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PAPER

Feature Selection via �1-Penalized Squared-Loss Mutual
Information

Wittawat JITKRITTUM†∗a), Hirotaka HACHIYA†∗∗b), Nonmembers, and Masashi SUGIYAMA†c), Member

SUMMARY Feature selection is a technique to screen out less impor-
tant features. Many existing supervised feature selection algorithms use
redundancy and relevancy as the main criteria to select features. However,
feature interaction, potentially a key characteristic in real-world problems,
has not received much attention. As an attempt to take feature interaction
into account, we propose �1-LSMI, an �1-regularization based algorithm
that maximizes a squared-loss variant of mutual information between se-
lected features and outputs. Numerical results show that �1-LSMI performs
well in handling redundancy, detecting non-linear dependency, and consid-
ering feature interaction.
key words: feature selection, �1-regularization, squared-loss mutual infor-
mation, density-ratio estimation, dimensionality reduction

1. Introduction

Recently, solving real-world complex problems with
supervised-learning techniques has become more and more
common. In supervised learning, using all variables as in-
put to a learning algorithm works well when the number of
variables is limited. However, when the number of variables
is large (e.g., gene expression-based patient classification),
using all variables in the learning process could lead to over-
fitting and a model-interpretability problem [38].

To overcome these problems, feature-selection tech-
niques are useful. Feature selection aims at removing unnec-
essary variables and retaining only relevant variables for the
target supervised-learning task. Many previous studies [25],
[33] showed that feature selection is useful in finding rele-
vant variables to gain more insight into the data. Moreover,
the generalization ability of the learned model can be im-
proved through the removal of noisy variables [17], [23].

Two conflicting criteria which are commonly used to
select features are relevancy and redundancy. Features are
relevant if they can explain outputs. Features are redundant
if they are similar. It is trivial that more features are more
likely to explain outputs well. However, more features are
also more prone to be redundant [23], [38].

Feature interaction is another important criterion to
consider. Feature interaction is a situation in which two or
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more weak features can explain the output well in the con-
text of each other, even though each of them alone may not
be explanatory. It is one of the key characteristics in real-
world problems. To detect a group of interacting features,
it is necessary to simultaneously consider all features. This
is because, by definition, considering features individually
will not reveal any relevancy to the output. Due to this dif-
ficulty, feature interaction has not received much attention
from the community.

In this research, instead of focusing on only the rele-
vancy and the redundancy as many previous studies did, we
also take into consideration the interaction among features.
We propose �1-LSMI, an �1-regularization based algorithm
that maximizes a squared-loss variant of mutual information
between selected features and outputs. We also experimen-
tally compare the proposed method with several state-of-
the-art feature selection algorithms on both artificial and real
data. Numerical results show that �1-LSMI performs well in
handling redundancy, detecting non-linear dependency, and
considering feature interaction.

The structure of this paper is as follows. We formu-
late our feature-selection problem in Sect. 2. Then we de-
scribe optimization strategies commonly used in practice in
Sect. 3, as well as several feature quality measures in Sect. 4.
We argue that, among the listed strategies, �1-regularization
based feature weighting is the best choice if we take into ac-
count the balance between computational load and the qual-
ity of features. As a feature quality measure, we show that
squared-loss mutual information (SMI) [33] possesses vari-
ous desirable properties. Based on this argument, in Sect. 5,
we propose to combine �1-regularization and SMI, which
we refer to as �1-LSMI. Experiments on artificial and real
data are described in Sect. 6. Finally, we conclude the paper
in Sect. 7.

2. Problem Formulation

A formal description of a supervised feature-selection prob-
lem is as follows. Assume we have an input data matrix
X ∈ Rm×n and output data vector Y ∈ Rn, where m is the
number of features and n is the sample size. X and Y are
realizations of the random variable X = (X1, . . . , Xm) and Y ,
respectively. Given the desired number of features k, super-
vised feature selection attempts to find a subset of features
identified by the set of feature indices I ⊂ {1, . . . ,m}, such
that the underlying feature quality measure f is maximized.
Formally, this can be formulated as an optimization problem
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as

maximize
I⊂{1,...,m}

f (XI,Y)

subject to |I| = k,
(1)

where | · | denotes the set cardinality, and XI denotes the data
matrix X retaining only rows indexed by I.

In general, f can be any function which can quantify
the desired characteristics of the selected features. A pop-
ular choice for f is the classification accuracy of a chosen
classifier [14]. While the selected features Î obtained from
this approach can yield a good classification accuracy, they
are only specifically fit to the predictor in use. As a result,
an objective interpretation of Î may be difficult [9]. In this
work, we opt to focus on feature selection algorithms which
are independent of a predictor for wide applicability.

In practice, searching for a good feature subset to max-
imize f in a reasonable amount of time can be challenging.
In fact, finding the global optimal feature subset is known
to be NP-hard [22], [36]. One way to guarantee that we can
obtain the global optimal subset is to perform an exhaustive
search over all possible subsets. However, since there are
2m possible subsets in total, this approach is impractical for
large m. Clearly, a good optimization strategy is needed to
efficiently explore the subset space.

As shown above, optimization strategies and feature
quality measures are two important research issues in fea-
ture selection. We describe standard optimization strategies
in Sect. 3, and popular feature quality measures in Sect. 4.

3. Optimization Strategies

The optimization strategy defines how to search for a good
feature subset. The complexity of these optimization strate-
gies range, with respect to the number of features m, from
linear (feature ranking) to exponential (exhaustive search).
Optimization strategies in general attempt to find features
which have high relevancy to the output. Higher complex-
ity in some strategies follows from the fact that feature re-
dundancy is also taken into consideration. We start the dis-
cussion with fast feature ranking technique which does not
consider feature redundancy.

3.1 Feature Ranking

Feature ranking is one of the simplest feature optimization
strategies. Given m features {X1, . . . , Xm}, the feature rank-
ing approach solves the optimization problem of the form

maximize
I⊂{1,...,m}

∑
i∈I

f (Xi,Y) subject to |I| = k.

To solve this problem, we calculate f (Xi,Y) for i ∈
{1, . . . ,m}, rank Xi in the descending order, and then select
the top k features. The notable feature selection algorithms
based on this ranking scheme are Pearson correlation rank-
ing, SPEC [37], the Laplacian score [12], and the mutual in-
formation score [33].

