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We analyze the performance of feature-specific imaging systems. We study incoherent optical systems
that directly measure linear projects of the optical irradiance distribution. Direct feature measurement
exploits the multiplex advantage, and for small numbers of projections can provide higher feature-fidelity
than those systems that postprocess a conventional image. We examine feature-specific imaging using
Wavelet, Karhunen–Loeve �KL�, Hadamard, and independent-component features, quantifying feature
fidelity in Gaussian-, shot-, and quantization-noise environments. An example of feature-specific im-
aging based on KL projections is analyzed and demonstrates that within a high-noise environment it is
possible to improve image fidelity via direct feature measurement. A candidate optical system is
presented and a preliminary implementational study is undertaken. © 2003 Optical Society of America
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1. Introduction

Imaging is an important component of many appli-
cations in both the government and commercial sec-
tors. Defense-related imaging applications are
concerned with a broad range of tasks from naviga-
tion to threat assessment and targeting; while com-
mercial applications include such diverse tasks as
parts inspection, medical imaging, and security�sur-
veillance. It is important to realize that nearly all of
these important applications include, as part of the
overall system goal, some quantitative diagnostic
process. As an example we can consider an astro-
nomical imaging system for which the goal might be
to answer the question: Does the imager field-of-
view contain any previously unknown celestial ob-
jects and if so, what are their characteristics?
Another example can be found within a target recog-
nition environment for which the overall system goal
may be to label the objects in a scene as either target
or nontarget objects. These two examples serve to
illustrate a common disconnect between imaging sys-
tem design and the diagnostic task for which the
image measurements will be used. Namely, nearly
every imaging system attempts to form, either di-
rectly or as an intermediate result, a visually appeal-
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ing representation of the scene; however, without any
additional specifications, it is not clear that such a
representation is necessary to achieve the goal. It is
not uncommon therefore to find imager hardware
performance quantified by using a metric �e.g., visual
quality� that bears little relevance to the eventual use
of the measured data.

The above discussion suggests a need for task-
specific imaging system design strategies. Task-
specific image quality metrics along with their
associated hardware�software co-design procedures
would facilitate the manipulation of both optical and
algorithmic degrees of freedom toward the optimal
solution to a specific imaging system goal. These
observations have been made by several authors be-
fore us and have given rise to important nontradi-
tional imaging systems and system design metrics.1
Task-specific ideal-observer performance metrics
have had an important impact on the techniques used
to manipulate various forms of medical imagery,
while information theoretic metrics have been ap-
plied to optical-imaging systems for applications
ranging from storage to astronomy.2–4 The joint de-
sign of imager hardware and software has been dem-
onstrated through the use of cubic phase masks for
extended depth of field, aberration correction, etc.5
Recent demonstrations of novel tomographic, holo-
graphic, and interferometric imaging systems pro-
vide additional platforms upon which these novel
solutions might be tested.6–8

In this paper we consider a form of task-specific
imaging for which overall system performance is de-
termined by the fidelity of linear object features.
The next section presents our analysis of such a
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feature-specific imaging system, and we elucidate the
important role that photon count plays in defining
the comparison with conventional imaging. This
analysis demonstrates that the direct measurement
of linear features can be fundamentally superior to
their extraction �via postprocessing� from a conven-
tional image. The novelty of our approach resides in
our attention to feature fidelity subject to a fixed
photon budget, and results in the conclusion that
fidelity can be improved via direct feature measure-
ment. Section 3 quantifies the feature fidelity ob-
tained from a feature-specific imager for various
types of noise, while Section 4 presents a design ex-
ample of feature-specific imaging for the case of
Karhunen–Loeve �KL� features and demonstrates
some important tradeoffs in the context of hardware�
software co-design. Section 5 presents a candidate
optical architecture for a photon-efficient feature-
specific imager along with a sensitivity analysis of
this candidate implementation.

