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Abstract

In this paper, we continue our study of learning an optimal kernel in a prescribed convex
set of kernels, [18]. We present a reformulation of this problem within a feature space envi-
ronment. This leads us to study regularization in the dual space of all continuous functions on
a compact domain with values in a Hilbert space with a mix norm. We also relate this problem
in a special case toLp regularization.
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1 Introduction

A central theme of this paper is the problem of learning a kernel in a prescribed convex set of
kernelsK. Our previous work on this problem which was motivated by its potential application
in machine learning focused on finding a suitable optimal kernel. Here, we study an equivalent
feature space formulation of this problem. This leads us to explore the relationship between the
problem of finding an optimal kernel and regularization in the dual space of the space of con-
tinuous functions on a compact domain with values in a Hilbert space. We also describe related
regularization techniques inLp spaces which naturally arise in our investigation.

In [1, 18] we proposed to find a good kernelK by solving the variational problem

min

{∑
j∈Nm

L(yj, f(xj)) + µ‖f‖2
K , : f ∈ HK , K ∈ K

}
(1.1)

whereL : R×R → R+ is a prescribed loss function,‖·‖K the norm in a reproducing kernel Hilbert
space of real-valued functions on some input spaceX with kernelK, µ a positive parameter,K is
a prescribed set of kernels andNm := {1, . . . ,m}. This problem has been studied from different
perspectives in a substantial number of papers. Specifically, in statistics, it has been motivated
in [12, 13] as a generalization of thelasso, a technique introduced in [22] which also relates
to basis pursuit denoising [6] and to a linear programming approach for feature section [8]; in
machine learning, problem (1.1) has been studied in the context of support vector machines as a
mean to optimize the margin or soft-margin error used therein [3, 11]; in learning theory, it has
been investigated with the intention of improving the approximation error [24, 19]. For additional
interesting observations related to the theme of this paper, see [5, 7, 9, 10, 20].

In Section 2, we describe the main result of the paper which relates problem (1.1) to our feature
space extremal problem. Indeed, the problem described above concerns the choice of an optimal
kernel for kernel based learning algorithms while the second problem we study is the reformulation
of it within a feature space environment. We demonstrate in great generality that these problems
are equivalent and characterize the form of the solutions for both problems. We also provide a
description for an optimal feature map solution analogous to the one we derived in our earlier work
on learning the kernel, [1, 18]. A detailed description of this result appear in Section 2. However,
the proof is postponed until Section 6. In Section 3, we present specific motivating examples when
K is the convex hull of afiniteset of prescribed kernels. Moreover, for these examples we provide
an alternate derivation of the main result in Section 2 by using a decomposition theorem from [2].
In Section 4, we discuss the connection between learning the kernel andL1 regularization. Section
5 contains related results forLp regularization and provide a representer theorem in the spirit of
our paper, [16]. We end the paper with a discussion of future research directions and commentaries
on our results.

We remark that an interesting aspect of the feature space regularization we present here is not
only does it involve linear functionals, but also that it is a Banach space regularization method.
Indeed, as we shall show, the appropriate norm for the functionals is induced by a mix norm on
a space of functions with values in the Hilbert space associated with the feature map. Finally, we
also explore similar issues for anLp analog of the convex hull of a fix set of kernels.
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2 Main result

In this section, we present our main result. First, we recall the notion of reproducing kernel Hilbert
spaces and continuously parameterized convex set of kernels.

2.1 Integrals of kernels

Let X be aninput set. By a kernelwe mean a functionK : X × X → R such that for every
finite set of inputsx = {xj : j ∈ Nm} ⊆ X and everym ∈ N, the m × m matrix Kx :=
(K(xi, xj) : i, j ∈ Nm) is positive semi-definite. According to Aronszajn and Moore, every kernel
has associated to it an (essentially)uniqueHilbert spaceHK of real-valued functions onX with
inner product〈·, ·〉K such thatK is its reproducing kernel, [2]. This means, for everyf ∈ HK and
x ∈ X , that〈f, K(x, ·)〉K = f(x).

We use the notationA(X ) for the set of all kernels on the setX andA+(X ) for the subset of
kernelsK such that, foreachinputx, the matrixKx is positive definite.

Let Θ be a compact Hausdorff space,C(Θ) the space of continuous real–valued functions on
Θ andM(Θ) the set of allprobability measuresonΘ. Let G : Θ → A+(X ) be a continuous map.
By this we mean that, for eachx, t ∈ X , the function ofθ 7→ G(θ)(x, t) is continuous onΘ. The
set of kernelsG := {G(θ) : θ ∈ Θ)} induces the convex set of kernels

K(G) :=

{∫
Θ

G(θ)dp(θ) : p ∈M(Θ)

}
(2.1)

which we shall consider below. We note that whenΘ = Nn thenK(G) equal the convex hull ofG.

2.2 Regularization error functional

Let D := {(xj, yj) : j ∈ Nm} ⊂ X × R be prescribed data andy the vector(yj : j ∈ Nm). Each
kernelK ∈ K(G) gives rise to a RKHSHK . For eachf ∈ HK , we introduce theinformation
operatorIx(f) := (f(xj) : j ∈ Nm) ∈ Rm of values off on the set of inputs inx. We consider
Ix : HK → Rm a linear map and onRm we put the usual inner product. Thus, for any two vectors
c = (cj : j ∈ Nm) andd = (dj : j ∈ Nm) we write (c, d) :=

∑
j∈Nm

cjdj. A straightforward
computation identifies the adjointI∗x : Rm → HK , for everyc = (cj : j ∈ Nm) ∈ Rm, as

I∗xc =
∑
j∈Nm

cjKj,

whereKj = K(xj, ·). A regularization error functionis any functionq : Rm × R+ → R. We
write any vectorv ∈ Rm ×R+ in the form(c, t) for somec ∈ Rm andt ∈ R+. In other words, the
vectorv is the concatenation of the vectorc and the scalart. There should be no confusion with
this “double duty” notation since in this case one argument is a vector and the other is a scalar.
Likewise, we shall denoteq(v) asq(c, t) andqinf := inf{q(v) : v ∈ Rm×R+}. The regularization
error function will allow us to balance the dataIxf with the norm‖f‖K :=

√
〈f, f〉K and leads

us to the following definition.