Although simple and fast, feature ranking considers
only the relevancy of features. Evaluating each feature indi-
vidually does not take into account the redundancy among
features. Specifically, if there are many relevant features
which are similar in nature, all of them will be ranked top.
This is not desirable since having many similar features is
usually as good as having just one. In other words, k best
features are not the best k features [23].

3.2 Sequential Search

To take feature redundancy into account, the popular se-
quential search [14], [28] can be used. It comes with two
variants: forward and backward search. Forward search
works iteratively by maintaining the currently selected fea-
tures Xt. At each step t, Xt is updated with

Xt ← Xt−1 ∪ {X∗t },
where X∗t = argmaxX f (Xt−1 ∪ {X}) and X0 = ∅. The back-
ward search works similarly except that X0 contains the full
feature set. At each step, a feature which reduces f the least
is removed.

A potential drawback of the sequential search is its
greedy search nature which is independent of k. That is, the
search paths are nested for different values of k. Specifically,
it is decremental for the backward search, and incremental
for the forward search. The result is that, for the backward
search, once a feature is removed, it will never be consid-
ered again. Likewise, for the forward search, once a feature
is added, it will never be removed even if it is found to be
redundant at latter iterations.

3.3 Feature Weighting

Feature weighting [19], [21], [34], [39] is an approach which
can search for features with a continuous optimization. For-
mally, the feature weighting approach attempts to find a fea-
ture weight vector ŵ ∈ Rm which is the solution of the fol-
lowing optimization problem:

maximize
w

f (diag(w)X,Y)

subject to ‖w‖1 ≤ r,
(2)

where ‖·‖1 denotes the �1-norm, diag(w) is a diagonal matrix
with w placed along its diagonal, and r > 0 is the tuning
parameter for the radius of the �1-ball. It is known that if r
is sufficiently small, then the solution tends to be on a vertex
of the �1 simplex, which makes ŵ sparse [34]. Features can
then be selected according to the non-zero coefficients of the
solution ŵ. In fact, observations reveal that the number of
non-zero coefficients tends to increase as r increases. So, a
simple bisection method may be used to search for the value
of r which gives k features.

Unlike the sequential search, the feature weighting ap-
proach incorporates k into the problem through r from the
beginning. So, the solutions for different values of k are not
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necessarily nested. This characteristic is particularly useful
when there are multiple optimal feature subsets of different
sizes which are disjoint.

4. Feature Quality Measures

In this section, we describe a number of feature quality mea-
sures commonly used in practice. A feature quality measure
is a criterion which indicates how good the selected features
are, and is the counterpart of the optimization strategy. Here,
we focus on predictor-independent criteria.

4.1 Pearson Correlation

Pearson correlation (PC) is a well-known univariate statis-
tical quantity which can be used to measure a linear depen-
dency between two random variables X and Y . It is defined
as

ρ(X,Y) =
cov(X,Y)
σ(X)σ(Y)

, (3)

where cov(X,Y) denotes the covariance between X and Y ,
and σ(X) and σ(Y) are population standard deviation of X
and Y , respectively.

Although the independence of X and Y implies ρ = 0,
the converse is not necessarily true since the correlation is
capable of detecting only a linear dependency. An example
would be a quadratic dependence Y = X2, which gives ρ = 0
due to the cancellation of the negatively and the positively
correlated components.

For a feature selection purpose, |ρ| can be used to rank
features. There are many feature selection algorithms based
on Pearson correlation [11], [23], [24].

4.2 Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt independence criterion (HSIC) [8] is a
multivariate dependence measure which can detect a non-
linear dependency, and does not require a density estima-
tion.

The formal definition of HSIC is given as follows. Let
DX and DY be the domains of X and Y . Define a mapping
φ(x) ∈ F from all x ∈ DX to the feature space F in such a
way that the inner product of points in F is given by a kernel
function k(x, x′) = 〈φ(x), φ(x′)〉. This can be achieved if F
is a reproducing kernel Hilbert space on DX [2]. Similarly,
define another reproducing kernel Hilbert space. G for DY

with feature map ψ and kernel l(y, y′) = 〈ψ(y), ψ(y′)〉. Then,
the cross-covariance operator [7] associated with the joint
probability pxy is a linear operator CXY defined as

CXY := Ex,y[(φ(x) − μx) ⊗ (ψ(y) − μy)],
where ⊗ is the tensor product. HSIC is defined as the
squared Hilbert-Schmidt norm of the cross-covariance op-
erator

HSIC(pxy,F ,G) := ‖CXY‖2HS,

which could be expressed in terms of kernels [8] as

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x, x′)l(y, y′)]
+ Ex,x′ [k(x, x′)]Ey,y′ [l(y, y′)]
− 2Ex,y[Ex′ [k(x, x′)]Ey′ [l(y, y′)]].

Ex,x′,y,y′ [k(x, x′)l(y, y′)] is the expectation over indepen-
dent pairs (x, y) and (x′, y′) drawn from pxy. Given an
i.i.d. paired sample S = {(xi, yi)}ni=1, an empirical estima-
tor of HSIC is given by

HSIC(S,F ,G) =
1

(n − 1)2
tr(KHLH), (4)

where K, L,H ∈ Rn×n, (K)i, j := k(xi, x j), (L)i, j := l(yi, y j),
and H := In − 11T/n (centering matrix). It was also shown
that, if k and l are universal kernels (e.g., Gaussian ker-
nels) [29], then HSIC(pxy,F ,G) = 0 if and only if X and
Y are independent. So, HSIC can also be used as a depen-
dence measure.

In spite of the strong theoretical properties of HSIC,
there is no known objective criterion for model selection of
the kernel functions k and l. A popular heuristic choice is to
use a Gaussian kernel with its width set to the median of the
pairwise distance of the data points [27].

4.3 Mutual Information

In information theory, mutual information [4] is an impor-
tant quantity which can be used to detect a general non-
linear dependency between two random variables. It has
been widely used as the criterion for feature selection [23],
[24], [31] as well as feature extraction [35]. Mutual infor-
mation is defined as

I(X,Y) :=
�

log

(
pxy(x, y)

px(x)py(y)

)
pxy(x, y) dxdy, (5)

which is the Kullback-Leibler divergence [16] from pxy(x, y)
to px(x)py(y). Mutual information is a measure of depen-
dence in the sense that it is always non-negative, symmetric
(I(X,Y) = I(Y, X)), and vanishes if and only if X and Y are
independent, i.e., pxy(x, y) = px(x)py(y).

