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FEA TURE SELECTION WITH NEURAL NETWORKS 

Philippe Leray* and Patrick Gallinari* 

The observed features of a given phenomenon are not all equally informative: some 

may be noisy, others correlated or irrelevant. The purpose of feature selection is to 

select a set of features pertinent to a given task. This is a complex process, but it is an 

important issue in many fields. In neural networks, feature selection has been studied 

for the last ten years, using conventional and original methods. This paper is a review 
of neural network approaches to feature selection. We first briefly introduce baseline 

statistical methods used in regression and classification. We then describe families of 

methods which have been developed specifically for neural networks. Representative 

methods are then compared on different test problems. 

1. Introduction 

The primary source of information in learning systems is data. For numerical 

systems like Neural Networks (NN), data is usually represented as vectors in a 

subspace of Rh whose components-or features-may correspond to measurements 

performed on a physical system, for example, or to information collected from 

observation of a phenomenon. Usually, not all the features observed are equally 

informative: some may be noisy, meaningless, correlated or irrelevant to the task. 

The purpose of the feature selection process is to select a subset of features relevant 

to a given problem. This is often an important phase of work because, among 

other things, it can reduce the amount of data to be collected or processed, make 

training easier, improve estimates by using relevant features on small data sets, 

allow the use of more sophisticated processing methods on dimensional spaces that 

are smaller than the original measurement space, or improve performance by 

avoiding the interference of non-relevant information. 

Feature selection has been the subject of intense research in statistics and in 

applied fields such as pattern recognition, process identification, time series model-

ing, and econometrics. It has recently began to be investigated in the machine 

learning community, which has developed its own methods. Whatever the domain, 

feature selection is always a difficult problem. Most of the time the solution is non 

-monotone, i. e. the best subset of p variables does not always contain the best 

subset of q variables (q<p). Also, the best subset of variables depends on the 

model that will later be used to process the data. Usually, these two steps are 

treated sequentially. Most variable selection methods rely on heuristics, which 

perform a limited exploration on the whole set of variable combinations. 

Key Words and Phrases .. Feature Selection, Subset selection, Variable Sensitivity, Sequential Search . 

• LIP6-POle Paris 6-boite 169, 4, Place Jussieu-75252 Paris cedex 05-France. 

{Philippe.Leray, Patrick.Gallinari} @lip6.fr 

© The Author(s) 1999, corrected publication 2021



146 P. Leray and P. Gallinari 

In the field of NN s, feature selection has been approached by conventional and 

original methods for ten years now. The present paper discusses the problem of 

feature selection specifically for NNs, and reviews original methods that have been 

developed in this field. The review is certainly not exhaustive, considering the 

extensive literature in the field, but the main ideas proposed are described. 

Sections 2 and 3 describe the basic ingredients of feature selection methods and 

the notation. Then, in section 4, we briefly present the statistical methods used in 

regression and classification. These will be used as baseline techniques. Section 

5 describes families of methods that have been developed specifically for neural 

networks and are easy to use for regression or classification tasks. Representative 

methods are then compared on different test problems in section 6. 

2. Basic ingredients of feature selection methods 

A feature selection technique typically requires the following ingredients: 

• a feature evaluation criterion to compare variable subsets for selection; 

• a search procedure, to explore a (sub)space of possible variable combinations, 

• a stop criterion or model selection strategy. 

2.1 Feature evaluation 

Depending on the task (e.g. prediction or classification) and on the model 

(linear, logistic, neural networks or other), several statitical and heuristic-based 

evaluation criteria have been proposed for measuring the importance of a variable 

subset. For classification, the usual criteria use probabilistic distances or entropy 

measures, often replaced in practice by simple interclass distance measures. For 

regression, the usual candidates are prediction error measures. A survey of classi­

cal statistical methods may be found in Thompson (1978) for regression and 

McLachlan (1992) for classification. 

Certain methods rely only on the data for computing relevant variables without 

considering the model used for processing the data after the selection. Some of 

these (the parametric methods) may rely on assumptions about the data distribution 

while others do not (non-parametric methods). Still other methods do take the 

model and data into account is usually the case for NN 

variable selection. 

2.2 Search 

In general, since evaluation criteria are non-monotonic, comparing feature 

subsets is equivalent to a combinatorial problem (there are 2k-l possible subsets 

for k variables), which rapidly becomes computationally unfeasible, even for 

moderate input size. Branch and Bound exploration (Narendra & Fukunaga, 1977) 

reduces the search for monotonic criteria; however, the complexity of these proce-
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dures is still prohibitive in most cases. Due to these limitations, most algorithms 

are based on heuristic performance measures for the evaluation and sub-optimal 

search. Most sub-optimal search methods follow one of the following sequential 

search techniques (see e.g. Kittler, 1986) : 

• Start with an empty set of variables and add variables to the variable set 

already selected (forward methods). 

• Start with the full set of variables and proceed by elimination of variables from 

the selected variable set (backward methods). 

• start with an empty set and alternate between the above forward and backward 

steps (stepHnse methods). The Plus l- Take away r algorithm is a generaliza­

tion of the basic stepwise method which alternates I forward selections and r 

backward deletions. 