Definition 2.1. We say thatq : Rm × R+ → R is an acceptable regularization error function
provided that
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1. q is lower semi-continuous, that is, for eachλ ∈ R the setUλ := {v : v ∈ Rm×R+, q(v) ≤
λ} is a closed subset ofRm × R+;

2. given anyλ > 0 there existsρ > 0 such that whenever(c, t) ∈ Uλ thent ∈ [0, ρ];

3. for eachc ∈ Rm the functionq(c, ·) : R+ → R is non-decreasing onR+.

An important example for an acceptable regularization error function in machine learning has
the form

q(c, t) =
∑
j∈Nm

L(yj, cj) + µJ(t), (2.2)

whereL : R×R → R+ is a continuous loss function (typically convex),µ a positive constant and
J : R+ → R+ is astrictly increasingfunction. The standard choice for the functionJ is J(t) = t,
t ∈ R+. This leads to the usual kernel–based regularization algorithm studied extensively in
the literature. However, as we shall see later, from the feature space point of view, the choice
J(t) =

√
t, t ∈ R+, is widely studied. Whenever we consider the special case (2.2) we always

assume that the above properties ofL andJ are satisfied.
An acceptable regularization error functionq gives rise to a functionalQ(·, K) : HK → R

defined, for allf ∈ HK , as
Q(f, K) = q(Ixf, ‖f‖2

K). (2.3)

Properties 1–3 above guarantee, for everyK ∈ A(X ), that Q(·, K) has a minimumfK over
f ∈ HK . Since we do not assume here thatq is strictly convex this minimum may not be unique,
hence our notationfK is to be interpreted to mean thatfK is anyminimum forQ(·, K). We let

E(K) := min{Q(f, K) : f ∈ HK} = Q(fK , K)

and note that using the weak compactness of the unit ball inHK , the weak lower semi-continuity
of the norm onHK and the first hypothesis on an acceptable regularization functionalq ensure the
existence of the minimum. In our previous work [1] we studied the problem of choosing a kernel
K ∈ K(G) which solves the variational problem

EG := inf {E(K) : K ∈ K(G)} . (2.4)

Any kernelK̂ ∈ K(G) for which EG = E(K̂) is called an optimal kernel andfK̂ is called an
optimal function. A main goal of this paper is to give the variational problem (2.4) a feature space
interpretation. To this end, we assumeG : Θ → A+(X ) is expressed in terms of afeature map
Φ : Θ× X → W, whereW is a Hilbert space with inner product〈·, ·〉W and corresponding norm
‖ · ‖W . That is, for eachx, y ∈ X andθ ∈ Θ, we have thatG(θ)(x, y) = 〈Φ(θ, x), Φ(θ, y)〉W .
For example, whenΘ = Nn, we constructK(G) as theconvex hullof the finite setof kernels
G(θ1), . . . , G(θN). In addition, whenW is finite dimensional, sayW = RM , then each of the
kernels is constructed from afinite number of features.

We require that the feature map has the property that, for eachx ∈ X , the functionΦ(·, x) :
Ω → W is continuous. In particular, we conclude that‖Φ(·, x)‖ is a continuous real-valued
function onΩ. From this it easily follows that, for eachx, y ∈ X , G(·)(x, y) is a continuous
function onΩ. Let us use the notationC(Θ,W) for the set ofall continuous functions onΘ with
values inW, where we give anyΨ ∈ C(Θ,W) the norm

‖Ψ‖∞,W := max {‖Ψ(θ)‖W : θ ∈ Θ} .
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Therefore, by our assumptions above for everyx ∈ X the functionΦ(·, x) ∈ C(Θ,W).
We introducefeature functionsΦj : Θ → W induced by the inputsx and defined, for every

θ ∈ Θ, asΦj(θ) = Φ(θ, xj) and assume that they are linearly independent onΘ. This is equivalent
to the assumption thatG maps intoA+(X ). We use the standard notationC∗(Θ,W) for the space
of all continuous linear functionals onC(Θ,W). A precise description ofC∗(Θ,W) can be given
by using the representation theorem forC(Θ, R) in term of regular Borel measures onΘ. However,
this information is not needed in our presentation. Instead, corresponding to any feature map and
any regularization error function as described above we introduce a feature space regularization
functionalV : C∗(Θ,W) → R given, for anyB ∈ C∗(Θ,W), by

V (B) = q(Dx(B), ‖L‖2), (2.5)

whereDx : C∗(Θ,W) → Rm is the linear operator defined asDx(B) = (B(Φj) : j ∈ Nm).
Recall that the norm of the linear functionalB is defined as

‖B‖ := sup {B(Ψ) : ‖Ψ‖∞,W ≤ 1} .

We introduce the variational problem

VΦ := inf{V (B) : B ∈ C∗(Θ,W)} (2.6)

which we will henceforth refer to as the feature space variational problem. Any linear functional
B̂ ∈ C∗(Θ,W) for which VΦ = V (B̂) is called an optimal linear functional. Our main result is
the following fact.

Theorem 2.1.Under the above hypotheses, we have thatEG = VΦ. Moreover, there exist a finitely
supported measurêp ∈M(Θ) with at mostm + 1 atoms and a vector̂c ∈ Rm such that the kernel

K̂ =

∫
Θ

G(θ)dp̂(θ)

is an optimal kernel, the function
fK̂ =

∑
j∈Nm

ĉjK̂j

is an optimal function and the linear functionalB̂ ∈ C∗(Θ,W) defined, for anyΨ ∈ C(Θ,W), as

B̂(Ψ) =

∫
Θ

〈Γ̂(θ), Ψ(θ)〉Wdp̂(θ)

is an optimal linear functional, where the function̂Γ =
∑

j∈Nm
ĉjΦj has the property, for every

atomθ of p̂, that‖Γ̂(θ)‖W = ‖Γ̂‖∞,W = ‖B̂‖.

This theorem not only shows that the values of the extremal problems (2.4) and (2.6) are the
same, that isEG = VΦ, but also connects their solutions. In particular, the kernelK̂ defined in
the theorem is anoptimal kerneland theoptimal linear functionalfor the feature space variational
problem isconnectedto K̂ by means of the vector̂c and functionΓ̂ as described in the theorem.

We also wish to point out another connection between the optimal function, optimal linear
functional and the feature map, namely, for everyx ∈ X , we have that

fK̂(x) = B̂(Φ(·, x)).

