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Abstract—Feature subset selection (FSS) is a known technique to preprocess the data before performing any data mining tasks, e.g.,

classification and clustering. FSS provides both cost-effective predictors and a better understanding of the underlying process that

generated the data. We propose a family of novel unsupervised methods for feature subset selection from Multivariate Time Series

(MTS) based on Common Principal Component Analysis, termed CCLeVV er. Traditional FSS techniques, such as Recursive Feature

Elimination (RFE) and Fisher Criterion (FC), have been applied to MTS data sets, e.g., Brain Computer Interface (BCI) data sets.

However, these techniques may lose the correlation information among features, while our proposed techniques utilize the properties

of the principal component analysis to retain that information. In order to evaluate the effectiveness of our selected subset of features,

we employ classification as the target data mining task. Our exhaustive experiments show that CCLeVV er outperforms RFE, FC, and

random selection by up to a factor of two in terms of the classification accuracy, while taking up to 2 orders of magnitude less

processing time than RFE and FC.

Index Terms—Data mining, feature evaluation and selection, feature extraction or construction, time series analysis, feature

representation.

�

1 INTRODUCTION

FEATURE subset selection (FSS) is one of the techniques to
preprocess the data before we perform any data mining

tasks, e.g., classification and clustering. FSS is to identify a
subset of original features/variables1 from a given data set
while removing irrelevant and/or redundant features [2].
The objectives of FSS are [1]:

. to improve the prediction performance of the
predictors,

. to provide faster and more cost-effective predictors,
and

. to provide a better understanding of the underlying
process that generated the data.

FSS methods choose a subset of the original features to be
used for the subsequent processes. Hence, only the data
generated from those features need to be collected. The
differences between feature extraction and FSS are:

. Feature subset selection maintains information on
the original variables while this information is
usually lost when feature extraction is used.

. After identifying the subset of the original features,
only these features are measured and collected
ignoring all the other features. However, feature
extraction in general still requires the measuring of
all the variables.

A time series is a series of observations,

xiðtÞ; ½i ¼ 1; � � � ; n; t ¼ 1; � � � ;m�;

made sequentially through time, where i indexes the
measurements made at each time point t [3]. It is called a
univariate time series when n is equal to 1 and a
multivariate time series (MTS) when n is equal to or greater
than 2.

MTS data sets are common in various fields, such as in
multimedia, medicine, and finance. For example, in multi-
media, Cybergloves used in the Human and Computer
Interface applications have around 20 sensors, each of which
generates 50 � 100 values in a second [4], [5]. In [6],
22 markers are spread over the human body to measure the
movements of human parts while people are walking. The
data set collected is then used to recognize and identify the
person by how he or she walks. In medicine, Electro
Encephalogram (EEG) from 64 electrodes placed on the
scalp are measured to examine the correlation of genetic
predisposition to alcoholism [7]. In the Neuro-rehabilitation
domain, kinematics data sets generated from sensors are
collected and analyzed to evaluate the functional behavior
(i.e., the movement of upper extremity) of poststroke
patients [8].

The size of an MTS data set can become very large
quickly. For example, the EEG data set utilizes tens of
electrodes and the sampling rate is 256Hz. In order to
process MTS data sets efficiently, it is inevitable to
preprocess the data sets to obtain the relevant subset of
features which will be subsequently employed for further
processing. In the field of Brain Computer Interfaces (BCIs),
the selection of relevant features is considered absolutely
necessary for the EEG data set, since the neural correlates
are not known in such detail [9]. Identifying optimal and
valid features that differentiate the poststroke patients from
the healthy subjects is also challenging in the Neuro-
rehabilitation applications.
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1. The features originally measured by the input devices, e.g., sensors,
are called variables and the features constructed from these variables features
as in [1]. However, the terms variable and feature are interchangeably used
throughout this paper when there is no ambiguity.
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AnMTS item is naturally represented in anm� nmatrix,
where m is the number of observations and n is the number
of variables, e.g., sensors. However, the state of the art
feature subset selection techniques, such as Recursive
Feature elimination (RFE) [10] and Zero-Norm Optimiza-
tion [11], require each item to be represented in one row.
Consequently, to utilize these techniques on MTS data sets,
each MTS item needs to be first transformed into one row or
column vector. For example, in [9], where an EEG data set
with 39 channels is used, an autoregressive (AR) model of
order 3 [12] is utilized to represent each channel. Hence,
each 39 channel EEG time series is transformed into a
117 dimensional vector. However, if each channel of EEG is
considered separately, we will lose the correlation informa-
tion among the variables.