2.3 Subset selection-Stopping criterion 

Given a feature subset evaluation criterion and a search procedure, there exist 

several methods for examining all the subsets provided by the search (e.g. 2k -1 for 

an exhaustive search or k for a simple backward search) and selecting the most 

relevant according to the evaluation criterion. 

When the empirical distribution of the evaluation measure or of related statis­

tics is known, tests exist for determining the relevance (or irrelevance) of an input 

variable. The usual sequential selection procedures use a stop criterion, by which 

they examine the variables sequentially and stop as soon as a variable is found to 

be irrelevant according to some statistical test. For ordinary parametric methods, 

the distribution characteristics (e.g. estimates of the evaluation measure variance) 

are easily derived (see sections 4.1 and 4.2). For non parametric or flexible methods 

like NN s, these distributions are more difficult to obtain. Confidence intervals for 

performing significance testing could be computed by Monte Carlo simulations or 

bootstrapping, but this is extremely complex and of no practical use except for very 

special cases (e.g. Baxt & White 1996). Hypothesis testing is thus seldom used with 

these models. Many authors use heuristic stop criteria instead. 

Another methodology of reasonable complexity in most applications is to 

compute an estimate of the generalization error (or prediction risk) for each of a 

series of variable subsets provided by the search algorithm. The variables selected 

are the ones offering the best performance. The generalization error estimate may 

be computed using a validation set or cross-validation or algebraic methods 

although the latter are not easy to obtain with nonlinear models. Note that this 

strategy involves retraining an NN for each subset. 

3. Notation 

We will use (x, y) E mkxmg to denote the realization of a random variable pair 
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(X, Y) with probability distribution P. Xi will be the ith component of x, and Xl the 

lth pattern in a given data set D of cardinality N. In the following, we will restrict 

ourselves to one hidden layer NNs, and the number of input and output units will 

be denoted respectively by k and g. The transfer function of the network will be 

denoted f. Training will be performed here according to a Mean Squared Error 

criterion (MSE) although this is not restrictive. 

In the following, we will consider selection methods for classification and 

regression tasks. 

4. Model independent feature selection 

Here we will introduce a number of methods that perform the selection and 

classification or regression steps sequentially, i.e. without considering the 

classification or regression model during the selection process. These methods are 

not NN -oriented and are used here for the purposes of experimental comparison 

with NN -specific selection techniques (section 6). The first two are basic statisti­

cal techniques aimed at regression and classification, respectively. These are not 

well suited for NNs, since the hypothesis they rely on does not correspond to 

situations where NNs might be of use. However, since most NN -specific methods 

are heuristic, they should be used for a baseline comparison. The third method has 

been developed more recently. It is a general selection technique including no 

assumptions concerning the data. It can be used for any system, either for regres­

sion or classification. It is based on a probabilistic dependence measure between 

two sets of variables. 

4.1 Feature selection for linear regression 

We will consider only linear regression, but the approach described below may 

be trivially extended for multiple regression. Let Xl, X2, ••• Xk and y be real 

variables which are assumed to be centered. Let us use: 

(4.1.1) 

to denote the current approximation of y with p selected variables (the Xi are 

renumbered so that the p first selected variables correspond to numbers 1 to p). 

The residuals e(p) = f<P)(x) - Y are assumed to be identically and independently 

distributed. 

Let us denote: 

(4.1.2) 

For forward selection, the choice of the pth variable is usually based on the 

partial correlation coefficient (table 1) between y and regressor /(Ph or on an 
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Table 1 

Choice and Stop criteria used with statistical forward and backward methods 

Choice Stop 

Forward RL SSRp 
SST 2:f(y')2 

( ) SSRp-SSRp-l 
F. P forward (";-Ne!-_-P") 

SSRp- 1 = :f!f(P-ll(X')2 
l-l 

( ) SSRp-SSRp_l 
Fs P backwaTd =7( ('7N;----,p,,) 

Backward 

adjusted coefficient (the adjusted coefficient N P is often used instead of 
-p 

This coefficient represents the proportion of the total variance of y due to the 

regressor f(p). The pth variable to select is the one for which f(p) maximizes this 

coefficient. The importance of a new variable is usually measured by a Fisher test 

(Thompson, 1978), which compares the models with P-1 and P variables 

(FS(P)forwardJn table 1). Selection is stopped if FS(P)forward< F(l, N - p, a), the 

Fisher statistics with (1, N - p) degrees of freedom for a confidence level of a. 

Note that Fs could also be used as a selection criterion in place of criterion: 

FS(P)forward 
RZ-R'f,-l 

RU(N - p) 
(4.1.3) 

When p-1 variables have already been selected, has a constant value in [0, 1J 

and maximizing Fs is similar to maximizing Equation (4.1.3) selects variables 

in the same order as does. 

For the backward process, the variable eliminated from the remaining p is the 

least significant in terms of the Fisher test, i.e. the one with the smallest value of 

SSRp - 1 or, equivalently, FS(P)"ackward (table 1). Selection is stopped if FS(P)backward 

>F(l, N-p, a). 

4.2 Feature selection for classification 

For classification purposes, we select the variable subset that offers the best 

separation of the data. Variable selection ordinarily uses a class separation as 

selection criterion and an F -test as stopping criterion. As for regression tasks, 

forward, backward or stepwise methods may be used. 