We mention here an immediate corollary of the above theorem.
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Corollary 2.1. Under the hypothesis above, we have thatEG = VΦ where

EG = inf

{∑
j∈Nm

L(yj, f(xj)) + µJ(‖f‖2
K) : f ∈ HK , K ∈ K(G)

}

and

VΦ = min

{∑
j∈Nm

L (yj, B(Φj)) + µJ(‖B‖2) : B ∈ C∗(Θ,W)

}
.

Moreover, there exist a finitely supported measurep̂ ∈ M(Θ) with at mostm + 1 atoms and a
vectorĉ ∈ Rm such that the kernel

K̂ =

∫
Θ

G(θ)dp̂(θ)

is an optimal kernel, the function
fK̂ =

∑
j∈Nm

ĉjK̂j

is an optimal function and the linear functionalB̂ ∈ C∗(Θ,W) defined, for anyΨ ∈ C(Θ,W), as

B̂(Ψ) =

∫
Θ

〈Γ̂(θ), Ψ(θ)〉Wdp̂(θ)

is an optimal linear functional, where the function̂Γ =
∑

j∈Nm
ĉjΦj has the property, for every

atomθ of p̂, that‖Γ̂(θ)‖W = ‖Γ̂‖∞,W = ‖B̂‖.

Before we prove Theorem 2.1 we describe several examples of some potential practical impor-
tance in the next sections. We postpone the proof of Theorem 2.1 to Section 6.

3 A practical example: finitely many kernels

In this section, we specialize our analysis to the practically important case thatΘ = Nn. Thus, we
expressG as a finite collection fo kernels, that isG = {Gr : r ∈ Nn} ⊆ A+(X ),M(Θ) = Sn, the
n−dimensional simplex given bySn = {(λr : r ∈ Nn) ∈ Rn : λr ≥ 0,

∑
s∈Nn

λs = 1}, and

K(G) =

{∑
r∈Nn

λrGr : (λr : r ∈ Nn) ∈ Sn

}
.

We letWn be then−fold cross product ofW, that is,

Wn =
{
w = (wr : r ∈ Nn) : wr ∈ W , r ∈ Nn

}
equipped it with thèp

n norm, where1 ≤ p ≤ ∞, given, for anyw ∈ Wn, as

‖w‖p,W :=

(∑
r∈Nn

‖wr‖p
W

) 1
p
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and denote the resulting Banach space byWp,n. In the case thatp = 2, this is a Hilbert space
with inner product defined, for everyu, w ∈ Wn as〈w, u〉Wn :=

∑
r∈Nn

〈wr, ur〉W . Clearly, the
spaceC(Θ,W) is identified withW∞,n and its dual space,C∗(Θ,W), with W1,n. Thus, a linear
functionalB ∈ C∗(Θ,W) corresponds uniquely to a vectorw ∈ Wn by means of the equation

B(u) = 〈w, u〉Wn , u ∈ Wn

and its norm is given by
‖B‖ = ‖w‖1,W .

We shall now specialize Corollary 2.1 to this case.

Corollary 3.1. Under the hypotheses above, we have that

EG = VΦ, (3.1)

where

EG = inf

{∑
j∈Nm

L (yj, f(xj)) + µJ(‖f‖2
K) : f ∈ HK , K ∈ K(G)

}
and

VΦ = min

{∑
j∈Nm

L (yj, 〈w, Φ(xj)〉Wn) + µJ(‖w‖2
1,W) : w ∈ Wn

}
. (3.2)

Moreover, there exist̂λ ∈ Sn and a vector̂c ∈ Rm such that the setR := {r : λ̂r > 0} has
cardinality at mostmin(m + 1, n), the kernel

K̂ =
∑
r∈R

λ̂rGr (3.3)

is an optimal kernel, the function
fK̂ =

∑
j∈Nm

ĉjK̂j

is an optimal function and the vector

ŵ =
(
λ̂rΓ̂r : r ∈ Nn

)
is an optimal solution to problem (3.2), where theΓ̂ =

∑
j∈Nm

ĉjΦ(xj) ∈ Wn has the property, for

everyr ∈ R, that‖Γ̂r‖W = ‖Γ̂‖∞,W = ‖ŵ‖1,W .

Note that the last statement in the corollary concerning the optimal vectorŵ = (ŵr : r ∈ Nn)
says, for everyr ∈ Nn, that

‖ŵr‖W = λ̂r‖Γ̂‖∞,W .

Thus, summing both sides of this equation overr ∈ Nn, we conclude that

‖ŵ‖1,W = ‖Γ̂‖∞,W
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and, so

λ̂r =
‖ŵr‖W
‖ŵ‖1,W

. (3.4)

This formula demonstrate that a solution to the feature space variational problem provides a choice
for the optimal kernel in equation (3.3).

WhenW = R, problem (3.2) becomes

min

{∑
j∈Nm

L (yj, 〈w, Φ(xj)〉Rn) + µJ

((∑
r∈Nn

|wr|
)2
)

: w ∈ Rn

}
. (3.5)

This problem is closely related to some well-known function estimation techniques. In particular,
when the loss functionL is the square loss andJ is chosen to beJ(t) =

√
t, t ∈ R+, the

variational problem (3.5) has been studied in statistics under the name oflasso [22], in signal
processing asbasis pursuit denoising[6], and in linear programming [8] as afeature selection
method. The common theme of these methods is that the solutionŵ of (3.5) is sparse, that is,
most of its components are zero. The nonzero components ofŵ identify informative features for
representing the given data. Indeed, Corollary 3.1 establishes that there exists an optimal vectorŵ
with at mostmin(n, m + 1) non zero components.

We note that the equivalence between the functionalsEG andVΦ described in Corollary 3.1
when the loss functionL is the hinge loss used in support vector machines is also described in
[3]. Moreover, a method similar to problem (3.2) has been recently proposed in statistics under the
name ofcosso, where it has been proposed as a generalization of thelasso, see [13] and also [12]
for related results. A specific instance of the above environment is provided by ANOVA kernels,
see [23, 13] for a detailed discussion.

We now present an alternate derivation of equation (3.1). To this end, we require the following
result of Aronszajn concerning the norm induced by a sum of reproducing kernels, [2,§7].

Theorem 3.1. If {Gr, r ∈ Nn} ⊆ A(X ) andK =
∑

r∈Nn
Gr then, for everyf ∈ HK , we have

that

‖f‖2
K = min

{∑
r∈Nn

‖fr‖2
Gr

: f =
∑
r∈Nn

fr, fs ∈ HGs , s ∈ Nn

}
.

