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Feature Space Trajectory Methods for
Active Computer Vision

Michael A. Sipe, Member, IEEE, and David Casasent, Fellow, IEEE

Abstract—We advance new active object recognition algorithms that classify rigid objects and estimate their pose from intensity
images. Our algorithms automatically detect if the class or pose of an object is ambiguous in a given image, reposition the sensor as
needed, and incorporate data from multiple object views in determining the final object class and pose estimate. A probabilistic feature
space trajectory (FST) in a global eigenspace is used to represent 3D distorted views of an object and to estimate the class and pose of
an input object. Confidence measures for the class and pose estimates, derived using the probabilistic FST object representation,
determine when additional observations are required as well as where the sensor should be positioned to provide the most useful
information. We demonstrate the ability to use FSTs constructed from images rendered from computer-aided design models to
recognize real objects in real images and present test results for a set of metal machined parts.

Index Terms—Active vision, classification, object recognition, pose estimation.

1 INTRODUCTION

OB]ECT recognition involves processing sensor data in
order to assign a class label (e.g., a part number) from
among a limited number of valid possibilities and estimate
the pose (i.e., position and orientation) of a three-dimensional
object. We consider active object recognition, which implies the
ability to systematically change sensor parameters to make
the object recognition task easier. In our work, we have the
capability of changing the viewpoint of the sensor (e.g., the
sensor is mounted on a robot). When presented with an
ambiguous view, our active object recognition system
automatically recognizes the ambiguity and determines the
sensor movement needed to obtain a new object view where
the ambiguity may be resolved. Our algorithms differ from
prior active object recognition work [1], [2], [3] in that they are
based on matching global, not local, features.

Although our active object recognition algorithms are
applicable to a wide class of problems, we focus on industrial
automation. For automated assembly and inspection, it is
generally necessary to determine the class of objects with very
high reliability and to compute a pose estimate with moderate
accuracy (within a few degrees). In an industrial setting, there
is some degree of control over the environment in which our
active object recognition system operates. Furthermore, it is
common in industrial environments to mount sensors on
assembly robots so that the sensor viewpoint may be readily
changed. We consider images from simple and inexpensive
2D intensity visual sensors (CCD cameras) and assume that
the position of the object is known to the extent that the visual
sensor may be positioned to obtain an image containing a
single, stationary object. We further assume that the scene
lighting is reasonably well controlled and that objects of
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interest lie on a blank planar surface (such as a conveyor belt)
designed to simplify the process of segmenting an object from
the background.

Prior work in the field of model-based object recognition
may be broadly divided into two fundamentally different
approaches: local and global feature methods.

Local features are spatially localized (i.e., they are
labeled by their coordinates) geometric object properties
such as distinguished points, edges, corners, holes, dis-
tinctive curves, surface patches, or the axes of simple shapes
such as ellipsoids [4]. These features are extracted from a
computer-aided design (CAD) model or sensor data for a
prototypical object and stored for each known object. The
same local features are then extracted from data sensed
from an input object and a search is initiated for the
transformation (i.e., the pose of the object) which best
matches the observed data to the model. The search for the
correct interpretation of the sensed data can proceed either
in the space of correspondences or in the space of object
poses [4]. Either method entails a significant computational
burden. Methods such as geometric hashing [5], structural
indexing [6], and spin images [7] have been devised to
speed up the matching process.

The advantages of local feature matching approaches
include tolerance of a cluttered background, multiple objects
inthe field of view, and occlusion [4] of objects by other objects
(we do not encounter these problems in our work). There are
also disadvantages to local feature approaches. Construction
of geometric models, ifa CAD model does not already exist, is
much more troublesome than the image-based training
process in our method. Furthermore, it is difficult to decide
on local features which are appropriate for all objects. For
some objects, markings may be more salient than shape [8]
(e.g., the lettering on a box of aspirin), however, most models
based on local features capture only geometric structure. It is
difficult to locate only the proper primitive edge, etc., features
in an image. Local techniques tend to have difficulty with
objects that have much detail [3] and simple geometric
features may not always be reliably obtained from images in
many real world applications. Object shape and texture,
variations in illumination, occlusion, and noise in the imaging
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process may limit a geometric feature’s visibility. The pose
estimates computed using local methods are very sensitive to
noisy input data [9]. Finally, local-feature-based recognition
methods are generally more computationally demanding
than global methods. Since our objects are not occluded by
other objects and the background is not cluttered, global
features are more robust [10] and more efficient for our
application.

Global features may be based on shape, texture, image
transforms, moments, or structure [11]. Some of these
features (e.g.,, moments) are designed for invariance to
various kinds of distortions.

