we

have the following analysis of the time complexity of HSIC0 and HSIC1 (by considering summation

and multiplication as atomic operations):

HSIC0 Centering L takes O(m2) time. Since tr(KHLH) is equivalent to 1⊤(K ◦HLH)1, it also

takes O(m2) time. Overall, computing HSIC0 takes O(m2) time.

HSIC1 Each of the three terms in HSIC1, namely tr(K̃L̃), 1⊤K̃11⊤L̃1 and 1⊤K̃L̃1, takes O(m2)
time. Overall, computing HSIC1 also takes O(m2) time.

2.6.2 APPROXIMATE COMPUTATION OF HSIC0 AND HSIC1

Further speedup is also possible via a low rank approximation of the kernel matrices. Particularly,

using incomplete Cholesky decomposition, Gretton et al. (2005a) derive an efficient approximation

of HSIC0. Formally, it can be summarized as the following lemma:
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Lemma 6 (Efficient Approximation to HSIC0) Let K ≈ AA⊤ and L ≈ BB⊤, where A ∈ R
m×d f

and B ∈ R
m×dg . Then HSIC0 can be approximated in O(m(d2

f +d2
g)) time.

Note that in this case the dominant computation comes from the incomplete Cholesky decompo-

sition, which can be carried out in O(md2
f ) and O(md2

g) time respectively (Fine and Scheinberg,

2000).

The three terms in HSIC1 can be computed analogously. Denote by DK = diag(AA⊤) and

DL = diag(BB⊤) the diagonal matrices of the approximating terms. The latter can be computed in

O(md f ) and O(mdg) time respectively. We have

1⊤K̃1 = 1⊤(AA⊤−DK)1 = ‖1⊤A‖2 +1⊤DK1.

Computation requires O(md f ) time. The same holds when computing 1⊤L̃1. To obtain the second

term we exploit that

1⊤K̃L̃1 = 1⊤(AA⊤−DK)(BB⊤−DK)1 = ((A(A⊤1))−DK1)⊤((B(B⊤1))−DL1).

This can be computed in O(m(d f +dg)). Finally, to compute the third term we use

trK̃L̃ = tr(AA⊤−DK)(BB⊤−DL)

= ‖A⊤B‖2
Frob− trB⊤DKB− trA⊤DLA+ trDKDL.

This can be computed in O(md f dg) time. It is the most costly of all operations, since it takes all

interactions between the reduced factorizations of K and L into account. Hence we may compute

HSIC1 efficiently (note again that dominant computation comes from the incomplete Cholesky de-

composition):

Lemma 7 (Efficient Approximation of HSIC1) Let K ≈ AA⊤ and L ≈ BB⊤, where A ∈ R
m×d f

and B ∈ R
m×dg . Then HSIC1 can be approximated in O(m(d2

f +d2
g)) time.

2.6.3 VARIANCE OF HSIC1

To compute the variance of HSIC1 we also need to deal with (K̃ ◦ L̃)1. For the latter, no imme-

diate linear algebra expansion is available. However, we may use of the following decomposition.

Assume that a and b are vectors in R
m. In this case

((aa⊤)◦ (bb⊤))1 = (a◦b)(a◦b)⊤1

which can be computed in O(m) time. Hence we may compute

((AA⊤)◦ (BB⊤))1 =
d f

∑
i=1

dg

∑
j=1

((Ai ◦B j)(Ai ◦B j)
⊤)1

which can be carried out in O(md f dg) time. To take care of the diagonal corrections note that

(AA⊤−DK) ◦DL = 0. The same holds for B and DK. The remaining term DKDL1 is obviously

also computable in O(m) time.
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3. Notation

In the following sections, we will deal mainly with vectorial data. Whenever we have vectorial data,

we use X as a shorthand to denote the matrix of all vectorial observations xi ∈ R
d (the ith row of X

corresponds to x⊤i ). Likewise, whenever the labels can be bundled into a matrix Y or a vector y (for

binary classification), we will use the latter for a more concise notation. Also, we will refer to the

jth column of X and Y as x∗ j and y∗ j respectively as needed.

Furthermore, we denote the mean and standard deviation of the jth feature (dimension) by

x̄ j =
1
m ∑m

i xi j and s j = ( 1
m ∑m

i (xi j− x̄ j)
2)1/2 respectively (xi j is the value of the jth feature of data xi).

For binary classification problems we denote by m+ and m− the numbers of positive and negative

observations. Moreover, x̄ j+ and x̄ j− correspond respectively to the means of the positive and

negative classes at the jth feature (the corresponding standard deviations are s j+ and s j−). More

generally, let my be the number of samples with class label equal to y (this notation is also applicable

to multiclass problems). Finally, let 1n be a vector of all ones with length n and 0n be a vector of all

zeros.

For non-vectorial or scalar data, we will use lower case letters to denote them. Very often the

labels are scalars, we use y to denote them. The mean and standard deviation of the labels are ȳ and

sy respectively.

4. Feature Selection via HSIC

Having defined our feature selection criterion, we now describe algorithms that conduct feature

selection on the basis of this dependence measure. Denote by S the full set of features, T a subset

of features (T ⊆ S ). We want to find T such that the dependence between features in T and the

labels is maximized. Moreover, we may choose between different feature selection strategies, that is,

whether we would like to build up a catalog of features in an incremental fashion (forward selection)

or whether we would like to remove irrelevant features from a catalog (backward selection). For

certain kernels, such as a linear kernel, both selection methods are equivalent: the objective function

decomposes into individual coordinates, and thus feature selection can be done without recursion

in one go. Although forward selection is computationally more efficient, backward elimination in

general yields better features (especially for nonlinear features), since the quality of the features is

assessed within the context of all other features (Guyon and Elisseeff, 2003).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a list S † which contains the features in increasing degree of relevance.

At each step S † is appended by a feature from S which is not contained in S † yet by selecting the

features which are least dependent on the reference set (i.e., Y or the full set X).

Once we perform this operation, the feature selection problem in (1) can be solved by simply

taking the last t elements from S †. Our algorithm produces S † recursively, eliminating the least

relevant features from S and adding them to the end of S † at each iteration. For convenience, we

also denote HSIC as HSIC(σ,S), where S are the features used in computing the data kernel matrix

K, and σ is the parameter for the data kernel (for instance, this might be the size of a Gaussian

kernel k(x,x′) = exp(−σ‖x−x′‖2)).

Step 3 of the algorithm denotes a policy for adapting the kernel parameters. Depending on the

availability of prior knowledge and the type of preprocessing, we explored three types of policies
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1. If we have prior knowledge about the nature of the nonlinearity in the data, we can use a fixed

kernel parameter throughout the iterations. For instance, we can use a polynomial kernel of

fixed degree, for example, (〈x,x′〉+1)2, to select the features for the XOR data set in Figure

2(a).

2. If we have no prior knowledge, we can optimize HSIC over a set of kernel parameters. In this

case, the policy corresponds to argmaxσ∈Θ HSIC(σ,S), where Θ is a set of parameters that

ensure the kernel is bounded. For instance, σ can be the scale parameter of a Gaussian kernel,

k(x,x′) = exp(−σ‖x−x′‖2). Optimizing over the scaling parameter allows us to adapt to the

scale of the nonlinearity present in the (feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. Alternatively we

can use a policy that produces approximate parameters in each iteration. For instance, if we

normalize each feature separately to zero mean and unit variance, we know that the expected

value of the distance between data points, E
[

(x−x′)2
]

, is 2d (d is the dimension of the data).

When using a Gaussian kernel, we can then use a policy that assigns σ to 1/(2d) as the

dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the case of a radial

basis kernel on the observations and a linear kernel on binary labels, the example in Section 5.2 is

instructive: optimizing the bandwidth of the kernel k on the observations corresponds to finding the

optimum lengthscale for which smooth functions may be found to maximize the linear covariance

with the labels. This optimum lengthscale will change as the dimensionality of the observation

feature space changes (as feature selection progresses). For a related discussion, see (Sriperumbudur

et al., 2009, Section 5): in this case, the kernel bandwidth which maximizes a kernel distance

measure between two distributions P and Q corresponds to the lengthscale at which P and Q differ.