Data separation is usually computed by means of some inter-class distance 

measure (Kittler, 1986). The most frequent discriminating measure is the Wilks 

lambda (Wilks, 1963) !1svp defined as : 

IWI (4.2.1) 
IW+BI 

where W is the intra-class matrix dispersion corresponding to the selected variable 

set S Vp , B the corresponding inter-class matrix, and IMI the determinant of matrix 

M. 

(4.2.2) 
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(4.2.3) 

with g the number of classes, N j the number of samples in class j, f1j the mean of 

class j and f1 the global mean. 

As the determinant of a covariance matrix is a measure of the volume occupied 

by the data, I WI measures the mean volume of the different classes and I W + RI the 

volume of the whole data set. These quantities are computed for the selected 

variables so that a good discriminating power corresponds to a small value of Asvp: 

the different classes are represented by compact clusters and are well separated. 

This criterion is well suited to the case of multiple normal distributions with equal 

covariance for each class, but it is meaningless for multimode distributions, for 

example. This is clearly a very restrictive hypothesis. 

With this measurement, the statistic Fs defined below has a F(g -1, N - g - p 

+ 1, a) distribution (McLachlan, 1992) : 

(N-g-p+1) (l-Asvp) 
(g - 1) .!lsvp 

(4.2.4) 

We can then use the Wilks lambda both for estimating the discriminating power of 

a variable and for stopping the selection in a forward, backward (Habbema & 

Hermans, 1977), or stepwise method. 

For the comparisons in section 6, we used Stepdisc, a stepwise method based on 

(4.2.4) with a 95% confidence level. 

4.3 Mutual information 

When data is considered as a realization of a random process, probabilistic 

information measures may be used in order to compute the relevance of a set of 

variables with respect to other variables. Mutual information is such a measure 

which is defined as: 

MI(a, b)= E Pea, b) x log ( 4.3.1) 

where a and b are two variables with probability density pea) and P(b). 

Mutual information is independent of any inversible and differentiable transfor· 

mation of the variables. It measures the "uncertainty reduction" on b when a is 

known. It is also known as the Kullbak- Leibler distance between the joint distri· 

bution P(a,b) and the marginal distribution product PCa)* P(b). 

The method described below does not make use of restrictive assumptions on 

the data and is therefore more general and attractive than the ones described in 

sections 4.1 and 4.2, especiaIJy when these hypotheses do not correspond to the data 

processing model, which is usuaIJy the case for NNs. It may be used either for 

regression or discrimination. On the other hand, such non-parametric methods are 

computationally intensive. The main practical difficulty here is the estimation of 
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the joint density pea, b) and of the marginal densities pea) and P(b). Non-par­

ametric density estimation methods are costly in high dimensions and require a 

large amount of data. 

The algorithm presented below uses the Shannon entropy (equation 4.3.2) to 

compute the mutual information MI(a, b)=H(a)+ H(b)- H(a, b). It is possible to 

use other entropy measures like quadratic or cubic entropies (Kittler, 1986). 

H(a)= - jP(a) log(p(a»da (4.3.2) 

Battiti (1994) proposed using mutual information with a forward selection algo­

rithm called MIFS (Mutual Information-based Feature Selection). pea, b) is esti­

mated by Fraser algorithm (Fraser & Swinney, 1986), which recursively partitions 

the space using x 2 tests on the data distribution. This algorithm can only compute 

the mutual information between two variables. In order to compute the mutual 

information between Xp and the selected variable set SVp-l(xpdoes not belong to 

SVp- 1) Battiti uses simplifying assumptions. Moreover, the number of variables to 

select is fixed before the selection. This algorithm uses forward search and 

variable Xp is the one that maximises the value: 

(4.3.3) 

where SVp- 1 is the set of p-1 variables already selected. 

Bonnlander and Weigend (1994) use Epanechnikov kernels for density estima­

tion (Hardle, 1990) and a Branch and Bound (B&B) algorithm for the search 

(Narendra & Fukunaga, 1977). B&B warrants an optimal search if the criterion 

used is monotonic and is computationally less intensive than exhaustive search. 

For the search algorithm, one can also consider the suboptimal floating search 

techniques proposed by Pudil et al. (1994) which offer a good compromise between 

the simplicity of sequential methods and the relative computational cost of the 

Branch and Bound algorithm. 

For the comparisons in section 6, we have used Epanechnikov kernels for 

density estimation in (4.3.3), a forward search, and the selection is stopped when the 

MI increase falls below a fixed threshold (0.99). 

5. Model-dependent feature selection for neural networks 

Model-dependent feature selection attempts to perform the selection and the 

processing of the data simultaneously: the feature selection process is part of the 

training process, and features are sought for optimizing a model selection criterion. 

This "global optimization" seems to be more attractive than model-independent 

selection where the adequacy of the two steps is up to the user. However, since the 

value of the selection criterion depends on the model parameters, it might be 

necessary to train the NN with different sets of variables: some selection proce-



152 P. Leray and P. Gallinari 

dures alternate between variable selection and retraining of the model parameters. 

This forbids the use of sophisticated search strategies which would be 

computationally prohibitive. 

