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Abstract

In this paper, we continue our study of learning an optimal kernel in a prescribed convex
set of kernels, [18]. We present a reformulation of this problem within a feature space envi-
ronment. This leads us to study regularization in the dual space of all continuous functions on

a compact domain with values in a Hilbert space with a mix norm. We also relate this problem
in a special case t6” regularization.

1This work was supported by NSF Grant ITR-0312113, EPSRC Grant GR/T18707/01 and by the IST Programme
of the European Community, under the PASCAL Network of Excellence IST-2002-506778.



1 Introduction

A central theme of this paper is the problem of learning a kernel in a prescribed convex set of
kernelsKC. Our previous work on this problem which was motivated by its potential application

in machine learning focused on finding a suitable optimal kernel. Here, we study an equivalent
feature space formulation of this problem. This leads us to explore the relationship between the
problem of finding an optimal kernel and regularization in the dual space of the space of con-
tinuous functions on a compact domain with values in a Hilbert space. We also describe related
regularization techniques i’ spaces which naturally arise in our investigation.

In[1, 18] we proposed to find a good kerr€lby solving the variational problem

m{ S™ Liys. fa) + I : F € M, Ke/c} (1)

J€ENm

whereL : RxR — R, is a prescribed loss functiofh, || x the norm in a reproducing kernel Hilbert
space of real-valued functions on some input sptaeith kernel K, ;. a positive parametek is

a prescribed set of kernels aig, := {1,...,m}. This problem has been studied from different
perspectives in a substantial number of papers. Specifically, in statistics, it has been motivated
in [12, 13] as a generalization of tHassq a technique introduced in [22] which also relates

to basis pursuit denoising [6] and to a linear programming approach for feature section [8]; in
machine learning, problem (1.1) has been studied in the context of support vector machines as a
mean to optimize the margin or soft-margin error used therein [3, 11]; in learning theory, it has
been investigated with the intention of improving the approximation error [24, 19]. For additional
interesting observations related to the theme of this paper, see [5, 7, 9, 10, 20].

In Section 2, we describe the main result of the paper which relates problem (1.1) to our feature
space extremal problem. Indeed, the problem described above concerns the choice of an optimal
kernel for kernel based learning algorithms while the second problem we study is the reformulation
of it within a feature space environment. We demonstrate in great generality that these problems
are equivalent and characterize the form of the solutions for both problems. We also provide a
description for an optimal feature map solution analogous to the one we derived in our earlier work
on learning the kernel, [1, 18]. A detailed description of this result appear in Section 2. However,
the proof is postponed until Section 6. In Section 3, we present specific motivating examples when
KC is the convex hull of dinite set of prescribed kernels. Moreover, for these examples we provide
an alternate derivation of the main result in Section 2 by using a decomposition theorem from [2].
In Section 4, we discuss the connection between learning the kernéllandularization. Section
5 contains related results f@” regularization and provide a representer theorem in the spirit of
our paper, [16]. We end the paper with a discussion of future research directions and commentaries
on our results.

We remark that an interesting aspect of the feature space regularization we present here is not
only does it involve linear functionals, but also that it is a Banach space regularization method.
Indeed, as we shall show, the appropriate norm for the functionals is induced by a mix norm on
a space of functions with values in the Hilbert space associated with the feature map. Finally, we
also explore similar issues for a@# analog of the convex hull of a fix set of kernels.



2 Main result

In this section, we present our main result. First, we recall the notion of reproducing kernel Hilbert
spaces and continuously parameterized convex set of kernels.

2.1 Integrals of kernels

Let X be aninput set By akernelwe mean a functior’l : X x X — R such that for every
finite set of inputsx = {z; : j € N,,} C X and everym € N, them x m matrix Kx :=
(K(z;,z;) i, j € Ny,) is positive semi-definiteAccording to Aronszajn and Moore, every kernel
has associated to it an (essentiallyliqueHilbert spaceH x of real-valued functions o/’ with
inner product-, -),- such thati is its reproducing kernel, [2]. This means, for evgr¢ H; and

r e X, that(f, K(xz,-)), = f(x).

We use the notationl(X') for the set of all kernels on the s&tand.A, (X) for the subset of
kernelsK such that, foeachinputx, the matrixK is positive definite.

Let © be a compact Hausdorff spacg(©) the space of continuous real-valued functions on
© and M (©) the set of alprobability measuresn ©. LetG : © — A, (X') be a continuous map.
By this we mean that, for each ¢ € X, the function ofd — G(0)(x,t) is continuous or®. The
set of kernelgj := {G(#) : 6 € ©)} induces the convex set of kernels

K(G) = { [ Grino):pe M(@)} (2.1)

which we shall consider below. We note that witen= N,, then/C(G) equal the convex hull of.