When P is the joint distirbution P = Pr(x,y), and Q the product of the marginals Q = Pr(x)Pr(y),
the kernel distance measure in Sriperumbudur et al. (2009) corresponds to HSIC (see Gretton et al.,

2007b, Section 7.3). Note further that when a radial basis kernel (such as the Gaussian) is used,

the unbiased HSIC1 is zero both for bandwidth zero, and as the bandwidth approaches infinity (in

the former case, the off-diagonal kernel values are zero; in the latter, the off-diagonal kernel values

are all equal). Thus HSIC1 must have a maximum between these two extremes in bandwidth, and

this maximum is bounded since the kernel is bounded. Again, see Sriperumbudur et al. (2009) for a

related discussion when comparing arbitrary distributions P and Q.

Algorithm 1 BAHSIC

Input: The full set of features S
Output: An ordered set of features S †

1: S †←∅

2: repeat

3: σ← Ξ
4: I ← argmaxI ∑ j∈I HSIC(σ,S \{ j}), I ⊂ S
5: S ← S \ I
6: S †← (S †,I )
7: until S =∅
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Step 4 of the algorithm is concerned with the selection of a set I of features to eliminate. While

one could choose a single element of S , this would be inefficient when there are a large number of

irrelevant features. On the other hand, removing too many features at once risks the loss of relevant

features. In our experiments, we found a good compromise between speed and feature quality was

to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matrix L for the labels is fixed through the whole process. It can be

precomputed and stored for speedup if needed. Therefore, the major computation comes from

repeated calculation of the kernel matrix K for the dimension-reduced data. If we remove 1−β of

the data at every step and under the assumption that beyond computing the dot product the actual

evaluation of an entry in K requires only constant time irrespective of the dimension of the data, then

the ith iteration of BAHSIC takes O(βi−1dm2) time: d is the total number of features, hence βi−1d

features remain after i− 1 iterations and we have m2 elements in the kernel matrix in total. If we

want to reduce the number of features to t we need at most τ = logβ(t/d) iterations. This brings the

total time complexity to O
(

1−βτ

1−β dm2
)

=O
(

d−t
1−βm2

)

operations. When using incomplete Cholesky

factorization we may reduce computational complexity somewhat further to O
(

d−t
1−βm(d2

f +d2
g)
)

time. This saving is significant as long as d f dg < m, which may happen, for instance whenever Y

is a binary label matrix. In this case dg = 1, hence incomplete factorizations may yield significant

computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it builds a list of features in decreasing

degree of relevance. This is achieved by adding one feature at a time to the set of features S †

obtained so far using HSIC as a criterion for the quality of the so-added features. For faster selection

of features, we can choose a group of features (for instance, a fixed proportion γ) at step 4 and add

them in one shot at step 6. The adaptation of kernel parameters in step 3 follows the same policies

as those for BAHSIC. The feature selection problem in (1) can be solved by simply taking the first

t elements from S †.

Algorithm 2 FOHSIC

Input: The full set of features S
Output: An ordered set of features S †

1: S †←∅

2: repeat

3: σ← Ξ
4: I ← argmaxI ∑ j∈I HSIC(σ,S †∪{ j}), I ⊂ S
5: S ← S \ I
6: S †← (S †,I )
7: until S =∅

4.2.1 TIME COMPLEXITY

Under the same assumption as BAHSIC, the ith iteration of FOHSIC takes O((1−γ)i−1dm2) time.

The total number of iterations τ to obtain t features is t = [1− (1− γ)τ]d, that is τ = log(d−t)−logd

log(1−γ)
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iterations. Performing τ steps will therefore take ∑τ−1
i=0 d(1−γ)i = d(1−(1−γ)τ)/γ= t/γoperations.

This means that FOHSIC takes O(tm2/γ) time to extract t features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select features once we decided to choose a certain family

of kernels k, l to measure dependence between two sets of observations. We now proceed to dis-

cussing a number of design choices for k and l. This will happen in two parts: in the current section

we discuss generic choices of kernels on data and labels. Various combinations of such kernels will

then lead to new algorithms that aim to discover different types of dependence between features and

labels (or between a full and a restricted data set we are interested in unsupervised feature selec-

tion). After that (in Section 6) we will study specific choices of kernels which correspond to existing

feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, different kernels will correspond to a

range of different assumptions on the type of dependence between the random variables x and y.

Hence different kernels induce distinctive similarity measure on the data.

5.1.1 LINEAR KERNEL

The simplest choice for k is to take a linear kernel k(x,x′) = 〈x,x′〉. This means that we are just

using the underlying Euclidean space to define the similarity measure. Whenever the dimensionality

d of x is very high, this may allow for more complexity in the function class than what we could

measure and assess otherwise. An additional advantage of this setting is that the kernel decomposes

into the sum of products between individual coordinates. This means that any expression of the type

trKM can be maximized with respect to the subset of available features via

d

∑
j=1

x⊤∗ jMx∗ j.

This means that the optimality criterion decomposes into a sum over the scores of individual coor-

dinates. Hence maximization with respect to a subset of size t is trivial, since it just involves finding

the t largest contributors. Using (9) we can see that for HSIC1 the matrix M is given by

M =
1

m(m−3)

[

L̃+
(

11⊤− I
) 1⊤L̃1

(m−1)(m−2)
− 2

m−2

(

L̃11⊤−diag
(

L̃1
)

)

]

.

These terms are essentially rank-1 and diagonal updates on L̃, which means that they can be com-

puted very efficiently. Note also that in this case FOHSIC and BAHSIC generate the optimal feature

selection with respect to the criterion applied.

5.1.2 POLYNOMIAL KERNEL

Clearly in some cases the use of linear features can be quite limiting. It is possible, though, to use

higher order correlations between data for the purpose of feature selection. This is achieved by
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using a polynomial kernel

k(x,x′) =
(〈

x,x′
〉

+a
)b

for some a≥ 0 and b ∈ N.

This kernel incorporates all polynomial interactions up to degree b (provided that a > 0). For

instance, if we wanted to take only mean and variance into account, we would only need to consider

b = 2 and a = 1. Placing a higher emphasis on means is achieved by increasing the constant offset

a.

5.1.3 RADIAL BASIS FUNCTION KERNEL

Note that polynomial kernels only map data into a finite dimensional space: while potentially huge,

the dimensionality of polynomials of bounded degree is finite, hence criteria arising from such ker-

nels will not provide us with guarantees for a good dependence measure. On the other hand, many

radial basis function kernels, such as the Gaussian RBF kernel map x into an infinite dimensional

space. One may show that these kernels are in fact characteristic (Fukumizu et al., 2008; Sriperum-

budur et al., 2008, 2010). That is, we use kernels of the form

k(x,x′) = κ(‖x−x′‖) where κ(ξ) = exp(−ξ) or κ(ξ) = exp(−ξ2)

to obtain Laplace and Gaussian kernels respectively. Since the spectrum of the corresponding matri-

ces decays rapidly (Bach and Jordan, 2002, Appendix C), it is easy to compute incomplete Cholesky

factorizations of the kernel matrix efficiently.

5.1.4 STRING AND GRAPH KERNEL

One of the key advantages of our approach is that it is not limited to vectorial data. For instance, we

can perform feature selection on documents or graphs. For many such situations we have

k(x,x′) = ∑
a⊑x

wa#a(x)#a(x
′),

where a ⊑ x is a substring of x (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar

decompositions can be made for graphs, where kernels on random walks and paths can be defined.

