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Abstract Feature selection is an important aspect of solving data-mining and machine-
learning problems. This paper proposes a feature-selection method for the Support Vector
Machine (SVM) learning. Like most feature-selection methods, the proposed method ranks
all features in decreasing order of importance so that more relevant features can be identified.
It uses a novel criterion based on the probabilistic outputs of SVM. This criterion, termed
Feature-based Sensitivity of Posterior Probabilities (FSPP), evaluates the importance of a
specific feature by computing the aggregate value, over the feature space, of the absolute
difference of the probabilistic outputs of SVM with and without the feature. The exact form
of this criterion is not easily computable and approximation is needed. Four approxima-
tions, FSPP1-FSPP4, are proposed for this purpose. The first two approximations evaluate
the criterion by randomly permuting the values of the feature among samples of the training
data. They differ in their choices of the mapping function from standard SVM output to its
probabilistic output: FSPP1 uses a simple threshold function while FSPP2 uses a sigmoid
function. The second two directly approximate the criterion but differ in the smoothness
assumptions of criterion with respect to the features. The performance of these approxi-
mations, used in an overall feature-selection scheme, is then evaluated on various artificial
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problems and real-world problems, including datasets from the recent Neural Information
Processing Systems (NIPS) feature selection competition. FSPP1-3 show good performance
consistently with FSPP2 being the best overall by a slight margin. The performance of
FSPP2 is competitive with some of the best performing feature-selection methods in the
literature on the datasets that we have tested. Its associated computations are modest and
hence it is suitable as a feature-selection method for SVM applications.

Keywords Feature selection · Feature ranking · Support vector machines · Sensitivity

1 Introduction

Feature selection is an important issue in machine-learning problems. When the under-
lying important features are known and irrelevant/redundant features are removed, learn-
ing problems can be greatly simplified resulting in improved generalization capabilities.
Feature selection can also help reduce online computational costs, enhance system inter-
pretability (Boser et al. 1992; Cortes and Vapnik 1995; Vapnik 1998) and improve per-
formance of the learning problems (Saon and Padmanabhan 2001; Weston et al. 2001;
Guyon et al. 2002; Günter and Bunke 2004 and others). Several feature-selection methods
have been proposed in recent years and a good review of them can be found in the recent
book by Guyon et al. (2006a). In general, feature-selection methods can be classified into
three categories: filter-based, wrapper-based and embedded-based (Kohavi and John 1997;
Guyon and Elisseeff 2003; Neumann et al. 2005). Filter-based methods are indepen-
dent of the underlying learning algorithm while wrapper-based methods use the under-
lying learning algorithm to measure the quality of the features but without exploiting
the structure of the learning algorithm. In contrast, embedded-based methods exploit the
knowledge of the specific structure of the learning algorithm (Guyon and Elisseeff 2003;
Lal et al. 2006) and cannot be separated from it. Generally, embedded-based methods are
superior in performance relative to filter-based or wrapper-based methods but carry with
them a heavier computational load (Guyon et al. 2006b).

This paper develops a new embedded-based feature-selection method specifically for
Support Vector Machine (SVM) learning. The focus on SVM stems from the interests in it
as a learning method following its encouraging results on a variety of applications (Boser et
al. 1992; Cortes and Vapnik 1995; Vapnik 1995; Cristianini and Shawe-Taylor 2000). Unlike
past feature-selection methods for SVM, this paper proposes the use of the probabilistic
outputs of SVM as a more accurate measure of feature importance. For the prototypical two-
class (c1 and c2) classification problem, probabilistic output of SVM for a given sample,
x, can be interpreted (Hastie and Tibshirani 1998; Platt 2000) as the posterior probability
of x belonging to class c1,p(c1|x). Such an interpretation under the Bayesian framework
has also been established (Williams and Rasmussen 1996; Chu et al. 2003, 2004). This
work proposes a criterion based on the sensitivity of probabilistic outputs of SVM to each
feature as a measure of importance of that feature, and is termed Feature-based Sensitivity
of Posterior Probabilities (FSPP). In loose terms, this criterion is the aggregate value, over
the feature space, of the absolute difference of the probabilistic outputs of SVM with and
without the feature.

The evaluation of this criterion is investigated using four approximations, termed FSPP1-
FSPP4 respectively. These approximations are then combined with the recursive feature-
elimination approach (Guyon et al. 2002) and other heuristic feature-ranking approaches to
yield an overall feature-selection scheme. The first two approximations are motivated by
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the random forests feature-selection method (Breiman 1996, 2001) where the idea of Ran-
dom Permutation (RP) of the values of a feature is used to eliminate the contribution of that
feature. They differ from each other in that FSPP1 uses a simple threshold function to ob-
tain the probabilistic output of SVM while FSPP2 uses a sigmoid function. The second two
are direct approximations of the criterion. FSPP3 assumes mild dependence of the criterion
with respect to the features while FSPP4 assumes that criterion is differentiable with respect
to the features. The proposed methods are tested on several learning problems, including
the MONK’s problems, breast cancer and heart disease problems from the UCI Repository
(Newman et al. 1998), the nonlinear synthetic problem of Weston et al. (2001) and another
two challenging problems, ARCENE and MADELON, from the NIPS 2003 feature selec-
tion competition (Guyon et al. 2003). Numerical comparisons with two well-known existing
SVM feature-selection methods (SVM-RFE by Guyon et al. 2002 and the margin method
by Rakotomamonjy 2003) are also presented. The results show that FSPP2 performs consis-
tently well on these datasets and compares favorably with the best methods available in the
literature.