Some specificities of NNs should also be taken into consideration when deriv­

ing feature selection algorithms: 

• NNs are usually nonlinear models. Since many parametric model-indepen­

dent techniques are based on the hypothesis that input-output variable dependency 

is linear or that input variables redundancy is well measured by linear correlation 

between these variables, such methods are clearly ill-suited to NNs. 

• The search space usually has many local minima, and relevance measures 

will depend on the minimum the NN will have converged to. These measures 

should be averaged over several runs. For most applications, this is prohibitive 

and has not been considered here. 

• Except for (White, 1989), who derives results on the weight distribution, there 

is no work in the NN community which might be used for hypothesis testing. 

The selection criteria in NN feature selection algorithms are based mainly on 

heuristic individual feature evaluation functions. Several have been proposed in 

the literature. We have attempted to classify them by family, in which we find: 

• zero-order methods which use only the network parameter values; 

• first-order methods using the first derivatives of network parameters; 

• second-order methods using the second derivatives of network parameters. 

Most feature evaluation criteria will rank variables at a given time, the value 

of the criterion itself is non-informative. However, we will see that most of these 

methods work reasonably well. 

Feature selection methods with neural networks use mostly backward search, 

although some forward methods have also been proposed (Moody, 1994; Goutte, 

1997). Several methods evaluate and rank features individually without consider­

ing their dependencies or correlations. This may be risky when selecting minimum 

relevant sets of variables. Using the correlation as a simple dependence measure 

is not enough, since NNs capture nonlinear relationships between variables. On 

the other hand, measuring nonlinear dependencies is not trivial. Certain authors 

simply ignore this problem, but others propose to select only one variable at a time 

and then retrain the network with the newly selected set before evaluating the 

relevance of the remaining variables. Some of the dependencies the network has 

discovered among the variables can be taken into account this way. 

More critical is the difficulty for defining a sound stop criterion or model choice. 

Many methods use very crude techniques for stopping the selection, e.g. a threshold 

on the choice criterion value. Some rank the different subsets using an estimation 

of the generalization error. This is the expected error performed on future data 

and is defined as : 
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R= !r(x, y) p(x, y) dxdy (5.0.1) 

where, in our case, r(x, y) is the Euclidean error between the desired and computed 

outputs. Estimates can be computed using a validation set, cross-validation, or 

algebraic approximations of this risk like the Final Prediction Error (Akaike, 1970). 

Several estimates have been proposed in the statistical (Gustafson & Hajlmarsson, 

1995) and NN (Moody, 1991; Larsen & Hansen, 1994) literature. 

For the comparison in section 6, we have used a simple threshold when the 

authors gave no indication for the stop criterion, and a validation set approxima­

tion of the risk otherwise. 

5.1 Zero-order methods 

For linear regression models, the partial correlation coefficient can be expres­

sed as a simple function of the weights. Although this is not sound for nonlinear 

models, attempts have been made to use the input weight values in computing the 

relevance of the variable. This has been observed to be an inefficient heuristic: 

weights are not easily interpreted in these models. 

A more sophisticated heuristic has been proposed by Yacoub and Bennani 

(1997), using both the weight value and the network structure of a multilayer 

perceptron. They derived the following criterion: 

(5.1.1) 

where J, H, and 0 denote the input, hidden, and output layer, respectively. 

For a better understanding of this measure, let us suppose that each hidden and 

output unit incoming weight vector has a unit norm L 1• The above equation can 

then be written as: 

(5.1.2) 

In (5.1.2), the inner term is the product of the weights from input i to hidden unit j, 

and from j to output o. The importance of variable i for output 0 is the sum of the 

absolute values of these products over all the paths in the NN from unit i to unit 

o. The importance of variable i is then defined as the sum of these values over all 

the outputs. The denominators in (5.1.1) operate as normalizing factors. This is 

important when using squashing functions, since these functions limit the effect of 

weight magnitude. Note that this measure will depend on the magnitude of the 

input. The different variables should then be in a similar range. The two weight 

layers do have different roles in an MLP that are not reflected in (5.1.1). For 

example, if the outputs are linear, the normalization should be suppressed in the 

inner summation of (5.1.1). 

They used a backward search and the NN is retrained after each variable 

deletion, the stop criterion is based on the variation of the performance on a 
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validation set. Elimination is stopped as soon as performance decreases. 

5.2 First-order methods 

Several methods evaluate the relevance of a variable by the derivative of the 

error or of the output with respect to this variable. Such evaluation criteria are 

easy to compute, and most lead to very similar results. There derivatives measure 

the local change in the outputs with a given input while the other inputs remain 

fixed. Since these derivatives are not constant, as they are in linear models, they 

must be averaged over the training set. For these measures to be fully meaningful, 

inputs should be independent; and since they average the local sensitivity, the 

training set should be representative of the input space. 

5.2.1 Saliency Based Pruning (SBP) 

The evaluation criterion in this backward method (Moody & Utans, 1992) is the 

variation of the learning error when a variable x,. is replaced by its empirical mean 

x i (zero, here, since variables are assumed to be centered) : 

Si=MSE-MSE(Xi) (5.2.1) 

where 

This is a direct measure of the usefulness of the variable for computing the output. 