As before, we could use BAHSIC to remove or FOHSIC to generate a list of features such that only

relevant ones remain. That said, given that such kernels are additive in their features, we can use the

same argument as made above for linear kernels to determine meaningful features in one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on which properties of x (e.g., linear,

polynomial, or nonparametric) are relevant for estimation. We now describe the complementary

part, namely a set of possible choices for kernels on labels. Note that these kernels can be just as

general as those defined on the data. This means that we may apply our algorithms to classification,

regression, Poisson models, ranking, etc., in the same fashion. This is a significant difference to

previous approaches which only apply to specialized settings such as binary classification. For

completeness we begin with the latter.
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5.2.1 BINARY CLASSIFICATION

The simplest kernel we may choose is

l(y,y′) = yy′ where y,y′ ∈ {±1} . (16)

In this case the label kernel matrix L = yy⊤ has rank 1 and it is simply the outer product of the

vector of labels. Note that we could transform l by adding a positive constant c, such as to obtain

l(y,y′) = yy′+c which yields l(y,y′) = 2δy,y′ for c = 1. This transformation, however, is immaterial:

once K has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: we may change the relative

weights of positive and negative classes. This is achieved by transforming y→ cyy. For instance,

we may pick c+ = m−1
+ and c− = m−1

− . That is, we choose

y =
(

m−1
+ 1⊤m+

,m−1
− 1⊤m−

)⊤
which leads to l(y,y′) = m−1

y m−1
y′ yy′. (17)

That is, we give different weight to positive and negative class according to their sample size. As

we shall see in the next section, this corresponds to making the feature selection independent of the

class size and it will lead to criteria derived from Maximum Mean Discrepancy estimators (Gretton

et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in binary

classification, as required in Step 3 of Algorithms 1 and 2 (see Section 4). When a linear kernel is

used on the observations, HSIC is related to a number of well-established dependence measures, as

we will establish in Section 6. Hence, we focus for the moment on the case where the feature space

F for the observations is nonlinear (eg, an RBF kernel), and we use the linear kernel (16) on the

labels. HSIC being the squared Hilbert-Schmidt norm of the covariance operator between the fea-

ture spaces F and G , it corresponds to the sum of the squared singular values of this operator. The

maximum singular value (COCO; see Gretton et al., 2005b) corresponds to the largest covariance

between the mappings f1(X) and g1(Y ) of X and Y . Given a linear kernel is used on the labels,

g1(Y ) will be a linear function on the label space. The nature of f1(X) will depend on the choice of

observation kernel k. For a Gaussian kernel, f1(X) will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plots our obser-

vations, where one class has a bimodal distribution in feature X , with cluster centres at ±1. The

second class has a single peak at the origin. The maximum singular vector f1(X) is shown in Figure

1(b), and is computed using a Gaussian kernel on the observations in accordance with Gretton et al.

(2005b). The resulting mapped points in Figure 1(c) have a strong linear relation with the labels

(which can only be linearly transformed). Thus, when a nonlinear kernel is used on the observations,

the features that maximize HSIC are those that can be smoothly mapped to have a strong linear cor-

relation with the labels. The family of smooth mappings is determined by the choice of kernel on

the observations: as we see from Figure 1(b), too large or small a kernel can result in a mapping

that does not reflect the lengthscale of the underlying difference in features. This demonstrates the

need for the kernel bandwidth selection step described in Section 4.
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Figure 1: Maximum eigenfunction of the covrariance operator. Figure 1(a) contains the original

data, where blue points have the label +1 and red points are labeled −1. The feature of

interest is plotted along the x-axis, and an irrelevant feature on the y-axis. Figure 1(b)

contains the largest eigefunction of the covariance operator on the relevant feature alone,

for three different kernel sizes: the smallest kernel shows overfitting, and the largest is

too smooth. Figure 1(c) contains the mapped points for a “good” kernel choice σ = 0.1,

illustrating a strong linear relation between the mapped points and the labels for this

choice of σ.

5.2.2 MULTICLASS CLASSIFICATION

Here we have a somewhat larger choice of options to contend with. Clearly the simplest kernel

would be

l(y,y′) = cyδy,y′ where cy > 0. (18)

For cy = m−1
y we obtain a per-class normalization. Clearly, for n classes, the kernel matrix L can

be represented by the outer product of a rank-n matrix, where each row is given by cyi
e⊤yi

, where ey

denotes the y-th unit vector in R
n. Alternatively, we may adjust the inner product between classes

to obtain

l(y,y′) =
〈

ψ(y),ψ(y′)
〉

(19)

where ψ(y) = ey

m

my(m−my)
− z and z = ((m−m1)

−1, . . . ,(m−mn)
−1)⊤.

This corresponds to assigning a “one versus the rest” feature to each class and taking the inner

product between them. As before in the binary case, note that we may drop z from the expansion,

since constant offsets do not change the relative values of HSIC for feature selection. In this case

we recover (18) with cy = m2m−2
y (m−my)

−2.
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5.2.3 REGRESSION

This is one of the situations where the advantages of using HSIC are clearly apparent: we are able

to adjust our method to such situations simply by choosing appropriate kernels. Clearly, we could

just use a linear kernel l(y,y′) = yy′ which would select simple correlations between data and labels.

Another choice is to use an RBF kernel on the labels, such as

l(y,y′) = exp
(

−σ̄
∥

∥y− y′
∥

∥

2
)

. (20)

This will ensure that we capture arbitrary nonlinear dependence between x and y. The price is that

in this case L will have full rank, hence computation of BAHSIC and FOHSIC are correspondingly

more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special cases of BAHSIC by choosing appro-

priate preprocessing of data and kernels. We will directly relate these criteria to the biased estimator

HSIC0 in (4). Given the fact that HSIC0 converges to HSIC1 with rate O(m−1) it follows that the

criteria are well related. Additionally we can infer from this that by using HSIC1 these other criteria

could also be improved by correcting their bias. In summary BAHSIC is capable of finding and

exploiting dependence of a much more general nature (for instance, dependence between data and

labels with graph and string values).

6.1 Pearson Correlation

Pearson’s correlation is commonly used in microarray analysis (van’t Veer et al., 2002; Ein-Dor

et al., 2006). It is defined as

R j :=
1

m

m

∑
i=1

(

xi j− x̄ j

sx j

)(

yi− ȳ

sy

)

where (21)

x̄ j =
1

m

m

∑
i=1

xi j and ȳ =
1

m

m

∑
i=1

yi and s2
x j
=

1

m

m

∑
i=1

(xi j− x̄ j)
2 and s2

y =
1

m

m

∑
i=1

(yi− ȳ)2.

This means that all features are individually centered by x̄ j and scaled by their coordinate-wise

variance sx j
as a preprocessing step. Performing those operations before applying a linear kernel

yields the equivalent HSIC0 formulation:

trKHLH = tr
(

XX⊤Hyy⊤H
)

=
∥

∥

∥HX⊤Hy

∥

∥

∥

2

(22)

=
d

∑
j=1

(

m

∑
i=1

(

xi j− x̄ j

sx j

)(

yi− ȳ

sy

)

)2

=
d

∑
j=1

R2
j . (23)

Hence HSIC1 computes the sum of the squares of the Pearson Correlation (pc) coefficients. Since

the terms are additive, feature selection is straightforward by picking the list of best performing

features.
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6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative classes at the jth feature, (x̄ j+− x̄ j−),
is useful for scoring individual features. With different normalization of the data and the labels,

many variants can be derived. In our experiments we compare a number of these variants. For

example, the centroid (lin) (Bedo et al., 2006), t-statistic (t), signal-to-noise ratio (snr), moderated

t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. In the following we

make those connections more explicit.

Centroid Bedo et al. (2006) use v j := λx̄ j+− (1−λ)x̄ j− for λ ∈ (0,1) as the score for feature j.4

Features are subsequently selected according to the absolute value
∣

∣v j

∣

∣. In experiments the

authors typically choose λ = 1
2
.

For λ = 1
2

we can achieve the same goal by choosing Lii′ =
yiyi′

myi
my

i′
(yi,yi′ ∈ {±1}), in which

case HLH = L, since the label kernel matrix is already centered. Hence we have

trKHLH =
m

∑
i,i′=1

yiyi′

myi
myi′

x⊤i xi′ =
d

∑
j=1

(

m

∑
i,i′=1

yiyi′xi jxi′ j

myi
myi′

)

=
d

∑
j=1

(x̄ j+− x̄ j−)
2.