In this paper, we propose a family of three novel
unsupervised feature subset selection methods for multi-
variate time series (MTS) based on common principal
component analysis (CPCA) named CCLeVV er.2 It consists of
CCLeVV er-Rank, CCLeVV er-Cluster, and CCLeVV er-Hybrid. In
order to perform FSS on an MTS data set, CCLeVV er first
performs PCA on each MTS item to obtain the loadings, i.e.,
the direction cosines of principal components. Note that the
loadings describe how much each variable contributes to
each of the principal components (see Section 3.1 for a brief
review of PCA). We then obtain the descriptive common
principal components (DCPCs) which agree most closely with
the principal components of all the MTS items [13]. The
intuition to use the PCs and the DCPCs as a basis for variable
subset selection is that they keep the most compact
overview of the MTS items in a dramatically reduced space
while retaining both the correspondence to the original
variables and the correlation among the variables. The
DCPC loadings show how much each variable contributes
to each of the DCPCs. Based on the DCPC loadings, we
devise three members of the CCLeVV er family. CCLeVV er-Rank
ranks each variable based on its contribution to the DCPCs.
Subsequently, FSS can be done by choosing the top K
ranked variables. Though the feature ranking technique is
simple and scalable [1], the feature subsets selected by the
feature ranking technique, however, may include redundant
features. CCLeVV er-Cluster clusters the DCPC loadings to
identify the variables that have similar contributions to each
of the DCPCs. For each cluster, we obtain the centroid
variable, eliminating all the similar variables within the
cluster. These centroid variables form the selected subset of
variables. CCLeVV er-Hybrid is similar to CCLeVV er-Cluster.
The difference is that CCLeVV er-Hybrid ranks the variables
within each cluster based on their contribution to the
DCPCs. Subsequently, the top ranked variables from all the
clusters will be part of the selected subset of variables. Our
experiments show that, in most cases, the classification
accuracy of the variable subsets obtained by the CCLeVV er
family is up to 100 percent better than the feature subsets
selected by other methods, such as Recursive Feature
Elimination (RFE) and Fisher Criterion (FC) [14]. Moreover,
the CCLeVV er approaches, which are considered unsupervised
feature subset selection methods [15], take up to 2 orders of
magnitude less time than RFE, which is a wrapper method
[16], and FC.

The remainder of this paper is organized as follows: In
Section 2, the related work is discussed. Section 3 provides
the background. Our proposed methods are described in
Section 4, which is followed by the experiments and results
in Section 5. Conclusions and future work are presented in
Section 6.

2 RELATED WORK

There are, in general, two approaches to feature subset
selection (FSS), i.e., wrapper approach and filter approach. If
any mining task, e.g., classification, is involved in the
process of selecting the subset of features, it is called a
wrapper approach; otherwise, it is a filter approach [17]. The
former often performs better than the latter, but requires
significantly more processing time [15]. For a detailed
introduction to FSS, please refer to [1], [16].

When class labels are available, supervised FSS techniques
can be utilized; otherwise, unsupervised FSS techniques [15]
should be employed. The unsupervised FSS first computes
the similarity between features and then removes the
redundancy therein for the subsequent data mining tasks.
Hence, in general, the unsupervised FSS incorporates
partitioning or clustering of the original feature set.
Consequently, each partition or cluster is represented by a
single representative feature to form a subset of features.