2.2 Regularization error functional

Let D := {(z;,y;) : j € N,,} C X x R be prescribed data andthe vector(y; : j € N,,,). Each
kernel K € K(G) gives rise to a RKHS3{. For eachf € Hg, we introduce thenformation
operatorIx(f) := (f(z;) : j € N,,) € R™ of values off on the set of inputs ix. We consider

I : Hxg — R™ alinear map and oR™ we put the usual inner product. Thus, for any two vectors
c=(cj:j€Ny)andd = (d; : j € N,,) we write (c,d) := >,y c;d;. A straightforward
computation identifies the adjoiff : R™ — H, for everyc = (¢; : j € N,;,) € R™, as

I;C = Z CjKj,

JENm

whereK; = K(x;,-). A regularization error functioris any functiong : R™ x R, — R. We

write any vectow € R™ x R, in the form(c, t) for somec € R™ andt € R,.. In other words, the
vectorv is the concatenation of the vectoand the scalat. There should be no confusion with

this “double duty” notation since in this case one argument is a vector and the other is a scalar.
Likewise, we shall denotg(v) asq(c,t) andgi,s := inf{q(v) : v € R™ x R, }. The regularization

error function will allow us to balance the dataf with the norm|| f||x := /(f, f); and leads

us to the following definition.

Definition 2.1. We say thay; : R™ x R, — R is an acceptable regularization error function
provided that



1. qis lower semi-continuous, that is, for eakhe R the setd), := {v:v € R™ xR, ¢(v) <
A} is a closed subset dR™ x R ;

2. given any\ > 0 there existp > 0 such that wheneveér, t) € U, thent € [0, pl;

3. for eachc € R™ the functiory(c, -) : Ry — R is non-decreasing oR, .

An important example for an acceptable regularization error function in machine learning has

the form
gle,t) = Y Llyj, ;) + pd (1), (2.2)
j€Nm

whereL : R x R — R, is a continuous loss function (typically convex)a positive constant and
J : Ry — R, is astrictly increasingfunction. The standard choice for the functidris J(t) = ¢,
t € R,. This leads to the usual kernel-based regularization algorithm studied extensively in
the literature. However, as we shall see later, from the feature space point of view, the choice
J(t) = Vt, t € R, is widely studied. Whenever we consider the special case (2.2) we always
assume that the above propertied.aind.J are satisfied.

An acceptable regularization error functigrgives rise to a functiona)(-, K) : Hx — R
defined, for allf € Hg, as

Q(f. K) = a(Lcf, | f1%)- (2.3)

Properties 1-3 above guarantee, for evArye A(X), thatQ(-, K) has a minimumfy over
f € Hx. Since we do not assume here thas strictly convex this minimum may not be unique,
hence our notatiofiy is to be interpreted to mean that is anyminimum forQ(-, K). We let

E(K) :=min{Q(f, K) : f € Hx} = Q(fx, K)

and note that using the weak compactness of the unit b&llinthe weak lower semi-continuity

of the norm orfH ;- and the first hypothesis on an acceptable regularization funcijeradure the
existence of the minimum. In our previous work [1] we studied the problem of choosing a kernel
K € K(G) which solves the variational problem

Eqg:=mf{E(K): Ke K(G)}. (2.4)

Any kernel K € K(G) for which E; = E(K) is called an optimal kernel anfl; is called an
optimal function. A main goal of this paper is to give the variational problem (2.4) a feature space
interpretation. To this end, we assuifie: © — A4, (X)) is expressed in terms offaature map
¢ : 0 x X — W, whereW is a Hilbert space with inner produg¢t -),,, and corresponding norm
| - |lw. Thatis, for eachr,y € X andd € ©, we have thatz(0)(z,y) = ((0,z), 2(6,9)),-
For example, whei® = N,,, we constructtC(G) as theconvex hullof the finite setof kernels
G(6),...,G(0y). In addition, whenWV is finite dimensional, sayy = R, then each of the
kernels is constructed fromfaite number of features

We require that the feature map has the property that, for eaeht, the function®(-, x) :
2 — W is continuous. In particular, we conclude thgk(-,z)|| is a continuous real-valued
function on2. From this it easily follows that, for eachy € X, G(-)(z,y) is a continuous
function onf2. Let us use the notatiofi(©, V) for the set ofall continuous functions o® with
values inWW, where we give any € C(©, V) the norm

| V]| so v := max {||T(0)]y : 0 € O}.
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Therefore, by our assumptions above for every X the function®(-, z) € C(©,W).
We introducefeature functionsb; : © — W induced by the inputs and defined, for every
6 € ©,as®;(0) = ®(0, z;) and assume that they are linearly independert ofhis is equivalent
to the assumption th&t maps inta4 . (X'). We use the standard notati6ti(©, V) for the space
of all continuous linear functionals ari(©, V). A precise description af*(©, V) can be given
by using the representation theoremd©, R) in term of regular Borel measures 6n However,
this information is not needed in our presentation. Instead, corresponding to any feature map and
any regularization error function as described above we introduce a feature space regularization
functionalV : C*(©, W) — R given, for anyB € C*(0,W), by

V(B) = q(Dx(B), | LI[*). (2.5)

where Dy : C*(©,) — R™ is the linear operator defined d%.(B) = (B(®;) : j € N,,).
Recall that the norm of the linear function@dlis defined as

|B| = sup {B(Y) : [|[ ¥y < 1}.
We introduce the variational problem
Vo :=inf{V(B): B e C*(O,W)} (2.6)

which we will henceforth refer to as the feature space variational problem. Any linear functional
B € C*(©,W) for which V4 = V(B) is called an optimal linear functional. Our main result is
the following fact.