Without elaborating on the technical details, we note, by Theorem 3.1 that

EG = min

{∑
j∈Nm

L

(
yj,
∑
r∈Nn

fr(xj)

)
+ µJ

(∑
r∈Nn

‖fr‖2
Gr

λr

)
: fr ∈ HGr , λ ∈ Sn

}

= min

{∑
j∈Nm

L

(
yj,
∑
r∈Nn

fr(xj)

)
+ µJ

((∑
r∈Nn

‖fr‖Gr

)2
)

: fr ∈ HGr , r ∈ Nn

}

= min

{∑
j∈Nm

L (yj, 〈w, Φ(xj)〉W) + µJ
(
‖w‖2

1,W
)

: w ∈ Wn

}
= VΦ,

where the first equality follows by Theorem 3.1, the second follows by taking the minimum over
λ ∈ Sn and the third equality uses the feature map representation of the functionfr, that is,
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fr = 〈wr, Φr〉W , r ∈ Nn, whereΦ = (Φr : r ∈ Nn), and‖fr‖Gr = ‖wr‖W . Moreover, the optimal
value ofλ = (λr : r ∈ Nn) is given by

λr =
‖wr‖W
‖w‖1,W

. (3.6)

As mentioned above, this derivation requires the result of Aronszajn in Theorem 3.1 whose proof
is elaborate and only applies easily to the case of finite number of kernels. The approach we use to
prove the general result in Theorem 2.1 is self-contained and gives more information. Indeed, note
that the alternate derivation after Theorem 3.1 only reveals equation (3.1) and does not provide
information about the structure for the extremal solutions for the associated variational problems.
Nevertheless, it suggests an interesting extension of that equation. To this end, we chooseh ∈ R+,
setSn,h := {(λr : r ∈ Nn) : λr ≥ 0,

∑
r∈Nn

λh
r = 1},

Kh(G) =

{∑
r∈Nn

λrGr : λ ∈ Sn,h

}
,

EG,h = inf

{∑
j∈Nm

L(yj, f(xj)) + µJ
(
‖f‖2

K

)
: f ∈ HK , K ∈ Kh(G)

}
and

EΦ,p = min

{∑
j∈Nm

L(yj, 〈w, Φ(xj)〉W) + µJ
(
‖w‖2

p,W
)

: w ∈ Wn

}
. (3.7)

Proposition 3.1. If h ∈ R+ andp = 2h
h+1

thenEG,h = EΦ,p.

The proof of this proposition follows from Theorem 3.1, the following lemma, whose proof
can be found in the appendix of [18] and the same technique used above to give an alternate proof
of equation (3.1).

Lemma 3.1. If h ≥ 0, p := 2h
h+1

, anda = (ar : r ∈ Nn) ∈ Rn then

min


(∑

r∈Nn

|ar|2

λr

) 1
2

: λ = (λr : r ∈ Nn) ∈ Sn,h

 = ‖a‖2
p

and the equality occurs for

λr :=

(
|ar|
‖a‖p

)2−p

, r ∈ Nn. (3.8)

We hope on a future occasion, to use this alternate approach to discover the structure of the
optimal solutions forEG,h andVΦ,p.
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4 Single feature kernels andL1 regularization

In this section, we consider another case of our main result in Section 2 corresponding to the
choiceW = R. Equivalently, the kernels inG are all expressed as asingle feature. We have
already observed in the previous section that in this case, under the additional assumption thatΘ
is a finite set, problem (3.2) reduces to problem (3.5) which is a type ofL1 regularization problem.
An analogous observation is summarized in the corollary below in the general case thatΘ is any
compact set. We note that in this caseC(Θ, R) = C(Θ).

Corollary 4.1. Under the hypothesis above, we have thatEG = VΦ where

EG = inf

{∑
j∈Nm

L(yj, f(xj)) + µJ
(
‖f‖2

K

)
: f ∈ HK , K ∈ K(G)

}

and

VΦ = min

{∑
j∈Nm

L(yj, B(Φj)) + µJ
(
‖B‖2

)
: B ∈ C∗(Θ)

}
.

Moreover, there exist a finitely supported measurep̂ ∈ M(Θ) with at mostm + 1 atoms and a
vectorĉ ∈ Rm such that the kernel

K̂ =

∫
Θ

G(θ)dp̂(θ)

is an optimal kernel, the function
fK̂ =

∑
j∈Nm

ĉjK̂j

is an optimal function and the linear functionalB̂ ∈ C∗(Θ) defined, for anyΨ ∈ C(Θ), as

B̂(Ψ) =

∫
Θ

Γ̂(θ)Ψ(θ)dp̂(θ)

is an optimal linear functional, where the function̂Γ =
∑

j∈Nm
ĉjΦj has the property, for every

atomθ of p̂, that |Γ̂(θ)| = ‖Γ̂‖∞ = ‖B̂‖.

Note that we can rewrite the linear functionalB̂ as a finitely supported signed measure, namely,

B̂ =
∑
j∈Nk

γ̂jδ(θj − ·),

where{θi : i ∈ Nk} ⊆ Θ are the atoms of̂p, k ≤ m + 1, γ̂i = λ̂i‖Γ̂‖∞sgnΓ̂(θi) and for each
θ ∈ Θ, we interpretδ(θ−·) as the delta function concentrated atθ. Moreover, we can alternatively
express the optimal functionfK̂ as a linear combination of the features evaluated at the atoms of
p̂, that is

fK̂ =
∑
j∈Nk

γ̂jΦ(θj, ·).
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We view the feature space variational problem appearing in the above corollary as the analog
of L1 regularization. We shall now change our perspective and explain in detail what we have in
mind. Our intention is also to have this discussion encompass anLp extension of the variational
problem above forp ∈ (1,∞). To this end, we describe the necessary terminology and notation to
cover this case too.

The appropriate context for this discussion is a measurable spaceΘ with finite measureν and
Lp(Θ, ν) the space of functionsω : Θ → R with norm‖ω‖p defined, forp ∈ [1,∞), as

‖ω‖p :=

(∫
Θ

|ω(θ)|pdν(θ)

) 1
p

.

We wish to learn a function inLp(Θ, ν) based on a finite set of linear functionals of it, that
is, we have a set of examples of the form{(Mj, yj) : j ∈ Nm} whereMj are linear functionals
in Lr(Θ, ν), where1

p
+ 1

r
= 1, andyj ∈ R is a noisy measurement ofMj(ω) from the unknown

target functionω. Furthermore, we assume that the linear functionals{Mj : j ∈ Nm} arelinearly
independent.