Recall that our objective is to perform the FSS for the
multivariate time series (MTS) data set to obtain compact
form of its representation while preserving its character-
istics. The most related fields would be the ones that deal
with Electroencephalogram (EEG) data sets, where each
EEG item is represented as a matrix. In particular, extensive
research has been conducted on Electroencephalogram
(EEG) data sets in the field of Brain Computer Interfaces
(BCIs). The EEG data set is collected using multiple
electrodes placed on the scalp. The sampling rate is
hundreds of Hertz. The selection of relevant features is
considered absolutely necessary for the EEG data set, since
the neural correlates are not known in such detail [9].

Hidden Markov Model (HMM) and variants of Coupled
HMM (CHMM) have been applied to the EEG data set from
UCI KDD Archive [18] for classification in [19]. The best
accuracies obtained are 90:0� 0:0 percent using Distance
Coupled HMM (DCHMM) and 90:5� 5:6 percent using
Multivariate HMM for the EEG-1 data set. The accuracy of
78:5� 8:0 percent is obtained using Multivariate HMM for
the EEG-2 data set. However, the EEG-1 data set contains
only 20 measurements for two subjects from two arbitrary
electrodes (F4 and P8). EEG-2 data set contains 20 measure-
ments from the same two electrodes for each subject.
Moreover, it is not clear how the two subjects out of
122 subjects and the two electrodes out of 64 are chosen.

Guyon et al. proposed Recursive Feature Elimination
(RFE) using Support Vector Machine in [10], whose
procedure can be briefly described as follows: 1) train the
classifier, 2) compute the ranking criterion for all features,
and 3) remove the feature with lowest ranking criterion.
This procedure is then repeated until the required number
of features remain. Though RFE has been shown to perform
well, RFE cannot be applied directly to MTS data sets; each
MTS item should be represented as one row vector.
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Extending RFE for MTS data sets, FSS is performed on
the EEG data set with 39 channels in [9]. In order to apply
RFE to MTS data sets, each EEG item is first broken into
39 separate channels and, for each channel, autoregressive
(AR) fit of order 3 [12] is computed. Subsequently, each
channel is thus represented by three autoregressive coeffi-
cients. RFE is then performed on this transformed data set
to select significant channels. As shown in Section 5.5, this
wrapper method is very time consuming. Moreover, by
considering the channels separately, they lose the correla-
tion information among channels, which would, in turn,
result in poor generalization.

The most related work to our paper is the PCA-based
FSS method, called Principal Feature Analysis (PFA) [20].
The data sets used is the set of features extracted from
image databases, which is represented in a feature vector.
PCA is then performed on a matrix that contains all the
feature vectors, after which the features with similar
principal component loadings are grouped together. Again,
PFA cannot reduce the amount of data to be collected and
requires all the raw data to perform the feature extraction.

3 BACKGROUND

In this section, we briefly review principal component
analysis and common principal component analysis. For
more details, please refer to [21], [13].

3.1 Principal Component Analysis

Principal Component Analysis (PCA) has been widely used
for multivariate data analysis and dimension reduction [21].
Intuitively, PCA is a process to identify the directions, i.e.,
principal components (PCs), where the variances of scores
(orthogonal projections of data points onto the directions)
are maximized and the residual errors are minimized
assuming the least square distance. These directions, in
nonincreasing order, explain the variations underlying
original data points; the first principal component describes
the maximum variation, the subsequent direction explains
the next maximum variance and so on.

Fig. 1 illustrates principal components obtained on a
very simple (though unrealistic) multivariate data with only
two variables (x1, x2) measured on 30 observations.
Geometrically, the principal component is a linear transfor-
mation of original variables and the coefficients defining

this transformation are called loadings. For example, the first
principal component (PC1) in Fig. 1 can be described as a
linear combination of original variables x1 and x2, and the
two coefficients (loadings) defining PC1 are the cosines of
the angles between PC1 and variables x1 and x2, respec-
tively. The loadings are thus interpreted as the contribu-
tions or weights on determining the directions.