Our new classification and pose estimation algorithms are
based on the Feature Space Trajectory [12] (FST) representation
for different views (perspective distortion) of a single rigid
object. The features used are global. Consider an object
viewed at a given range and camera depression angle. As the
object rotates about the axis normal to the plane that it rests
upon, the aspect view of the object changes. In an FST, the
different object aspect views are vertices in global feature
space. Vertices for adjacent views are connected by line
segments so that an FST is created as the viewpoint changes.
Each different class of object is represented by a distinct FST.
An input test object to be recognized is represented as a point
in feature space. In order to classify an unknown object from
its features, the FST method computes the Euclidean distance
in feature space from the test point to all FSTs known to the
system. The class label corresponds to the closest FST. The
pose estimate is computed by finding the point on the line
segment, on that FST, that is closest to the test point and
interpolating the pose from the known poses of the vertices of
that line segment.

We can use either a physical prototype or a CAD model
to train our system. Our active object recognition system
can automatically learn and store an FST representation of
each object by moving the camera around a physical object
prototype and capturing images from various viewpoints.
Alternatively, FSTs may be derived from a CAD model by
rendering a set of object images from various viewpoints.

The features employed in the original FST work [12]
were wedge and ring samples of the magnitude-squared
Fourier transform [13]. Ring features are invariant to in-
plane rotations, while wedge features are invariant to
changes in scale. Both are invariant to shift. We [14] have
compared the performance of the FST using wedge and ring
features with that of the FST using features extracted with
the Karhunen-Loeve (KL) transform [15] and found the
performance (for pose estimation) to be superior with KL
features. Thus, we use KL features in our present work.
Techniques which extract KL features from images are often
termed “appearance-based” since the appearance of an
object in an image is a function of its shape, reflectance
properties, pose, and the illumination conditions [16]. There
is a large volume of research using appearance-based
methods in eigenspace to detect [17], [18] human faces in
images and to search a large databases of faces for those
that most closely match an input face [19], [20].

The FST has previously been applied to automatic target
recognition (ATR) of military vehicles [14], [21]. In ATR work,
the emphasis is on classification rather than pose estimation.
In our active object recognition work, pose is also of critical
importance. We also introduce new confidence measures that
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automatically indicate when new aspect views are needed
and actively select the new views to improve performance.

Murase and Nayar [16] have used techniques quite similar
to those of our FST. They represent each object as an
appearance manifold in eigenspace (KL features) which is
parameterized by object rotation and, in some cases, object
scale [22]. They account for variations in illumination by
adding degrees of freedom to their appearance manifold for
the position of light sources [23]. We differ from this work by
minimizing distortions (other than pose) by exercising control
over the environment (by fixing the positions of the light
sources for example) and modeling nonpose variations by a
probability density function (pdf). This prior work did not
address actively placing the sensor to obtain the best view of
an object or the integration of multiple observations of an
object.

Arbel and Ferrie [24] have applied principles similar to
ours for selecting desirable viewpoints. They apply the
principal of reduction in entropy to select viewpoints while
performing active object recognition based on optical flow
computation. They also combine multiple observations by
applying Bayesian chaining to determine object class
however, they do not apply viewpoint selection or combine
multiple observations to address the issue of uncertainty in
pose estimation as we do.

An extension of the FST to a multidimensional Feature
Space Manifold (FSM) to handle multiple degrees of freedom
in object pose has previously been discussed [25]. In our work,
we handle objects in each of their stable rest positions (this
constitutes a second, discrete degree of freedom for object
pose) by constructing a separate FST for each rest position of
each object. This is more efficient than using an FSM.

This paper is organized as follows: In Section 2, we
develop a probabilistic FST representation for objects and use
it to derive active object recognition capabilities. Section 3
presents experimental results using our approach. We
conclude with a discussion in Section 4.

2 AcTIVE OBJECT RECOGNITION THEORY

In this section, we address the following new FST
techniques required for active object recognition:

e a classification confidence measure (Section 2.2.1),
e an uncertainty measure for a pose estimate
(Section 2.2.2),
e selecting the best viewpoint for resolving ambiguity
in the class of an object (Section 2.3.1),
e selecting the best viewpoint for pose estimation
(Section 2.3.2), and
e using multiple observations to produce better
estimates and uncertainty measures (Section 2.4).
We proceed by first assuming a specific form for our
probabilistic object representation—the pdf for the random
feature vector = conditioned on the class w; and pose 6 of the
object (Section 2.1)—and then deriving the new functions
listed above using this probabilistic object representation.

2.1 Probabilistic FST Object Representation

The FST object representation explicitly encodes how global
features extracted from an image of an object change with
aspect view. This is desirable since we need to estimate the
pose as well as the class of the object. We must also handle
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undesirable variations in global features such as: illumina-
tion, object texture (dirt, rust, material properties, etc.), and
sensor noise. We lump these “‘nuisance’” distortions
together and model them collectively as ‘‘noise.”” We
consider the observed feature values to be random variables
consisting of zero mean random noise added to a
deterministic quantity determined by the class and pose
of the object. The deterministic quantity is specified by the
point on the FST for the object at the given pose. Thus, we
view the FST object representation as a basis for deriving
conditional pdfs. We apply Bayesian estimation and
hypothesis testing theory to these conditional pdfs to derive
the required active object recognition system outputs.