This paper is organized as follows. Past related results from the literature needed for the
subsequent sections are collected in Sect. 2. Section 3 provides the basis of the proposed
criterion and the descriptions of the four approximations of the criterion. Section 4 outlines
the overall feature-selection schemes using the proposed criterion. Extensive experimen-
tal results are reported in Sect. 5, followed by discussion and future work in Sect. 6. The
conclusions are drawn in Sect. 7.

2 Background

The section provides a review of standard SVM classifier, its probabilistic formulation and
closely-related past work on SVM feature-selection methods. The intention is to set the no-
tations for the remainder of this paper and to make the paper as self-contained as possible.
We begin with the general notations used. This paper considers the typical two-class classi-
fication problem with dataset D in the form of {xj , yj }N

j=1 where xj ∈ Rd , is the j th sample
and yj ∈ {−1,1}, the corresponding class label. Also, xi denotes the ith feature of vector x,
hence, xi

j is the ith feature of the j th sample and x−i ∈ Rd−1 is the vector obtained from x
with the ith feature removed. Double subscripted variable x−i,j is also used and it refers to
the j th sample of variable x−i .

2.1 SVM classifier

Support Vector Machine is a well known learning method (Boser et al. 1992; Cortes and
Vapnik 1995; Vapnik 1995; Cristianini and Shawe-Taylor 2000). Given a dataset D in the
form of {xj , yj }N

j=1, standard SVM for the two-class classification problem maps the fea-
ture vector x ∈ Rd into a high (possibly infinite) dimensional Euclidean space, H , using a
nonlinear mapping function Φ : Rd → H . The decision boundary of the two-class problems
takes the form of an optimal separating hyperplane, w · Φ(x) + b = 0, in H , obtained by
solving the convex optimization problem

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi,

s.t. yi(w · Φ(xi ) + b) + ξi ≥ 1 and ξi ≥ 0, for i = 1, . . . ,N,

(1)
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over w ∈ H,b ∈ R and the non-negative slack variable ξ ∈ RN . In the above, C is a pa-
rameter that balances the size of w and the sum of ξi . It is well known that the numerical
computation of Problem (1) is achieved through its dual formulation. Suppose αi be the
Lagrange multiplier corresponding to the ith inequality, then the dual of (1) can be shown
to be

min
α

1

2

N∑

i,j=1

yiyjαiαjK(xi ,xj ) −
N∑

i=1

αi,

s.t.
N∑

i=1

yiαi = 0 and 0 ≤ αi ≤ C, for i = 1, . . . ,N,

(2)

where the kernel function K(xi ,xj ) = Φ(xi ) · Φ(xj ) and

w =
N∑

i=1

αiyiΦ(xi ). (3)

With (3), the expression of the hyperplane w · Φ(x) + b = 0 becomes

f (x) =
N∑

i=1

yiαiK(xi ,x) + b (4)

and serves as the decision function for all unseen samples x in that the predicted class is +1
if f (x) > 0 and −1 otherwise.

Many algorithms for the numerical solutions of (2) exist (Joachims 1999; Platt 1999;
Chang and Lin 2001 and others) and several choices of the kernel function are available. For
ease of presentation, the exposition hereafter uses, without loss of generality, the popular
Gaussian kernel

K(xk,xj ) = exp(−γ ‖xk − xj‖2), (5)

where γ is the kernel parameter. For accurate prediction of unseen samples, proper values of
the parameters C and γ are used. Typically, these parameters are obtained using the cross-
validation procedure although other methods have also been discussed (Lee and Lin 2000;
Chapelle et al. 2002; Keerthi 2002).

2.2 Past work in SVM feature selection

Several feature-selection methods for SVM have been proposed in the literature (Bradley
and Mangasarian 1998; Weston et al. 2001; Guyon et al. 2002; Rakotomamonjy 2003;
Neumann et al. 2005). In most of these methods, the feature-ranking criterion relies on the
sensitivity of some suitable index of performance, or its estimate, with respect to the feature.
Features with low sensitivity are deemed less important while those with high sensitivity are
more.

Index of performance is typically linked to generalization ability of SVM and several
estimates of this ability have been used in the literature. Guyon et al. (2002) used the cost
function of (1) and proposed a feature-ranking criterion based on the sensitivity of this cost
function with respect to a feature. In loose terms, this criterion measures the importance
of a feature by the difference in the sizes of the margin with and without the feature. For
notational convenience, this criterion is denoted by �‖w‖2 hereafter. Using this criterion
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as a basis, less important features are dropped successively, resulting in a feature-selection
method known as SVM Recursive Feature-Elimination (SVM-RFE). Similarly, Weston et
al. (2001) used, as the performance index, the SVM radius/margin bound (Vapnik 1998)

R2‖w‖2, (6)

where R is the radius of the smallest sphere, centered at the origin, that contains all
Φ(xi ), i = 1, . . . ,N . The sensitivity of this index with respect to a feature was obtained
through the use of a virtual scaling factor. As suggested by Weston et al. (2001), the
idea could also be extended to the span estimate (Vapnik and Chapelle 2000) which is a
tighter upper bound on the expected generalization error. Rakotomamonjy (2003) extended
SVM-RFE algorithm using radius/margin bound and span estimate and proposed feature-
selection methods based on their zero-order and first-order sensitivity with respect to the
features. As reported (Rakotomamonjy 2003) to be the best among the considered methods,
the first-order sensitivity, denoted by ∇‖w‖2, is included in our numerical experiments for
comparison.

2.3 Platt’s probabilistic output

Standard SVM output classifies a sample x depending on the sign of f (x), or the half
space in H into which Φ(x) falls. Such an approach, however, ignores the relative con-
fidence in the classification, or the distance Φ(x) is from the separating hyperplane. Platt
(2000) addressed this shortcoming through the use of a sigmoid function and mapped f (x)

into p(c|x), providing probabilistic information from standard SVM output. The benefit of
p(c|x) over f (x) in improving classification accuracy has been demonstrated on several
numerical experiments (Platt 2000; Duan and Keerthi 2005).