Theorem 2.1.Under the above hypotheses, we have that= V. Moreover, there exist a finitely
supported measung € M (©) with at mostn + 1 atoms and a vectat € R™ such that the kernel

k:ée@@@

is an optimal kernel, the function
fie = 4K;
j€Nm

is an optimal function and the linear function&l C*(©,W) defined, for any € C(©, W), as

~

B¥) = [ (). 90)ndit6)
is an optimal linear functional, where the functibh= ZjeNm ¢;®; has the property, for every
atom( of j, that |1(6) | = |[Tl|-cow = | 5]

This theorem not only shows that the values of the extremal problems (2.4) and (2.6) are the
same, that i¥; = V3, but also connects their solutions. In particular, the kefalefined in
the theorem is anptimal kerneland theoptimal linear functionafor the feature space variational
problem isconnectedo K by means of the vectgrand functionl” as described in the theorem.

We also wish to point out another connection between the optimal function, optimal linear
functional and the feature map, namely, for everg X', we have that

fi(x) = B(®(-, x)).
We mention here an immediate corollary of the above theorem.
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Corollary 2.1. Under the hypothesis above, we have thgt= V4 where

EG:ﬂﬁ{E:L@ﬁﬂ%D+NJwN%%fG}WJ(EK@%’

JEN,,
and
Vo = min { > L(y;, B(®;) +puJ(|B|”): B e C*(@,W)} :

JENm,
Moreover, there exist a finitely supported measpire M (©) with at mostm + 1 atoms and a
vector¢ € R™ such that the kernel

K—AG@@@

is an optimal kernel, the function

fie =Y 4K,

JENp,
is an optimal function and the linear function&le C*(©, W) defined, for anyt € C(©, W), as

~

B(¥) = [ (F(0). 9(0),0dit6)
is an optimal linear functional, where the functibh= ZjeNm ¢;®; has the property, for every
atom of j, that |1(6) |y = |[Tl|-cow = [ B].

Before we prove Theorem 2.1 we describe several examples of some potential practical impor-
tance in the next sections. We postpone the proof of Theorem 2.1 to Section 6.

3 A practical example: finitely many kernels

In this section, we specialize our analysis to the practically important cas® thal,,. Thus, we
express; as a finite collection fo kernels, that@s= {G, : r € N, } C A, (X), M(0) =S", the
n—dimensional simplex given iy = {(\, : r € N,,) e R": A\, >0, > . A, =1}, and

M@z{}j&@:(&werew}

reNy,

We letW" be then—fold cross product ofV, that is,
W”:{w:(wT:TENn):wTEW, TENH}
equipped it with the? norm, wherel < p < oo, given, for anyw € W", as

[wllpw = (Z ||er%>

TENn

3=

5



and denote the resulting Banach space®y™. In the case that = 2, this is a Hilbert space
with inner product defined, for every,w € W™ as(w, u)yyn = >, oy, (Wr, uy)y,y,. Clearly, the
spaceC'(©, W) is identified withYV>>" and its dual spac&;*(©, W), with W'". Thus, a linear
functional B € C*(©, W) corresponds uniquely to a vectore YW" by means of the equation

B(u) = (w, u)yyn, ue€W"

and its norm is given by
1Bl = llwlly,w-

We shall now specialize Corollary 2.1 to this case.

Corollary 3.1. Under the hypotheses above, we have that

Eq=Vs, (3.1
where
Eg = inf{ S Ly, f) + uI (1) f € Hie, K € /C(@}
JENm
and
Vi = min { > Ly, (w,D(x))yn) + el ([w]F ) w € W"} . (3.2)
JEN,

Moreover, there exish € S” and a vectorz € R™ such that the seR := {r : A\, > 0} has
cardinality at mostnin(m + 1, n), the kernel

K=Y \G, (3.3)
reR

is an optimal kernel, the function

fie =Y 4K,

JENm

is an optimal function and the vector

W= (AF re Nn)
is an optimal solution to problem (3.2), where the= Z]ENW ¢;®(z;) € W™ has the property, for
everyr € R, that ||| = ||I|lcev = [|@0||1 -

Note that the last statement in the corollary concerning the optimal vécter(w, : r € N,,)
says, for every € N,,, that o
[ [lw = A[ITfloc, -

Thus, summing both sides of this equation over N,,, we conclude that

[l = [T loo, v



and, so

il 34
[[wl[1,w
This formula demonstrate that a solution to the feature space variational problem provides a choice
for the optimal kernel in equation (3.3).
WhenW = R, problem (3.2) becomes

min{ Z L (yj, (w, ®(x;))gn) + pJ (( Z |wT’>2> CwE R”} : (3.5)

JEN, reNy,

This problem is closely related to some well-known function estimation techniques. In particular,
when the loss functiorl is the square loss and is chosen to be/(t) = Vt, t € R, the
variational problem (3.5) has been studied in statistics under the nahassui[22], in signal
processing abasis pursuit denoisingg], and in linear programming [8] as feature selection
method. The common theme of these methods is that the solatioin(3.5) is sparse, that is,
most of its components are zero. The nonzero componentsidéntify informative features for
representing the given data. Indeed, Corollary 3.1 establishes that there exists an optimal vector
with at mostmin(n, m + 1) non zero components.