Let w;, wherei=1,2,3,..., N, denote the class hypoth-
esis. Formally, we define an FST m,, () as the deterministic
vector-valued function that maps the pose parameter (6) of
an object of class w; to a point in multidimensional feature
space. For a particular object and fixed vision system, the
FST describes how the object’s features change with 6. If
samples include variations within an object class or
variations in the imaging conditions, a trajectory can be
constructed with feature values at each 6 that are the mean
of all samples at a given §. Thus, we model each observation
as a k-dimensional random feature vector

z =my,(0) +n, (1)

where random noise (n) is added to a point on the trajectory to
account for variations other than perspective distortion. We
now derive a specific functional form for the pdf for the
observation = conditioned on the class w; and pose 6 of the
object. This is our probabilistic object representation and is
denoted by p,,, ¢. First, we assume that n is Gaussian and
independent of both object class w; and viewpoint. We further
assume that n is isotropic—each component of n is indepen-
dent and identically distributed with variance o2, which does
notvary with the class of the object. We donot claim that this is
an accurate model of residual variations, only that it yields
useful results. Given sufficient training data, one could easily
estimate the parameters of a more complex pdf and adopt a
more general form of the results presented here.
Given the assumptions, the pdf for n in (1) becomes

puln) = (5l n-ml?, @)

(2m)20% o2

where pu, is the mean vector and k is the dimension of
vectors £ and n. Now, we assume that n is zero mean
(tn, = 0). The effect of m,, (6) in (1) is simply to translate the
mean of the Gaussian noise model in (2), thus, the pdf for an
observation z conditioned on class w; and pose @ is

1 1 9
pz\wiﬂ(x | wi,©) = m exp (20% [ x —m,,(©) | )

3)

Equation (3) is our probabilistic FST object representation.

We have shown [26] that the FST class and pose estimation
methods approximate the maximum a posteriori (MAP)
estimators for the class and pose of the object (assuming
uniform priors for class and pose). It is not necessary to
assume that the noise n is Gaussian to show this; one obtains
the same result as long as the noise is purely a function of
distance from the FST and decreases with distance.
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2.2 Uncertainty and Confidence Measures

In this section, we highlight the uncertainty measures we
use to indicate when additional observations are required.

2.2.1 Classification Confidence

We define the confidence C,, in class decision w;, based on

observed feature vector x, to be the approximate a poster-

iori probability of w;, ie., C,,(x) = P(w; | x). Using Bayes’

theorem [27], we express the a posteriori probability as
 Pa, (x| wi)P(w;)

Plwi | %) = ——7—,

P () @)

where P(w;) = 1/N¢ since we assume equal prior probabil-
ities for each class. We approximate the value of the class
conditional density as pa|., (X | wi) & Py, o(X | wi, O, (%)). In
effect, we approximate p,,, by first finding the pose estimate
0., for the object, assuming that it is of class w;, and then
substituting it into pg., 4. Since 6, corresponds to the closest
point on the FST for class w;, the approximation of py,
considers only the closest point on the FST. This approxima-
tion saves computation time and also has the effect of
eliminating undesirable bias. Consider a case, like the cup in
Fig. 1, where the appearance of an object is similar over a
range of views. If class confidence were computed by
integrating over 6, probability would accumulate over the
region with similar appearance and bias the result in favor of
that object. Our method eliminates such bias and, since our
ultimate goal is determining the correct class rather than
correctly estimating the posterior class probabilities, our
method is justified. The pdf for z in (4) is obtained using the
total probability theorem [27] as

N Nc 1
pa(x) = ZPI\W, (x | wi)P(w;) = me, (x| wi)N—C. (5)

Combining results and simplifying, we obtain the new
classification confidence function we use:

pz|w;,6 (X | Wi, é\w, (X))
Zgél pz|wl,9(x ‘ Wps au)p (X))

We evaluate p,,, ¢ in (6) for each class w; in by substituting
the squared distance from the observation x to each
corresponding FST (this is computed in the classification
step) for |x —m,, (0©)|]* in (3). If w; is the class with the
maximum a posteriori probability (corresponding to the
closest FST to the observation), then the numerator is pg., o
(computed using the minimum squared distance) and the
denominator is the sum of the pdfs for all classes. We use (6)
to decide if it is necessary to take additional observations before
finalizing the class decision.

Cu(x) =P(w; | x) =

(6)

2.2.2 Pose Estimation Uncertainty

We now introduce our new uncertainty measure U, (x) for
a pose estimate from an observation x. We use this measure
to decide if it is necessary to collect additional observations
before finalizing the pose estimate. There are two causes for
error in pose estimates. The first is pose ambiguity.
Consider the coffee cup object in Fig. 1. The pose of the
cup is ambiguous when its distinguishing part (the handle)
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90°

270°

Fig. 1. Selected views of the coffe cup object.

is occluded by the object itself, as is the case in a range of
views around 270°. The second cause of error is the
collection of variations we refer to as noise. Our uncertainty
measure accounts for both causes.