To estimateω we consider the problem of minimizing the functionalEp : Lp(Θ, ν) → R
defined, forω ∈ Lp(Θ, ν), as

Ep(ω) := q (M(ω), ‖ω‖p) (4.1)

over its domain, whereq is an admissible regularization function andM : Lp(Θ, ν) → Rm is the
linear operator defined, forω ∈ Lp(Θ, ν), asM(ω) = (Mj(ω) : j ∈ Nm). Recall, forp ∈ [1,∞),
that the linear functionalsMj can be expressed as

Mj(ω) =

∫
Θ

ϕj(θ)ω(θ)dν(θ),

where the functionϕj ∈ Lr(Θ, ν) and 1
p

+ 1
r

= 1, see, for example, [21, p. 103]. A special case of
this setup is covered by the regularization error functional

Ep(ω) :=
∑
j∈Nm

L(yj, Mj(ω)) + µ‖ω‖p
p, ω ∈ Lp(Θ, ν), (4.2)

whereL : R → R+ is some prescribed loss function andµ is a positive parameter.
As an example of the above we letN : Θ × Θ → R be a prescribed continuous function and

N : Lp(Θ, ν) → C(Θ) the associated integral operator, that is, forω ∈ Lp(Θ, ν), we define

Nω(·) =

∫
Θ

N(·, θ)ω(θ)dν(θ).

We introduce a linear space of functionsT := rangeN . We assumeN is one-to-one and observe
that the norm ofh ∈ T defined as‖h‖ := ‖ω‖p whereh = Nω makesT a Banach space.

We chooseϕj := Nj, j ∈ Nm, whereNj(·) := N(θj, ·), and express the regularization
function (4.1) in the form

Ep(ω) = q(Iθ(h), ‖h‖), (4.3)

whereh = Nω andθ = {θj : j ∈ Nm} is a prescribed set of inputs. Clearly, minimizing the left
hand side of equation above overω ∈ Lp(Θ, ν) is equivalent to minimize the right hand side of
this equation overh ∈ T .
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In general,T is not a Hilbert space. However, for the special case thatp = 2, T is a reproducing
kernel Hilbert space with inner product defined as〈h, h′〉 =

∫
Θ

ω(θ)ω′(θ)dν(θ), whereh = Nω,
h′ = Nω′ and the reproducing kernelK is given by

K(θ, θ′) =

∫
Θ

N(θ, s)N(θ′, s)dν(s), θ, θ′ ∈ Θ.

Indeed, to see thatK is the reproducing kernel ofT we observe that the above formula means, for
θ ∈ Θ, thatK(θ, ·) = N (N(θ, ·)) and, so, ifh = Nω, by definition we have that

〈K(θ, ·), h〉 =

∫
Θ

N(θ, s)ω(s)dν(s) = h(θ).

In this special case, it is well-known that the unique minimizerĥ of the functional in the right hand
side of equation (4.3) has the form

ĥ =
∑
j∈Nm

cjKj, (4.4)

whereKj = K(θj, ·) and the vector of coefficientsc = (cj : j ∈ Nm) ∈ Rm is obtained by
substituting formula (4.4) for̂h into the right hand side of equation (4.3) and minimizing overc.
Note that, ifĥ = N ω̂ thenω̂ is given by

ω̂ =
∑
j∈Nm

cjNj

or, equivalently, recalling the definition ofϕj in this example, we have thatω̂ =
∑

j∈Nm
cjϕj.

Let us turn our attention to the case thatp = 1. We begin our discussion by observing that,
in general,E1 does not have a minimum onL1(Θ, ν). We illustrate this point with the following
example.

Example 1. Letdθ be the Lebesgue measure on[0, 1] and consider the problem of minimizing the
functional

W (ω; α) = α

∣∣∣∣1− ∫ 1

0

ω(θ)θdθ

∣∣∣∣+ ∫ 1

0

|ω(θ)|dθ

over ω ∈ L1([0, 1], dθ), whereα is a nonnegative number. Call the value of this minimum
W∞(α) := inf{W (ω; α) : ω ∈ L1([0, 1], dθ)}. With minimal effort it follows that

W∞(α) =

{
1, α > 1
α, α ∈ (0, 1].

Moreover, the minimum does not exist inL([0, 1], dθ) but does exist as a distribution̂ω given, for
θ ∈ [0, 1] by

ω̂(θ) =

{
δ(θ − 1), α > 1
0, a.e., α ∈ (0, 1].

If we embedL1([0, 1], dθ) into C∗([0, 1]) and minimizeW (·; α) overC∗([0, 1]) the minimum
exists and is given as above. Likewise, in general, the minimum of functionalE1 defined in (4.2)
exists inC∗(Θ). Indeed, this corresponds to the feature space variational problem treated in Corol-
lary 4.1. Keep in mind that our description of theLp regularization above takes the point of view
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of learningω from the dataM(ω). However, in the casep = 1, from our remarks above wealso
view it from the feature space perspective presented in Corollary 4.1.

We complete this digression by describing a representer theorem for theLp(Θ, ν) regularization
when1 < p < ∞. Before doing so, we think it is advantageous to present another proof for theL1

regularization case independent of the general theorem presented in Section 2.

Proposition 4.1. There exist an integerk ≤ m + 1, a set{θj : j ∈ Nk} ⊆ Θ and λ̂ = (λ̂j : j ∈
Nk) ∈ Sk such that

B̂ =
∑
j∈Nk

λ̂jδ(θj − ·)

is a minimizer of the regularization functionalE1 above. Moreover, there is a vectorĉ = (ĉj : j ∈
Nm) satisfying the constraint that(ĉ, ŷ) = 1, whereŷ := (B̂(ϕj) : j ∈ Nm), such that the function
Γ̂ :=

∑
j∈Nm

ĉjϕj has the property that, for everyj ∈ Nk,

|Γ̂(θj)| = ‖Γ̂‖∞ = min


∥∥∥∥∥∑

j∈Nm

djϕj

∥∥∥∥∥
∞

: d ∈ Rm, (d, ŷ) = 1

 .

Proof. The existence of a minimum ofE1 over C∗(Θ) follows from weak-∗compactness in the
unit ball inC∗(Θ), see [21, p. 173]. If̂B is a minimizer ofE1, we set̂yj = B̂(ϕj), j ∈ Nm, choose
anyd ∈ Rm and note that, for everyB ∈ C∗(Θ) such thatB(ϕj) = ŷj, j ∈ Nm, that

(d, ŷ) =
∑
j∈Nm

djB(ϕj) = B

(∑
j∈Nm

djϕj)

)
≤ ‖B‖

∥∥∥∥∥∑
j∈Nm

djϕj

∥∥∥∥∥
∞

.