We note that the equivalence between the functiofgalsand Vy described in Corollary 3.1
when the loss functior. is the hinge loss used in support vector machines is also described in
[3]. Moreover, a method similar to problem (3.2) has been recently proposed in statistics under the
name ofcossQ where it has been proposed as a generalization da#dsg see [13] and also [12]
for related results. A specific instance of the above environment is provided by ANOVA kernels,
see [23, 13] for a detailed discussion.

We now present an alternate derivation of equation (3.1). To this end, we require the following
result of Aronszajn concerning the norm induced by a sum of reproducing kerngjg].[2,

Theorem 3.1.1f {G,,r € N,} C A(X)andK = >
that

e, Gr then, for everyf € Hyg, we have

11 Imin{z IfE, = =D fr fe€Ha,, s € Nn}-

reN, reNy,

Without elaborating on the technical details, we note, by Theorem 3.1 that

2
Eg = min{z L <yj, > fr(xj)> + uJ (Z “f;”Gr> fr€Ha, N € S”}

JEN,, rENp, rENy,

= min { > L (y > ﬁ(wj)) + (( ) HfTHGT)Z) fr€Me,m € Nn}

JEN, reNy, reNy,

_ min{z L (yj, (w, ®(x;))yy) + pd (Jlwllfyy) s w € W"} = Ve,

J€Nm

where the first equality follows by Theorem 3.1, the second follows by taking the minimum over
A € S™ and the third equality uses the feature map representation of the funftidhat is,
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fr = (wy, ), 7 € N, whered = (¢, : 7 € N,), and|| f, ||, = ||w,|w. Moreover, the optimal
value ofA = (\, : r € N,,) is given by

A = vl (3.6)
[wll1w

As mentioned above, this derivation requires the result of Aronszajn in Theorem 3.1 whose proof
is elaborate and only applies easily to the case of finite number of kernels. The approach we use to
prove the general result in Theorem 2.1 is self-contained and gives more information. Indeed, note
that the alternate derivation after Theorem 3.1 only reveals equation (3.1) and does not provide
information about the structure for the extremal solutions for the associated variational problems.
Nevertheless, it suggests an interesting extension of that equation. To this end, we/chdRse

setS™ .= {(\, :r €N,): )\, >0, > reN, =1},
Kn(G) = {Z PWERD W= SW} :
reNy,
Egp, = inf { > Ly, f() + pd (If1%) : f € i, K € /ch(g)}
7€Nm

and

Eyp = min{ > Ly, (w, ®(x)))y) + 1 ([wll2yy) :w € W"} : (3.7)

§€Nm

Proposition 3.1.If h € R, andp = 24 thenEg ), = Eq .

The proof of this proposition follows from Theorem 3.1, the following lemma, whose proof
can be found in the appendix of [18] and the same technique used above to give an alternate proof
of equation (3.1).

Lemma3.1.1f h > 0,p:= 2, anda = (a, : r € N,)) € R" then

=2,
min (Z |C;:"| ) =\ :reN,) eSS b =l
reNy, r
and the equality occurs for
2—-p
Ao (o , r€N,. (3.8)
all,

We hope on a future occasion, to use this alternate approach to discover the structure of the
optimal solutions fotE , andVy ,,.



4 Single feature kernels and.! regularization

In this section, we consider another case of our main result in Section 2 corresponding to the
choiceW = R. Equivalently, the kernels ig are all expressed assingle feature We have
already observed in the previous section that in this case, under the additional assumptibn that
is a finite set, problem (3.2) reduces to problem (3.5) which is a tyjfe odégularization problem.

An analogous observation is summarized in the corollary below in the general caseishany
compact set. We note that in this casg, R) = C(0).

Corollary 4.1. Under the hypothesis above, we have thgt= V4 where

Eg = inf{ > Llys f(@) +ud (If1%) : f € Hi, K € K(g)}

j€Nm
and

Ve = min { Z L(y;, B(®;)) + pJ (| BII’) : B € C*(@)} :

JENm

Moreover, there exist a finitely supported measfire M(©) with at mostm + 1 atoms and a
vector¢ € R™ such that the kernel

k:AG@@@

is an optimal kernel, the function

fie=Y 4K,

JENm

is an optimal function and the linear function&l € C*(©) defined, for any¥ € C(©), as
Bw) = [ 1O)vO)d(6)
©

is an optimal linear functional, where the functibh= ZjeNm ¢;®; has the property, for every
atomd of p, that |T(0)| = ||T'||s = ||B]|-

Note that we can rewrite the linear functioriahs a finitely supported signed measure, namely,

B=> #40(0; -,

where{6; : i € N} C O are the atoms of, k < m + 1, 4 = \||T'||ssgnl’(6;) and for each
6 € ©, we interpret(d — -) as the delta function concentrated/aMoreover, we can alternatively
express the optimal functiofy. as a linear combination of the features evaluated at the atoms of
p, thatis

fie =D 3®(0;,).