2. Feature-Specific Imaging Framework

In this section we will present a framework for the
design and analysis of task-specific imagers. Our
approach will be suitable for those problems that can
be described in terms of linear object features. This
defines a very broad class of tasks, each of which will
have a preferred set of features. For example, if the
imager is required to transmit or store its imagery,
then features might be selected to optimize compres-
sion efficiency. We will consider wavelet features in
this regard.9 If a coding�decoding problem under-
lies the deployment of the imager, then Hadamard
features may be required.10 Alternately, if image

mean-squared error �MSE� is the relevant task-
specific metric, then KL features �i.e., principal com-
ponents� may be best, while for the extraction of
maximum image information the so-called indepen-
dent component features are optimal.11,12 Although
we will describe feature-specific imaging in a general
way, examples of feature-specific imaging will be lim-
ited to the four types of features mentioned above.

Figure 1 presents schematic representations of the
two optical systems that we will compare. We will
limit our study to incoherent optical systems, and we
will seek to measure linear projections of the object
irradiance distribution. Objects are assumed to be
spatially discrete without loss of generality. Figure
1�a� depicts a conventional imager that measures the
object irradiance on a two-dimensional detector ar-
ray. The object is treated as a set of K disjoint object
blocks, each of which is assumed to contain �N �
�N pixels. Features will be computed indepen-
dently on different object blocks so that each block
may be treated as a vector gi with dimension N,
where i � 1, 2, . . . K. The use of object blocks �in-
stead of full objects� allows us to consider both local
and global features within a common framework, and
because each block is treated independently, we can
often drop the subscript without producing any con-
fusion. The measurement of each object block g is
corrupted by noise to yield the estimate ĝ. We first
consider the case of additive white Gaussian noise
�AWGN� so that ĝ � g � n, where n represents a
zero-mean AWGN process with variance �2. Shot
noise and quantization noise are considered in the
next section. In Fig. 1�a� the linear object features
are computed as a postprocessing step by using the

Fig. 1. Schematic diagram of �a� a conventional imager, �b� a feature-specific imager.
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M � N projection matrix P to yield the feature esti-
mates f̂c � ℜ M. We quantify the feature fidelity by
use of the MSE criterion as MSEc � ��f 	 f̂c�

2
�M,
where f is the desired �noise free� feature vector and
� 
 represents statistical expectation. Assuming
that the noise variables are independent and identi-
cally distributed �iid� and further assuming that the
rows of the projection matrix are normalized, we find
that MSEc � �2. This simple result demonstrates
that the fidelity of features computed via postprocess-
ing a conventional image is limited by the detector
noise alone.

Figure 1�b� depicts the operation of a feature-
specific imager. Instead of measuring the object ir-
radiance distribution in preparation for later
electronic feature computation, this optical system is
responsible for computing the desired projections and
measuring them directly. It is simple to imagine an
optical system based on transparencies that will ac-
complish this goal.13,14 More photon-efficient solu-
tions based on diffractive and�or reflective optics can
also be envisioned. In Section 5 we will present a
novel polarization-based optical solution. Regard-
less of the specific hardware realization, however, we
can consider the detected signal in our feature-
specific imager to be a corrupted version of the de-
sired feature vector. In the case of AWGN we can
write the M-dimensional measurement vector as m �
P̂g � n, where P̂ is the projection matrix that is
realized by the optical hardware. There are many
reasons why P � P̂ �e.g., imperfect optical compo-
nents, finite optical bandwidth, misalignment, etc.�
and most of these will depend upon the specifics of the
hardware implementation, however, there are two
aspects of the optics that are unavoidable. The first
unavoidable aspect of the optical solution derives
from the conservation of energy. In particular, no
column in the P̂ matrix can sum �in absolute value� to
greater than one. This constraint ensures that for a
given object irradiance distribution and measure-
ment time, the same number of photons are used in
both the conventional and the feature-specific mea-
surements. The mathematical implication of this
photon-count constraint is a scaling of the measure-
ment so that P̂ � P�C, where C is the maximum
absolute column sum of P. The actual feature esti-
mate is thus obtained by multiplying the measure-
ment m by the constant C to produce f̂m � Pg �
Cn. We see that the photon-count constraint has
resulted in an effective noise scaling for the direct
feature measurement.