This proves that the centroid feature selector can be viewed as a special case of BAHSIC in the

case of λ = 1
2
. From our analysis we see that other values of λ amount to effectively rescaling

the patterns xi differently for different classes, which may lead to undesirable features being

selected.

t-Statistic The normalization for the jth feature is computed as

s̄ j =

[

s2
j+

m+
+

s2
j−

m−

] 1
2

. (24)

In this case we define the t-statistic for the jth feature via t j = (x̄ j+− x̄ j−)/s̄ j.

Compared to the Pearson correlation, the key difference is that now we normalize each feature

not by the overall sample standard deviation but rather by a value which takes each of the two

classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize

each feature by s̄ j = s j+ + s j− instead. Subsequently the (x̄ j+− x̄ j−)/s̄ j are used to score

features.

Moderated t-score is similar to t-statistic and is used for microarray analysis (Smyth, 2004). Its

normalization for the jth feature is derived via a Bayes approach as

s̃ j =
ms̄2

j +m0s̄2
0

m+m0

where s̄ j is from (24), and s̄0 and m0 are hyperparameters for the prior distribution on s̄ j (all s̄ j

are assumed to be iid). s̄0 and m0 are estimated using information from all feature dimensions.

4. The parameterization in Bedo et al. (2006) is different but it can be shown to be equivalent.

1411



SONG, SMOLA, GRETTON, BEDO AND BORGWARDT

This effectively borrows information from the ensemble of features to aid with the scoring of

an individual feature. More specifically, s̄0 and m0 can be computed as (Smyth, 2004)

m0 = 2Γ′−1

(

1

d

d

∑
j=1

(z j− z̄)2−Γ′
(m

2

)

)

, (25)

s̄2
0 = exp

(

z̄−Γ
(m

2

)

+Γ
(m0

2

)

− ln
(m0

m

))

where Γ(·) is the gamma function, ′ denotes derivative, z j = ln(s̄2
j) and z̄ = 1

d ∑d
j=1 z j.

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentially expressed.

Lönnstedt and Speed (2002) and Smyth (2004) show that, for large number of features, B-

statistic is given by

B j = a+bt̃2
j

where both a and b are constant (b > 0), and t̃ j is the moderated-t statistic for the jth feature.

Here we see that B j is monotonic increasing in t̃ j, and thus results in the same gene ranking

as the moderated-t statistic.

The reason why these connections work is that the signal-to-noise ratio, moderated t-statistic, and

B-statistic are three variants of the t-test. They differ only in their respective denominators, and are

thus special cases of HSIC0 if we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classification, an alternative criterion for selecting features is to check whether the dis-

tributions Pr(x|y = 1) and Pr(x|y = −1) differ and subsequently pick those coordinates of the data

which primarily contribute to the difference between the two distributions.

More specifically, we could use Maximum Mean Discrepancy (MMD) (Gretton et al., 2007a),

which is a generalization of mean difference for Reproducing Kernel Hilbert Spaces, given by

MMD = ‖Ex [φ(x)|y = 1]−Ex [φ(x)|y =−1]‖2
H .

A biased estimator of the above quantity can be obtained simply by replacing expectations by av-

erages over a finite sample. We relate a biased estimator of MMD to HSIC0 again by setting m−1
+

as the labels for positive samples and −m−1
− for negative samples. If we apply a linear kernel on

labels, L is automatically centered, that is, L1 = 0 and HLH = L. This yields

trKHLH = trKL (26)

=
1

m2
+

m+

∑
i, j

k(xi,x j)+
1

m2
−

m−

∑
i, j

k(xi,x j)−
2

m+m−

m+

∑
i

m−

∑
j

k(xi,x j)

=

∥

∥

∥

∥

∥

1

m+

m+

∑
i

φ(xi)−
1

m−

m−

∑
j

φ(x j)

∥

∥

∥

∥

∥

2

H

.

The quantity in the last line is an estimator of MMD with bias O(m−1) (Gretton et al., 2007a). This

implies that HSIC0 and the biased estimator of MMD are identical up to a constant factor. Since the

bias of HSIC0 is also O(m−1), this effectively show that scaled MMD and HSIC1 converges to each

other with rate O(m−1).
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6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristianini et al., 2003) to test di-

rectly whether there exists any correlation between data and labels. KTA has been used for feature

selection in this context. Formally it is defined as tr(KL)/‖K‖‖L‖, that is, as the normalized cosine

between the kernel matrix and the label matrix.

The nonlinear dependence on K makes it somewhat hard to optimize for. Indeed, for compu-

tational convenience the normalization is often omitted in practice (Neumann et al., 2005), which

leaves us with trKL, the corresponding estimator of MMD.5 Note the key difference, though, that

normalization of L according to label size does not occur. Nor does KTA take centering into ac-

count. Both normalizations are rather important, in particular when dealing with data with very

uneven distribution of classes and when using data that is highly collinear in feature space. On the

other hand, whenever the sample sizes for both classes are approximately matched, such lack of

normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classification, selecting features that maximizes HSIC also maxi-

mizes MMD and KTA. Note that in general (multiclass, regression, or generic binary classification)

this connection does not hold. Moreover, the use of HSIC offers uniform convergence bounds on

the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2003) performs feature ranking using

the differences from the class centroids to the centroid of all the data, that is

(x̄ j+− x̄ j)
2 +(x̄ j−− x̄ j)

2 ,

as a criterion to determine the relevance of a given feature. It also scores each feature separately.

To show that this criterion is related to HSIC we need to devise an appropriate map for the labels

y. Consider the feature map ψ(y) with ψ(1) = (m−1
+ ,0)⊤ and ψ(−1) = (0,m−1

− )⊤. Clearly, when

applying H to Y we obtain the following centered effective feature maps

ψ̄(1) = (m−1
+ −m−1,−m−1) and ψ̄(−1) = (−m−1,m−1

− −m−1).

Consequently we may express trKHLH via

trKHLH =

∥

∥

∥

∥

∥

1

m+

m+

∑
i=1

xi−
1

m

m

∑
i=1

xi

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

1

m−

m−

∑
i=1

xi−
1

m

m

∑
i=1

xi

∥

∥

∥

∥

∥

2

(27)

=
d

∑
j=1





(

1

m+

m+

∑
i=1

xi j−
1

m

m

∑
i=1

xi j

)2

+

(

1

m−

m−

∑
i=1

xi j−
1

m

m

∑
i=1

xi j

)2


 (28)

=
d

∑
j=1

(

(x̄ j+− x̄ j)
2 +(x̄ j−− x̄ j)

2
)

.

5. The denominator provides a trivial constraint in the case where the features are individually normalized to unit norm

for a linear kernel, since in this case ‖K‖= d: that is, the norm of the kernel matrix scales with the dimensionality d

of remaining features in X . The normalization in the denominator can have a more meaningful effect, however, for

instance in the taxonomy fitting work of Blaschko and Gretton (2009), where the quality-of-fit score could otherwise

be made arbitrarily large independent of the data.
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This is the information used by the shrunken centroid method, hence we see that it can be seen

to be a special case of HSIC when using a linear kernel on the data and a specific feature map on

the labels. Note that we could assign different weights to the two classes, which would lead to a

weighted linear combination of distances from the centroid. Finally, it is straightforward how this

definition can be extended to multiclass settings, simply by considering the map ψ : y→ m−1
y ey.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problems, except that in this case the

labels are continuous variables. We could, in principle, use an RBF kernel or similar on the labels

to address the feature selection issue. What we show now is that even for a simple linear kernel,

interesting results can be obtained. More to the point, we show that feature selection using ridge

regression can also be seen to arise as a special case of HSIC feature selection. We assume here that

y is centered.

In ridge regression (Hastie et al., 2001), we estimate the outputs y using the design matrix V

and a parameter vector w by minimizing the following regularized risk functional

J = ‖y−Vw‖2 +λ ‖w‖2 .