JENE



We view the feature space variational problem appearing in the above corollary as the analog
of £! regularization. We shall now change our perspective and explain in detail what we have in
mind. Our intention is also to have this discussion encompag® axtension of the variational
problem above fop € (1, oo0). To this end, we describe the necessary terminology and notation to
cover this case too.

The appropriate context for this discussion is a measurable $pagth finite measures and
LP(0,v) the space of functions : © — R with norm||w||, defined, forp € [1, o), as

Jell o= ([ letoyrane )

We wish to learn a function ir£?(©, v) based on a finite set of linear functionals of it, that
is, we have a set of examples of the fofifi\/;,y;) : j € N,,} wherel; arelinear functionals
in £7(0,v), where}% + 1 =1, andy; € R is a noisy measurement of;(w) from the unknown
target functionv. Furthermore, we assume that the linear functiofals : j € N, } arelinearly
independent

To estimatew we consider the problem of minimizing the functiond) : £7(©,v) — R
defined, forw € LP(O,v), as

Ep(w) = q(M(w), [|wll) (4.1)
over its domain, wherg is an admissible regularization function ahfl: £7(0,v) — R™ is the
linear operator defined, far € £7(0,v), asM (w) = (M;(w) : 7 € N,,,). Recall, forp € [1, 00),
that the linear functionals/; can be expressed as

M;(w) = / 25 (O)w(0)dv(0),

where the functiorp, € L"(0,v) and% + % = 1, see, for example, [21, p. 103]. A special case of
this setup is covered by the regularization error functional

= L(y;, Mj(w)) + pllwlh, w € LP(O,v), (4.2)

JEN,,

wherelL : R — R, is some prescribed loss function amds a positive parameter.
As an example of the above we I8t: © x © — R be a prescribed continuous function and
N : LP(O,r) — C(O) the associated integral operator, that isfoe £7(O, ), we define

_ /9 N (-, 0)w(0)du(0).

We introduce a linear space of functiofis= rangeN. We assumé\ is one-to-one and observe
that the norm of. € T defined ag/h|| := ||w||, whereh = Nw makesT’ a Banach space.
We choosep; := N;, j € N,,, whereN;(-) := N(6;,-), and express the regularization
function (4.1) in the form
E,(w) = q(Lo(h), I]), (4.3)

whereh = Nw and@ = {0; : j € N,, } is a prescribed set of inputs. Clearly, minimizing the left
hand side of equation above overc LP(©,v) is equivalent to minimize the right hand side of
this equation oveh € T'.
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In general,l" is not a Hilbert space. However, for the special case]:thalz, T is areproducing
kernel Hilbert space with inner product defined(ash’) = [ w( dv(0), whereh = Nw,
= N’ and the reproducing kernéf is given by

K(6,0") = /@N(Q, S)N (¢, s)dv(s), 6,0 € ©.

Indeed, to see thdt is the reproducing kernel af we observe that the above formula means, for
6 € ©,thatK(6,-) = N(N(6,-)) and, so, ifh = Nw, by definition we have that

= / N0, s)w(s)dv(s) = h(0).
<)

In this special case, it is well-known that the unique minimizef the functional in the right hand
side of equation (4.3) has the form

h=Y oK (4.4)
JENp,
where K; = K(¢;,-) and the vector of coefficienis = (¢; : j € N,,) € R™ is obtained by
substituting formula (4.4) fok into the right hand side of equation (4.3) and minimizing aver
Note that, if» = M@ thenw is given by

w = E Cij
JENm

or, equivalently, recalling the definition @f; in this example, we have that= ZjeNm Cj;-

Let us turn our attention to the case tlpat= 1. We begin our discussion by observing that,
in general ,E; does not have a minimum ofY' (6, v). We illustrate this point with the following
example.

Example 1. Letdd be the Lebesgue measure|onl] and consider the problem of minimizing the

functional
1 1
1—/ (0)0d6 +/ 1w (0)]d6
0 0

overw € L!([0,1],df), wherea is a nonnegative number. Call the value of this minimum
Weoo () == inf{W(w; a) : w € £(]0, 1],dF)}. With minimal effort it follows that

W(w;a) =«

1, a>1
Woo(a)—{% a € (0,1].

Moreover, the minimum does not exist/if0, 1], df) but does exist as a distributiah given, for
6 € [0,1] by

o o0 —-1), a>1

w(8) = { 0, ae., a€(0,1].

If we embedC! ([0, 1], df) into C*([0, 1]) and minimizelV (-; o) over C*([0, 1]) the minimum
exists and is given as above. Likewise, in general, the minimum of functiondéfined in (4.2)
exists inC*(©). Indeed, this corresponds to the feature space variational problem treated in Corol-
lary 4.1. Keep in mind that our description of ti#é regularization above takes the point of view

11



of learningw from the datal/ (w). However, in the casg = 1, from our remarks above waso
view it from the feature space perspective presented in Corollary 4.1.