The second unavoidable aspect of an optical
feature-specific imaging solution is the need for dual-
rail signaling. Because negative quantities cannot
be represented directly in an incoherent optical sys-
tem, two complementary arms will be required to
realize a projection matrix with bipolar quantities:
One arm uses the positive values of P to generate the
measurement m� � kP�g�C� � n and the other arm
uses the negative values to compute m	 � �1 	
k�P	g�C	 � n, where k is the power-splitting ratio of
the dual-rail system, the ijth element of P� is given

by Pij
� � Pij if Pij � 0 and Pij

� � 0 otherwise, and C�

is the maximum column sum of P�. P	 and C	 are
defined in an analogous way. In the case of a dual-
rail implementation, the final feature estimate is pro-
duced by subtracting the scaled outputs of the two
arms: f̂m � C�m��k 	 C	m	��1 	 k�. We can
once again use the MSE criterion to quantify the
performance of this feature-specific imager. We de-
fine MSEm � ��f 	 f̂m�2
�M and in the case of AWGN,
this can be reduced to MSEm � 
�C��k�2 � �C	��1 	
k��2��2. Because in general C� � C	 we find that
k � 0.5 is often not the optimal splitting ratio for
minimizing MSE in a dual-rail feature-specific im-
ager. Throughout the remainder of this paper all
results will use the optimal �projection-matrix–
dependent� splitting ratio.

In contrast with a conventional imager, the above
discussion of feature-specific imaging indicates that
the feature MSE depends on both the measurement
noise and the characteristics of the projection matrix.
In the next section we will see that because C� and
C	 depend on the number of rows in P, in cases for
which relatively few features are required 
�C��k�2 �
�C	��1 	 k��2� � 1 and a multiplex advantage can be
obtained from the feature-specific imager.15

3. Feature Fidelity Results

The feature-specific imager depicted in Fig. 1�b� pro-
vides two potential advantages over the conventional
imager shown in Fig. 1�a�. First is the reduced de-
tector count required to accomplish some overall sys-
tem goal. If the task for which an imager has been
deployed requires M features, then the feature-
specific imager makes 2M measurements per block as
compared with the N �often �� 2M� measurements
made by a conventional imager. This reduction in
detector count can impact both the complexity and
maximum frame rate of the resulting imager. Sec-
ond is the multiplex advantage described in the pre-
vious section. The potential reduction in MSE that
accompanies the use of a feature-specific imager de-
rives from the increase in the number of photons
incident on each detector relative to the �fixed� mea-
surement noise. This increase in measurement
signal-to-noise ratio �SNR� translates directly into a
reduction in feature MSE. Because the MSE reduc-
tion depends on the projection matrix we will quan-
tify it for four cases of interest.

The first projections that we will consider are the
so-called Hadamard projections. A Hadamard ma-
trix of order N is a N � N orthogonal matrix of
positive and negative ones. Figure 2 shows two ex-
ample Hadamard matricies of size 8 � 8. The black
squares indicate �1 and the white squares indicate
	1. The rows in the matrix can be ordered in one of
two ways. Figure 2�a� represents the natural order-
ing dictated by the recursive use of a Hadamard ma-
trix of size 2, i.e., �1 1; 1 	1�. Figure 2�b�, in
contrast, is generated by a sequential ordering for
which the number of sign changes increases by one
with each row. It is sometimes convenient to use the
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sequential ordering because the features measured
by using this version of the Hadamard matrix are
generated in order of increasing frequency. Had-
amard matrices are important for many reasons.
Although their use in multiplex measurement origi-
nates with the derivation of optimal weighing de-
signs, they are also used in spectroscopy to achieve
the multiplex advantage.16,17 Hadamard projec-
tions have also been used in picture processing, cod-
ing, and transmission to achieve bandwidth
reduction.18

We also consider feature-specific imaging by using
wavelet projections. The wavelet transform is a
multiresolution analysis tool that exploits the ability
of certain classes of function to localize in both space
and spatial frequency. Wavelets are widely used for
image compression, signal�image analysis, and to fa-
cilitate the fast solution of certain linear systems.9,19

In this work we will use two wavelet families:
integer-valued Haar wavelets and real-valued Dau-
bechies �DAUB4� wavelets. A wavelet decomposi-
tion can be expressed with a single unitary matrix
transformation P, where the rows of P are the wave-
let projections arranged in order of increasing spatial
frequency. Figures 3�a� and 3�b� show example 8 �
8 projection matricies for Haar and DAUB4 wavelets
respectively.