In practice, PCA is performed by applying Singular
Value Decomposition (SVD) to either a covariance matrix or
a correlation matrix of an MTS item depending on the data
set. That is, when a covariance matrix A is decomposed by
SVD, i.e., A ¼ U�UT , a matrix U contains the variables’
loadings for the principal components, and a matrix � has
the corresponding variances along the diagonal [21].

In the data mining literature, PCA has been used mainly
for dimension reduction by projecting multidimensional
data set onto the first few principal components. However,
PCA is a multivariate statistical analysis for one multi-
variate data item where all the input data considered for the
analysis should be arranged in a single matrix. In our
application domain dealing with a set of MTS items, this
one-sample method should be generalized to a multisample
method [22]. One approach to tackling this generalization
problem is to obtain a set of PCs that are common across all
MTS items [13], [22], which will be briefly described in the
next section.

3.2 Common Principal Component

Common Principal Component Analysis (CPCA) is a
generalization of PCA for Nð� 2Þ multivariate data items,
where the ith data item, ði ¼ 1; . . . ; NÞ, is represented in an
mi � n matrix. That is, all the data items have the same
number of variables, i.e., n, while each data item may have
different number of observations. CPCA is based on the
assumption that there exists a common subspace across all
multivariate data items and this subspace should be
spanned by the orthogonal components. Various efforts
have been made to find the common components defining
this common subspace [13], [22], [23], [24].

One approach, proposed in [13], obtained the Common

Principal Components (CPC) by bisecting the angles between

their principal components after each multivariate data item

undergoes PCA. That is, each of multivariate data items is

first described by its first p principal components. Then, the

CPCs are obtained by successively bisecting the angles

between their ith ði ¼ 1; . . . ; pÞ principal components. These

CPCs define the common subspace that agrees most closely

with every subspace of the multivariate data items. Fig. 2

gives a plot of twomultivariate data itemsA andB. LetA and

B be denoted as a swarm of white points and black points,

respectively, and have the same number of variables, i.e., x1

and x2, measured on 20 and 30 observations, respectively.

The first principal component of each data set is obtained

using PCA and the common component is obtained by

bisecting the angle between those two principal components.

We will refer to this CPC model as Descriptive Common

Principal Component (DCPC) throughout the paper.
As compared to the CPC model proposed in [22] that

produces unordered common principal components, these
DCPCs are orthogonal to each other and nonincreasingly
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ordered. That is, the first DCPC represents the common
direction along which every multivariate data item has its
maximum variance. In addition, the ði; jÞth loading value of
the DCPC matrix can be interpreted as the contribution of
the jth original variable with respect to the ith common
principal component, which is analogous to the way the
principal component loadings are interpreted. Finally, the
CPC model described in [22] is only really applicable to the
covariance-based PCA and not to the more frequently
encountered correlation-based analysis [21].

4 CCLeVV er ALGORITHMS

We propose a family of novel unsupervised variable subset
selection methods for multivariate time series (MTS) based
on common principal component analysis (CPCA), named
CCLeVV er. CCLeVV er involves three phases: 1) principal
components (PCs) computation per MTS item, 2) descrip-
tive common principal components (DCPCs) computation
across all principal components, and 3) variable subset
selection using DCPC loadings of variables. We devise
three variations of CCLeVV er during the third phase by using
different techniques. The three variations are CCLeVV er-
Rank, CCLeVV er-Cluster, and CCLeVV er-Hybrid, based on
variable ranking, K-means clustering, and both, respec-
tively. Fig. 3 illustrates the entire process of CCLeVV er.

The algorithms developed for CCLeVV er, including the
discussions on the practical issues, are presented in the
following sections. Table 1 lists the notations used in the
remainder of this paper, if not specified otherwise.