Even though mutual information is a powerful multi-
variate measure, accurate estimation of the densities pxy,
px and py is difficult in high-dimensional case. A recent
approach which avoids taking the ratio of estimated densi-
ties by directly modeling the density ratio pxy(x,y)

px(x)py(y)
is Max-

imum Likelihood Mutual Information (MLMI) [31]. Al-
though MLMI was demonstrated to be accurate, its estima-
tion is computationally rather expensive due to the existence
of the logarithm function.

4.4 Squared-Loss Mutual Information

Another mutual information variant which has received
much attention recently is Squared-loss Mutual Information
(SMI) [10], [30], [32], [33] defined as

Is(X,Y) :=
1
2

� (
pxy(x, y)

px(x)py(y)
− 1

)2

px(x)py(y) dxdy.

(6)
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SMI is based on the f -divergence [1], [5] with a squared
loss (also known as the Pearson divergence, [20]), as op-
posed to the ordinary mutual information which is based
on the f -divergence with a log loss (Kullback-Leibler di-
vergence, [16]). Note that Is(X,Y) = Is(Y, X), Is(X,Y) ≥ 0,
and Is(X,Y) = 0 if and only if pxy(x, y) = px(x)py(y), just
like the ordinary mutual information. Therefore, SMI can
also be used as a measure of dependence between X and Y .

SMI can be estimated by directly modeling the ratio
g∗(x, y) = pxy(x,y)

px(x)py(y)
itself without going through the esti-

mation of the densities. The goal is to find a density ratio
estimate ĝ(x, y) which is as close to the true density ratio
g∗(x, y) as possible. Here, the estimation can be formulated
as a least-squares problem. That is, to find ĝ(x, y) such that
its expected squared difference from g∗(x, y) is minimized:

min
g

1
2

�
(g(x, y) − g∗(x, y))2 px(x)py(y) dxdy. (7)

Since finding g over all measurable functions is not
tractable [30], the model g is restricted to be in a linear sub-
space G defined as

G := {αTϕ(x, y) |α = (α1, . . . , αb)T ∈ Rb},
where α is the model parameter to be learned, and ϕ(x, y) =
(ϕ1(x, y), . . . , ϕb(x, y))T is a basis function vector such that
∀l, ϕl(x, y) ≥ 0. The basis also admits kernel functions
which depend on samples.

With G, finding ĝ amounts to finding the optimal α. By
using an empirical approximation, Eq. (7) can be written as

min
α∈Rb

1
2
αT
̂Hα −̂hT

α +
λ

2
αTα, (8)

where the term λ
2α

Tα with a regularization parameter λ > 0
is included for a regularization purpose, and

̂H :=
1
n2

n∑
i=1

n∑
j=1

ϕ(xi, y j)ϕ(xi, y j)
T ,

̂h :=
1
n

n∑
i=1

ϕ(xi, yi).

By differentiating Eq. (8) with respect to α and equating it
to zero, the solution α̂ can be computed analytically as

α̂ =
(
̂H + λI

)−1
̂h,

where I denotes the identity matrix. Finally, using α̂, SMI
in Eq. (6) can be estimated as

Îs =
1
2
̂h

T
α̂ − 1

2
. (9)

The estimator in Eq. (9) is called Least-Squares Mutual In-
formation (LSMI).

LSMI possesses many good properties [30]. For ex-
ample, it has an optimal convergence rate in n under non-
parametric setup. Also, LSMI is equipped with a model se-
lection criterion for determining ϕ and λ. Model selection

by K-fold cross validation is described as follows. First, ran-
domly split samples {(xi, yi)}ni=1 into (roughly) equal K dis-
joint subsets {Sk}Kk=1. An estimator α̂S−k is then obtained us-
ing S−k := {S j} j�k. Finally, the approximation error for the
held-out samples Sk is computed. The procedure is repeated
K times, and (ϕ, λ) which minimizes the mean Ĵ(K−CV) is
chosen:

Ĵ(K−CV) :=
1
K

K∑
k=1

(
1
2
α̂T
S−k
̂HSk α̂S−k −̂h

T
Sk
α̂S−k

)
.

5. Proposed Method

In this section, we describe our proposed method.

5.1 Motivations

As mentioned previously, there are a number of factors
which cause the difficulty of feature selection, i.e., non-
linear dependency, feature interaction, and feature redun-
dancy. Although existing combinations of optimization
strategies and measures can handle these problems, the
trade-off of the computational complexity and the obtained
abilities to deal with such issues is not well balanced.

A summary of properties of common optimization
strategies is shown in Table 1. Ranking is very fast since
it completely disregards feature redundancy and feature in-
teraction, and focuses on only feature relevancy. Forward
search improves this by maintaining a set of selected fea-
tures, and greedily adding each feature to the set. This
allows the forward search to deal with feature redundancy
by not adding a redundant feature to the set. Nevertheless,
feature interaction cannot be detected since features are not
considered in the presence of each other. This is why back-
ward search comes to play by starting from the full feature
set and iteratively removing a feature instead. Although
this scheme has a potential to detect interacting features, the
complexity goes from O(m) to O(m2) which could be prob-
lematic when the number of features, m, is large. Consider-
ing all strategies, an �1-based approach seems to be the op-
timal choice here. It offers a continuous optimization which
is usually easier than a discrete optimization. Also, since all
features are considered simultaneously by optimizing their
weights, it can take into account feature redundancy and fea-
ture interaction.

A summary of properties of feature quality measures is
shown in Table 2. PC is very efficient to compute. However,
only linear dependency can be identified. HSIC can reveal

Table 1 Summary of properties of optimization strategies. “disc.” and
“cont.” denote “discrete” and “continuous”, respectively.

Ranking Forward Backward Exhaustive �1

Optimization disc. disc. disc. disc. cont.
Complexity m m m2 2m m
Redundancy × � © � ©
Interaction × × © � ©

×: Not considered, �: Weak,©: Good, �: Excellent
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Table 2 Summary of properties of feature quality measures.