Suppose N+ and N− are the numbers of positive (y = +1) and negative (y = −1) sam-
ples respectively in dataset D. The Platt’s probability output is

p̂(c|x) = 1

1 + exp(Af (x) + B)
, (7)

where f (x) is the SVM output given by (4) and the parameters A and B are obtained from
minimizing the negative log likelihood (or the cross-entropy error function) of D in the form
of

minF(A,B)= min

{
−

∑

i

[ti log p̂(c|xi ) + (1 − ti ) log(1 − p̂(c|xi ))]
}
, (8)

with ti = (N+ + 1)/(N+ + 2) if yi = +1 and ti = 1/(N− + 2) if yi = −1. Our implemen-
tation of the above includes the modifications suggested by Lin et al. (2003) for numerical
stability. Hereafter, p̂(c|x) refers to the estimated posterior probability of belonging class
+1 given x obtained from (7–8), while p(c|x) refers to the true but typically unknown pos-
terior probability of belonging to class c given x. The quantity p̂(c|x) is used extensively in
the approximations of the proposed ranking criterion.

3 The ranking criterion based on posterior probabilities

The proposed ranking criterion for the ith feature is

Ct(i) =
∫

|p(c|x) − p(c|x−i )|p(x)dx, (9)
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where x−i ∈ Rd−1 is the vector derived from x with the ith feature removed. The moti-
vation of the above criterion is clear: the greater the absolute difference between p(c|x)

and p(c|x)−i ) over the space of x, the more important is the ith feature. As the true val-
ues of p(c|x) and p(c|x)−i ) are usually unknown, they are approximated by p̂(c|x) and
p̂(c|x−i ) respectively obtained via (7–8). The value of p̂(c|x−i ) corresponds to the proba-
bilistic output of a SVM trained with data {x−i,j , yj }N

j=1 instead of {xj , yj }N
j=1. Since x has

d features, this means that training of the SVM has to be done d times so that a ranked list
of {Ct(i) : i = 1, . . . , d} is obtained showing the relative importance of all features in D.
This is a computationally expensive process since each SVM training is expensive, having
a known complexity (Joachims 1999; Platt 1999) of at least O(N2) and that d can be large.
The remainder of this section shows four approximations (FSPP1-FSPP4) of (9) that avoid
the retraining process.

Motivated by the Random Forests (RF) method (Breiman 1996, 2001), the first two
approximations involve a process of Random Permutation (RP) that randomly permutes
the values of a feature. Specifically, the values of the ith feature of x are randomly per-
muted over the N examples. All other features of x, except xi , remain unchanged. Sup-
pose ζ1, . . . , ζ N is a set of uniformly distributed random numbers from (0,1) and �ζ	 is the
largest integer that is less than ζ . The random permutation process is executed as follows
(Page 1967): For each k starting from 1 to N − 1, compute j = �N∗ζk	 + 1 and swap the
values of xi

k and xi
j . At the end of this process, the values of xi will have been randomly

permuted.
We now state a general theorem relating the posterior probability and the RP process

and it serves as the theoretical basis for FSPP1 and FSPP2. To state this theorem pre-
cisely, let x(i) ∈ Rd be the vector derived from x with the ith feature randomly per-
muted.

Theorem 1

p(c|x(i)) = p(c|x−i ). (10)

Proof As the uniform distribution is used in the RP process, the distribution of p(xi ) is
unchanged, or

p(xi
(i)) = p(xi ). (11)

Hence, we have

p(x(i)) = p(xi
(i),x−i ) = p(xi

(i))p(x−i ) = p(xi )p(x−i ), (12)

where the second equality follows from the fact that the distribution of the p(xi
(i)) is inde-

pendent from p(x−i ) following the RP process. Using similar argument, we have

p(x(i), c) = p(xi
(i))p(x−i , c) = p(xi )p(x−i , c). (13)

Hence,

p(c|x(i)) = p(c,x(i))

p(x(i))
= p(xi )p(x−i , c)

p(xi )p(x−i )
= p(c|x−i ). � (14)

A corollary of Theorem 1 is the mutual information equality of I (c,x(i)) = I (c,x−i ).
This result follows from
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I (c,x(i)) =
∑

c

∫

x(i)

p(c,x(i)) log
p(c,x(i))

P (c)p(x(i))
dx(i)

=
∑

c

∫

x−i

∫

xi
(i)

p(xi
(i))p(c,x−i ) log

p(c,x−i )

P (c)p(x−i )
dxi

(i)dx−i

=
∑

c

∫

x−i

p(c,x−i ) log
p(c,x−i )

P (c)p(x−i )
dx−i

∫

xi
(i)

p(xi
(i))dxi

(i)

= I (c,x−i ), (15)

where (12) and (13) are invoked.
Theorem 1 and its corollary show that the RP process has the same effect as removing the

contribution of that feature for classification. Using this fact, criterion (9) can be equivalently
stated as

Ct(i) =
∫

|p(c|x) − p(c|x(i))|p(x)dx. (16)

With (16), we are now in a position to state the first two approximations of the proposed
ranking criterion.

Method 1 (FSPP1): Approximation using threshold function
The first method uses a threshold function for the approximation of (16) in the form of

p(c|x) ≈ ϕ(f (x)) (17)

and

p(c|x(i)) ≈ ϕ(f (x(i))), (18)

where ϕ(·) is the threshold function given by

ϕ(f ) =
{

1 if f ≥ 0,
0 if f < 0.