Here the second term is known as the regularizer. If we choose V = X we obtain the family of linear

models. In the general (nonlinear) case V may be an arbitrary matrix, where each row consists of

a set of basis functions, for example, a feature map φ(x). One might conclude that small values of

J correspond to good sets of features, since there a w with small norm would still lead to a small

approximation error. It turns out that J is minimized for w = (V⊤V+λI)−1y. Hence the minimum

is given by

J∗ = y⊤y−y⊤V(V⊤V+λI)−1V⊤y (29)

= constant− tr
[

V(V⊤V+λI)−1V⊤
]

yy⊤.

Whenever we are only given K = V⊤V we have the following equality

J∗ = constant− tr
[

K(K+λI)−1
]

yy⊤.

This means that the matrices

K̄ := V(V⊤V+λI)−1V⊤ and K̄ := K(K+λI)−1

are equivalent kernel matrices to be used in BAHSIC. Note that obviously instead of using yy⊤ as

a kernel on the labels L we could use a nonlinear kernel in conjunction with the matrices arrived at

from feature selection by ridge regression. It also generalizes the setting of Hastie et al. (2001) to

situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature selection. That is, he uses the L2

distance between the joint and the marginal distributions on x and y as a criterion for how dependent

the two distributions are:

I(x,y) =
∫ ∫

(Pr(x,y)−Pr(x)Pr(y))2dxdy. (30)

1414



FEATURE SELECTION VIA DEPENDENCE MAXIMIZATION

In general, (30) is not efficiently computable. That said, when using a Parzen windows estimate of

the joint and the marginals, it is possible to evaluate I(x,y) explicitly. Since we only have a finite

number of observations, one uses the estimates

p̂(x) =
1

m

m

∑
i=1

κx(xi− x),

p̂(y) =
1

m

m

∑
i=1

κy(yi− y),

p̂(x,y) =
1

m

m

∑
i=1

κx(xi− x)κy(yi− y).

Here κx and κy are appropriate kernels of the Parzen windows density estimator. Denote by

κi j =
∫

κx(xi− x)κx(x j− x)dx and νi j =
∫

κy(yi− y)κy(y j− y)dy

inner products between Parzen windows kernels. In this case we have

‖ p̂(x,y)− p̂(x) · p̂(y)‖2 = m−2
[

trκν−21⊤κν1+1⊤κ11⊤ν1
]

= m−2κHνH.

In other words, we obtain the same criterion as what can be derived from a biased estimator of

HSIC. The key difference, though, is that this analogy only works whenever κ and ν can be seen to

be arising from an inner product between Parzen windows kernel estimates. This is not universally

true: for instance, for graphs, trees, or strings no simple density estimates can be found. This is a

serious limitation. Moreover, since we are using a plug-in estimate of the densities, we inherit an

innate slow-down of convergence due to the convergence of the density estimators. This issue is

discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Machines and to determine

the relevance of features by the size of the induced margin as a solution of the dual optimization

problem (Guyon et al., 2002). While the connection to BAHSIC is somewhat more tenuous in this

context, it is still possible to recast this algorithm in our framework. Before we do so, we describe

the basic idea of the method, using ν-SVM instead of plain C-SVMs: for ν-SVM without a constant

offset b we have the following dual optimization problem (Schölkopf et al., 1999).

minimize
α

1

2
α⊤(K◦L)α subject to α⊤1 = νm and αi ∈ [0,1]. (31)

This problem is first solved with respect to α for the full set of features. Features are then selected

from (31) by removing coordinates such that the objective function decreases least (if at all). For

computational convenience, α is not recomputed for a number of feature removals, since repeated

solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case of BAHSIC, where now the

class of kernels, parameterized by σ is the one of conformal kernels. Given a base kernel k(x,x′)
Amari and Wu (1999) propose the following kernel:

k̄(x,x′) = α(x)α(x′)k(x,x′) where α(x)≥ 0.
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It is easy to see that

α⊤(K◦L)α = y⊤ [diagα]K [diagα]y = y⊤K̄y,

where K̄ is the kernel matrix arising from the conformal kernel k̄(x,x′). Hence for fixed α the

objective function is given by a quantity which can be interpreted as a biased version of HSIC.

Re-optimization with respect to α is consistent with the kernel adjustment step in Algorithm 1. The

only difference being that here the kernel parameters are given by α rather than a kernel width σ.

That said, it is also clear from the optimization problem that this style of feature selection may not

be as desirable, since the choice of kernel parameters emphasizes only points close to the decision

boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of experiments. The current section

contains results on synthetic and real benchmark data, that is, data from Statlib, the UCI repository,

and data from the NIPS feature selection challenge. Sections 8 and 9 then discusses applications to

biological data, namely brain signal analysis and feature selection for microarrays.

Since the number of possible choices for feature selection within the BAHSIC family is huge,

it is clearly impossible to investigate and compare all of them to all possible other feature selectors.

In the present section we pick the following three feature selectors as representative examples. A

wider range of kernels and choices is investigated in Section 8 and 9 in the context of biomedical

applications.

In this section, we presents three concrete examples of BAHSIC which are used for our later

experiments. We apply a Gaussian kernel k(x,x′) = exp(−σ‖x− x′‖2) on data, while varying the

kernels on labels. These BAHSIC variants are dedicated respectively to the following settings:

Binary classification (BIN) Use the feature map in (17) and apply a linear kernel.

Multiclass classification (MUL) Use the feature map in (18) and apply a linear kernel.

Regression problem (REG) Use the kernel in (20), that is, a Gaussian RBF kernel on Y.

For the above variants a further speedup of BAHSIC is possible by updating entries in the data kernel

matrix incrementally. We use the fact that distance computation of a RBF kernel decomposes into

individual coordinates, that is, we use that ‖xi−xi′‖2 = ∑d
j=1 ‖xi j− xi′ j‖2. Hence ‖xi−xi′‖2 needs

to be computed only once, and subsequent updates are effected by subtracting ‖xi j− xi′ j‖2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in our experiments.

We will refer to them commonly as BAHSIC since the exact meaning will be clear depending on

the data sets encountered. Furthermore, we also instantiate FOHSIC using the same kernels as BIN,

MUL and REG, and we adopt the same convention when we refer to it in our experiments.

7.1 Artificial Data

We constructed 3 artificial data sets, as illustrated in Figure 2, to illustrate the difference between

BAHSIC variants with linear and nonlinear kernels. Each data set has 22 dimensions—only the first

two dimensions are related to the prediction task and the rest are just Gaussian noise. These data

sets are (i) Binary XOR data: samples belonging to the same class have multimodal distributions;
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Artificial data sets and the performance of different methods when varying the number of

observations. The first row contains plots for the first 2 dimension of the (a) binary (b)

multiclass and (c) regression data. Different classes are encoded with different colours.

The second row plots the median rank (y-axis) of the two relevant features as a function

of sample size (x-axis) for the corresponding data sets in the first row. The third row plots

median rank (y-axis) of the two relevant features produced in the first iteration of BAHSIC

as a function of the sample size. (Blue circle: Pearson’s correlation; Green triangle:

RELIEF; Magenta downward triangle: mutual information; Black triangle: FOHSIC;

Red square: BAHSIC. Note that RELIEF only works for binary classification.)

(ii) Multiclass data: there are 4 classes but 3 of them are collinear; (iii) Nonlinear regression

data: labels are related to the first two dimension of the data by y = x1 exp(−x2
1− x2

2)+ ε, where ε
denotes additive Gaussian noise. We compare BAHSIC to FOHSIC, Pearson’s correlation, mutual

information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF works only for binary problems).
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We aim to show that when nonlinear dependencies exist in the data, BAHSIC with nonlinear kernels

is very competent in finding them.

We instantiate the artificial data sets over a range of sample sizes (from 40 to 400), and plot the

median rank, produced by various methods, for the first two dimensions of the data. All numbers

in Figure 2 are averaged over 10 runs. In all cases, BAHSIC shows good performance. More

specifically, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the first two dimensions of the data even

for small sample sizes; while FOHSIC, Pearson’s correlation, and mutual information fail.