PC HSIC MI SMI

Non-linear Dependency × © © ©
Model Selection not needed × © ©
Computational Efficiency � © × �
×: Not available/Poor, �: Weak,©: Good, �: Excellent

Table 3 Summary of combinations of optimization strategies and feature
quality measures.

Ranking Forward Backward Exhaustive �1

PC © [11] × × × ×
HSIC − © [28] © [28] × � [22]

MI © [31] © © × −
SMI © [33] © [10], [33] © [33] × −

©: Method exists, �: Variation exists,
−: Method does not exist, ×: Method is unreasonable, impractical

a non-linear dependency. Nonetheless, it is unclear how to
objectively choose the right kernel function. MI is another
measure that is capable of detecting a nonlinear dependency
but the existence of log causes computational inefficiency.
It can be seen that SMI has balanced properties here. Not
only is it able to capture a non-linear dependency, using a
squared loss instead of a log loss also permits its estimator
to have an analytic form, which can be efficiently computed.

Table 3 shows the combinations of optimization strate-
gies and feature quality measures. Many of them have
already been proposed in the past. Exhaustive search is
marked impractical since it is computationally intractable.
PC is a univariate measure which considers one feature at a
time. Combining it with a feature-set optimization strategy
(i.e., forward, backward search, �1 approach) would degen-
erate back to a ranking approach. Hence, the combinations
are marked unreasonable.

It can be seen that the feature weighting with �1-
regularization is the best among the optimization strategies.
Also, SMI has the best balance among the listed feature
quality measures. We therefore propose to combine �1-
regularized feature weighting with SMI, which we call �1-
LSMI.

5.2 Formulation of �1-LSMI

�1-LSMI attempts to find an m-dimensional sparse weight
vector by solving the following optimization problem:

maximize
w∈Rm

Îs(diag(w)X,Y)

subject to 1Tw ≤ r

w ≥ 0,

(10)

where Îs is the LSMI defined in Eq. (9), r > 0 is the radius of
the �1-ball, 1 is the m-dimensional vector consisting of only
1’s, and “≥” in w ≥ 0 is applied element-wise. Features are
selected according to the non-zero coefficients of the learned
ŵ. Here, since the sign of ŵ j does not affect the feature
selection process, we only consider the positive orthant in
R

m. Thus, the constraint w ≥ 0 is imposed, and ‖w‖1 reduces
to 1Tw.

5.3 Advantages of �1-LSMI

Using SMI allows a detection of nonlinear dependency be-
tween X and Y . Furthermore, by combining it with the �1-
regularization feature weighting scheme, feature interaction
is also taken into account since all features are considered
simultaneously. In general, the use of �1-regularization does
not necessarily give an ability to deal with redundant fea-
tures. That is, the weights of all redundant features may be
all high. This drawback of �1-regularization is covered by
the use of SMI. Since adding a redundant feature to the se-
lected subset does not increase the SMI value (i.e., no new
information), �1-LSMI implicitly deals with the feature re-
dundancy issue by avoiding the inclusion of redundant fea-
tures. This is achieved by simply maximizing SMI between
the weighted features and the output. The use of density-
ratio estimation in approximating SMI also helps avoid the
density estimation problem, which is difficult when m is
large.

5.4 Solving �1-LSMI

Here, we explain how we solve the �1-LSMI optimization
problem.

5.4.1 Algorithm Overview

Algorithm 1 is executed to find a k-feature subset by a
binary-search-liked scheme. Based on the observation that
the number of obtained features tends to increase as r in-
creases, the idea is to systematically vary r so that k fea-
tures can be obtained. The �1-LSMI optimization problem
is solved by iteratively performing gradient ascent and pro-
jection (constraint satisfaction) where w is initially set to a
random feasible vector due to the non-convexity of the prob-
lem. Starting from a low r, if k features can be obtained
from the current r, then return them. Otherwise, r is dou-
bled (starting from 2: in Algorithm 1) until more than k
features are obtained. The value of r firstly found to give
more than k features is denoted by rh, and is assumed to be
the upper bound of the value of r which can give k features.
The lower bound rl is then set to rh/2 which gives strictly
less than k features. The rest of the procedure (starting from
12: in Algorithm 1) is to find r ∈ (rl, rh) using a binary
search scheme, so that k features can be obtained. In each
step of the search, Eq. (10) is solved using the middle point
rm between rh and rl. If k features cannot be found, rh or rl

is updated accordingly. This halving procedure is repeated
until k features are found, or the time limit is reached.

In case that a k-feature subset cannot be found, ob-
tained feature subsets X are sorted in ascending order of
three keys given by ||X|− k|, |X|− k, −Îs(XX,Y). This means
that the feature subsets whose size is closest to k are to be
put towards the head of the list. With two sets whose size
is equally closest to k, then prefer the smaller one (due to
|X| − k). If there are still many such subsets, bring the ones
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Algorithm 1 Pseudo code of �1-LSMI to search for a k-
feature subset.
Require: k (desired number of features)
1: r ← 0.1 //r is initially low
2: repeat //try to find an upper bound rh
3: r ← 2r
4: w0 ← randomly initialize a feasible w
5: Xr ← Solve Eq. (10) with (w0, r) //Xr: set of features

obtained using r
6: if |Xr | = k then
7: return Xr

8: end if
9: until |Xr | > k or time limit exceeded

10: rh ← r
11: rl ← rh/2
12: while time limit not exceeded do //find r ∈ (rl, rh) which gives

k features with a binary search
13: rm ← (rh + rl)/2
14: w0 ← randomly initialize a feasible w
15: Xrm ← Solve Eq. (10) with (w0, rm)
16: if |Xrm | = k then
17: return Xrm

18: else if |Xrm | < k then
19: rl ← rm

20: else if |Xrm | > k then
21: rh ← rm

22: end if
23: end while
24: S← list of all X found so far, sorted in the ascending order by ||X|− k|,
|X| − k, −Îs(XX,Y)

25: return the first X in S

with highest Îs(XX,Y) to the head of the list, where XX de-
notes the data matrix X with only rows indexed by X. In the
end, the feature subset X at the head of the list is selected.

5.4.2 Basis Function Design

Estimation of SMI requires b basis functions. Here, we
choose the basis functions to be in the form of a product
kernel defined as

ϕl(diag(w)x, y) = φx
l (diag(w)x)φyl (y) for l = 1, . . . , b.