We complete this digression by describing a representer theorem 6 {Ber ) regularization
whenl < p < co. Before doing so, we think it is advantageous to present another proof fér the
regularization case independent of the general theorem presented in Section 2.

Proposition 4.1. There exist an integet < m + 1, aset{f,; : j € Ny} CO©andA = (), : j €
N;) € S* such that

is a minimizer of the regularization functional, above. Moreover, there is a vectdr= (¢; : j €
N,,,) satisfying the constraint that, §) = 1, wherej := (B(y;) : j € N,,), such that the function

~

I':= 3", ¢ has the property that, for everye Ny,

IT(6,)| = [IT]|oo = min s deR™ (d,g) =1

Z djp;

JEN,

Proof. The existence of a minimum df, over C*(©) follows from weak*compactness in the
unit ball inC*(0), see [21, p. 173]. I3 is a minimizer of £, we setyj = B(yj),j € N,,, choose
anyd € R™ and note that, for ever§p € C*(0©) such thatB(y;) = 7;, j € N,,,, that

=Y d;B(y;) (Z d;p;) ) < Bl digs

§ENp, jENm JEN, .
Consequently, we have that
‘ A
1Bl = Lsen, il >0l
H JE€Nm djSOj 00
where we have defined
0 := min Z djp,l| Z dig; =1, . (4.5)
JEN,, J€Nm

o0

We observe that the variational problem (4.5) has a minimum because the fulictiBif — R,
defined for eachl = (d; : j € N,,) by U(d) := || X ;cy,, di¢ill IS continuous, homogeneous
and nonzero fod # 0. Hence it tends to infinity a¢ — oc.

Let ¢ € R™ be a minimizer ofU. Therefore, this vector is characterized by the fact that the
right directional derivative ot/ at¢ in all directionsa € R™ such thata, ) = 1 is nonnegative.
We denote this derivative by’ (¢; a) which is given by

U’ (¢ a) = max { (Z ajgoj(ﬁ)> sgn <Z @g@(&)) 10 e @(é)} :

JENm JENm
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where the se®(¢) is defined as

> i (0)] =

JENp,

> G

J€Nm

o(c) = {9:96@,

B

For eachy € ©, we define the vector(0) := (¢;(0)sgn(d_, ¢;ipi(0)) : 7 € N,,) € R™ and the set
of vectorsZ(¢) .= {z(0) : 0 € ©(¢)} CR™.

The condition that is a solution to problem (4.5) means, for ale R™ satisfying(a, y) = 0,
that

max{(z,a): z € Z(¢)} > 0.

Clearly, Z(¢) is a bounded subset @&™. Therefore, its closed convex hull := co(Z(¢)) is
compact. We claim thatl intersects the line spanned by the vegjorindeed, if this is not true
then there exists a hyperplafe:= {d : d € R™, (5,d) + a« = 0}, « € R, § € R™, which strictly
separates! from the set{py : p € R}, see, for example, [21, p. 176] for standard results for
separating a point from a convex set by a hyperplane. In other words, we must have that

(B,p9) +a>0, peR
and
(B,2)+a <0, z€ Z(¢).
The first condition implies that > 0 and, so we conclude that
max{(f,2):z€ Z(¢)} <0

which contradicts our hypothesis thias a minimum ofU. Hence, we have thaty € A for some
po € R. By the Caratheodory theorem, see, for example, [4, Ch. 2], every vectbrcan be
expressed as a convex combination of at mest 1 vectors inZ(¢). In particular, there exists,
such that

i = #(0)di(6). (4.6)
©
wherep is a probability measure with atoms, that is,
p= Z %0( =
JENE

kis atmostm + 1,{0; : j € Ny} CO(¢),v; > 0,5 € N, and)_ .y v; = 1. Taking the inner
product of both sides of equation (4.6) withve conclude that

PRt

JENm

= llgllc >0

oo

Po =

whereg = ZJGN Cjp;- Next we introduce the linear functional : C'(©) — R defined for
we C(0)asB(w) = [, I dp(#) where

- 1
' = —sgn(g p—z/\éé—)

Po em,

where we have defined; = 2. The result follows by noting thaB(;) = 3; and||B| =
1T u
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5 Regularization in £? spaces

In this section, we provide a representation result for the minimizer of functional (4.1) vhen
(1, 00).

Proposition 5.1. If the functiong : R™ x R, — R, is admissible ang@ € (1, o) then there exists
a minimizerw € LP(0, v) of functional (4.1), given by the form

w = ( > & ) sign (Z éj%‘) ) (5.1)

JENm, JENm,
where¢ = (¢; : j € N,,,) € R™.