The uncertainty measure we useis the expected value of the
magnitude of the difference between the true and estimated
poses conditioned on the observation x. The aspect angle § of
an object is periodic (with a typical period O, of 360°)
therefore, in calculating the magnitude of the difference
between the true ¢ and estimated 0 poses, we use ¢, (0 —
6.,(x)) where ¢,,(A6)=min(|A0]|, O, — | Af|) and
Af =0 —6. Applying the definition of the conditional
expected value [27 p. 169], our pose estimate uncertainty
measure is

Uy (x) = B¢, (0 — 0.,(x)) | wi, x]

oo _ (7)
- / 6(© — B, (X))Pyi 2(© | wi, %)dO,

where py|,, » is the pdf for § conditioned on the object class and
on observation x. It is derived from Bayes’ theorem [27] as

pzwl (X | Wiy e)pHWf(@ | wi)
Phs(© | i, x) = P2 o
Pz, (X ‘ wz)

(®)

We assume pyy,, is uniform over the allowed range of motion
and, therefore, a constant (typically, 1/360), and we evaluate
Pajw, by multiplying p,., ¢ by pg|., and integrating over © as

e (1 0) = | Pavsalx| i, O)pus (O] w)dO. (9
Therefore, we have specified everything needed to compute
(8). We substitute (8) into (7) and evaluate the integral in (7)
for a given pose estimate . A smaller value of U, (x)
indicates a more reliable pose estimate.

We gain insight into the usefulness of this metric by
looking at the specific example of the coffee cup object in
Fig. 1. For a given observation x, there is a closest point on
its FST (Fig. 2) that determines 6. There are different ranges of
6 values that (with noise) have a high probability of having
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E-vect. 3

E-vect. 2 -1

E-vect. 1

Fig. 2. FST for the coffe cup with Nx = 3.

produced the observation x. Fig. 3a shows a hypothetical
pdf, Py, (O | wi,x;) for § conditioned on observation x;
and the object class (we expect something like Fig. 3a for an
observation of the cup at the 270° viewpoint). Two different
6 ranges (80° to 100°, 250° to 290°) are shown to have high
probability. This occurs because the 270° observation is very
close to two different portions of the FST (the 250°-290°
range and the 80°-100° range). The pose estimate 6(x;) is
determined by the most likely value of ¢ (the center of the
250° to 290° range), but there is also a high probability that
the actual value of @ lies in the range from 80° to 100°. In this
case, the pose estimate derived from x; at 270° should be
deemed unreliable. Fig. 3b shows a hypothetical pdf for 6
conditioned on another observation x; (we would expect to
see something like Fig. 3b for an observation of the cup
around a 40° or 140° viewpoint). In this case, the pdf is
unimodal and highly concentrated so we consider the pose
estimate 6(xy) derived from x2 to be more reliable. The
value of U, (x2) will be much smaller than the value of
U, (x1) for the cases in Fig. 3. These observations may be
obvious to a human observer; however, our new use of the
FST provides an automated analysis technique.

2.3 Sensor Movement Strategy

In Section 2.2, we discussed the uncertainty and confidence
measures which tell us when it is necessary to collect
additional data. In this section, we discuss where to collect
that data, i.e., which new aspect view, or viewpoint, do we
choose. For each object known to our active object
recognition system, we analyze the probabilistic FST object

3 3 i
""" S B |
T80 100 250 § 290 9 3 0
(a) (b)
Fig. 3. pdf for 6 conditioned on (a) x;, (b) x».



1638

representation offline and automatically determine and store
the best viewpoints for resolving class and pose ambigu-
ities. At runtime, we use the pose estimate from the current
observation to compute the sensor motion required to
obtain the best viewpoint for classification or pose estima-
tion. This approach assumes that the cost of making an
error is much larger than the cost of moving the sensor.

2.3.1 Viewpoint Selection for Best Classification

When the active object recognition system must move the
camera to resolve class ambiguity, object viewpoints where
the presence of distinguishing characteristics are clearly
visible are obviously preferred. We automatically select the
best view to resolve ambiguity, as we now discuss.

Given an initial observation x;, we seek the sensor rotation
AO which maximizes the a posteriori probability of correct
classification (which, in effect, reduces the Shannon entropy,
as in [24]). We restrict the targeted view to be a training view
(FST vertex) of an object. This eliminates any error introduced
by the piecewise linear FST representation. The best training
viewpoint for discrimination of objects is, approximately, the
one with its FST vertex most distant from other FSTs.

We denote the best pose of an object of class w; to use in
distinguishing it from an object of class w; as ©.(¢, j). The
values of ©.(1, j) (computed offline and stored for each pair of
objects) form a matrix that specifies the best camera view for
resolving class ambiguity between any pair of objects known
to the recognition system. In each iteration of an active object
recognition scenario, the system makes an observation. If the
classification confidence C,, ((6)) is not sufficiently high after
the observation, the system notes the two most likely classes,
looks up the best view for distinguishing them, and then
drives the camera to that viewpoint using the pose estimate
from the current observation. Although we consider only the
two most likely classes at each step, our active object
recognition system still resolves cases when more than two
objects may be confused. Often, there is a single salient view
which distinguishes a set of similar parts. Evenif thisisnot the
case, moving the sensor to the best viewpoint to discriminate
between two objects after each observation tends to discrimi-
nate multiple similar objects by a process of elimination.