(11)

φx
l (·) is defined to be the Gaussian kernel,

φx
l (diag(w)x) = exp

(
−‖ diag(w)(x − xc(l))‖2

2σ2

)
.

c(l) ∈ {1, . . . , n} is a randomly chosen sample index without
overlap. The definition of φyl (y) depends on the task. For a
regression task, φyl (y) is also defined to be a Gaussian kernel,

φ
y
l (y) = exp

(
− (y − yc(l))2

2σ2

)
.

For a C-class classification task in which Y ∈ {1, . . . ,C},
the delta kernel is used on Y, i.e., φyl (y) takes 1 if y = yc(l),
and 0 otherwise. Using these definitions, model selection
for (ϕ, λ) is reduced to selecting (σ, λ).

5.4.3 Optimization

Given an initial point w0 and the radius r, the �1-LSMI op-
timization problem is simply solved by gradient ascent. To
guarantee the feasibility, the updated w is projected onto the
positive orthant of the constrained �1-ball in each iteration.
The projection can be carried out by first projecting w onto
the positive orthant with max(w, 0), where the max function
is applied element-wise. This is then followed by a pro-
jection onto the �1-ball which can be carried out in O(m)
time [6].

In practice, there are many more sophisticated meth-
ods for solving Eq. (10), e.g., projected Newton-type meth-
ods [18], [26]. These methods generally converge super-
linearly, and are faster (in terms of the convergence rate)
than ordinary gradient ascent algorithms which converge
linearly. However, the notion of convergence does not take
into account the number of function evaluations. In general,
methods with a good convergence rate rely on a large num-
ber of function evaluations per iteration, i.e., performing line
search to find a good step size. In our case, function eval-
uation is expensive since model selection for (σ, λ) has to
be performed. It turns out that using a more sophisticated
solver may take more time to actually solve the problem
even though the convergence rate is better. So, we decided
to simply use a gradient ascent algorithm to solve the prob-
lem. Additionally, to further improve the computational ef-
ficiency, model selection is performed every five iterations,
instead of every iteration. This is based on the fact that, in
each iteration, w is not significantly altered. Hence, it makes
sense to assume that the selected (σ, λ) from the previous it-
eration are approximately correct.

6. Experiments

In this section, we report experimental results.

6.1 Methods to be Compared

We compare the performance of the following feature selec-
tion algorithms:

• PC (Pearson correlation ranking).
• F-HSIC (forward search with HSIC).
• F-LSMI (forward search with LSMI) [10].
• B-HSIC (backward search with HSIC) [28].
• B-LSMI (backward search with LSMI).
• �1-HSIC (similar to �1-LSMI, but the objective func-

tion is replaced with HSIC(diag(w)X,Y)).
• �1-LSMI† (proposed method).
• mRMR (Minimum Redundancy Maximum Relevance)

[23]. mRMR is one of the state-of-the-art algorithms
which selects features by solving

†Implementation of �1-LSMI is freely available at
http://wittawat.com/software/l1lsmi/
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maximize
I⊂{1,...,m}

relevancy measure︷����������︸︸����������︷
1
k

∑
i∈I

I(Xi,Y)−

redundancy measure︷������������������︸︸������������������︷
1
k2

∑
i∈I

∑
j∈I

I(Xi, Xj)

subject to |I| = k.

That is, it uses mutual information to select relevant
features which are not too redundant. mRMR solves
the optimization problem by greedily adding one fea-
ture at a time until k features can be obtained. This
scheme is similar to a forward search algorithm.

• QPFS (Quadratic Programming Feature Selection) [24].
QPFS formulates the feature selection task as a
quadratic programming problem of the form:

minimize
w∈Rm

1
2

(1 − α)wT Qw − α f Tw

subject to 1Tw = 1

w ≥ 0,

where 0 ≤ α ≤ 1 controls the trade-off between high
relevancy (high α) and low redundancy of the selected
features. Q = [qi j] = |ρ(Xi, Xj)| is the absolute value of
the Pearson correlation between Xi and Xj as in Eq. (3),
and f = [ fi] = |ρ(Xi,Y)|. In the case that Y is categor-
ical, the correlation for categorical variable as in [11]
is used. In this experiment, we use the recommended
value of α = q̄/(q̄ + f̄ ) where q̄ = 1

m2

∑m
i=1

∑m
j=1 qi j and

f̄ = 1
m

∑m
i=1 fi [24]. Notice that if α = 1, QPFS reduces

to PC.
• Lasso [34]. Lasso is a well-known method of least

squares which imposes an �1-norm constraint on the
weight vector. Specifically, it solves the problem of the
form:

minimize
w∈Rm

‖Y − wT X‖2 + λ‖w‖1,

where λ ≥ 0 is the sparseness regularization parameter.
In this experiment, λ is varied so that k features can be
obtained.

• Relief [13], [15]. Relief is another state-of-the-art
heuristic algorithm which scores each feature based
on how it can discriminate different classes (distance-
based).

6.2 Toy Data Experiment

An experiment is conducted on the following three toy
datasets:

1. and-or

• Binary classification (4 true/6 distracting fea-
tures).

• Y = (X1 ∧ X2) ∨ (X3 ∧ X4).
• X1, . . . , X7 ∼ Bernoulli(0.5), where Bernoulli(p)

denotes the Bernoulli distribution taking value 1
with probability p.

• X8, . . . , X10 = Y with 0.2 chance of bit flip.
• Characteristics: Feature redundancy and weak in-

teraction.

2. quad

• Regression (2 true/8 distracting features).

• Y =
X2

1+X2

0.5+(X2+1.5)2 + 0.1ε.

• X1, . . . , X8, ε ∼ N(0, 1), where N(μ, σ2) denotes
the normal distribution with mean μ and variance
σ2.

• X9 ∼ 0.5X1 +U(−1, 1), whereU(a, b) is the uni-
form distribution on [a, b].

• X10 ∼ 0.5X2 +U(−1, 1).
• Characteristic: Non-linear dependency.

3. xor

• Binary classification (2 true/8 distracting fea-
tures).

• Y = xor(X1, X2), where xor(X1, X2) denotes the
XOR function for X1 and X2.

• X1, . . . , X5 ∼ Bernoulli(0.5).
• X6, . . . , X10 ∼ Bernoulli(0.75).
• Characteristic: Feature interaction.