(19)

It is worthy to note that p(c|x(i)) uses the same f function as in (17) and does not involve
the retraining of the SVM. Further approximation of the integration over x in (16) yields

FSPP1(i) = 1

N

N∑

j=1

|ϕ(f (xj ) − ϕ(f (x(i),j ))|, (20)

where x(i),j refers to the j th example of the input data where the ith feature has been ran-
domly permuted.

Method 2 (FSPP2): Approximation using SVM probabilistic outputs
Motivated by the good results reported by Platt (2000), Duan and Keerthi (2005), FSPP2

approximates p(c|x) by the Platt’s probabilistic output, p̂(c|x), in (16). Obviously, other
methods that obtain probabilistic outputs from SVM can also be used (Vapnik 1998; Hastie
and Tibshirani 1998). Similarly, p(c|x(i)) in (16) is approximated by p̂(c|x(i)) using the
same trained SVM and the same trained sigmoid for p̂(c|x). Hence,

FSPP2(i) = 1

N

N∑

j=1

|p̂(c|xj ) − p̂(c|x(i),j )|. (21)
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Method 3 (FSPP3): Approximation via virtual vector v
Unlike the previous, the next two methods (FSPP3 and FSPP4) approximate (9) via

an additional virtual scaling factor. The use of an additional virtual vector v ∈ Rd for
the purpose of feature selection has been attempted in the literature (Weston et al. 2001;
Rakotomamonjy 2003) and it simplifies the computation of (9). Specifically, this approach
uses one vi , having a nominal value of 1, for each feature and replaces every xi by vixi . Let
vx = [v1x1 v2x2 . . . vdxd ]T and v−ix refers to vx with vi = 0. In this setting, the criterion
(9) can be approximated by

Ct(i) =
∫

|p(c|vx) − p(c|v−ix)|p(x)dx. (22)

Using standard approximation, the above becomes

FSPP3(i) = 1

N

N∑

j=1

|p̂(c|vxj ) − p̂(c|v−ixj )|, (23)

where p̂(c|vxj ) refers to the Platt’s posterior probability of the j th example and p̂(c|v−ix) =
(1 + exp(Af (v−ix) + B))−1 as given by (7) and f (·) is the SVM output expression (4)
obtained from the training set {xi , yi}N

i=1.

Method 4 (FSPP4): Approximation via derivative of p(c|vx) with respect to v
The criterion of (22) can also be represented, under the assumption that p(c|vx) is dif-

ferentiable with respect to v, by

Ct(i) =
∫ ∣∣∣∣

∫ vi=0

vi=1

∂p(c|vx)

∂vi
dvi

∣∣∣∣p(x)dx. (24)

Instead of the integral over vi from 1 to 0, FSPP4 uses the sensitivity with respect to vi

evaluated at vi = 1 and (24) is approximated by

Ct(i) =
∫ ∣∣∣∣

∂p(c|vx)

∂vi
�vi |vi=1

∣∣∣∣p(x)dx =
∫ ∣∣∣∣

∂p(c|vx)

∂vi
|vi=1

∣∣∣∣p(x)dx, (25)

where �vi = −1. It is important to note that, when p(c|x) is approximated by p̂(c|x) of
(7), ∂p̂(c|vx)/∂vi admits a closed-from expression using the results of (4) and (7). This
expression and its derivation are given in appendix. Hence, the fourth method is

FSPP4(i) = 1

N

N∑

j=1

∣∣∣∣
∂p̂(c|vxj )

∂vi
|vi=1

∣∣∣∣. (26)

The above shows four possible approximations to (9). The use of these four methods, in an
overall scheme for the purpose of feature selection, is shown next.

4 Feature-selection methods

This section presents two overall feature-selection schemes by combining FSPP1-FSPP4
with either the initial feature-ranking (INIT) approach (FSPP-INIT) or the recursive feature-
elimination (RFE) approach (FSPP-RFE). Both INIT and RFE approaches are commonly
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used for feature selection, with INIT being closer to the filter-based method and the RFE
being closer to the embedded method (Guyon and Elisseeff 2003; Guyon et al. 2006a).

For both of the proposed feature-selection schemes (FSPP-INIT and FSPP-RFE), it is
assumed that an SVM output function f (x) is available and that all hyper parameters, C,γ

or others, have been determined through a proper model selection process. For the cases
where FSPP2-FSPP4 are involved, it is also assumed that the posterior probabilities are
available according to (7) and (8).

The FSPP-INIT scheme has as its inputs dataset D, the index set I = {1,2, . . . , d} con-
taining indices of features to be considered and the choice of the approximation method
m ∈ {1, . . . ,4}. The output of FSPP-INIT is a ranked list of the features in the form
of an index set Jm = {j1, j2, . . . , jd} with jk ∈ I and FSPPm(jk) ≥ FSPPm(jk+1) for
k = 1, . . . , d − 1.

FSPP-INIT(D,I,m):

1. For each i ∈ I, compute FSPPm(i) using the data set D.
2. Output ranked list Jm.

The FSPP-RFE scheme is similar to the one given by Guyon et al. (2002) but with the
FSPPm used as the ranking criterion. The steps involved in this approach are summarized
as follows. The inputs are the dataset D and m, with the output being the ranked list of
features JR .

FSPP-RFE(D, m):

1. Let I = {1,2, . . . , d} and 
 = d.
2. If I = ∅, stop. Else, invoke FSPP-INIT(D,I,m) and obtain

the output Jm.