Computing Si is costly for large values of N, and a linear approximation may be 

used: 

(5.2.2) 

Variables are eliminated by increasing order of Si' 

For each feature set, as NN is trained and an estimate of the generalization 

error-a generalization of the Final Prediction Error criterion-is computed. The 

model with minimum generalization error is selected. 

Changes in MSE are not ambiguous only when inputs are not correlated. As 

this method compute variable relevance just once, it does not take possible correla­

tions between variables into account. Relevance could be computed from the 

successive NNs in the sequence at a computational extra-cost (O(k 2 ) Si computa­

tions instead of O(k) in the present method). 

5.2.2 Methods using output derivatives 

For a linear model, the output derivative with respect to any input is a constant, 

which is not the case for nonlinear NNs. Several authors have proposed to 

measure the sensitivity of the network transfer function with respect to input x,. by 

computing the mean value of the output derivatives with respect to Xi over the 
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whole training set. In the case of multilayer perceptrons, this derivative can be 

computed progressively during learning (Hashem, 1992). Since these derivatives 

may take both positive and negative values, they may compensate and produce an 

average near zero. Most measures use average squared or absolute derivatives. 

Dozens of measures based on derivatives have been proposed, and many others 

could be defined. The following is only a representative sample. 

The sum of the derivative absolute values has been used e.g. in Ruck et al. 

(1990) : 

(5.2.3) 

For classification, Priddy et al. (1993) remark that since the error for decision j 

Perr(jfX) may be estimated by I-lAx), (5.2.3) may be interpreted as the absolute 

value of the error probability derivative averaged over all decisions (outputs) and 

data. 

Squared derivatives may be used instead of the absolute values. For example, 

Refenes et al. (1996) proposed a normalized sum for regression: 

(5.2.4) 

where VAR stands for variance. They also proposed a series of related criteria, 

including: 

-a normalized standard deviation of the derivatives: 

(5.2.5) 

-a weighted average of the derivative absolute values, where the weights 

reflect the relative magnitude of x and f(x) : 

(5.2.6) 

All these measures are very sensitive to the input space representativeness of the 

sample set. So several authors have proposed to use a subset of the sample in order 

to increase the significance of their relevance measure. 

In order to obtain robust methods, "pathological" training examples should be 

discarded. For regression and radial basis function networks, Dorizzi et al. (1996) 

propose using the 95th percentile of the absolute value of the derivative: 

(5.2.7) 

As this eliminates outlying points, it contributes to the robustness of the measure. 

Note that the same idea could be used with other relevance measures proposed in 
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this paper. 

Following the same line, Czernichow (1996) proposed a heuristic criterion for 

regression, estimated on a set of non pathological examples whose cardinality is N'. 

The proposed selection criterion is: 

(.1L.(XI»)2 
5 .= 1=1 aXi 

, (N' (of I )2) maxj 2: 
1=1 uX] 

(5.2.8) 

For classification, Rossi (1996), following a proposition made by Priddy et aI. 

(1993), considers only those patterns that are near the class boundaries. He pro­

poses the following relevance measure: 

(5.2.9) 

The boundary is defined as the set of points for which Ilv Xfj(xl)11 > E, where E is a 

fixed threshold. Several authors have also considered the relative contribution of 

partial derivatives to the gradient as in (5.2.9). 

All these methods use a simple backward search. 

For the stopping criteria, all use heuristic rules, except for Refenes et al. (1996), 

who define statistical tests for their relevance measures. For nonlinear NNs, this 

requires an estimation of the relevance measure distribution. This is very costly 

and, in our opinion, usually prohibits this approach, even if it is otherwise attrac­

tive. 

5.2.3 Links between methods 

All these methods use simple relevance measures that depend on the gradient of 

network outputs with respect to input variables. There is no ranking of the 

different criteria. All that can be recommended are a few reasonable rules like 

discarding outlying points for robustness, or retraining the NN each time a variable 

is discarded, and computing new relevance measures for each NN in the sequence, 

in order to include dependencies between variables. In practice, all these methods 

give very similar results, as will be shown in section 6. 

Table 2 summarizes the main characteristics of relevance measures for the 

different methods. 

5.3 Second -order methods 

Several methods evaluate the relevance of a variable by computing weight 

pruning criteria for the set of weights of each input node. We present three such 

methods below. The first is a Bayesian approach for computing the weight vari­

ance. The other two use the Hessian of the cost function for computing the cost 

function dependence on input unit weights. 
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Table 2 

Computation of the variable relevance by different methods using the derivative 

of the network function. 

Derivative Task Data 
used CjR used 

(Moody (5.2.1) K CjR All 
OXi 

(Refenes (5.2.5)) K CjR All ox, 

(Dorizzi (5.2.7)) 1::,1 CjR 
Non pathological 

data 

(Refenes (5.2.6)) 1::,1 CjR All 

(Czemichow (5.2.8» (K)' CjR 
Non pathological 

ox, data 

(Refenes (5.2.4) ox, CjR All 

(Ruck (5.2.3» ±I af;1 
j"' ox, 

C All 

(Rossi (5.2.9» Jtl I/IIV xfll C 
Boundary 

between classes 

CjR denote Classification and Regression tasks. respectively. 