The number of features to select, k, is set to the number
of true features in the respective dataset. For LSMI-based
methods, Gaussian kernels are used as the basis functions
and b is set to 100. Five-fold cross validation is carried out
on a grid of (σ, λ) candidates for model selection. For σ,
the candidates are also adaptively scaled with the median of
pairwise sample distance σmed, which depends on the cur-
rently selected features.

σmed = median({‖xi − x j‖2}i< j).

Gaussian kernels are also used in HSIC-based methods.
However, since model selection is not available for HSIC,
in F-HSIC and B-HSIC, the Gaussian width is heuristically
set to σmed [27]. For �1-HSIC, the Gaussian width is adap-
tively set to the median of pairwise distance of diag(w)X
every five iterations. Due to the non-convexity of the objec-
tive functions, �1-LSMI and �1-HSIC are restarted 20 times
with randomly chosen initial points.

The experiment is repeated 50 times with n = 400
points sampled in each trial. For each method and each
dataset, an average of the F-measure over all trials is re-
ported. The F-measure is defined as f = 2pr/(p + r), where

• p = (number of correctly selected features)/(number of
selected features).

• r = (number of correctly selected features)/(number of
correct features).

An F-measure is bounded between 0 and 1, and 1 is achieved
if and only if all the true features are selected and none of
the distracting features is selected. The results are shown in
Table 4.

PC ranks the relevance of each feature individually
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Table 4 Averaged F-measures on the and-or, quad, and xor datasets.

Dataset PC F-HSIC F-LSMI B-HSIC B-LSMI �1-HSIC �1-LSMI mRMR QPFS Lasso Relief

and-or 0.25 (.00) 0.25 (.00) 0.57 (.22) 0.25 (.00) 0.85 (.22) 0.25 (.00) 1.00 (.00) 0.25 (.00) 0.41 (.17) 0.21 (.09) 0.55 (.15)
quad 0.57 (.20) 0.95 (.15) 1.00 (.00) 0.95 (.15) 1.00 (.00) 0.64 (.23) 1.00 (.00) 1.00 (.00) 0.64 (.23) 0.66 (.25) 1.00 (.00)
xor 0.25 (.31) 0.52 (.50) 0.53 (.50) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 0.28 (.31) 0.25 (.32) 0.26 (.32) 1.00 (.00)

without taking into account the redundancy among fea-
tures. This results in a failure on the and-or dataset since
X8, . . . , X10, which are redundant, would simply be ranked
top due to their similarity to Y .

The forward search variants do not work on problems
with feature interaction. To detect interacting features, it
is necessary that all features be considered simultaneously.
For this reason, F-HSIC and F-LSMI fail in the xor problem.

The performance of HSIC-based methods seems to be
unstable in many cases. A possible cause of the instability
is from the use of an incorrect parameter: The heuristic of
using σmed for the Gaussian width does not always work.
As an example, given a fixed data matrix X, the more fea-
tures selected, the larger σmed may become. This is because
the Euclidean distance is a non-decreasing function of the
dimension. So, inclusion of many irrelevant features obvi-
ously unnecessarily makes σmed larger. B-HSIC is subject
to this weakness since it starts the search with all features.

B-LSMI performs well in detecting non-linear depen-
dency (quad) and feature interaction (xor). However, due
to its greedy nature, the redundant features in the and-or
problem are sometimes chosen. That is, in the first few it-
erations, all redundant features are kept, and one of the true
features is eliminated instead.

mRMR and QPFS have similar optimization strategies.
That is, both of them measure the relevancy of each feature,
and have a pairwise feature redundancy constraint. Regard-
less of the feature measure in use, considering features in
a univariate way cannot reveal interacting features (by def-
inition of feature interaction). Therefore, it is not surpris-
ing that both of them fail on the xor and and-or datasets.
Nevertheless, mRMR works well on the quad dataset since
mutual information can reveal a non-linear dependency. On
the other hand, QPFS and Lasso do not perform well on the
quad dataset since both of them use a linear measure.

Relief is one of the few feature ranking algorithms
which can consider feature interaction (the xor dataset) be-
cause of its distance-based nature. However, it suffers the
same drawback as other ranking algorithms in that no re-
dundancy is considered. Hence, it fails on the and-or dataset
with the same reason as PC.

The proposed �1-LSMI performs well on all datasets.
This clearly shows that �1-LSMI can consider redundancy,
detect non-linear dependency, and consider feature interac-
tion. �1-based feature optimization enables a simultaneous
consideration of features, which is the key in tackling the
feature interaction problem. By using �1-regularization in
combination with SMI which can detect a non-linear depen-
dency, �1-LSMI can correctly choose the two true features
in the quad problem. For the and-or problem, the pitfall
is to choose X8, . . . , X10 because of their high correlation to

Table 5 All possible 35 four-feature subsets of {X1, . . . , X4} ∪ {X8, . . . ,
X10} in the and-or dataset, and their corresponding values of LSMI to the
output Y = (X1 ∧ X2) ∨ (X3 ∧ X4).

Feature indices LSMI

1 2 3 4 0.496
1 2 3 8 0.365
1 2 3 9 0.381
1 2 3 10 0.357
1 2 4 8 0.376
1 2 4 9 0.384
1 2 4 10 0.372
1 2 8 9 0.346
1 2 8 10 0.330
1 2 9 10 0.336
1 3 4 8 0.382
1 3 4 9 0.376
1 3 4 10 0.392
1 3 8 9 0.325
1 3 8 10 0.330
1 3 9 10 0.333
1 4 8 9 0.342

Feature indices LSMI

1 4 9 10 0.341
2 3 4 8 0.367
2 3 4 9 0.382
2 3 4 10 0.390
2 3 8 9 0.341
2 3 8 10 0.312
2 3 9 10 0.322
2 4 8 9 0.340
2 4 8 10 0.328
2 4 9 10 0.328
3 4 8 9 0.356
3 4 8 10 0.349
3 4 9 10 0.353
1 8 9 10 0.330
2 8 9 10 0.334
3 8 9 10 0.303
4 8 9 10 0.335

Y . However, due to the usage of �1-regularization, �1-LSMI
attempts to find the four-feature subset which maximizes
LSMI in a non-greedy manner. Since X8, . . . , X10 contain
bit-flip noise, inclusion of any of them will not deliver the
maximum LSMI. In this case, the only four features which
give the maximum LSMI are X1, . . . , X4, and thus preferred
over any of X8, . . . , X10.