3. Let the last element of Jm be k̂. Assign k̂ to the 
th
element of JR.

4. Let I = I\k̂, 
 = 
 − 1 and remove feature k̂ from every sample
in D.

5. Retrain SVM with D and obtain the posterior probabilities
using (7) and (8). Goto 2.

As the FSPP-INIT scheme computes the ranked list only once, it is closer in spirit to
a filter-based feature-selection scheme although the SVM algorithm is used. On the other
hand, the FSPP-RFE scheme uses FSPP-INIT as an inner-loop and invokes it d − 1 times,
each time with a smaller index set I . Steps 3 and 4 of FSPP-RFE(D,m) above remove one
feature (the one with the lowest FSPPm score) from the dataset at a time. Obviously, more
than one feature can be removed at one time with slight modifications to Steps 3 and 4.
The current description of FSPP-RFE does not involve the determination of parameters C

and γ for each of the inner loop. Such a process is possible albeit with even higher costs.
For notational convenience, FSPPm-INIT and FSPPm-RFE are used to specify the feature
selection scheme using FSPPm as the choice of the approximation method.

5 Experiments

Extensive experiments on both artificial and real-world benchmark problems were carried
out using the proposed methods. Like others, the artificial problems, i.e. MONK’s prob-
lems from UCI Repository (Newman et al. 1998) and Weston’s nonlinear synthetic prob-
lem (Weston et al. 2001), were used because the key features are known and are suitable
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for comparative study of the four FSPPs. Two real-world problems, i.e. breast cancer and
heart disease problems from UCI Repository (Newman et al. 1998; Rätsch 2005), were
chosen as they have been used by other feature-selection methods (Guyon et al. 2002;
Rakotomamonjy 2003) and serve as a common reference for comparison. Finally, the pro-
posed methods were tested on ARCENE and MADELON problems used in the NIPS 2003
feature selection competition (Guyon et al. 2003), a well-known set of challenging feature-
selection problems.

In general, our method requires, for each problem, three subsets of data in the form of
Dtra,Dval and Dtes for training, validation and testing purposes. In cases where only Dtra and
Dtes were available, Dtra was further split randomly into a new Dtra and Dval in the ratio
of 70% to 30%. The subset Dtra was normalized to zero mean and unit standard deviation.
Its normalizing parameters were also used to normalize Dval and Dtes. The subset Dtra was
meant for the training of the SVM including the determination of the optimal C and γ using
5-fold cross-validation procedure. The subset Dval was needed for the determination of para-
meters A and B in (7). The Dtes subset was used for obtaining an unbiased testing accuracy
of the underlying method. In cases where there were 100 realizations of a given dataset, the
procedure by Rätsch et al. (2001) was followed: parameters C and γ were chosen as the
median of the five sets of (C,γ ) of the first five realizations. Here each set of (C,γ ) was
obtained by standard 5-fold cross-validations for one realization.

5.1 Artificial problems

MONK’s problems These problems (MONK-1 to 3) are available in UCI Repository of
machine learning databases (Newman et al. 1998). As the provided data do not have Dval

and the size of Dtra is relatively small, our experiments used part of the test set to form Dval

and Dtra. The exact data split and the descriptions of the dataset are given in Table 1.
The results for MONK-1 experiment using the optimal parameters (C = 32 and γ =

0.125) are shown in Fig. 1. Figure 1(a) shows the FSPPm scores for the four methods using
the INIT approach. It is easy to see that all four methods were effective in determining
the key features. Figure 1(b) shows the test error rates of SVM using only the top-ranked
features obtained via the RFE approach. The monotonic decrease in the testing error rates
with increasing top-ranked features is a clear indication of the effectiveness of the feature-
selection procedure. The results for MONK-2 and MONK-3 show similar trends to Fig. 1
and are hence not shown.

The test error rates for FSPP4-RFE are not shown in Fig. 1(b) as the computation of (31)
failed. This problem arose due to the existence of multiple identical examples in the training
data, resulting in the matrix in (31) being singular. While less likely to occur in real-life
datasets, such situations can be handled using pseudo inverses and/or Singular Value De-
composition (SVD) of the matrix in (31). However, they were not pursued because the per-
formance of FSPP4 for other examples is not promising, as shown in the next few examples.

Weston’s nonlinear synthetic problem We followed the procedure given in (Weston et
al. 2001) and generated 10,000 samples of 10 features each. Only the first two features
(x1, x2) are relevant while the remaining features are random noise, each taken from a
normal distribution N (0, 20). The output y ∈ {−1,+1} and the number of samples with
y = +1 is equal to that with y = −1. If y = −1, (x1, x2) were drawn from N (μ1,

∑
)

or N (μ2,
∑

) with equal probability, with μ1 = (−3/4,−3),μ2 = (3/4,3) and
∑ = I .

If y = +1, (x1, x2) were drawn again from two normal distributions with equal probabil-
ity, with μ1 = (3,−3),μ2 = (−3,3) and the same

∑
. Dtra and Dval contained 100 random

samples each and the rest were included in Dtes for one realization of the dataset.
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Table 1 Description of MONK’s datasets (Five discrete features: x1, x2, x4 ∈ {1,2,3};x3, x6 ∈ {1,2};x5 ∈
{1,2,3,4})

Dtra Dval Dtes Target concept

MONK-1 216 216 124 (x1 = x2) or (x5 = 1) for Class 1, otherwise Class −1

MONK-2 216 216 169 Exactly two of {x1 = 1, x2 = 1, x3 = 1,

x4 = 1, x5 = 1, x6 = 1} for Class 1, otherwise Class −1

MONK-3 216 216 122 (x5 = 3 and x4 = 1) or (x5 �= 4 and x2 �= 3) for Class 1, otherwise Class −1

Fig. 1 Performance of proposed
methods on MONK-1 problem:
a values of FSPPm, m = 1,2,3,4
using FSPPm-INIT; b test error
rates against top-ranked features
identified by FSPPm-RFE.
a shows the effectiveness of the
FSPP1-4 in identifying the key
features (features 1, 2 and 5)
under the INIT approach as key
features were assigned larger
FSPPm scores. b shows the
monotonic decrease in the test
error rates with increasing
top-ranked features indicating the
effectiveness of the proposed
methods in identifying the more
important features using the RFE
approach. The test error rates for
FSPP4-RFE are not shown in
b as the computation of (31)
failed during RFE process. See
description in Sect. 5.1