The third linear features that we will consider here
are KL features. KL features are optimum in the
sense that they provide dimensionality reduction
with the smallest possible MSE. This optimality re-
sults from their energy compaction property: A

large percentage of energy in a zero-mean object can
be concentrated into a small number of KL features.
The KL transform also minimizes the correlation
among features, providing information-optimal com-
pression for Gaussian sources. For these reasons
KL projections are often used for data compression,
pattern recognition, and signal de-noising.20–22 The
KL projections are computed from training data and
are given by the eigenvectors of the data covariance
matrix. Figure 4�a� shows the ten faces that were
used as training data for this work. Each face in
this set was decomposed into �N � �N blocks and
the resulting set of N-dimensional vectors was used
to compute the data covariance matrix. The eigen-
vectors of the covariance matrix were then sorted in
decreasing order of their corresponding eigenvalues.
Figure 4�b� depicts the first 16 KL features for the
training data shown in Fig. 4�a� for the case N � 64.
Each eigenvector has been independently scaled into
the range 0–255 to generate a gray-scale image for
display purposes.

The last type of features that we will consider are
the so-called independent components.12 Indepen-
dent component analysis �ICA� provides features that
are statistically independent for any source distribu-
tion, converging to KL features for Gaussian sources.
The ICA defines a linear transformation that is opti-
mal in that it minimizes the mutual information
among the transform coefficients. ICA has been
used for various types of feature extraction as well as
statistical applications such as blind source separa-
tion.23,24 ICA features can be ordered in terms of
their information content to produce a projection ma-
trix P. Using the training data shown in Fig. 4�a�,
we have computed ICA features using an algorithm
described in Ref. 25. The first 16 ICA features are
shown in Fig. 4�c� for the case of N � 64.

We know from Section 2 that the relative perfor-
mance of feature-specific imaging can be written as
� � MSEm�MSEc � 
�C��k�2 � �C	��1 	 k��2� and
that the values of C� and C	 as well as the optimal
value of k will depend on �a� the feature set of interest
and �b� the number of features used to define the P
matrix. Each of the feature sets described above has
a natural ordering. For example, if M � N KL fea-
tures are desired then the M projections correspond-
ing to the largest eigenvalues of the data covariance
matrix are generally used. Using this natural or-
dering we can plot � as a function of the number of
features M, for each of the four feature sets described
above. We will use optimal power splitting into each
arm of the dual-rail system throughout this exercise.
The result is shown in Fig. 5�a� for the case N � 64.
It is important to notice that all points for which � �
1 correspond to configurations for which feature-
specific measurements produce higher feature fidel-
ity than can be achieved via postprocessing a
conventional image. From the data in Fig. 5�a� we
see that � � 1.0 for M � 2 for ICA and KL features,
M � 3 for Hadamard and Haar wavelet features, and
M � 4 for DAUB4 wavelet features. From this data
we conclude that for applications in which relatively

Fig. 2. Hadamard projection matricies of order 8 with: �a� nat-
ural ordering, �b� sequential ordering.

Fig. 3. Wavelet projection matricies of order 8: �a� Integer-
valued Haar wavelets, �b� real-valued DAUB4 wavelets.
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few features are required to meet the overall system
goal, feature-specific multiplex imaging can be supe-
rior to conventional imaging. The diversity of fea-
ture sets included here gives us confidence that the
general behavior represented by the data in Fig. 5�a�
will persist for other feature sets as well.

The value of M for which each of these features sets
achieves � � 1.0 represents a small fraction of the
total N � 64 possible features. It is interesting to
examine how the � � 1.0 condition depends upon the
block size N. We will consider the example of KL
features. In Fig. 5�b� we plot � versus the fractional
number of KL features �M�N� for several values of N.
From this data we see that the use of larger blocks
will indeed increase the number of features that can
be measured in a feature-specific imager while main-
taining � � 1.0; however, the fraction of feature di-
mensions at which the � � 1.0 condition occurs is
found to be approximately 5%, decreasing slightly
with increasing N.