Consequently, we have that

‖B‖ ≥
∑

j∈Nm
dj ŷj∥∥∥∑j∈Nm

djϕj

∥∥∥
∞

≥ σ−1,

where we have defined

σ := min


∥∥∥∥∥∑

j∈Nm

djϕj

∥∥∥∥∥
∞

:
∑
j∈Nm

dj ŷj = 1

 . (4.5)

We observe that the variational problem (4.5) has a minimum because the functionU : Rm → R+

defined for eachd = (dj : j ∈ Nm) by U(d) := ‖
∑

j∈Nm
djϕj‖∞ is continuous, homogeneous

and nonzero ford 6= 0. Hence, it tends to infinity asd →∞.
Let ĉ ∈ Rm be a minimizer ofU . Therefore, this vector is characterized by the fact that the

right directional derivative ofU at ĉ in all directionsa ∈ Rm such that(a, ŷ) = 1 is nonnegative.
We denote this derivative byU ′

+(ĉ; a) which is given by

U ′
+(ĉ; a) = max

{(∑
j∈Nm

ajϕj(θ)

)
sgn

(∑
j∈Nm

ĉjϕj(θ)

)
: θ ∈ Θ(ĉ)

}
,
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where the setΘ(ĉ) is defined as

Θ(ĉ) :=

θ : θ ∈ Θ,

∣∣∣∣∣∑
j∈Nm

ĉjϕj(θ)

∣∣∣∣∣ =

∥∥∥∥∥∑
j∈Nm

ĉjϕj

∥∥∥∥∥
∞

 .

For eachθ ∈ Θ, we define the vectorz(θ) := (ϕj(θ)sgn(
∑

i ĉiϕi(θ)) : j ∈ Nm) ∈ Rm and the set
of vectorsZ(ĉ) := {z(θ) : θ ∈ Θ(ĉ)} ⊆ Rm.

The condition that̂c is a solution to problem (4.5) means, for alla ∈ Rm satisfying(a, ŷ) = 0,
that

max{(z, a) : z ∈ Z(ĉ)} ≥ 0.

Clearly, Z(ĉ) is a bounded subset ofRm. Therefore, its closed convex hullA := co(Z(ĉ)) is
compact. We claim thatA intersects the line spanned by the vectorŷ. Indeed, if this is not true
then there exists a hyperplaneH := {d : d ∈ Rm, (β, d) + α = 0}, α ∈ R, β ∈ Rm, which strictly
separatesA from the set{ρŷ : ρ ∈ R}, see, for example, [21, p. 176] for standard results for
separating a point from a convex set by a hyperplane. In other words, we must have that

(β, ρŷ) + α > 0, ρ ∈ R

and
(β, z) + α ≤ 0, z ∈ Z(ĉ).

The first condition implies thatα > 0 and, so we conclude that

max{(β, z) : z ∈ Z(ĉ)} < 0

which contradicts our hypothesis thatĉ is a minimum ofU . Hence, we have thatρ0ŷ ∈ A for some
ρ0 ∈ R. By the Caratheodory theorem, see, for example, [4, Ch. 2], every vector inA can be
expressed as a convex combination of at mostm + 1 vectors inZ(ĉ). In particular, there existsρ0

such that

ρ0ŷ =

∫
Θ

z(θ)dp̂(θ), (4.6)

wherep̂ is a probability measure withk atoms, that is,

p̂ =
∑
j∈Nk

γjδ(· − θj)

k is at mostm + 1, {θj : j ∈ Nk} ⊆ Θ(ĉ), γj ≥ 0, j ∈ Nm and
∑

j∈Nm
γj = 1. Taking the inner

product of both sides of equation (4.6) withc we conclude that

ρ0 =

∥∥∥∥∥∑
j∈Nm

ĉjϕj

∥∥∥∥∥
∞

= ‖g‖∞ > 0,

whereg =
∑

j∈Nk
ĉjϕj. Next, we introduce the linear functional̂B : C(Θ) → R defined for

ω ∈ C(Θ) asB̂(ω) =
∫

Θ
Γ̂(θ)ω(θ)dp̂(θ) where

Γ̂ =
1

ρ0

sgn(g)p̂ =
∑
j∈Nk

λ̂jδ(θj − ·),

where we have defined̂λj =
γj

ρ0
. The result follows by noting that̂B(ϕj) = ŷj and ‖B̂‖ =

‖Γ̂‖−1
∞ .
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5 Regularization inLp spaces

In this section, we provide a representation result for the minimizer of functional (4.1) whenp ∈
(1,∞).

Proposition 5.1. If the functionq : Rm×R+ → R+ is admissible andp ∈ (1,∞) then there exists
a minimizerω̂ ∈ Lp(Θ, ν) of functional (4.1), given by the form

ω̂ =

(∣∣∣∣∣∑
j∈Nm

ĉjϕj

∣∣∣∣∣
)r−1

sign

(∑
j∈Nm

ĉjϕj

)
, (5.1)

whereĉ = (ĉj : j ∈ Nm) ∈ Rm.

Proof. Ep has a minimum inLp(Θ, ν) sinceq is an admissible regularization function and the unit
ball in Lp(Θ, ν) is weakly compact, as it is well known [21, p. 173]. Letω̂ a minimizer ofEp,
define datâyj = Mj(ω̂), j ∈ Nm and choosẽω as the solution to the minimal norm interpolation
problem

min {‖ω‖p : ω ∈ Lp(Θ, ν), Mj(ω) = ŷj, j ∈ Nm} . (5.2)

Clearlyω̃ is also a minimizer ofEp and, for anyd ∈ Rm, we have that

(d, ŷ) =
∑
j∈Nm

djMj(ω̃) =

∫
Θ

ω̃(θ)
∑
j∈Nm

djϕ(θ)dν(θ) ≤ ‖ω̃‖p

∥∥∥∥∥∑
j∈Nm

djϕj

∥∥∥∥∥
r

,

where the last inequality follows by Ḧolder’s inequality. Consequently, we have that

‖ω̃‖p ≥
∑

j∈Nm
dj ŷj∥∥∥∑j∈Nm
djϕj

∥∥∥
r

≥ σ−1,

where we have defined

σ = min


∥∥∥∥∥∑

j∈Nm

djϕj

∥∥∥∥∥
r

:
∑
j∈Nm

dj ŷj = 1

 . (5.3)

Let ĉ ∈ Rm be a minimizer of (5.3), defineϕ :=
∑

j∈Nm
ĉjϕj, setω̃ = ‖ϕ‖−r|ϕ|r−1sgn (ϕ) and

note that

‖ω̃‖p = ‖ϕ‖−r

(∫
Θ

|ϕ(θ)|p(r−1) dν(θ)

) 1
p

= ‖ϕ‖−r‖ϕ‖
r
p = ‖ϕ‖−1

r .