5.3.1 Automatic Relevance Determination (ARD) 

157 

This method was proposed by MacKay (1994) in the framework of Bayesian 

learning. In this approach, weights are considered as random variables and 

regularization terms are included for each input in the cost function. Assuming 

that the prior probability distribution of the group of weights for the ith input is a 

gaussian, the input posterior variance 0'; is estimated (with the help of the Hessian 

matrix). 

ARD has been successful for time series predictions, learning with regulariza­

tion terms improved the prediction performance. However, ARD has not really 

been used as a feature selection method, since variables are not pruned during 

training. 

5.3.2 Optimal Cell Damage 

Weight pruning techniques have spawned a number of neural selection 

methods. For the latter, the decision to prune a weight is made according to a 

relevance criterion often named the weight saliency: the weight is pruned if its 

saliency is low. Similarly, the saliency for an input cell is usually defined as the 

sum of its weight saliencies. 

Saliency (x;)= ::l: Saliency (Wj) 
fan-out(i) 

(5.3.1) 
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where !an-out(i) is the set of weights of input i. 

Optimal Cell Damage (OCD) has been proposed by Cibas et al. (1994a, 1996) (A 

similar method was also proposed by Mao et al., 1994). This feature selection 

method is inspired from the Optimal Brain Damage (OBD) weight pruning technique 

developed by LeCun (1990). In OED, the connection saliency is defined by: 

S , . () 1 H 2 1 cl MSE 2 
a zency Wj = -r jjWj = 2 i)w; Wj, (5.3.2) 

which is an order two Taylor expansion of MSE variation around a local minimum. 

The Hessian matrix H can easily be computed using gradient descent, but this may 

be computationally intensive for large networks. For OBD, the authors use a 

diagonal approximation for the hessian which can then be computed in D(N). The 

saliency of an input variable is defined accordingly as : 

S;=Saliency 
2 jEfan-out(i) 

(5.3.3) 

Cibas et al. (1994) proposed (5.3.3) as a selection criterion for eliminating variables. 

The NN is trained to reach a local minimum. Variables whose saliency is below 

a given threshold are eliminated. The threshold value is fixed by cross validation. 

This process is then repeated until no variable is found below the threshold. 

This method has been tested on several problems, with satisfactory results. 

Once again, the difficulty lies in selecting an adequate threshold. Furtermore, since 

several variables can be eliminated simultaneously whereas only individual vari­

able pertinence measures are used, significant sets of dependent variables may be 

eliminated. 

For stopping, the generalization performance of the NN sequence are estimated 

via a validation set and the variable set corresponding to the NN with the best 

performance is chosen. 

The hessian diagonal approximation has been questioned by several authors, 

Hassibi and Stork (1993), for example, proposed a weight pruning algorithm, 

Optimal Brain Surgeon (OBS), which is similar to OBD, but uses the whole hessian 

for computing weight saliencies. Stahlberger and Riedmiller (1997) proposed a 

feature selection method similar to OCD except that it takes into account non­

diagonal terms in the hessian. 

For all these methods, saliency is computed using the error variation on the 

training set as a performance measure. 'Weight estimation and model selection 

both use the same data set, which is not optimal. Pedersen et aI. (1996) propose two 

weight pruning methods, yOBD and yOBS, that compute weight saliency according 

to an estimate of the generalization error: the Final Prediction Error (Akaike, 

1970). Similarly to OBD and OBS, these methods could also be transformed into 

feature selection methods. 



FEATURE SELECTION WITH NEURAL I\ETWORKS 159 

5.3.3. Early Cell Damage (ECD) 

Using a second-order Taylor expansion, as in the OBD family of methods, is 

justified only when a local minimum is reached and the cost is locally quadratic in 

this minimum. Both conditions are rarely met in practice. Tresp et a!. (1997) 

propose two weight pruning techniques from the same family, dubbed EBD (Early 

Brain Damage) and EBS (Early Brain Surgeon). They use a heuristic justification 

for early stopping by adding a new term in the saliency computation. These 

methods can be extended for feature ranking. We will use ECD (Early Cell 

Damage) to denote the EBD extension. For ECD, the saliency of input i is defined 

as: 

Si = 1 M=S;=E=-- wJ 
JeJan-ouIUI 2 awl 

( aMSE)2 
aMSE + 1 OWj 

OW j W j 2 (5.3.4) 

owl 

The algorithm we propose is slightly different from OCD: only one variable is 

eliminated at a time, and the NN is retrained after each deletion. 

For choosing the "best" set of variables, we have used a variant of the "selec­

tion according to an estimate of the generalization error" method. This estimate 

is computed using a validation set. Since the performance may oscillate without 

changing significantly, several subsets may have the same performance (e.g. see 

figure 1). Using a Fisher test, we compare the performance of a given model with 

that of the best model and then select the set of networks whose performance is 

similar to the best. From these, we choose the one with the smallest number of 

input variables. 

6. Experimental comparison 

We now present comparative performance of different feature selection 

methods. These methods are not easy to compare, as there is no single measure 

that characterizes the importance of each input. The selection accuracy also 

depends on the search technique and on the criterion for choosing variable subset. 

In the case of NN s, these different steps rely on heuristics that could be exchanged 

from one method to another. The NNs used are multilayer perceptrons with one 

hidden layer of 10 neurons. 