Proof. E, has a minimum inC?(©, v) sinceq is an admissible regularization function and the unit
ball in £LP(©,v) is Weakly compact, as it is well known [21, p. 173]. Leta minimizer of £,
define datay; = M;(w),j € N,, and choos& as the solution to the minimal norm interpolation
problem

min {||w]|, : w € LP(O,v), M;(w) =79;,j € N, }. (5.2)

Clearlyw is also a minimizer ofz,, and, for anyd € R™, we have that

)= 3 @) = [ 20) 3 deo)io < 3,

JEN,, JEN,,

Z djp;

JEN,,

)

where the last inequality follows byadider’s inequality. Consequently, we have that

d
ol > s o
HZ;eNm J%

where we have defined

0 = min Z d;p;

JENm

DY digi=1y. (5.3)

JENm

r

Let ¢ € R™ be a minimizer of (5.3), defing := > ¢;p;, setw = [|o[|"|p|" 'sgn () and
note that

1
r—1 z —
Jall, = ol ([ 1P~ )" = el el = el

This proves the claimed result. [ |

In order to compute the coefficient vector= (¢, : j € N,,) in equation (5.1) we substitute
this equation fotw in the right hand side of equation (4.1) obtaining the function

r—1
Z Cipj sgn (Z éj<pj> , ceR™

j€ENm JENm,
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and then optimize@p over the vecto € R™. Unfortunately, the function?]p is not, in general,
convex. In fact, for the square losy, t) = 3(y — t)*, ¢t € Rwith© = [0,1], m = 1,3, = 1 and

¢ = 1 we have, for every # 2, that
Ep(&) = (1 — (& "sgn(&))* + e[

This function is not convex when < 1.

6 Proof of the main result

In this section, we present the proof of our main result in Theorem 2.1. We divide the proof in two
parts. In the first part we establish that

Eq > Vs. (6.2)
Recall equation (2.3) and that, for eveky € K (G) we definedfx to be any function irf{, such
that

E(K)=min{Q(f,K): f € Hk} = Q(fk, K).

For everyy € R™ we use the notatiop( K, y) to denote the minimum norm squared of all functions
f € Hx which interpolate; atx, that is,/, f = y and set

p(Ky) = min {||fI% : f € M, Lf =y} (6.2)

As we remarked earliefy may not be unique and, hence, we are not certain of its structure. To
overcome this difficulty we introduce the vecigy := I, fx and letgx € Hy solve the minimal
norm interpolation problem
lgxlli = p(K,y).
Hencegx = Lick forauniquer, € R™ identified by the linear equatiall g = yx. This follows
from the so-called representer theorem, see e.g. [17] and references therein. Consequently, we have
that
E(K) = q(Ixfr, |1 fx i) = a(ye, 1 fxll7) = a(yrc, g ll)-

Note that in the last step we used property 3 of an acceptable regularization error function (see
definition 2.1).
SinceK € K(G), there existp € M(0O) such that

K/G )dp(6

grcly) = /@ (T (6), (0, ))dp(6),

We observe, for any € X, that

wherel'x = > .y ¢k ;j®; andcg = (cx; © j € Ny). This computation suggests that we
introduce the linear functiond, defined, for everyl € C(©, W), as

By (W) = / (T5c(6). (0))dp(6). 6.3)
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Therefore, with these observations we obtain that

Yk = ngK = DX<BK)7 (64)

where the linear operatdp : C*(0, W) — R™ was defined earlier, below equation (2.5). Also,
observe, for any € C(6,W) by the Cauchy-Schwarz’s inequality used twice (onc&irand
then another time i£?(O, dp)), that

B = [ e Oblv o) < ([ I0x00)” ([ 1907 o))

and, so, we get the following inequality for the normigjf,

1Bl < [ Ik (0)Fudp(®), (65)
A straightforward computation shows that
[ ITk®)udp(®) = (6.6)
Consequently, combining equations (6.5) and (6.6) we have demonstrated that
1Bill < gl (6.7)

Now, we observe from equations (6.4) and (6.7), and the definition of the funclign&br any
K € K(G), that

E(K) = E(yx. fx) = a(yx. ll9x k) = a(Dx(Bx), l9xlli) = ¢(Dx(Bx), [ Bx|*) = Va.
Since this lower bound foF'( K') holds for anyK € K(G), we have proved that
Eg > Vs.

To show the reverse inequality we use a result from [18]. For the convenience of the reader we
describe it in detail. To this end, we recall some notation used there. Before, we(dseg for
the minimum norm squared of all functiorise H which interpolate the data gt see equation
(6.2). The infimum of this quantity over alf € K(G) will be denoted by (K(G),y). Moreover,
sincekC(G) C A,, for eachy € R™ there is a unique, € R™ such that

(exes InIxeie) = [ excllic = p(K )

andl, Iic, = y. Sincel, I = K, we also have that, = K_'y. For the statement of the theorem
below we introduce the vectéy, := p~! (K, y)cx which has the property thét,., y) = 1.