This is because the latter three evaluate the goodness of each feature independently. Hence

they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct features irrespec-

tive of the size of the sample. Pearson’s correlation only works for large sample size. The

collinearity of 3 classes provides linear correlation between the data and the labels, but due to

the interference of the fourth class such correlation is picked up by Pearson’s correlation only

for a large sample size.

Nonlinear Regression Data The performance of Pearson’s correlation and mutual information is

slightly better than random. BAHSIC and FOHSIC quickly converge to the correct answer as

the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is able to rank the relevant features

(the first two dimensions) almost correctly in the first iteration. In the third row of Figure 2, we show

the median rank of the relevant features produced in the first iteration as a function of the sample

size. It is clear from the pictures that BAHSIC effectively selects features in a single iteration when

the sample size is large enough. For the regression case, we also see that BAHSIC with several

iterations, indicated by the red square in Figure 2(f), slightly improves the correct ranking over

BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always better than that with a linear

kernel, it illustrates the competence of BAHSIC in detecting nonlinear features. This is obviously

useful in a real-world situations. The second advantage of BAHSIC is that it is readily applicable to

both classification and regression problems, by simply choosing a different kernel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-of-the-art feature selectors on a

large collection of public benchmark datasets. BAHSIC achieves the overall best performance in

three experimental settings, i.e., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be comparable to other state-of-

the-art feature selectors, namely SVM Recursive Feature Elimination (RFE) (Guyon et al., 2002),

RELIEF (Kira and Rendell, 1992), L0-norm SVM (L0) (Weston et al., 2003), and R2W2 (Weston

et al., 2000). We used the implementation of these algorithms as given in the Spider machine

learning toolbox, since those were the only publicly available implementations.6 Furthermore, we

6. The Spider toolbox can be found at http://www.kyb.tuebingen.mpg.de/bs/people/spider.
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also include filter methods, namely FOHSIC, Pearson’s correlation (PC), and mutual information

(MI), in our comparisons.

7.2.2 DATA SETS

We used various real world data sets taken from the UCI repository,7 the Statlib repository,8 the

LibSVM website,9 and the NIPS feature selection challenge 10 for comparison. Due to scalability

issues in Spider, we produced a balanced random sample of size less than 2000 for data sets with

more than 2000 samples.

7.2.3 EXPERIMENTAL PROTOCOL

We report the performance of an SVM using a Gaussian kernel on a feature subset of size 5 and

10-fold cross-validation. These 5 features were selected per fold using different methods. Since

we are comparing the selected features, we used the same family of classifiers for all methods:

an SVM with a Gaussian kernel. To address issues of automatic bandwidth selection (after all,

we are interested in adjusting the function class to the data at hand) we chose σ to be the median

distance between points in the sample (Schölkopf and Smola, 2002) and we fixed the regularization

parameter to C = 100. On classification data sets, we measured the performance using the error rate,

and on regression data sets we used the percentage of variance not-explained (also known as 1−r2).

The results for binary data sets are summarized in the first part of Table 1. Those for multiclass and

regression data sets are reported respectively in the second and the third parts of Table 1.

To provide a concise summary of the performance of various methods on binary data sets, we

measured how the methods compare with the best performing one in each data set in Table 1. We

recorded the best absolute performance of all feature selectors as the baseline, and computed the

distance of each algorithm to the best possible result. In this context it makes sense to penalize

catastrophic failures more than small deviations. In other words, we would like to have a method

which is at least almost always very close to the best performing one. Taking the ℓ2 distance achieves

this effect, by penalizing larger differences more heavily. It is also our goal to choose an algorithm

that performs homogeneously well across all data sets. The ℓ2 distance scores are listed for the

binary data sets in Table 1. In general, the smaller the ℓ2 distance, the better the method. In this

respect, BAHSIC and FOHSIC have the best performance. We did not produce the ℓ2 distance for

multiclass and regression data sets, since the limited number of such data sets did not allow us to

draw statistically significant conclusions.

Besides using 5 features, we also plot the performance of the learners as a function of the num-

ber of selected features for 9 data sets (covertype, ionosphere, sonar, satimage, segment, vehicle,

housing, bodyfat and abalone) in Figure 3. Generally speaking, the smaller the plotted number the

better the performance of the corresponding learner. For multiclass and regression data sets, it is

clear that the curves for BAHSIC very often lie along the lower bound of all methods. For binary

classification, however, SVM-RFE as a member of our framework performs the best in general.

The advantage of BAHSIC becomes apparent when a small percentage of features is selected. For

instance, BAHSIC is the best when only 5 features are selected from data set 1 and 2. Note that

7. UCI repository can be found at http://www.ics.uci.edu/˜mlearn/MLSummary.html.

8. Statlib repository can be found at http://lib.stat.cmu.edu/datasets/.

9. LibSVM can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

10. NIPS feature selection challenge can be found at http://clopinet.com/isabelle/Projects/NIPS2003/.
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Data BAHSIC FOHSIC PC MI RFE RELIEF L0 R2W2

covertype 26.3±1.5 37.9±1.7 40.3±1.3 26.7±1.1 33.0±1.9 42.7±0.7 43.4±0.7 44.2±1.7

ionosphere 12.3±1.7 12.8±1.6 12.3±1.5 13.1±1.7 20.2±2.2 11.7±2.0 35.9±0.4 13.7±2.7

sonar 27.9±3.1 25.0±2.3 25.5±2.4 26.9±1.9 21.6±3.4 24.0±2.4 36.5±3.3 32.3±1.8

heart 14.8±2.4 14.4±2.4 16.7±2.4 15.2±2.5 21.9±3.0 21.9±3.4 30.7±2.8 19.3±2.6

breastcancer 3.8±0.4 3.8±0.4 4.0±0.4 3.5±0.5 3.4±0.6 3.1±0.3 32.7±2.3 3.4±0.4

australian 14.3±1.3 14.3±1.3 14.5±1.3 14.5±1.3 14.8±1.2 14.5±1.3 35.9±1.0 14.5±1.3

splice 22.6±1.1 22.6±1.1 22.8±0.9 21.9±1.0 20.7±1.0 22.3±1.0 45.2±1.2 24.0±1.0

svmguide3 20.8±0.6 20.9±0.6 21.2±0.6 20.4±0.7 21.0±0.7 21.6±0.4 23.3±0.3 23.9±0.2

adult 24.8±0.2 24.4±0.6 18.3±1.1 21.6±1.1 21.3±0.9 24.4±0.2 24.7±0.1 100.0±0.0∗

cleveland 19.0±2.1 20.5±1.9 21.9±1.7 19.5±2.2 20.9±2.1 22.4±2.5 25.2±0.6 21.5±1.3

derm 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 24.3±2.6 0.3±0.3

hepatitis 13.8±3.5 15.0±2.5 15.0±4.1 15.0±4.1 15.0±2.5 17.5±2.0 16.3±1.9 17.5±2.0

musk 29.9±2.5 29.6±1.8 26.9±2.0 31.9±2.0 34.7±2.5 27.7±1.6 42.6±2.2 36.4±2.4

optdigits 0.5±0.2 0.5±0.2 0.5±0.2 3.4±0.6 3.0±1.6 0.9±0.3 12.5±1.7 0.8±0.3

specft 20.0±2.8 20.0±2.8 18.8±3.4 18.8±3.4 37.5±6.7 26.3±3.5 36.3±4.4 31.3±3.4

wdbc 5.3±0.6 5.3±0.6 5.3±0.7 6.7±0.5 7.7±1.8 7.2±1.0 16.7±2.7 6.8±1.2

wine 1.7±1.1 1.7±1.1 1.7±1.1 1.7±1.1 3.4±1.4 4.2±1.9 25.1±7.2 1.7±1.1

german 29.2±1.9 29.2±1.8 26.2±1.5 26.2±1.7 27.2±2.4 33.2±1.1 32.0±0.0 24.8±1.4

gisette 12.4±1.0 13.0±0.9 16.0±0.7 50.0±0.0 42.8±1.3 16.7±0.6 42.7±0.7 100.0±0.0∗

arcene 22.0±5.1 19.0±3.1 31.0±3.5 45.0±2.7 34.0±4.5 30.0±3.9 46.0±6.2 32.0±5.5

madelon 37.9±0.8 38.0±0.7 38.4±0.6 51.6±1.0 41.5±0.8 38.6±0.7 51.3±1.1 100.0±0.0∗