2.3.2 Viewpoint Selection for Best Pose Estimation

Errors in pose estimation will vary with the sensor viewpoint.
In the case of the cup object in Fig. 1, it is not possible to obtain
a reliable pose estimate for views in which the handle is not
visible (e.g., views around 270°). This is apparent in the FST of
the coffee cup object in Fig. 2. Errors in pose estimation are
likely to be larger at viewpoints where different parts of the
same FST are close in feature space but far apart in aspect
angle. The object aspect views around 270° are tightly
clustered on the left of the FST (Fig. 2) since the differentiating
object feature (the handle) is barely visible in this aspect view
range. Thus, we expect large errors in the pose estimate
around 270° and smaller errors around 140° and 30° where
the handle is visible (the FST in Fig. 2 is more spread out in
these angular regions). Thus, the FST representation contains
the information required to find the best viewpoint of the
object for estimating its pose.

Our new method automatically finds the best viewpoint of an
object for estimating its pose ©y(w;); we define this as the
viewpoint with the least pose uncertainty ((7)). Therefore,
we find the viewpoint Oy(w;) which minimizes the expected

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 12, DECEMBER 2002

value of the magnitude of the pose estimation error (the
pose estimation uncertainty in (7)),

Op(w;) = arg HgnE[qﬁ%(ﬂ —0,,(x)) | wi, O] (10)
We precompute and store this viewpoint ©y(w;) for each
object w; as part of the offline training process. As noted
earlier for the classification case, we restrict Oy(w;) to be one
of the training set views of the object. We estimate
El¢y,(0-0,,(x)) | wi, O] at each training view using Monte
Carlo (statistical simulation) methods and we select the one
that yields the lowest expected error. We use sufficient
noise trials (typically less than 100,000) in the simulation to
guarantee that the estimate is within +0.5° of the true
expected value with probability 0.95. We chose the noise
standard deviation ¢,, such that the probability is 0.90 that
any observation of that object is within a distance [ of the
FST, where [ is the average distance between adjacent
vertices of the FST for that object. This yields a reasonable
spread of the pose estimation error for different viewpoints.
Our testing has shown that the value of ¢, used is not
critical when finding Og(w;).

2.4 Multiobservation Fusion

If the class or pose estimate uncertainties (Section 2.2) are
unacceptable, we move the sensor and take another
observation. In this section, we highlight the process of
fusing the new observation with prior ones to form new
estimates and new uncertainty measures. This requires little
additional computational overhead beyond the standard
FST distance computations.

Consider the classification problem first. We have a set
of No observations, xi,xs,...,Xn,, which we denote by
Ajx;. In active object recognition, the motion of the sensor is
also known. We use all observations and the known sensor
motions in deriving class and pose estimates. We make the
reasonable assumption that the error in sensor motion is
minute and treat the rotations A©; between sensor view-
points as deterministic quantities. Using these known sensor
viewpoint rotations, we express the object pose associated
with each observation with respect to the sensor in its
current (last) position. After the transformation into this
common coordinate system, there is only one unknown
pose in the problem: 6y, the pose of the object for the final
viewpoint. We now express the pose 6; at each step in terms
of Oy, and the known sensor rotations. Let A®; denote the
rotation from the final sensor viewpoint (at step No) to the
sensor viewpoint at step j. The pose 6; of the object at step j
may now be expressed in terms of the final object pose 60,
as 6 = Ox, + AO;.

Let AjA®; denote the set of known sensor rotations
ABO;, AOy,. .., ABOy,-1 and let Pzl bx, denote the joint pdf
of the observations Ajx; conditioned on the (unknown) final
pose 0y, with the known sensor motions A;A©; as
deterministic parameters. We use pj w0y, t0 express the
multiobservation equation for the MAP pose estimate as

0wi(/\ Xj, /\Aej) = arg rgf(x p/\]I_]MgNO(/\ X | @NO,/\A@j).
) J J

(11)

Similarly, by substituting Pzl dx, for puue in the
corresponding single observation equations, it is easy to
derive the multiobservation equations for the pose estimate

Jews
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(@) (b)

Fig. 4. Rendered views of bracket 1 in rest position 3. (a) 15° aspect.
(b) 195° aspect.

uncertainty ((7)) and the a posteriori class probability and
classification confidence ((6)). To evaluate these quantities,
we derive the joint conditional pdf