This proves the claimed result.

In order to compute the coefficient vectorĉ = (ĉj : j ∈ Nm) in equation (5.1) we substitute
this equation for̂ω in the right hand side of equation (4.1) obtaining the function

Êp(ĉ) := Ep

∣∣∣∣∣∑
j∈Nm

ĉjϕj

∣∣∣∣∣
r−1

sgn

(∑
j∈Nm

ĉjϕj

) , ĉ ∈ Rm
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and then optimizêEp over the vector̂c ∈ Rm. Unfortunately, the function̂Ep is not, in general,
convex. In fact, for the square lossA(y, t) = 1

2
(y − t)2, t ∈ R with Θ = [0, 1], m = 1, y1 = 1 and

ϕ = 1 we have, for everyp 6= 2, that

Êp(ĉ) = (1− |ĉ|r−1sgn(ĉ))2 + γ|ĉ|r−1.

This function is not convex whenγ < 1.

6 Proof of the main result

In this section, we present the proof of our main result in Theorem 2.1. We divide the proof in two
parts. In the first part we establish that

EG ≥ VΦ. (6.1)

Recall equation (2.3) and that, for everyK ∈ K(G) we definedfK to be any function inHK such
that

E(K) := min{Q(f, K) : f ∈ HK} = Q(fK , K).

For everyy ∈ Rm we use the notationρ(K, y) to denote the minimum norm squared of all functions
f ∈ HK which interpolatey atx, that is,Ixf = y and set

ρ(K, y) := min
{
‖f‖2

K : f ∈ HK , Ixf = y
}

. (6.2)

As we remarked earlierfK may not be unique and, hence, we are not certain of its structure. To
overcome this difficulty we introduce the vectoryK := IxfK and letgK ∈ HK solve the minimal
norm interpolation problem

‖gK‖2
K = ρ(K, y).

Hence,gK = I∗xcK for a uniquecK ∈ Rm identified by the linear equationIxgK = yK . This follows
from the so-called representer theorem, see e.g. [17] and references therein. Consequently, we have
that

E(K) = q(IxfK , ‖fK‖2
K) = q(yK , ‖fK‖2

K) ≥ q(yK , ‖gK‖2
K).

Note that in the last step we used property 3 of an acceptable regularization error function (see
definition 2.1).

SinceK ∈ K(G), there existsp ∈M(Θ) such that

K =

∫
Θ

G(θ)dp(θ).

We observe, for anyy ∈ X , that

gK(y) =

∫
Θ

〈ΓK(θ), Φ(θ, y)〉dp(θ),

whereΓK :=
∑

j∈Nm
cK,jΦj and cK := (cK,j : j ∈ Nm). This computation suggests that we

introduce the linear functionalBK defined, for everyΨ ∈ C(Θ,W), as

BK(Ψ) =

∫
Θ

〈ΓK(θ), Ψ(θ)〉dp(θ). (6.3)
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Therefore, with these observations we obtain that

yK = IxgK = Dx(BK), (6.4)

where the linear operatorD : C∗(Θ,W) → Rm was defined earlier, below equation (2.5). Also,
observe, for anyΨ ∈ C(Θ,W) by the Cauchy-Schwarz’s inequality used twice (once inW and
then another time inL2(Θ, dp)), that

|BK(Ψ)| ≤
∫

Θ

‖ΓK(θ)‖W‖Ψ(θ)‖Wdp(θ) ≤
(∫

Θ

‖ΓK(θ)‖2
Wdp(θ)

) 1
2
(∫

Θ

‖Ψ(θ)2‖Wdp(θ)

) 1
2

and, so, we get the following inequality for the norm ofBK ,

‖BK‖2 ≤
∫

Θ

‖ΓK(θ)‖2
Wdp(θ). (6.5)

A straightforward computation shows that∫
Θ

‖ΓK(θ)‖2
Wdp(θ) = ‖gK‖2

K . (6.6)

Consequently, combining equations (6.5) and (6.6) we have demonstrated that

‖BK‖ ≤ ‖gK‖K . (6.7)

Now, we observe from equations (6.4) and (6.7), and the definition of the functionalVΦ, for any
K ∈ K(G), that

E(K) = E(yK , fK) ≥ q(yK , ‖gK‖2
K) = q(Dx(BK), ‖gK‖2

K) ≥ q(Dx(BK), ‖BK‖2) ≥ VΦ.

Since this lower bound forE(K) holds for anyK ∈ K(G), we have proved that

EG ≥ VΦ.

To show the reverse inequality we use a result from [18]. For the convenience of the reader we
describe it in detail. To this end, we recall some notation used there. Before, we usedρ(K, y) for
the minimum norm squared of all functionsf ∈ HK which interpolate the data aty, see equation
(6.2). The infimum of this quantity over allK ∈ K(G) will be denoted byρ(K(G), y). Moreover,
sinceK(G) ⊆ A+, for eachy ∈ Rm there is a uniquecK ∈ Rm such that

(cK, IxI
∗
xcK) = ‖I∗cK‖2

K = ρ(K, y)

andIxI
∗
xcK = y. SinceIxI

∗
x = Kx we also have thatcK = K−1

x y. For the statement of the theorem
below we introduce the vector̂cK := ρ−1(K, y)cK which has the property that(ĉK, y) = 1.