ℓ2 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3

satimage 15.8±1.0 17.9±0.8 52.6±1.7 22.7±0.9 18.7±1.3 - 22.1±1.8 -

segment 28.6±1.3 33.9±0.9 22.9±0.5 27.1±1.3 24.5±0.8 - 68.7±7.1 -

vehicle 36.4±1.5 48.7±2.2 42.8±1.4 45.8±2.5 35.7±1.3 - 40.7±1.4 -

svmguide2 22.8±2.7 22.2±2.8 26.4±2.5 27.4±1.6 35.6±1.3 - 34.5±1.7 -

vowel 44.7±2.0 44.7±2.0 48.1±2.0 45.4±2.2 51.9±2.0 - 85.6±1.0 -

usps 43.4±1.3 43.4±1.3 73.7±2.2 67.8±1.8 55.8±2.6 - 67.0±2.2 -

housing 18.5±2.6 18.9±3.6 25.3±2.5 18.9±2.7 - - - -

bodyfat 3.5±2.5 3.5±2.5 3.4±2.5 3.4±2.5 - - - -

abalone 55.1±2.7 55.9±2.9 54.2±3.3 56.5±2.6 - - - -

Table 1: Classification error (%) or percentage of variance not-explained (%). The best result, and

those results not significantly worse than it, are highlighted in bold (Matlab signrank test

with 0.05 significance level). 100.0±0.0∗: program is not finished in a week or crashed. -:

not applicable.

in these cases, the performance produced by BAHSIC is very close to that using all features. In a

sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meaningful in practice. Here

we use it to select a frequency band for a brain-computer interface (BCI) data set from the Berlin

BCI group (Dornhege et al., 2004). The data contains EEG signals (118 channels, sampled at 100

Hz) from five healthy subjects (‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’) recorded during two types of motor

imaginations. The task is to classify the imagination for individual trials.

1420



FEATURE SELECTION VIA DEPENDENCE MAXIMIZATION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The performance of a classifier or a regressor (vertical axes) as a function of the number

of selected features (horizontal axes). Note that the maximum of the horizontal axes are

equal to the total number of features in each data set. (a-c) Balanced error rate by a SVM

classifier on the binary data sets Covertype (1), Ionosphere (2) and Sonar (3) respectively;

(d-f) balanced error rate by a one-versus-the-rest SVM classfier on multiclass data sets

Satimage (22), Segment (23) and Vehicle (24) respectively; (g-i) percentage of variance

not-explained by a SVR regressor on regression data set Housing (25), Body fat (26) and

Abalone (27) respectively.

Our experiment proceeds in 3 steps: (i) A Fast Fourier transformation (FFT) is performed on

each channel and the power spectrum is computed. (ii) The power spectra from all channels are

averaged to obtain a single spectrum for each trial. (iii) BAHSIC is used to select the top 5 discrim-

inative frequency components based on the power spectrum. The 5 selected frequencies and their 4

nearest neighbours are used to reconstruct the temporal signals (with all other Fourier coefficients
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(a) (b) (c)

(d) (e)

Figure 4: HSIC, encoded by the colour value for different frequency bands. The x-axis corresponds

to the upper cutoff and the y-axis denotes the lower cutoff (clearly no signal can be found

where the lower bound exceeds the upper bound). Red corresponds to strong dependence,

whereas blue indicates that no dependence was found. The figures are for subject (a) ‘aa’,

(b) ‘al’, (c) ‘av’, (d) ‘aw’ and (e) ‘ay’.

eliminated). The result is then passed to a normal CSP method (Dornhege et al., 2004) for feature

extraction and then classified using a linear SVM.

Automatic filtering using BAHSIC is then compared to other filtering approaches: normal CSP

method with manual filtering (8-40 Hz), the CSSP method (Lemm et al., 2005) and the CSSSP

method (Dornhege et al., 2006). All results presented in Table 2 are obtained using 50× 2-fold

cross-validation. Our method is very competitive and obtains the first and second place for 4 of

the 5 subjects. While the CSSP and the CSSSP methods are specialized embedded methods (w.r.t.

the CSP method) for frequency selection on BCI data, our method is entirely generic. BAHSIC

decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of different frequency bands to motor

imagination. The horizontal and the vertical axes in each subfigure represent the lower and upper

bounds for a frequency band, respectively. HSIC is computed for each of these bands. Dornhege

et al. (2006) report that the µ rhythm (approx. 12 Hz) of EEG is most responsive to motor imagi-

nation, and that the β rhythm (approx. 22 Hz) is also responsive. We expect that HSIC will create

a strong peak at the µ rhythm and a weaker peak at the β rhythm, and the absence of other respon-

sive frequency components will create block patterns. Both predictions are confirmed in Figure 4.

Furthermore, the large area of the red region for subject ‘al’ indicates good responsiveness of his µ

rhythm. This also corresponds well with the lowest classification error obtained for him in Table 2.
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Method aa al av aw ay

CSP(8-40Hz) 17.5±2.5 3.1±1.2 32.1±2.5 7.3±2.7 6.0±1.6

CSSP 14.9±2.9 2.4±1.3 33.0±2.7 5.4±1.9 6.2±1.5

CSSSP 12.2±2.1 2.2±0.9 31.8±2.8 6.3±1.8 12.7±2.0

BAHSIC 13.7±4.3 1.9±1.3 30.5±3.3 6.1±3.8 9.0±6.0

Table 2: Classification errors (%) on BCI data after selecting a frequency range.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create problems for applica-

tion, that is, it is not immediately clear which criteria we might want to choose. Here we provide

guidelines for choosing a specific member of the BAHSIC family by using gene selection as an

illustration.

9.1 Data Sets

While some past work focused on analysis of a specific single microarray data set we decided to

perform a large scale comparison of a raft of techniques on many data sets. We believe that this leads

to a more accurate description of the performance of feature selectors. We ran our experiments on

28 data sets, of which 15 are two-class data sets and 13 are multiclass data sets. These data sets

are assigned a reference number for convenience. Two-class data sets have a reference number less

than or equal to 15, and multiclass data sets have reference numbers of 16 and above. Only one data

set, yeast, has feature dimension less than 1000 (79 features). All other data sets have dimensions

ranging from approximately 2000 to 25000. The number of samples varies between approximately

50 and 300 samples. A summary of the data sets and their sources is as follows:

• The six data sets studied in Ein-Dor et al. (2006). Three deal with breast cancer (van’t Veer

et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numbered 1, 2 and 3), two with

lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, 5), and one with hepatocellular

carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma data set (Rosenwald et al., 2002) is

not used because none of the tested methods produce classification errors lower than 40%.

• The six data sets studied in Warnat et al. (2005). Two deal with prostate cancer (Dhanasekaran

et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Gruvberger et al., 2001; West,

2003) (9, 10), and two with leukaemia (Bullinger et al., 2004; Valk et al., 2004) (16, 17).

• Five commonly used bioinformatics benchmark data sets on colon cancer (Alon et al., 1999)

(11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Golub et al., 1999)(13), lym-

phoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19).

• Nine data sets from the NCBI GEO database. The GDS IDs and reference numbers for this pa-

per are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968 (23), GDS1021

(24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28), and GDS1490 (15),

respectively.
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9.2 Classification Error and Robustness of Genes

We used stratified 10-fold cross-validation and SVMs to evaluate the predictive performance of the

top 10 features selected by various members of BAHSIC. For two-class data sets, a nonlinear SVM

with an Gaussian RBF kernel, k(x,x′) = exp
(

− ‖x−x′‖2

2σ2

)

, was used. The regularization constant C

and the kernel width σ were tuned on a grid of {0.1,1,10,102,103}×{1,10,102,103}. Classifi-

cation performance is measured as the fraction of misclassified samples. For multiclass data sets,

all procedures are the same except that we used the SVM in a one-versus-the-rest fashion. A new

BAHSIC member are also included in the comparison, with kernels (‖x− x′‖+ ε)−1 (dis; ε is a

small positive number to avoid singularity) on the data.