Pyl o, (/\ Xj | wi, ONg, /\ AB;)
] j

No
= sz\wgﬁ(xj ‘ Wi, ®No + A@j)7

j=1

(12)

by assuming that the observations z; are statistically
independent. This is easily done by substituting (3) into
(12) and simplifying to obtain

p/\.iz.i‘wi:(')l\'o (/\ij ‘ Wi, @No7 /\JAGJ)
1

I o~
= e 0P B [ (O, +80) )
n On

(13)

3 EXPERIMENTAL RESULTS

We refer to the learned object information (FSTs and the
best object viewpoints for classification and pose estima-
tion) as the FST knowledge base. For this case study, the
knowledge base contains four parts: the two brackets in
Fig. 4 and Fig. 5, the socket in Fig. 6, and a similar socket
object in Fig. 7. The images in Fig. 4, Fig. 5, Fig. 6, and Fig. 7,
were ray-traced from CAD models. We train our active
object recognition system using images rendered from CAD
models of each part and then recognize real versions of
bracket 1 (Fig. 8) and socket 1 (Fig. 9) since we possessed
real metal prototypes for those two parts only. Consider the
two different brackets in Fig. 4 and Fig. 5. Bracket 2 is
identical to bracket 1 except for the addition of two small
circular bosses (cylindrical protrusions visible in the fore-
ground of Fig. 5a) and two holes through the top surface.
Due to the small camera depression angle, the holes are
barely visible in the rest position shown. Distinguishing

(@)
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(@)

(b)

Fig. 5. Rendered views of bracket 2 in rest position 3. (a) 15° aspect.
(b) 195° aspect.

bracket 2 from bracket 1 is a good test case for active vision
because the task is only possible when the circular bosses
are visible. Socket 1 (Fig. 6) is an interesting test case for
active pose estimation because the left and right (side)
views are indistinguishable and the front and back views
are distinguishable only by the larger holes in the back view
of the object. Socket 2 differs from socket 1 in the width of
the mounting bracket, as seen in Fig. 6b and Fig. 7b.
Brackets 1 and 2 may appear in any of the three stable rest
positions shown for bracket 1 in Fig. 8. Sockets 1 and 2 may
appear in either of the two stable rest positions shown for
socket 1 in Fig. 9. Thus, the set of machine parts consists of 2
x 3 + 2 x 2 = 10 object/rest position combinations. We
placed the real metal prototypes on a rotating stage to
capture images from various aspect angles.

We consider this a 10 class pose and class estimation
problem. Our goals for this recognition task are high
confidence in the object’s class and moderate accuracy in
the estimate of its pose. In our tests, we obtained additional
object views if the classification confidence C,, was less than
0.9 or if the pose estimate uncertainty I/, was more than 3.5°.

All images (rendered and real) were taken from a 9°
camera depression angle and were preprocessed such that the
object filled at least one dimension (this provides invariance
to changes in scale) of the final 128 x128 pixel image (the
images in Fig. 8 and Fig. 9 are shown prior to preprocessing).
Realistic images of each object were rendered by carefully
replicating laboratory conditions in the CAD environment
[28]. We used 120 images of each object in each rest position
(in 3° increments over the full 360° aspect angle range) to
construct each FST. Eighty KL features (retaining 95 percent
of the variability in the rendered training data) were used to
extract features from both rendered and real images. An FST
was constructed for each object, in each rest position, from the
rendered aspect views. Real images were used as the test set
for class and pose estimation.

For each of the 10 initial FSTs, we applied a new active vertex
selection method that indicates new FST vertex viewpoints

(b) (©

Fig. 6. Rendered views of socket 1. (a) front (0°), (b) side (90°/270°), and (c) back (180°).
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(c)

Fig. 7. Rendered views of socket 2. (a) front (0°), (b) side (90°/270°), and (c) back (180°).

needed to capture sharp transitions in object appearance due
to specular reflections from the shiny metal surfaces. The
number of FST vertices was then reduced via a suboptimal
pruning technique whereby the vertices least essential for
representing the training set are removed in a sequential
fashion [14] until a threshold in the representation error is
reached. The final number of vertices used for these tests
ranged from 124 to 162 for the 10 object/rest position cases. It
is possible to produce representations which are much more
compact by pruning more aggressively.

3.1 Finding the Best Views for Classification

For each object class wi, we determined the aspect angle
O (wi,wj) of the object which best distinguishes that object
class from each of the other object classes wj. As discussed in
Section 2.3.1, for the case of two FSTs, this is the training
view of the object whose FST vertex is most distant from the
other FST. ©.(w;, wj) is stored for each pair of classes in the
FST knowledge base.

To predict which objects may be confused (and at what
viewpoints), we observe the distance between pairs of FSTs
as a function of the aspect angle 6. For example, in Fig. 10,
we plot the distances from the vertices of the FST for
bracket 1 to the FST for bracket 2, both in rest position 3, as a
function of the aspect angle 6 of bracket 1. Bracket 1 and
bracket 2, in the same rest position, are very similar in some
aspect ranges. The spike in the distance between FSTs near
260° in Fig. 10 is caused by a rapid change in image

(@) (b)

(©

Fig. 8. Real imagery of bracket-1 in different rest positions. (a) Position #1,
(b) position #2, and (c) position #3.

appearance due to the effects of specular reflection.
Studying Fig. 10, we see that there are ranges of views
(60°-111°, 168°-192°, and 252°-300°) where the distance
between the FSTs is very small. If bracket 1 in rest position 3
is viewed in these ranges, it will be necessary to rotate the
viewpoint to resolve the ambiguity with bracket 2 at the
same pose. From Fig. 10, we find that the best viewpoint is
3°, where the inter-FST distance is maximum.