It is also possible to investigate feature-specific im-
aging under non-AWGN noise models. We have
considered two such models: shot noise and quan-
tization noise. In the case of shot-noise–limited im-
aging we do not expect an increase in the number of
photons reaching a detector to provide any improve-
ment in SNR. This is because the shot-noise-limited
SNR is inherent in the irradiance collected by the
instrument and does not depend on the energy inci-
dent on any particular detector. Thus we expect no
multiplex advantage for feature-specific imaging in
the presence of shot noise. Simulation results for
this case are shown in Fig. 5�c�, which uses the same
feature sets �N � 64� as were used to generate the
data in Fig. 5�a�. Because � � MSEm�MSEc cannot
be written in a simple form as it was for AWGN, we
use Monte Carlo simulation to generate the data in
Fig. 5�c�. From this data we see that � � 1 for all
values of M confirming our intuition and demonstrat-
ing that feature-specific imaging provides no advan-

Fig. 4. �a� Ten faces used for training the KL and ICA features, �b� first 16 KL features computed using N � 64. Each 64-dimensional
feature appears as an 8 � 8 image, �c� first 16 ICA features computed using N � 64. These features are rendered as in �b�.
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tage under a shot–noise model. For the case of
quantization noise the situation is quite different.
Once again we investigate the behavior of � as a
function of M; however, in this case we assume that
8-bit quantization limits the MSE of the conventional
image measurement. Features are then computed
from the measured image to generate some feature
error �MSEc�. We consider bandwidth to be the con-
strained resource for this case, and we note that 8-bit
quantization results in a data rate that scales like
8N. This suggests that more precise analog to dig-
ital converters can be used in a feature-specific im-
ager while maintaining the same data rate. In
particular we assume that the word length used for
each feature is given by min�24, 8N�M�, where the
minimum function is used to upper bound �e.g., to
limit implementational complexity� the number of
bits allocated to direct feature measurements. The
results of this study are shown in Fig. 5�d�. From
this data we see that a large range of M values pro-
duce � � 1 suggesting that feature-specific imaging
can be a powerful technique within a quantization-

noise–limited environment such as the one described
above.

4. Karhunen–Loeve Imaging

The preceding discussion has been quite general and
has quantified the potential benefit of direct feature
measurements in terms of feature fidelity. We have
seen from this discussion that a trade-off exists be-
tween feature fidelity and the number of measured
features, and that this tradeoff is governed by the
photon-count constraint. In this section we will con-
sider an example of feature-specific imaging in which
we demonstrate the utility of direct feature measure-
ments toward some overall imaging system goal.
We select KL features for this example because �a�
this feature set is familiar to a broad audience, �b� the
system goal for which these features are optimal �i.e.,
minimum reconstruction MSE� is intuitive and can
be represented visually, and �c� we find the somewhat
surprising result that even when the system goal is to
produce a “pretty picture” there are cases in which it

Fig. 5. �a� Relative feature fidelity �i.e., �� versus number of features �M� under AWGN noise model described in the text for N � 64. �b�
� versus fractional number of KL features under AWGN model for N � 36, 49, 64, and 81. � versus M under �c� shot-noise, and �d�
quantization noise models described in the text for N � 64.
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is preferable to measure features than to measure a
conventional image.

We begin by considering a conventional imaging
system that is subject to additive white Gaussian
measurement noise with variance �2. Such a sys-
tem produces the object estimate ĝd � g � n, where
n represents the AWGN. The pixelwise MSE as-
sociated with an image obtained via such a direct
imaging system is simply MSEd � ��g 	 ĝd�2 � �N �
�2. An example of a measured image with � � 22
is given in Fig. 6�a�. Alternately, a feature-specific
imager might measure some number �M� of KL fea-
tures 
 f̂i : i � 1, . . . , M� to produce the object esti-
mate ĝkl � ¥i�1

M f̂ip
i where pi is the ith row of P and

is defined by the �normalized� ith largest eigenvec-
tor of the KL training-data covariance matrix. See
figure 4b for an example of the first 16 eigenvectors
computed using the training faces shown in figure
4a. It is important to note that the pixelwise MSE
associated with ĝkl, specifically MSEkl � ��g 	
ĝkl�

2
�N contains two components. One of these
arises from discarding �N–M� terms from the full
KL expansion of the image. The other arises from
the AWGN associated with the feature measure-
ments. Including both of these components we can
write MSEkl as

MSEkl �
1
N �

i�M�1

N

�i �
M�2

N ��C�

k �2

� � C	

1 � k�
2� ,

(1)

where �i is the ith-largest eigenvalue of the KL
training-data covariance matrix. From this expres-
sion it is clear that a tradeoff exists between these
two sources of error. Increasing the number of fea-
tures decreases the first term while it increases the
second.