Average feature-selection performance over 100 realizations is shown in Fig. 2 with
the parameters set at C = 32.0, γ = 0.03125. Similar to the MONK’s problems, Fig. 2(a)
and (b) were obtained from the use of FSPPm-INIT and FSPPm-RFE respectively. Fig-
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Fig. 2 Performance of the
proposed methods on Weston’s
nonlinear dataset: a values of
FSPPm, m = 1,2,3,4 using
FSPPm-INIT; b test error rates
against top-ranked features
identified by FSPPm-RFE. Note
that the stated FSPPm values and
test error rates are the averages
over 100 realizations. a shows
that the key features (feature 1, 2)
have larger FSPPm scores
compared to those of the
redundant features
(P -values < 0.01 based on paired
t -tests over the 100 realizations)
using the INIT approach. b shows
that FSPP1 and FSPP2 yielded
significantly lower average test
error rates than FSPP3 and
FSPP4 using the RFE approach
with P -values < 0.03 for paired
t -tests. See Sect. 5.1 for details

ure 2(a) shows the correct identification of the first two features having FSPPm scores that
are significantly larger (P -value < 0.01 based on paired t -test over the 100 realizations) than
the FSPPm scores of a redundant feature. Figure 2(b) shows that FSPP1-RFE and FSPP2-
RFE correctly identified the two key features as the test error rates were the lowest with
only two surviving features. However, FSPP3-RFE and FSPP4-RFE produced less appeal-
ing results. Additional experiments were conducted to verify the statistical significance of
the advantage of FSPP1 and FSPP2 over FSPP3 and FSPP4 under the RFE approach. Four
paired t -tests on the test error rates were conducted: FSPP1 vs FSPP3, FSPP1 vs FSPP4,
FSPP2 vs FSPP3 and FSPP2 vs FSPP4. Each of these t -tests was further repeated with only
1, 2, 3 or 4 surviving features. For all of these paired t -tests, the P -values obtained were less
than 0.03.

The difference between the performance of FSPP2 and FSPP3 is interesting and deserves
attention. Both criteria use the same p̂ expression obtained from (7) and (8) but differ in that
p̂(c|x(i),j ) is used in FSPP2 and p̂(c|v−ixj ) in FSPP3. The sample x(i),j has the ith feature
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taking value that is randomly permuted while v−ixj has the ith feature set to 0. The better
performance of FSPP2 over FSPP3 appears to suggest that the distribution p̂(c|v−ix) differs
more from p(c|x−i ) than p̂(c|x(i)).

5.2 Real-world benchmark problems

The real-world benchmark problems are the breast cancer and heart disease datasets ob-
tained from Rätsch (2005), used also by Mika et al. (1999), Rätsch et al. (2001) and Rako-
tomamonjy (2003) in their experiments. Sizes of feature/Dtra/Dval/Dtes are 9/140/60/77 and
13/119/51/100 respectively and each problem has 100 realizations. For comparison pur-
poses, the format of presentation of results by Rakotomamonjy (2003) was adopted. Plots
of the mean test error rates of SVM are provided with decreasing number of top-ranked
features. Each plot is the mean over 100 realizations using either FSPP-RFE or FSPP-INIT
feature-selection scheme.

For comparison purposes, performance of two feature-ranking criteria, the �‖w‖2

method by Guyon et al. (2002) and the ∇‖w‖2 method by Rakotomamonjy (2003), is also
included. They were chosen because they appear to have performed well (Rakotomamonjy
2003; Weston et al. 2001). Their performance was reproduced together with those using
FSPP1-4 in Figs. 3 and 4 for the two problems. While Fig. 3 is for breast cancer dataset and
Fig. 4 is for the heart disease dataset, Figs. 3(a) and 4(a) report on the results based on the
INIT approach while Figs. 3(b) and 4(b) are results of the RFE approach. These results were
obtained for the optimal parameters: (C = 2.83, γ = 0.05632) for the breast cancer dataset
and (C = 2.38, γ = 0.00657) for the heart disease dataset.

Under the INIT approach, Fig. 3(a) shows that all the methods considered (except FSPP4)
produced similar test error rates for the breast cancer dataset. This is confirmed by the
P -values (>0.05) obtained from paired t -tests for the 100 realizations, except for FSPP4
which gave P -values of less than 0.01 when compared to other methods. This was, how-
ever, not observed for the heart disease dataset. Figure 4(a) shows that the FSPP1-4 are
significantly better than the �‖w‖2 and the ∇‖w‖2 methods with P -values being less than
0.01 in the paired t -tests for FSPPm vs �‖w‖2 and FSPPm vs ∇‖w‖2. The performance of
FSPP4 is not appealing for the breast cancer data. One possible reason is that the function
p̂(c|vx) as a function of vi is highly nonlinear and not well approximated by ∂p̂(c|vx)/∂vi

evaluated at vi = 1 as in (26).
For the RFE approach, Fig. 3(b) shows that FSPP1 and FSPP2 again yielded significantly

lower average test error rates than FSPP3, �‖w‖2 and ∇‖w‖2. This is confirmed by the
paired t -tests with P -values < 0.05 when only the top 2 or 3 features were used. Figure 3(b)
further shows that FSPP2 had a slight edge over FSPP1 and produced lower average test
error rates when only the top 2 or 3 features were used (P -values < 0.05), suggesting that
FSPP2 could be the best performing method. In Fig. 4(b), the advantage of the FSPPm over
the other two methods is obvious. The paired t -tests between FSPPm versus either of the two
methods yielded P -values of less than 0.03. The variation in performance among FSPP1-3
are, however, not significant as the P -values were greater than 0.05. Also, FSPP4-RFE is
not shown in Fig. 3(b) or Fig. 4(b) as the computation of (31) failed during the recursive
feature elimination process.