3.1.1 Finding the Best Viewpoints for Pose Estimation
In order to find the best view Oy(w;) of each object class w;
for pose estimation, we used the Monte Carlo Ee\chnique
described in Section 2.3.2 to find an estimate ¢, of the
expected value of the pose estimation error magnitude for
each training view of the object. The standard deviation of
the added noise 0, was chosen independently for each
object using the average FST link length as described in
Section 2.3.2. For each of the 10 object classes w;, Oy(w;) is
stored in the FST knowledge base so that, when the pose
estimate uncertainty U, is too high, the active object
recognition system knows to drive the sensor to obtain
the best ©y(w;) object aspect view for pose estimation.

We plot qg; as a function of aspect angle for rest position 1
of socket 1 in Fig. 11 using rendered CAD data. This plot
indicates the benefits of active object recognition for this
object. As expected, pose estimation is predicted to be very
unreliable for views near the sides (8 = 90° or 270°) of this
object. There are viewpoints where the pose estimates are
expected to be better, but estimating the pose of this object
is difficult from any viewpoint due to its high degree of
rotational symmetry. The object features which distinguish
the front of the object from the back are subtle, resulting in
significant 180° ambiguity in # even at the best viewpoints.
Since the minimum value of ¢,, for socket 1 in rest position 1
at any view is 24.6° in Fig. 11, we do not expect that we will
be able to estimate § with acceptable uncertainty U, for
these objects using any single observation. However, when

(@) (b)

Fig. 9. Real imagery of socket-1 in different rest positions. (a) position #1
and (b) position #2.
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Fig. 10. Separation between the FSTs for brackets 1 and 2 as a function of the pose of bracket 1. Both objects are in rest position 3.
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Fig. 11. Estimated expected pose estimation error magnitude as a function of pose for socket 1 in rest position 1.

multiple observations are combined, we show (Section 3.2)
that U, is often acceptable.

The analyses of socket 1 in rest position 2 and socket 2 in
both rest positions are similar to that noted above for
socket 1 in rest position 1. The worst case pose estimation
error magnitude for the two bracket objects is much better,
less than 3°, therefore, we expect that any view of these
objects will be sufficient for pose estimation.

These FST analyses for best classification and pose estimation
viewpoints (Sections 3.1 and 3.1.1) are performed offline and
automatically. The best poses for classification and pose estima-
tion are stored in our knowledge base and are used in our online
active object recognition tasks. Using a distinct training set of
real images, we selected a noise model variance o, of 0.1795
for use in (3) and (13).

3.2 Active Object Recognition Tests

Images of both real object prototypes (socket 1 and
bracket 1) were captured in the lab in each stable rest
position (two for socket 1 and three for bracket 1) at 72
different aspect views (at 5° increments of aspect angle ()
over the 360° aspect range). For each of the two prototype
objects in each starting pose (5 classes/rest positions x 72
aspect angles = 360 tests total), we performed active
classification and pose estimation tests. We first describe
the results from one of these tests in detail. We then discuss
summary statistics for all 360 tests.

We consider a test input of the 175° aspect view of the
bracket 1 object in rest position 3 (class 33) as the first
observation x; as shown in Fig. 12a. This is not a training
view and, since the presence of the circular bosses cannot be
ascertained from this view, it is difficult for the classifier to
decide between bracket 1 and 2 in rest position 3 (classes 33
and 43). The object was misclassified as bracket 2 in rest
position 3 (W = wyy) after the first observation x;, but the
confidence level C,,(x;) = 0.513 was very low and, thus,
the class decision was known to be unreliable. The pose
estimate was 6 = 173.8%; from this and the most likely

classes (43 and 33), we compute the needed viewpoint
rotation. The predetermined best viewpoint for discriminat-
ing between classes 43 and 33 O(ws3,ws3) is 3°. Thus, the
required rotation is

A@ = @c(uJ43,W33)-9 = 30 - 17380 = —17080

Since (Fig. 12a) the pose estimation error for x; is —1.2°
after the first observation, the system misses the best
viewpoint (3°) by 1.2°; however, the image from the 4.2°
view (Fig. 12b) gives the correct object class (Wi = ws3)
with high classification confidence C,,(x1,x2) = 0.999.
Since the pose estimate uncertainty U,,(x1,x2) = 0.4° is
also below the 3.5° threshold, there is no need to move
the sensor further to improve the pose estimate. The final
pose estimation error is only 0.6°.