Figure 7�a� shows a plot of MSEkl versus M for
� � 22 and several values of N. From this graph
we can see that there is indeed an optimum number
of features for each blocksize. This optimum
choice of M balances the error arising from the trun-
cated KL expansion against the error arising from
the measurement process. We also notice that for
all values of N considered here, the optimal value of
MSEkl is less than �2, which indicates that the
feature-specific approach can be superior to conven-

tional imaging for this example. Extracting the
minimum MSE from each curve in Fig. 7�a� we can
plot the optimal MSE versus N as shown in Fig.
7�b�. This figure reflects a trade-off with the block-
size N. We can understand this trade-off in terms
of a balance between image energy and feature fi-
delity. In particular we recall that increasing
blocksize results in improved feature fidelity at con-
stant M �see Fig. 5�b��, however, the fraction of
image energy contained in that fixed number of
features goes down with increasing N. The result
shown in Fig. 7�b� suggests that N � 121 is optimal
for this example. Figure 6�b� shows the recon-
structed image associated with the optimal KL
feature-specific imager for � � 22. It uses M � 6
and N � 121 and achieves MSEkl � 132. Because
the relative performance of the feature-specific ap-
proach will be sensitive to the value of �2, we can
repeat the analysis that gave rise to the graphs of
Figs. 7�a� and 7�b� for many values of noise, extract-
ing only the optimal performance. The result is
shown in Figure 7c. This graph presents the MSE
performance of both conventional �open squares�
and KL feature-specific �open circles� imaging ver-
sus noise. From this figure we see that the KL
feature-specific approach offers significant advan-
tages in high-noise environments �i.e., �2 � 74�. A
convenient way to quantify the value of a KL im-
ager is represented by the crossover point for these
two curves. This is the value of noise above which
KL imaging is superior to conventional imaging.
From Fig. 7�c� we see that this crossover point is
�x � 8.5.

The second term in Eq. �1� depends on the fidelity
of the optical feature measurement process. In the
previous section we discussed how this process is
influenced by two physical constraints: �a� the
positive-valued nature of optical irradiance resulted
in the need for dual-rail signaling and �b� the conser-
vation of energy required the scaling of the dual-rail
projection matricies by their respective maximum
column sums. Constraint �a� provided us with an
additional degree of freedom in our optical-system
design. We can optimize the fraction of collected
photons that enter each arm of the dual-rail system
via the parameter k. This optimization has in fact
been performed for all data presented thus far. It is
possible to carry this idea one step further, optimiz-
ing the fraction of photons that participate in each
feature measurement. Consider scaling the ith row
of the projection matrix P��P	� by a constant ai �bi�.
This results in a linear scaling of the corresponding
feature measurements so that f̂i

� � fi
� � C��a�n�ai

and f̂i
	 � fi

	 � C	�b�n�bi, where a � �a1, a2, . . . , aM�
and b � �b1, b2, . . . , bM� and n is the AWGN process.
Note that the presence of these new feature scaling
factors will change the values of the maximum col-
umn sums so that C��a� and C	�b� are now written
as explicit functions of a and b. If we implement
such a scaling operation within a KL imaging system,

Fig. 6. Reconstructed images obtained with �a� conventional im-
aging �MSEd � 500�, �b� feature-specific imaging �MSEkl � 154�.
AWGN corrupts all measurements with �2 � 500 and the feature-
specific imager used M � 4 and N � 64.
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the resulting MSE in the image estimate MSEkl, can
now be written as

MSEkl �
1
N �

i�M�1

N

�i �
�2

N �
i�1

M ��C��a�

ai
�2

� �C	�b�

bi
�2� . (2)

From this equation we can see that it is possible to
exploit the additional degrees of freedom in a and b to
further minimize the MSE of the KL imaging system.
The complex dependence on a and b that is repre-
sented by the maximum column sums C��a� and
C	�b�, makes this a challenging optimization prob-
lem. We use a modified gradient search method for
each value of M to find the optimal a and b vectors.
From these optimized system designs we can select
the best value of M for each value of noise. The
result of this process is shown by the curve with open
diamond symbols in Fig. 7�c�. We notice that the
optimal allocation of photons has resulted in a cross-

over point that is slightly lower ��x � 8.25�, indicat-
ing a performance improvement of 10 log�8.5�8.25� �
0.13 dB.