The classification results for binary and multiclass data sets are reported in Table 3 and Table

4, respectively. In addition to error rate we also report the overlap between the top 10 gene lists

created in each fold. The multiclass results are presented separately since some older members

of the BAHSIC family, and some competitors, are not naturally extensible to multiclass data sets.

From the experiments we make the following observations:

When comparing the overall performance of various gene selection algorithms, it is of primary

interest to choose a method which works well everywhere, rather than one which sometimes works

well and sometimes performs catastrophically. It turns out that the linear kernel (lin) outperforms

all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the best performing one in each

data set in Tables 3 and 4. The deviation between algorithms is taken as the square of the differ-

ence in performance. This measure is chosen because gene expression data is relative expensive to

obtain, and we want an algorithm to select the best genes from them. If an algorithm selects genes

that are far inferior to the best possible among all algorithms (catastrophic case), we downgrade the

algorithm more heavily. Squaring the performance difference achieves exactly this effect, by penal-

ising larger differences more heavily. In other words, we want to choose an algorithm that performs

homogeneously well in all data sets. To provide a concise summary, we add these deviations over

the data sets and take the square root as the measure of goodness. These scores (called ℓ2 distance)

are listed in Tables 3 and 4. In general, the smaller the ℓ2 distance, the better the method. It can

been seen that the linear kernel has the smallest ℓ2 distance on both the binary and multiclass data

sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) provide better genes for clas-

sification in three data sets from Table 4 (data sets 18 Alizadeh et al., 2000, 27 (GDS1319), and

28 (GDS1454)). These data sets all represent multiclass problems, where at least two of the classes

are subtypes with respect to the same supertype.11 Ideally, the selected genes should contain infor-

mation discriminating the classes. To visualise this information, we plot in Figure 5 the expression

value of the top-ranked gene against that of a second gene ranked in the top 10. This second gene

is chosen so that it has minimal correlation with the first gene. We use colours and shapes to dis-

tinguish data from different classes (data sets 18 and 28 each contain 3 classes, therefore we use

11. For data set 18, the 3 subtypes are diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and chronic

lymphocytic leukemia; For data set 27, the 4 subtypes are various C blastomere mutant embryos: wild type, pie-

1, pie-1+pal-1, and mex-3+skn-1; For data set 28, the 3 subtypes are normal cell, IgV unmutated B-cell, and IgV

mutated B-cell.
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3 different colour and shape combinations for them; data set 27 has 4 classes, so we use 4 such

combinations).

We found that genes selected using nonlinear kernels provide better separation between the

two classes that correspond to the same supertype (red dots and green diamonds), while the genes

selected with the linear kernel do not separate these subtypes well. In the case of data set 27, the

increased discrimination between red and green comes at the cost of a greater number of errors in

another class (black triangle), however these mistakes are less severe than the errors made between

the two subtypes by the linear kernel. This eventually leads to better classification performance for

the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square class is clearly separated

from the rest, while the difference between the two subtypes (red dots and green diamonds) is

less clear. The first gene provides information that distinguishes the blue square class, however it

provides almost no information about the separation between the two subtypes. The linear kernel

does not search for information complementary to the first gene, whereas nonlinear kernels are

able to incorporate complementary information. In fact, the second gene that distinguishes the two

subtypes (red dots and green diamonds) does not separate all classes. From this gene alone, the blue

square class is heavily mixed with other classes. However, combining the two genes together results

in better separation between all classes.

(a) (b) (c)

(d) (e) (f)

Figure 5: Nonlinear kernels (MUL and dis) select genes that discriminate subtypes (red dots and

green diamonds) where the linear kernel fails. The two genes in the first row are represen-

tative of those selected by the linear kernel, while those in the second row are produced

with a nonlinear kernel for the corresponding data sets. Different colors and shapes rep-

resent data from different classes. (a,d) data set 18; (b,e) data set 28; and (e,f) data set

27.
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9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kernel performed best in our

feature selection evaluation, yet also taking into account the existence of nonlinear interaction be-

tween genes (as demonstrated in Section 9.3), we propose the following two rules of thumb for gene

selection:

1. Always apply a linear kernel for general purpose gene selection.

2. Apply a Gaussian kernel if nonlinear effects are present, such as multimodality or comple-

mentary effects of different genes.

This result should come as no surprise, due to the high dimensionality of microarray data sets, but

we corroborate our claims by means of an extensive experimental evaluation. These experiments

also imply a desirable property of gene activity as a whole: it correlates well with the observed

outcomes. Multimodal and highly nonlinear situations exist, where a nonlinear feature selector is

needed (as can be seen in the outcomes on data sets 18, 27 and 28), yet they occur relatively rarely

in practice.

10. Conclusion

This paper provides a unifying framework for a raft of feature selection methods. This allows us to

give tail bounds and asymptotic expansions for feature selectors. Moreover, we are able to design

new feature selectors which work well in practice by means of the Hilbert-Schmidt Independence

Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the feature subset that maximises

the dependence between the data and labels. The absence of bias and good convergence properties

of the empirical HSIC estimate provide a strong theoretical justification for using HSIC in this

context. Although BAHSIC is a filter method, it still demonstrates good performance compared

with more specialised methods in both artificial and real world data. It is also very competitive in

terms of runtime performance.12

A variant of BAHSIC can also be used to perform feature selection for unlabeled data. In this

case, we want to select a subset T of variables such that it is strongly correlated with the full data

set. In other words, we want to find a compressed representation of the data itself in the hope that

it is useful for a subsequent learning tasks. BAHSIC readily accommodates this by simply using

the full data set X as the labels. Clearly, we want to maximize dependence between the selected

variables and X without adding many variables which are simply very much correlated to each other.

This ingredient is not yet explicitly formulated in the BAHSIC framework. We will investigate this

in the future.
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Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIC can also proceed by

converting problem (1) into a continuous optimization problem. By adding a penalty on the number

of nonzero terms, such as a relaxed ℓ0 “norm” of a weight vector over the features we are able

to solve the problem with continuous optimization methods. Unfortunately, this approach does

not perform as well as the the backward elimination procedure proposed in the main text. For

completeness and since related methods are somewhat popular in the literature, the approach is

described below.

We introduce a weighting w ∈ R
n on the dimensions of the data: x 7−→ w◦ x, where ◦ denotes

element-wise product. Thus feature selection using HSIC becomes an optimization problem with

respect to w (for convenience we write HSIC as a function of w, HSIC(w)). To obtain a sparse solu-

tion of the selected features, the zero “norm” ‖w‖0 is also incorporated into our objective function

(clearly ‖.‖0 is not a proper norm). ‖w‖0 computes the number of non-zero entries in w and the

sparsity is achieved by imposing heavier penalty on solutions with large number of non-zero entries.

In summary, feature selection using HSIC can be formulated as:

w = argmax
w

HSIC(w)−λ ‖w‖0 where w ∈ [0,∞)n. (32)

The zero “norm” is not a continuous function. However, it can be approximated well by a concave

function (Fung et al., 2002) (α = 5 works well in practice):

‖w‖0 ≈ 1⊤(1− exp−αw). (33)

While the optimization problem in (32) is non-convex, we may use relatively more efficient opti-

mization procedures for the concave approximation of the ℓ0 norm. For instance, we may use the

convex-concave procedure (CCCP) of Yuille and Rangarajan (2003). For a Gaussian kernel HSIC

can be decomposed into the sum of a convex and a concave function:

HSIC(w)−λ‖w‖0 ≈ tr(K(I−m−111⊤)L(I−m−111⊤))−λ1⊤(1− e−αw).

Depending on the choice of L we need to assign all terms involving exp with positive coefficients

into the convex and all terms involving negative coefficients to the concave function.
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