As an illustration of LSMI, Table 5 shows all possible
35 four-feature subsets of {X1, . . . , X4} ∪ {X8, . . . , X10} in the
and-or problem and their corresponding LSMI values. It
is evident that the correct subset {X1, . . . , X4} has the high-
est LSMI. Inclusion of any of X8, . . . , X10 (and thus remove
some from {X1, . . . , X4}) would cause a significant drop of
the LSMI value. In the extreme case, with all X8, . . . , X10

in the selected set (shown at the bottom of the table), the
LSMI score becomes considerably low. This is because
each of X8, . . . , X10 contains roughly the same information
to explain Y . Thus, there is no gain in adding more features
which share very similar information.

6.3 Real-Data Experiment

To demonstrate the practical use of the proposed �1-LSMI,
we conduct experiments on real datasets without any spe-
cific domains. All the real datasets used in the experiments
are summarized in Table 6. The “Task” column denotes the
type of the problem (R for regression, and Cx for x-class
classification problem). The datasets cover a wide range of
domains including image, speech, and bioinformatics.

The experiment is repeated 20 times with n = 400
points sampled in each trial. In each trial, k is varied in
the low range with a step size proportional to the entire di-
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Table 6 Summary of the real datasets used in the experiments.

Dataset m n Task Class balance (%)

abalone 8 4177 R -
bcancer 9 277 C2 70.8/29.2
cpuact 21 3000 R -
ctslices 379 53500 R -
flaresolar 9 1066 C2 44.7/55.3
german 20 1000 C2 70.0/30.0
glass 9 214 C6 32.7/35.5/7.9/6.1/4.2/13.6
housing 13 506 R -
image 18 1155 C2 42.9/57.1
ionosphere 33 351 C2 64.1/35.9
isolet 617 6238 C26 about 3.85% per class
msd 90 10000 R -
musk1 166 476 C2 56.5/43.5
musk2 166 6598 C2 84.6/15.4
satimage 36 6435 C6 23.8/10.9/21.1/9.7/11.0/23.4
segment 18 2310 C7 14.3% per class
senseval2 50 534 C3 33.3% per class
sonar 60 208 C2 46.6/53.4
spectf 44 267 C2 20.6/79.4
speech 50 400 C2 50.0/50.0
vehicle 18 846 C4 25.1/25.7/25.8/23.5
vowel 13 990 C11 9.1% per class
wine 13 178 C3 33.1/39.9/27.0

All datasets were taken from UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/, except that cpuact is from

http://mldata.org/repository/data/viewslug/uci-20070111-cpu act/,
SENSEVAL-2 is from the Second International Workshop on Evaluating

Word Sense Disambiguation Systems:
http://www.sle.sharp.co.uk/senseval2, and speech is our In-house

developed voice dataset.

mensionality m. For classification, each selected k-feature
subset is scored with the test error of a support vector clas-
sifier (SVC) with Gaussian kernels. For regression, the root
mean squared error of support vector regression (SVR) with
Gaussian kernels is used. The hyper-parameters of SVC
and SVR are chosen with cross validation. We use the im-
plementations of SVC and SVR given in the LIBSVM li-
brary [3]†. The results are shown in Fig. 1.

Overall, results suggest that using LSMI can give bet-
ter features than HSIC (judged by the error of SVC/SVR).
This shows the importance of the availability of a model se-
lection criterion. �1-LSMI and mRMR are competitive, es-
pecially on multi-class classification problems with many
classes (e.g., segment and satimage). This is in contrast to
PC and Relief which do not handle multi-class problems
well. As in the case of the toy data experiment, PC does
not perform well in most cases since it does not take redun-
dancy among features into account. An exception would
be the senseval2 problem in which PC performs the best
among others. This is because 50 features in the senseval2
dataset are derived from the first 50 principal components
obtained by principal component analysis. Since principal
components are orthogonal by definition, no redundancy has
to be considered for this problem. In some cases, consider-
ing feature redundancy may hurt the performance. This can
be seen on image, cpuact, senseval2, and musk2 datasets
when PC outperforms QPFS, suggesting that features may
not be correlated. Thus, ignoring redundancy and consid-
ering just relevancy gives a better performance. �1-HSIC

performs well in many cases, but the performance may be-
come unstable when k is high due to the mentioned fact that
σmed also gets larger.

To objectively compare the performance, another ex-
periment with the same setting is carried out on 22 datasets.
The number of trials is set to 50. For each method and
dataset, k is set to either 4, 10, or 20 depending on how
large m is. The selected k-feature subsets are evaluated by
SVC or SVR, as in the previous experiment. The results are
given in Table 7, where for each dataset, the method with
the best performance is shown in bold face. Other meth-
ods which have insignificant performance difference (based
on the one-sided paired t-test with 5% significance level) to
the best one are also marked in the same way. Note that
Lasso works on only binary and regression problems. Thus,
the results for multi-class problems are not available. For
F-HSIC and F-LSMI, we omit the results on the ctslices
and isolet datasets due to the large computation time in-
volved.

From the table, it can be seen quantitatively that over-
all �1-LSMI performs the best by judging from the number
of times it ranks top. Interestingly, although worse on small
datasets, the performance of mRMR approaches that of �1-
LSMI on high-dimensional datasets (i.e., the musk1, musk2,
ctslices, and isolet datasets). One reasonable expla-
nation for this phenomenon is that, a large number of fea-
tures provide more freedom in choosing an alternative sub-
set. Even though there are interacting features, there may be
many other alternative non-interacting subsets which give
an almost equivalent explanatory power. For this reason, the
fact that mRMR cannot detect interacting features may be
less significant.

7. Conclusion

Feature selection is an important dimensionality reduction
technique which can help to improve prediction perfor-
mance and speed, and to facilitate the interpretation of a
learned predictive model. There are a number of factors
which cause the difficulty of feature selection. These in-
clude non-linear dependency, feature redundancy, and fea-
ture interaction.