KL imaging uses projection matricies P� and P	

that are based on the eigenvectors of the training-
data covariance matrix. This guarantees optimal
�noise-free� performance for test images that are se-
lected from the same underlying image distribution
as the training data. The previous results in this
section are based on a test image that is similar to
�but not contained in� the training data. In cases for
which the testing data is dissimilar from the training
data, we expect KL imaging performance to degrade.
Using the same KL imaging system as we used to
generate the �optimal� data in Fig. 7, we have quan-
tified this degradation for the five test images shown
in Fig. 8. In all five cases the crossover noise value
is increased as compared with the optimal crossover
value from Fig. 7�c� ��x � 8.25�. Table 1 shows the
crossover noise cost �in dB� for each of these test
images.

Fig. 7. Reconstruction MSE for KL feature-specific imaging corrupted by AWGN. �a� MSE versus number of features for �2 � 500 and
N � 16, 36, and 64. �b� Minimum MSE versus blocksize for �2 � 500. �c� Optimum KL feature-specific imaging performance versus noise
standard deviation.
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5. Polarization-Based Optical System for
Feature-Specific Imaging

Figure 9 shows a candidate optical architecture for
feature-specific imaging. It is a polarization-based

dual-rail optical pipeline processor. The system
shown in this figure is suitable for the measurement
of two features, however, additional processing
stages can be cascaded as shown. Because the per-
formance of feature-specific imaging �as compared
with conventional imaging� so critically depends on
the efficient use of all the collected photons, this sys-
tem is designed to be photon efficient. Its operation
will first be described for the case of a single feature.
We assume that light entering the feature-specific

Fig. 8. Test images for evaluating training-set-sensitivity of KL feature-specific imaging: �a� Man, �b� Dog, �c� Desk, �d� Car, and �e�
Goldhill.

Fig. 9. Candidate feature-specific imaging architecture: PBS � polarizing beamsplitter, SPM � spatial polarization modulator, D1�
and D1	 are detectors for the positive and negative components of the 1st feature measurement and D2� and D2	 are for the 2nd feature.

Table 1. Crossover Noise Costa

Image Man Dog Desk Car Goldhill

Crossover noise cost 1.6 3.3 3.4 3.7 3.7

aFor test images that differ from the training set.
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imager is unpolarized. This unpolarized incident
light first passes through a polarizing beamsplitter
�PBS� as shown. The PBS separates the incident
light into s- and p-polarizations, directing each into a
separate arm of the dual-rail system. The light in
each arm is imaged onto a spatial polarization mod-
ulator �SPM� that rotates the polarization at each
pixel of the optical irradiance pattern by an angle
given by the desired projection p1. The rotations in
the positive arm are given by �1i

� � sin	1��pi
1�C��

if pi
1 � 0 and �1i

� � 0 otherwise. For the negative
arm we have the complementary scheme: �1i

	 �
sin	1��pi

1�C	� if pi
1 � 0 and �1i

	 � 0 otherwise.
Notice that normalization by the maximum column
sums C� and C	 ensures that the maximum rotation
imparted by any pixel is 90°. These rotations can be
imparted for example by using an electrically addres-
sable device such as a liquid-crystal �LC� modulator,
or by using a fixed device such as a surface-relief
profile etched into an optically active crystal. In ei-
ther case the orthogonal component of polarization
generated by the SPM in each arm is re-directed by
use of polarizing beamsplitters and is integrated onto
the photodetectors as shown in Fig. 9.

Now we describe the operation of this system in the
case of two features. The prescription for the rota-
tion angles �1i

� and �1i
	 remains unchanged in this

case, however, it is important to note two things.
First, note that the un-rotated light propagates past
the PBS elements and can be used for the computation
of additional features. Second, note that the normal-
ization of P� and P	 by their respective maximum
column sums ensures that there are sufficient photons
for the computation of these successive features. The
prescription for the rotation angles in stage two, how-
ever, must be modified to account for the reduced ir-
radiance at each pixel of the stage 2 SPMs.
Specifically we have �2i

� � sin	1��pi
2��C� 	 pi

1� if
pi

2 � 0 and �2i
� � 0 otherwise. A complementary

scheme is used for the negative arm. From Fig. 9 we
see that the light exiting each arm of stage 1 is re-
imaged onto the SPMs in each arm of stage 2 so that
feature 2 may be computed via the induced polariza-
tion rotations described above. Additional stages op-
erate in the same way.