The comparison we provide here is not intended to be a final ranking of the 

different methods, but to illustrate the general behavior of some of them, which 

have been described before. We have used two synthetic classification problems 

that illustrate different difficulties of variable selection. In the first, the boundaries 

are "nearly" linear and there are dependent variables as well as pure noise vari­

ables. The second problem has nonlinear boundaries, and independent or correlat­

ed variables can be chosen. 



160 P. Leray and P. Gallinari 

Table 3 

Performance comparison of different variable selection methods on the noisy wave problem 

Method p. Selected Variables Pert. 

None 40 1111111111111111111111111111111111111111 
82.51% 

[81.35-83.62J 

Stepdisc (4.2.4) 14 000110111111111011100 0000000000000000000 85.35% 
[84.26-86.38J 

(Bonnlander (4.3.3)) 12 000011101111111110000 0000000000000000000 
85.12% 

[84.02-86.15J 

(Yacoub (5.1.1)) 16 000111111111111111100 0000000000000000000 85.l6% 
[84.07-86.19J 

(Moody (5.2.1) 16 000111111111111111100 0000000000000000000 
85.19% 

[84.10-86.22J 

(Ruck (5.2.3)) 
18 011111111111111111100 0000000000000000000 

85.51% 
(Dorizzi (5.2.7)) [84.43-86.53J 

(Czernichow (5.2.8)) 17 010111111111111111100 0000000000000000000 
85.67% 

[84.59-86.69J 

(Cibas (5.3.3)) 9 000001111110111000000 0000000000000000000 
82.26% 

[81.09-83.37J 

(Lcray (5.3.4)) 11 000001111111111100000 0000000000000000000 84.56% 
[83.45-85.61J 

The first problem was originally proposed by Breiman et a1. (1984). It is a 

three-class waveform classification problem with 19 noisy dependent features. We 

have also used a variation of this problem where 21 pure noise variables are added 

to the 19 initial variables (there are 40 inputs for this variant). The training set has 

300 patterns and the test set 4300. A description of this problem is provided in the 

appendix. The performance of the optimal Bayes classifier estimated on this test 

set is 86% correct classification. A performance comparison appears in tables 3 

and 4 for these two instances. 

For the noisy problem, all methods do eliminate pure noise variables. Except 

for the two methods at the bottom of table 3 which give slightly lower performance 

and select fewer variables, all give similar values around 85% correct. Stepdisc 

also gives good performance since in this problem data have a unimodal distribu­

tion and the boundaries are nearly linear. For the non-noisy problem, the perfor­

mance and methods ordering change. The two techniques at the bottom of table 4 

offer now slightly better performance. 

Figure 1 shows performance curves for two methods, QCD and ECD, estimated 

on a validation set. Since we have used a single validation set, there are small 

fluctuations in the performance. Some form of cross validation should be used in 

order to get better estimates, the test strategy proposed for ECD also looks attrac­

tive in this case. It can be seen that, for this problem, performance is more or less 

similar during the backward elimination (it rises slightly) and drops off quickly 

when relevant variables are removed. 
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Table 4 

Performance comparison of different variable selection methods on the 

original wave problem 

Method p. Selected Variables Perf. 

.l\one 21 111111111111111111111 
85.28% 

[84.19-86.31J 

Stepdisc (4.2.4) 14 001110101111111011100 
84.l9% 

[83.07-85.25J 

(Bonnlander (4.3.3)) 8 000001100111101010000 
83.05% 

[81.90-84.14J 

(Yacoub (5.1.1)) 18 011111111111111111100 
85.46% 

[84.38-86.48J 

85.63% 
(Moody (5.2.1)) 16 000111111111111111100 

[84.65-86.65J 

(Ruck (5.2.3)) 
12 000111101111111010000 

84.65% 
(Oorizzi (5.2.7)) [83.54-85.70J 

(Czemichow (5.2.8)) 10 000110101011111010000 
82.58% 

[81.42-83.68J 

(Cibas (5.3.3)) 15 001011111111111110100 
85.23% 

[84.14-86.26J 

(Leray (5.3.4)) 13 000011111111111110000 
85.67% 

[84.59-86.69J 

85 .., 
80 

75 

70 
% 

65 

60 

55 
--- (Xl) 

40 37 34 31 28 25 22 19 16 13 10 7 4 

Number of variables remaining 

Fig. 1 Performance comparison of two variable selection methods (OCO and ECO) according to 

the number of variables remaining for the noisy wave problem. 
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Figure 2 gives the performance distribution of different variable selection 

methods for the original wave problem (y axis) and the percentage of selected 

variables (x axis). The best methods are those with the best performance, and the 

lower number of variables. In this problem, "Leray" is satisfactory (see figure 2). 

"Yacoub" does not delete enough variables, while "Bonnlander" deletes too many. 

The second problem is a two class problem in a 20-dimensional space. The 

classes are distributed according two gaussians with, respectively, ,lll =(0, ... ,0), :2:1 

=4*1, ,llz=(O, 1, 2, ... , 19)!a(a is chosen so that IIILI ILzll=2) and :2:2=1. In this prob· 
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Ruck 
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82 
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Fig.2 Performance comparison of different variable selection methods vs. percentage of 

selected variables on the original wave problem. x axis; percentage of variables selected, 

y axis: percentage of correct classification. 