Theorem 6.1. If Θ is a compact Hausdorff topological space andG : Θ → A+(X ) is continuous
then there exists a kernel̂K =

∫
Θ

G(θ)dp̂(θ) ∈ K(G) such that̂p is a discrete probability measure
inM(Θ) with at mostm + 1 atoms. Moreover, for̂c := ĉK̂ and any atomθ ∈ Θ of p̂, we have that

(ĉ, Gx(θ)ĉ) = max{(ĉ, Gx(θ)ĉ) : θ ∈ Θ}, (6.8)

ρ(K(G), y) = ρ(K̂, y) = (y, K̂−1
x y) (6.9)

and for everyc ∈ Rm with (c, y) = 1 and everyK ∈ K(G) there holds

(ĉ, Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc). (6.10)
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Returning to the proof of Theorem 2.1, we observe by weak∗–compactness inC∗(Θ,W) that
there is a solution to the problem of minimizingVΦ : C∗(Θ,W) → R+ over its domain, see, for
example, [21, p. 173]. We call the minimum̂B and set̂y := Dx(B̂). Hence, by definition we have
that

VΦ = q(ŷ, ‖B̂‖2).

To estimate this quantity from below, we consider the problem

γ := min


∥∥∥∥∥∑

j∈Nm

cjΦj

∥∥∥∥∥
2

∞,W

: c ∈ Rm, (c, ŷ) = 1

 .

Vector–valued problems of this type were considered in [14]. Note that the minimum exists be-
cause the functionsΦj, j ∈ Nm were assumed to be linearly independent overΘ. For the problem
at hand we note that

γ = min

{
max

{∥∥∥ ∑
j∈Nm

cjΦj(θ)
∥∥∥2

: θ ∈ Θ

}
: c ∈ Rm, (c, ŷ) = 1

}

= min

{
max

{∫
Θ

∥∥∥ ∑
j∈Nm

cjΦj(θ)
∥∥∥2

dp(θ) : p ∈M(Θ)

}
: c ∈ Rm, (c, ŷ) = 1

}

= min
{

max
{

(c, Kxc) : K ∈ K(G)
}

: c ∈ Rm, (c, ŷ) = 1
}

= ρ−1(K(G), y),

where we recall thatKx = (K(xi, xj) : i, j ∈ Nm). Thus, by Theorem 6.1 there is a discrete
probability measurêp ∈M(Θ) of support≤ m + 1 and a vector̂c ∈ Rm such that for allc ∈ Rm,
K ∈ K(G), there holds the inequality

(ĉ, Kx, ĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc),

where

K̂ =

∫
Θ

G(θ)dp̂(θ).

Moreover, for each atomθ of p̂ we have that

ρ−1(K(G), y) = (ĉ, Gx(θ)ĉ) = max{(ĉ, Gx(θ)ĉ) : θ ∈ Θ} (6.11)

and the kernelK̂, has the property that̂Kxĉ = γŷ. As before, we let̂Γ :=
∑

j∈Nm
ĉjΦj and

observe that‖Γ̂(θ)‖2
W = (ĉ, Gx(θ)ĉ). Consequently, for each atomθ of p̂, we have that‖Γ̂(θ)‖W =

‖Γ̂‖∞,W =
√

γ.
Now, let us consider the linear functionalF ∈ C∗(Θ,W) defined for eachΨ ∈ C∗(Θ,W) as

F (Ψ) = γ−1

∫
Θ

〈Γ̂(θ), Ψ(θ)〉Wdp̂(θ).

As before in the proof of (6.1), we conclude that‖F‖ ≤ γ−1‖Γ̂‖∞,W . However, in the present
circumstance, sinceF (Γ̂) = γ−1‖Γ̂‖2

∞,W we additionally obtain, by the definition of the norm of

F , thatγ−1‖Γ̂‖2
∞,W ≤ ‖F‖‖Γ̂‖∞,W . In other words, we obtain thatγ

1
2 = γ−1‖Γ̂‖∞,W = ‖F‖.
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To proceed further, we shall demonstrate thatF is the minimal norm interpolant to the dataŷ.
First, we observe that the functionalF interpolate the data at̂y. Indeed, sinceKxĉ = γy we have
that

Dx(F ) = γ−1K̂−1
x ĉ = ŷ.

Now, letB ∈ C∗(Θ,W) beany linear functional which interpolates the data, that is,Dx(B) = ŷ.
Therefore, we get that

1 = (ĉ, ŷ) = B
( ∑

j∈Nm

ĉjΦj

)
= B(Γ̂) ≤ ‖B‖‖Γ̂‖∞,W =

√
γ‖B‖

from which we obtain that‖F‖ ≤ ‖B‖. In other words, we have established, as anticipated above,
that

‖F‖ = min{‖B‖ : B ∈ C∗(Θ,W), Dx(B) = ŷj, j ∈ Nm}.
Next, we introduce the function̂g := γ−1I∗xĉ and observe as before that‖ĝ‖K̂ = ‖F‖. Finally,
sinceIxĝ = ŷ, we conclude that

VΦ = q(ŷ, ‖B̂‖2) ≥ q(ŷ, ‖F‖2) = q(Ixĝ, ‖ĝ‖2
K̂

) ≥ EG.

Thus, we have thatVΦ = EG, gK is a minimizer forE(K̂), K̂ is optimal forE andF is optimal
for VΦ.

7 Summary

We have presented an equivalence between the problem of learning a kernel within a prescribed
set of continuously parameterized kernels studied in [1, 18] and a feature space reformulation of
it. This leads us to study a variational regularization problem in the dual space of all continuous
functions with values in the Hilbert space associated with the features maps. This equivalence
requires only weak conditions on the form of the regularization error function. Not only does it
establish that these variational problems are the same but, also, it provides a choice of the optimal
solutions to both problems. In particular, it generalizes some results from [1] which required the
loss function to be differentiable.

Furthermore, we demonstrated that the problem of learning the kernel, which has been inves-
tigated extensively in the literature, see [1, 3, 5, 7, 11, 12, 13, 20, 24], in special cases reduces
to Lp regularization, [16]. This connection highlights the importance of studying regularization
in a non-Hilbert space framework in machine learning. Indeed, special cases of the feature space
problem have been widely studied under the nameslasso[22], basis pursuit denoising [6] and,
recently, as thecossomethod, [13].

There are a number of issues related to the work presented in this paper which would be valu-
able to explore. For example, how does the form of the optimal solutions to the variational prob-
lems evolve withµ? Our results in Section 2 and the subsequent comments in Section 3 say that
there always exists a solution which uses at mostm + 1 nonzero kernels or features. Do the num-
ber of non-zero components diminish withµ, as was seen in [15] for special cases? Finally, the
study of generalization error bounds for the methods presented in this paper would definitely be of
interest, see [19] for recent progress on this issue. Of course, the central challenge not addressed
here is the practical implementation and numerical validation of the methods presented here.
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