The optical system described above is photon-
efficient by design; however, there are unavoidable
implementational imperfections that will impact the
performance of such a feature-specific imager. To
quantify the impact of these imperfections we have
formed a computer model of the system shown in Fig.
9. The model includes various sources of imperfec-
tion, such as �1� imperfect PBS devices with 98%
transmission and 2% leakage, �2� imperfect coatings
that give rise to surface reflections—all surfaces in
our model are taken to be 99% transmissive, �3� LC
SPM elements subject to a uniform noise term ��
0.05V� in their applied voltage, and of course AWGN
at each detector. We have also included a logistic
response function �shown in Fig. 10� to model each
SPM; however, many other sources of experimental

error have been overlooked in this preliminary anal-
ysis. We expect for example that SPM devices will
not have a 100 areal fill-factor, and�or may not have
a uniform response at all pixels or for all incident
angles. These SPM characteristics have not yet
been included in our model. The results of our pre-
liminary implementational study are shown by the
asterisk curve in Fig. 7�c�. We see from this data
that the presence of these device�system imperfec-
tions have degraded the performance of the KL im-
ager, generating a crossover noise cost of 1.34 dB.
We also notice that this degradation is most deliteri-
ous in low-noise environments and that significant
MSE advantage is still provided by KL imaging when
the detector noise level is high.

6. Conclusions

This paper has presented an analysis of feature-
specific imaging. An imager is often deployed as
part of a larger system designed to achieve some
diagnostic task. In cases for which the overall sys-
tem goal can be described in terms of linear projec-
tions of the object irradiance distribution, we consider
the possibility of direct optical feature measurement.
We have quantified the fundamental limits of such an
approach. We have compared the feature fidelity
associated with direct feature measurements to the
fidelity achieved by postprocessing a conventional im-
age, and we find a tradeoff between the number of
features and the corresponding feature fidelity. In
both AWGN and quantization-noise–limited imaging
environments this tradeoff results in higher fidelity
for direct feature measurements �as compared with
processing a conventional image� in cases for which
relatively few features are necessary to adequately
meet the goals of the overall system.

A common alternate approach to the measurement
of linear object features is the optical correlator. It
is instructive to consider the photon inefficiencies
that result from the use of optical correlation within
the feature-specific imaging environment described
here. Two observations can be made in this regard.

Fig. 10. SPM response function used in optical system toleranc-
ing study.
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First, a correlator is shift invariant so that the block-
wise linear projections that we describe are obtained
at the center of each block in the correlation plane.
Photons arriving at other locations are unused result-
ing in poor feature fidelity. Second, a single corre-
lator implements a Toeplitz projection matrix that
depends upon only a single feature. Multiple corre-
lators are therefore required �one for each row in the
desired projection matrix� to realize the desired com-
putation. Division of photons among these multiple
correlators represents another source of photon inef-
ficiency. In this paper we have shown that the use of
a single projection matrix, augmented to optimize the
efficient utilization of photons, can result in feature-
specific imaging with high fidelity.

A specific example of feature-specific imaging
based on KL projections was analyzed and yielded the
important result that it is possible to improve image
MSE via direct feature measurement in high AWGN
environments. A candidate optical system was pre-
sented and a preliminary implementational study
demonstrates that such a system can efficiently mea-
sure linear object features and can provide improved
performance as compared with conventional imaging.
This work is continuing along several important di-
mensions. In the course of this work we have no-
ticed that KL features are suboptimal for minimum
MSE image reconstructions when feature measure-
ments are corrupted by noise. We are now seeking a
new formulation for the optimum feature set in this
case. Extension of the techniques described here to
include multispectral imaging is also underway so
that correlation among wavelength bands can be ex-
ploited to generate more efficient use of photons in
these systems. We are also working to improve our
implementational model with the eventual goal of
constructing an optical system for feature-specific im-
aging.
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