Table 5 

Performance comparison of different variable selection methods on the 

"two gaussian" problem with uncorrelated variables. 

:\Iethod p' Selected Variables Perf. 

None 20 11111111111111111111 
94.80% 

[94.15-95.35J 

Stepdisc (4.2.4) 17 10001111111111111111 
9488% 

[94.23-95.43J 

(Bonnlander (4.3.3)) 5 00001000000000011011 
90.60% 

[89.76-91.38J 

(Yacoub (5.1.1)) ]8 01011111111111111111 
94.86% 

[94.21-95.44 J 

C.\loody (5.2.1)) 9 01000100011000110111 
92.94% 

[92.20-93.62J 

(Ruck (5.2.3)) 10 000000001011011111]1 
94.86% 

[94.21-95.44 J 

(Dorizzi (5.2.7)) 11 00000000101]11111111 
94.66% 

[94.00-95.25J 

(Czernichow (52.8)) 9 00000000011011111111 
94.02% 

[93.33-9402J 

(Cibas (5.3.3)) 14 01001110010111111111 
94.62% 

[93.96-95.21J 

(Leray (53.4)) 15 010110111011101]]111 
94.08% 

[93.39-94.70 J 

lern, variable relevance is ordered by index: Xl is useless, Xi+! is more relevant than 

Xi· 

Table 5 shows that Stepdisc is not suitable for this nonlinear boundary: it is 

the only method that selects Xl, which is useless for this problem. We can see in 
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Fig. 3 Performance comparison of different variable selection methods vs. percentage of 

selected variables on the two gaussian problems with uncorrelated variables. x axis: 

percentage of variables selected. y axis: percentage of correct classification. 

Table 6 

Performance comparison of different variable selection methods on the 

"two gaussian" problem with correlated variables. 

Method p' Selected Variables Perf. 

None 20 11111111111111111111 
90.58% 

[89.74-91.36J 

Stepdisc (4.2.4) 11 00001101011010110111 91.96% 
L91.l7 -92.68J 

(Bonnlander (4.3.3)) 5 0000100)010000100001 88.48% 
[75.57 -89.34 J 

(Ruck (5.2.3») 10 00011001011110100011 
91.06% 

[90.24- 91.82J 

(Leray (5.3.4)) 7 00000010101010100011 
90.72% 

[89.88-91.49J 

figure 3 that Bonnlander's method does not select too many variables, whereas 

Yacoub's stop criterion is too rough and does not delete enough variables. 

In another experiment, we replaced the I matrix in and by a block 

diagonal matrix. Each block is 5 x 5 so that there are four groups of five successive 

correlated variables in the new problem. 

Table 6 gives the results of some representative methods for this problem: 

• Stepdisc's model still performs well but selects many correlated variables, 

• Bonnlander's method selects only five variables and gives significantly lower 

results, 

• Ruck's method obtains good performance but selects certain correlated 

variables, 

• Leray's method, with its retraining after each variable deletion, finds models 

with good performance and few variables (seven, compared to 10 and 11 for 
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Ruck and Stepdisc). 

7. Conclusion 

We have reviewed variable selection methods developed in the field of Neural 

Networks. The main difficulty here is the NNs are nonlinear systems that do not 

use explicit parametric hypothesis. As a consequence, selection methods rely 

heavily on heuristics for the three variable selection steps: relevance criterion, 

search procedure (NN variable selection uses mainly backward search), and choice 

of the final model. We first discussed the main difficulties involved in developing 

each of these steps. We then introduced different families of methods and discus­

sed their strengths and weaknesses. We believe that a variable selection method 

must remain computationally feasible in order to be useful, and have therefore not 

considered techniques that rely on computer-intensive procedures such as bootstrap 

at each step of the selection. Instead, we have proposed a series of rules which 

could be used to enhance some of the methods described at a reasonable extra 

computational cost, for example: retraining each NN in the sequence and comput­

ing the relevance for each of these NN, in order to bring out correlations between 

variables; simple estimates of the generalization error, which may be used to 

evaluate a variable subset; and simple tests on these estimates, to choose minimum 

variable sets (section 5.3.3). Finally we compared representative NN selection 

techniques on synthetic problems. 

Appendix: Waveform problem 

This problem was proposed by Breiman et al. (1984). Three vectors or 

waveforms are given in 21 dimensions, Hi, i=l, .. _,3. Patterns in each class are 

defined in jJfl as random convex combinations of two of these vectors (waves (1,2), 

(1,3), (2, 3) respectively for class 1, 2 and 3). 

The problem is then to classify these patterns into one of the three classes. 

More precisely, patterns are generated according to : 

Xi 
uHt+(l- u)H[' + 

r. Ci 
;) 

where Xi denotes the ith component of a pattern x, u is a uniform random variable 

in [0, 1J, Ci is generated according to a normal distribution N(O, 1), m and n identify 

the two waves used in this combination, i.e. the class of pattern x. 

For the noisy problem, 19 additional components are added to the 21 compo­

nents of the above vectors: 

21:::;;i:::;;40 

The training, validation, and test sets have 300, 1000, 4300 elements, respectively. 
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