Theorem 6.1.If © is a compact Hausdorff topological space afd © — A, (X) is continuous
then there exists a kernél = [ G(0)dp(0) € K(G) such thatp is a discrete probability measure
in M(©) with at mostn + 1 atoms. Moreover, fo := ¢ and any aton# € © of p, we have that

(¢, Gx(0)¢) = max{(¢, Gx(0)¢) : 6 € O}, (6.8)
p(K(G),y) = p(K,y) = (v, K'y) (6.9)

and for every € R™ with (¢, y) = 1 and everyK € K(G) there holds
(&, Kxé) < (&, Kx) < (¢, Kxe). (6.10)
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Returning to the proof of Theorem 2.1, we observe by Weatimpactness in™* (6, V) that
there is a solution to the problem of minimizing : C*(©,W) — R, over its domain, see, for
example, [21, p. 173]. We call the minimumand set) := D, (B) Hence, by definition we have
that

Va = (9, |BII*).
To estimate this quantity from below, we consider the problem

2
7 = min { Z c;P;

JENm oo, W
Vector—valued problems of this type were considered in [14]. Note that the minimum exists be-
cause the function®;, j € N,, were assumed to be linearly independent é&eFor the problem
at hand we note that

v = min {max{” Z cj(I)j(Q)H2 . 06@} cc e R™ (e, 1) :1}

JENm

= min {max{/@ H Z cjéj(e)Hde(G) tpE M(@)} cceR™ (¢,9) = 1}

= min { max{(c, Kyc) : K € IC(Q)} cce€R™ (¢,y) = 1} = p H(K(G),y),

cceR™, (c,g)l}.

where we recall that{y = (K(xz;,z;) : i,j € N,;,). Thus, by Theorem 6.1 there is a discrete
probability measurg € M (O) of support< m + 1 and a vectof: € R™ such that for alk € R™,
K € K(G), there holds the inequality

A

(&, Ky, &) < (& Kyé) < (¢, Kxe),

K:/Gew
€]

Moreover, for each atorth of p we have that

where

p~HK(G), y) = (¢, Gx(0)¢) = max{(¢, Gx(0)¢) : 6 € O} (6.11)

and the kernels, has the property thak,é = vj. As before, we lef’ := 3., ¢®; and
observe thaiT'(0)||3, = (¢, Gx(0)¢). Consequently, for each ataftof j5, we have thaT'(6)|yy =

ITlloov = /7
Now, let us consider the linear functiongéle C*(0, V) defined for eac € C*(0,V) as

F(0) =5 / (F(0), U(0)),udp (6).

As before in the proof of (6.1), we conclude thet|| < 7 ![|T|«.v. However, in the present
circumstance, sinc€'(I') = ~'||I'[|2, ,,, we additionally obtain, by the definition of the norm of

F, thaty|T(|%, y < [|F[|D]lco,w- In other words, we obtain that = 1 ||T|ccv = || F]|-
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To proceed further, we shall demonstrate thas the minimal norm interpolant to the daja
First, we observe that the function&linterpolate the data @t Indeed, sincd{,¢ = vy we have
that

Dy(F) =~"'K e = 4.
Now, let B € C*(©, ) beanylinear functional which interpolates the data, thatlig(B) = g.
Therefore, we get that

1= @9) = B( Y &%) = BO) < IBIITww = 7Bl

J€Nm

from which we obtain thaf F'|| < || B||. In other words, we have established, as anticipated above,
that
|F|| = min{||B]| : B € C*(©,W), Dx(B) =9;,j € N, }.

Next, we introduce the functiof := !¢ and observe as before thgj||, = ||F||. Finally,
sincel,g = y, we conclude that

Vo = q(@,|B1*) = q(@, |1 F|I*) = q(Ixd. |1§]%) = Ec-

Thus, we have thaty = FEq, gx IS @ minimizer forE(f(), K is optimal for £ and F is optimal
for V.

7/  Summary

We have presented an equivalence between the problem of learning a kernel within a prescribed
set of continuously parameterized kernels studied in [1, 18] and a feature space reformulation of
it. This leads us to study a variational regularization problem in the dual space of all continuous
functions with values in the Hilbert space associated with the features maps. This equivalence
requires only weak conditions on the form of the regularization error function. Not only does it
establish that these variational problems are the same but, also, it provides a choice of the optimal
solutions to both problems. In particular, it generalizes some results from [1] which required the
loss function to be differentiable.

Furthermore, we demonstrated that the problem of learning the kernel, which has been inves-
tigated extensively in the literature, see [1, 3, 5, 7, 11, 12, 13, 20, 24], in special cases reduces
to L? regularization, [16]. This connection highlights the importance of studying regularization
in a non-Hilbert space framework in machine learning. Indeed, special cases of the feature space
problem have been widely studied under the natasso[22], basis pursuit denoising [6] and,
recently, as theossomethod, [13].

There are a number of issues related to the work presented in this paper which would be valu-
able to explore. For example, how does the form of the optimal solutions to the variational prob-
lems evolve withu? Our results in Section 2 and the subsequent comments in Section 3 say that
there always exists a solution which uses at mest 1 nonzero kernels or features. Do the num-
ber of non-zero components diminish wijth as was seen in [15] for special cases? Finally, the
study of generalization error bounds for the methods presented in this paper would definitely be of
interest, see [19] for recent progress on this issue. Of course, the central challenge not addressec
here is the practical implementation and numerical validation of the methods presented here.
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