5.3 NIPS challenge problems

A well-known set of challenging feature-selection problems is that given in the NIPS chal-
lenge problems (Guyon et al. 2003). These problems are known to be difficult and are de-
signed to test various feature-selection methods using an unbiased testing procedure with-
out revealing the labels of the test set. The problem sets ARCENE and MADELON were
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Fig. 3 Test error rates against
top-ranked features on breast
cancer dataset where the
top-ranked features were chosen
based on a FSPPm-INIT
b FSPPm-RFE, m = 1,2,3,4.
Results of two other methods,
�‖w‖2 and ∇‖w‖2, were also
included. The test error rates
shown are the averages over 100
realizations. a shows that
FSPP1-3, �‖w‖2 and ∇‖w‖2

produced similar test error rates
(P -values > 0.05). The
performance of FSPP4 is not as
appealing as the other methods
(P -values < 0.01). b shows that
FSPP1 and FSPP2 again yielded
significantly lower average test
error rates than FSPP3, �‖w‖2

and ∇‖w‖2 in the recursive
feature elimination process,
especially when fewer top-ranked
features were used
(P -values < 0.05 when only 2 or
3 top-ranked features were used).
b further shows that FSPP2 had a
slight edge over FSPP1 when
only the top 2 or 3 features were
used (P -values < 0.05),
suggesting that FSPP2 could be
the best performing method. See
discussion in Sect. 5.2 for details

chosen to evaluate our proposed method. In view of time and space constraints, only the
results of FSPP2-RFE are reported. The details of the ARCENE and MADELON datasets
are given in Table 2. ARCENE is probably the most challenging among all the datasets
from the NIPS competition as it is a sparse problem with the smallest examples-to-features
ratio (num-of-training-examples/num-of-features = 100/10000), while MADELON is a
relatively easier problem with a bigger examples-to-features ratio (2000/500). They were
chosen to show effectiveness of the proposed methods for both sparse and non-sparse
problems.

Based on the results of the earlier experiments, FSPP2-RFE was chosen for these two
datasets. Our version of FSPP2-RFE used a three-tier removal of features for MADELON:
100 features at each recursion until 100 features were left followed by 20 features at each
recursion until 20 features were left and finally one feature at each recursion. A more aggres-
sive removal scheme was used for ARCENE: 1000 features were deleted at each recursion.
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Fig. 4 Test error rates against
top-ranked features on heart
disease dataset where the
top-ranked features were chosen
based on a FSPPm-INIT
b FSPPm-RFE, m = 1,2,3,4.
Results of two other methods,
�‖w‖2 and ∇‖w‖2, were also
included. The test error rates
shown are the average over 100
realizations. The figures show
that FSPP1-4 outperformed
�‖w‖2 and ∇‖w‖2

(P -values < 0.03). The test error
rates for FSPP4-RFE are not
shown in b as the computation of
(31) failed during the recursive
feature elimination process. See
discussion in Sect. 5.2 for details

Table 2 Description of
ARCENE and MADELON
datasets

Dataset Features Dtra Dval Dtes

MADELON 500 2000 600 1800

ARCENE 10000 100 100 700

For each dataset, our result of FSPP2-RFE having the best validation accuracy was chosen.
Our entries were respectively ranked 1st and 2nd (as of February 01, 2006) in the MADE-
LON and ARCENE group of entries. A comparison between our results and the best entries
by other participants of the challenge (see Guyon et al. 2003) is given in Table 3 (as of
February 01, 2006).



16 Mach Learn (2008) 70: 1–20

Table 3 Results on NIPS 2003 challenge datasets as of February 01, 2006

Dataset Our best entry by FSPP2-RFE Top entry by other researchers

Rank BER AUC Feat. Probe Rank BER AUC Feat. Probe

No. (%) No. (%)

MADELON 1 0.0622 0.9378 12 0.00 2 0.0622 0.9807 500 96

ARCENE 2 0.1060 0.8940 5000 27.82 1 0.0720 0.9811 100 0.00

BER is the balanced error rate on Dtes, while AUC refers to area under the ROC curve

6 Discussion and future work

In summary, FSPP1-3 performed well for all the artificial datasets. This is to be expected
of any good feature-selection method. For the real-world datasets, FSPP1-2 had better per-
formance than FSPP3 with the edge going to FSPP2, especially when small numbers of
top-ranked features were used. The excellent performance of FSPP2 in the two NIPS chal-
lenge problems reaffirmed its suitability for real-world datasets.

FSPP2-RFE appears to do well on sparse datasets (datasets with large number of fea-
tures but small training samples), as seen in the experiment associated with the ARCENE
problem. The reason for its good performance is not exactly clear, but one possible reason
is that the FSPP2 is based on the ensemble of all training examples of |p(c|x) − p(c|x−i )|
over the feature space, as seen in (9). This ensemble over all xi is likely to be more accurate
in measuring the contribution of a feature and is more robust against decreasing training
examples. This is different from other methods that rely on bounds of index of performance
where many of these bounds are known to be loose (Vapnik 1998; Rakotomamonjy 2003)
and its effect could be more severe when the ratio of samples-to-features is low.

One significant advantage of FSPP2 is the modest computations needed for its evaluation.
Suppose the SVM output f (xi ) is available for all xi in the training data. The evaluation
of p̂(c|x) requires a one-time determination of variables A and B from the optimization
problem (8). Since (8) is an unconstrained convex optimization problem in two variables,
its numerical determination is straight forward (Lin et al. 2003). The random permutation of
every feature over the training data is required and it is a simple O(dN) operation which can
be done efficiently. Hence, the FSPP2 scales linearly with respect to the number of features
or training samples and is suitable for large problems in high dimensions.