The proposed �1-LSMI is an �1-based algorithm that
maximizes SMI between the selected feature and the out-
put. The main idea is to learn a sparse feature weight vector
whose coefficients can be used to determine the importance
of features. Only features corresponding to the non-zero co-
efficients in the weight vector need to be kept. The use of
�1-regularization allows simultaneous consideration of fea-
tures, which is essential in detecting a group of interacting
features.

By combining it with SMI which is able to detect a non-
linear dependency and implicitly handle feature redundancy,
a powerful feature selection algorithm is obtained.

Extensive experiments were conducted to confirm the

†LIBSVM: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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(a) image (b) german (c) cpuact

(d) segment (e) wine (f) flaresolar

(g) spectf (h) satimage (i) vehicle

(j) sonar (k) speech (l) senseval2

(m) musk1 (n) musk2

Fig. 1 Comparison of SVC/SVR errors of features selected by PC, �1-HSIC, �1-LSMI, mRMR,
QPFS, Lasso and Relief.

usefulness of �1-LSMI. We therefore conclude that �1-LSMI
is a promising method for practical use.
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Table 7 SVC/SVR errors of the features selected by PC, F-HSIC, F-LSMI, �1-HSIC, �1-LSMI,
mRMR, QPFS, Lasso, and Relief on real datasets.

Dataset m n k PC F-HSIC F-LSMI �1-HSIC �1-LSMI mRMR QPFS Lasso Relief

abalone (R) 8 400 4 0.73 (.04) 0.74 (.04) 0.70 (.05) 0.73 (.04) 0.70 (.05) 0.73 (.05) 0.75 (.04) 0.70 (.04) 0.69 (.04)
bcancer (C2) 9 277 4 0.24 (.00) 0.24 (.00) 0.23 (.01) 0.23 (.00) 0.23 (.01) 0.25 (.00) 0.23 (.00) 0.24 (.00) 0.26 (.00)
glass (C6) 9 214 4 0.29 (.00) 0.28 (.00) 0.30 (.01) 0.30 (.01) 0.30 (.01) 0.30 (.00) 0.29 (.00) – 0.31 (.00)
housing (R) 13 400 4 4.03 (.19) 4.14 (.20) 4.20 (.21) 3.95 (.20) 3.91 (.19) 3.97 (.20) 4.11 (.23) 4.14 (.27) 4.10 (.21)
vowel (C11) 13 400 4 0.20 (.02) 0.23 (.03) 0.24 (.03) 0.20 (.02) 0.21 (.02) 0.20 (.02) 0.20 (.02) – 0.21 (.02)
wine (C3) 13 178 4 0.03 (.00) 0.03 (.00) 0.03 (.01) 0.03 (.01) 0.03 (.01) 0.03 (.00) 0.03 (.00) – 0.03 (.00)
image (C2) 18 400 4 0.10 (.01) 0.19 (.03) 0.17 (.03) 0.13 (.03) 0.06 (.02) 0.14 (.02) 0.11 (.02) 0.11 (.02) 0.05 (.01)
segment (C7) 18 400 4 0.19 (.03) 0.24 (.03) 0.17 (.02) 0.11 (.03) 0.05 (.01) 0.05 (.01) 0.08 (.03) – 0.13 (.02)
vehicle (C4) 18 400 4 0.32 (.02) 0.33 (.03) 0.28 (.02) 0.34 (.03) 0.27 (.02) 0.39 (.05) 0.39 (.05) – 0.32 (.04)
german (C2) 20 400 4 0.25 (.02) 0.29 (.01) 0.29 (.02) 0.25 (.02) 0.25 (.02) 0.25 (.02) 0.25 (.02) 0.25 (.02) 0.26 (.02)
cpuact (R) 21 400 4 0.25 (.03) 0.33 (.12) 0.28 (.07) 0.54 (.31) 0.25 (.16) 0.23 (.06) 0.27 (.04) 0.26 (.04) 0.37 (.09)
ionosphere (C2) 33 351 4 0.07 (.00) 0.07 (.00) 0.08 (.01) 0.07 (.00) 0.07 (.00) 0.09 (.00) 0.07 (.00) 0.07 (.00) 0.07 (.00)
satimage (C6) 36 400 10 0.22 (.02) 0.14 (.01) 0.13 (.02) 0.14 (.02) 0.13 (.02) 0.14 (.01) 0.14 (.02) – 0.16 (.02)
spectf (C2) 44 267 10 0.19 (.00) 0.17 (.00) 0.17 (.01) 0.19 (.01) 0.17 (.01) 0.18 (.00) 0.18 (.00) 0.18 (.00) 0.18 (.00)
senseval2 (C3) 50 400 10 0.18 (.01) 0.18 (.01) 0.18 (.02) 0.19 (.02) 0.18 (.01) 0.18 (.01) 0.18 (.01) – 0.21 (.01)
speech (C2) 50 400 10 0.01 (.00) 0.01 (.00) 0.01 (.00) 0.01 (.00) 0.01 (.00) 0.02 (.00) 0.01 (.00) 0.01 (.00) 0.03 (.00)
sonar (C2) 60 400 10 0.23 (.00) 0.22 (.00) 0.14 (.02) 0.21 (.02) 0.16 (.02) 0.18 (.00) 0.19 (.00) 0.16 (.00) 0.19 (.00)
msd (R) 90 400 10 0.95 (.06) 0.94 (.06) 0.92 (.06) 0.94 (.06) 0.93 (.06) 0.97 (.06) 0.94 (.06) 0.92 (.06) 0.96 (.06)
musk1 (C2) 166 400 20 0.19 (.02) 0.17 (.02) 0.14 (.02) 0.16 (.02) 0.16 (.02) 0.15 (.02) 0.18 (.02) 0.13 (.01) 0.19 (.03)
musk2 (C2) 166 400 20 0.09 (.01) 0.08 (.01) 0.07 (.01) 0.09 (.01) 0.08 (.01) 0.09 (.01) 0.09 (.02) 0.07 (.01) 0.09 (.01)
ctslices (R) 379 400 20 0.79 (.07) – – 0.64 (.05) 0.60 (.07) 0.45 (.04) 0.46 (.02) 0.41 (.03) 0.56 (.05)
isolet (C26) 617 400 20 0.54 (.03) – – 0.36 (.04) 0.27 (.03) 0.30 (.03) 0.30 (.03) – 0.49 (.03)

Top Count 3 2 7 1 11 3 1 4 2
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