We now discuss summary statistics for all of our tests. In
total, the object was classified correctly and confidently
(C., > 0.90) after the first observation in only 27.5 percent of
the tests. The classification success rate on the first
observation for each class ranged from 14 percent for
bracket 1 in rest position 3 to 38 percent for socket 1 in rest
position 1. In all of the remaining cases (72.5 percent), C,,
was less than 0.90, triggering a viewpoint rotation to ©, and
another observation. In 30 percent of the low confidence
cases, the most likely class identified by the FST was not the
correct class. This fact eliminates the possibility that a
hidden systematic illumination difference in the training
data was responsible for the recognition results obtained. In
all cases, the object was classified correctly and with high
C., after a maximum of three observations. These results
constitute clear and convincing evidence that our classifica-
tion confidence C,, is effective in identifying views where the
object class is ambiguous and our strategy for relocating the
sensor efficiently resolves such ambiguities.

After the first observation, the pose estimate uncertainty
U, was acceptable (less than 3.5°) for all of the tests on bracket
1butwas unacceptably high for all of the tests on socket 1. The
FST analysis in Section 3.1.1 predicted this result. The best
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(@) Rotate —170.8° (b)

Fig. 12. Active recognition scenario for bracket 1 initially in rest position 3 (class ws3) at 0 = 175° (a) & = wys,C,,(x1) =0.513. (b) & =

ws3, Cu, (X1, %2) = 0.999.

single observation of socket 1 was also inadequate for pose
estimation; however, when multiple (between two and four)
observations were combined, the pose estimate uncertainty
was acceptable in all but 12.5 percent (18/144) of the tests on
socket 1. Thus, our fusion of multiple aspect estimates with known
camera rotation is essential. Active pose estimation failed in
18 tests on socket 1. In these tests, U, was greater than 3.5°; the
active pose estimation halted—even though the pose estimate
uncertainty requirement had not been met—because the
estimated pose was very close to the stored best pose. When
U, was less than 3.5°, the average pose estimation error was
less than one degree, well within our specifications. There
were only two cases where the pose estimation error was
greater than 3.5° when U, was less than 3.5°. We traced both
of these errors to a mismatch between lighting conditions in
the CAD model and the lab.

3.3 Tests for Robustness

The prior tests have shown that our active object recogni-
tion system is tolerant to the differences between real and
rendered images and to segmentation error. This section
demonstrates the tolerance of our FST algorithms for other
types of distortion.

In the first series of tests, we simulated positional shifts
of the object on a planar surface by shifting the position of
the camera +2 inches along the x axis (right to left) and
shifting the position of the stage holding the object 0 to -16
inches along the z axis (front to back). Our preprocessing
step of cropping the region containing the object from the
input image is designed to limit the effects of positional
shifts of the object; however, shifts still cause some

raw processed

Ar=-2,Az=0

i

perspective distortion and segmentation errors which our
FST processing must tolerate.

We placed bracket 1 on the rotating stage in rest
position 2 (class 32) and 6 =9°. We selected this view
because it is the best pose for distinguishing between the
two different brackets. In the nominal position (x = z = 0),
the object was classified correctly and with high confidence
and the pose estimate was 9.8° with low uncertainty. We
varied both Az from -16 to 0 and Az from -2 to +2, in one
inch increments and ran active object recognition tests for
each Az, Az combination (a total of 85 tests). Fig. 13 shows
the original (raw) and processed images at the extremes of
the shifted positions. In seven of the 85 tests, the initial C,,
was below the threshold of 0.9 (in two of these seven,
bracket 1 was misclassified as bracket 2), however, after a
second observation, all objects were classified correctly and
with high confidence.

We also performed tests of robustness to moderate
changes in lighting conditions using rendered images. For
these tests we turned off selected light sources and ran
active object recognition tests on bracket 1 rendered in rest
position 3 at various aspect angles In all cases, the object
was classified correctly and the largest pose estimation
error was only 1.9°.

4 DISCUSSION

We have presented a new method for active object
recognition using global image features. The method is
based on a probabilistic extension to the feature space
trajectory (FST) representation for 3D objects. The FST

raw processed

Ar=2Az=-16

Fig. 13. CIL images of bracket 1 in rest position 1 before (raw) and after (completely processed) segmentation for different object shifts (shown in

inches).
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representation is compact and easily analyzed to determine
the best view of an object to use in estimating its pose or
discriminating it from other objects.

FST runtime computations are dominated by inner
products of the observed feature vector with each FST
vertex. The computational load is thus O (kN,N,), where k
is the number of features, N, is the number of observations,
and N, is the total number of FST vertices. In practice, the
computational burden is amenable to real-time operation.

We have demonstrated the utility of our active object
recognition system and its tolerance for the differences
between real and rendered imagery.

In prior work [29], we detailed a case study involving a
simple assembly in which we recognized the assembly and
each of its constituent parts individually. We also introduced
a mechanism for rejecting untrained objects, and demon-
strated the process of updating the feature space, FSTs, and
best viewpoint information for two subassemblies.
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