The proposed idea of using sensitivity of posterior probabilities for feature selection ap-
pears general and should be extendable to other machine learning algorithms where proba-
bilistic outputs are also available.

The idea of using sensitivity of posterior probabilities for feature selection has been
demonstrated in the context of two-class classification problem. Possible extensions of the
current work could include the adaptation of the criterion to regression problems and multi-
class classification problems where feature selection methods remain rare in the literature.

7 Conclusions

This paper introduces a new feature-ranking criterion based on the posterior probability of
the SVM output. It is motivated from the advantage gained in using posterior probability
as a decision function for classification instead of the direct SVM output function. Four
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approximations, with some motivated by the random-forests feature-selection method, are
proposed for the evaluations of the criterion. These approximations are used in two over-
all feature-selection approaches, recursive feature-elimination approach and initial feature-
ranking approach.

The experimental results on various datasets show that three of the four approximations
(FSPP1, 2 and 3) yield good overall performance under the recursive feature-elimination
approach. Among them, FSPP2 has the overall edge in terms of accuracy and shows perfor-
mance that is comparable with some of the best methods in the literature. In addition, FSPP2
has modest computation and hence, is suitable for large problems in high dimensional fea-
ture space. In addition, it appears to perform well for datasets with low samples-to-features
ratios. Consequently, this method is a good candidate for feature selection for SVM appli-
cations.

Appendix

This appendix shows the derivation of ∂p̂(c|vxj )/∂vi used in (26) of FSPP4. Let p̂j , fj

denote p̂(c|vxj ) and f (vxj ) respectively. Suppose there are m support vectors after the
training/tuning of SVM. Let I1 = {k|0 < αk < C} and I2 = {k|αk = C} with cardinalities m1

and m2 respectively with m1 + m2 = m. From (4), (5) and (7), it is easy to see that

∂p̂j

∂vi

∣∣∣∣
vi=1

= − exp(Afj + B)

[1 + exp(Afj + B)]2

[
A

∂fj

∂vi
+ fj

∂A

∂vi
+ ∂B

∂vi

]∣∣∣∣
vi=1

, (27)

with

∂fj

∂vi
=

m∑

k=1

[(−2γ )αkyk(xk,i − xj,i )
2K(vxk,vxj ) + ykK(vxk,vxj )∂αk/∂vi] + ∂b/vi . (28)

Expression of the 1st term in the RHS of (27) involves the evaluations of ∂αk/∂vi for k ∈ I1

and ∂b/∂vi as shown in (28), where the mild assumption of ∂αk/∂vi = 0 for k ∈ I2 is used.
Using the Karush–Kuhn–Tucker (KKT) conditions (Cristianini and Shawe-Taylor 2000) of
the SVM solutions, it is not difficult to show that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k∈I1

αkykK(vxk,vxp) +
∑

k∈I2

αkykK(vxk,vxp) + b = yp, ∀p ∈ I1,

∑

k∈I1

αkyk +
∑

k∈I2

αkyk = 0,
(29)

or
[

A e
ỹT 0

][
α̃

b

]
+

[
β

β0

]
=

[
ỹ
0

]
, (30)

where Apk = ykK(vxk,vxp), ỹ is the vector of yi (i ∈ I1), e is m1 × 1 vector of all 1, α̃ is the
vector of αi(i ∈ I1), β0 = ∑

k∈I2
αkyk and βp = ∑

k∈I2
αkykK(vxk,vxp). Differentiate (30)

with respect to vi yields

[ ∂α̃
∂vi

∂b

∂vi

]
= −

[
A e
ỹT 0

]−1 {[ ∂β

∂vi

0

]
+

[ ∂A
∂vi 0

0T 0

][
α̃

b

]}
. (31)



18 Mach Learn (2008) 70: 1–20

The 2nd and 3rd terms in the RHS of (27) involve differentiations of A and B . From (8), the
solutions for A and B have to satisfy

∂F (A,B)

∂A
= −

∑

j

(
tj

p̂j

+ 1 − tj

1 − p̂j

)
∂p̂j

∂A
= 0; (32)

∂F (A,B)

∂B
= −

∑

j

(
tj

p̂j

+ 1 − tj

1 − p̂j

)
∂p̂j

∂B
= 0. (33)

Differentiate both sides of (32) and (33) with respect to vi , we have
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)(
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∂2A

∂A
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∂B∂A

∂B

∂vi
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∂fj ∂A
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)

= 0; (34)

∂2F(A,B)

∂vi∂B
=

∑

j
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p̂2
j

− 1 − tj

(1 − p̂j )2

)
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∂B
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−
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(
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1 − p̂j

)(
∂2p̂j
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∂A

∂vi
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)

= 0. (35)

Note that ∂p̂j /∂vi of (34), (35) are further expressed in terms of ∂A/∂vi and ∂B/∂vi using
(27), while ∂fj/∂vi is known from (28), (31). Hence, ∂A/∂viand ∂B/∂vi can be solved
from this expanded set of equations derived from (34–35).

The evaluation of ∂p̂j /∂vi involves the full set of training samples and is often com-
putationally expensive. Fortunately, numerical evidence shows that the magnitudes of the
2nd and 3rd terms in the RHS of (27) are typically several orders smaller than the 1st
term. Hence, an approximate value of ∂p̂j /∂vi can be found by making the assumption that
∂A/∂vi = 0 and ∂B/∂vi = 0. Under this assumption, ∂p̂j /∂vi reduces to the evaluation of
the 1st term in the RHS of (27), which can be obtained by (28) and (31). Our numerical
experiments use this approximation.
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