4.1 PC and DCPC Computations

The first and second phases of CCLeVV er are incorporated
into Algorithm 1. It first obtains PCs per MTS item and then
DCPCs across them consecutively. The required input to
Algorithm 1 is a whole set of MTS items. The principal
components of an MTS item is obtained by applying
Singular Value Decomposition (SVD) to its correlation
matrix in Line 4. Even though there are n PCs for each
item, only the first p(< n) PCs, which are adequate for the
purpose of representing each MTS item, are taken into
consideration. In general, p is determined based on the
percent ratio of the sum of the variances explained by the
first p PCs to the total variance underlying the original MTS

item, which ranges between 70 percent and 90 percent [21].
Algorithm 1 takes the sum of variation, i.e., the threshold to
determine p, as an input. That is, for each input MTS item, p
is determined to be the minimum value such that the total
variation explained by its first p PCs exceeds the provided
threshold � for the first time (Line 8). Since the MTS items
can have different values for p, p is finally determined as
their maximum value in Line 10.

Each MTS item is now represented as a p� n matrix
whose rows are its first p PCs and columns represent
variables. Note that each column of this matrix has a one-to-
one correspondence to the original variable at the same
position and describes the contributions of the correspond-
ing variable to each of the p PCs.

Let a p� n PC matrix of each MTS item be denoted as Li

ði ¼ 1; . . . ; NÞ. Then, the DCPCs that agree most closely with
all N sets of p PCs are successively defined by the
eigenvectors of the matrix H ¼

PN
i¼1 L

T
i Li:

SVDðHÞ ¼ SVD
X

N

i¼1

LT
i Li

 !

¼ V�V T ; ð1Þ

where rows of V are eigenvectors of H and the first p of
them define p DCPCs for N MTS items. � is a diagonal
matrix whose diagonal elements are the eigenvalues of H
and describe the total discrepancy between DCPCs and
PCs. For example, the first eigenvalue implies the overall
closeness of the first DCPC to the first PCs of every MTS
item (for more details, please refer to [13]). This computa-
tion of DCPCs is captured by Lines 15 � 16.

As is similar to the PC matrix of an MTS item, the rows of
DCPC matrix are p DCPCs, the columns represent
n variables, and its ði; jÞth element is a DCPC loading of
the jth variable to the ith DCPC. The correspondence to the
original variables is still retained in the columns of DCPC
matrix and each original variable is thus featured by its
DCPC loadings. This DCPC matrix is the common base
structure on which the three subsequent variable subset
selection methods are performed.

Algorithm 1. ComputeDCPC: PC and DCPC Computations.

Require: an MTS data set with N items and � {a predefined

threshold}

1. DCPC  ;;
2. for i=1 to N do

3. X  the ith MTS item;

4. ½U; S; UT �  SVD(correlation matrix of X);
5. loadingðiÞ  U ;

6. variance  diagðSÞ;
7. percentV ar  100� ðvariance=

Pn
j¼1 variancejÞ;

8. pi  number of the first p percentV ar elements whose

cumulative sum � �;

9. end for

10. p  maxðp1; p2; . . . ; pNÞ;
11. for i=1 to N do

12. LðiÞ  the first p rows of loadingðiÞ;
13. HðiÞ  Hði� 1Þ + ðLðiÞT � LðiÞÞ;
14. end for

15. ½V ; S; V T �  SVD(H);

16. DCPC  first p rows of V ;
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4.2 CCLCCLeeVVVV eer-RRank

CCLeVV er-Rank, described in Algorithm 2, ranks each

variable based on its contribution to the DCPCs. For a

variable v1, the score is given by the ‘2-norm ðjv1jÞ of its

DCPC loading vector. Let one of the variables be denoted as

a vector v1 consisting of p DCPC loadings, that is,

v1 ¼ ðl1; l2; . . . ; lpÞ. Then, the score of v1 is defined by

jv1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l21 þ l22 þ . . .þ l2p

q

: ð2Þ

The intuition of using ‘2-norm to measure the contribu-

tion of each of variables is based on the observation that the

stronger impact a variable has on the common principal

components, the larger absolute DCPC loading value it has,

as well as the further away it lies from the origin. Therefore,

the norm describing the length of a vector in general can be

used as a valid score in this context. In Lines 3 � 5, the score

of each variable, i.e., the ‘2-norm of DCPC loadings of each

variable is computed after obtaining the descriptive

common principal components in Line 2.
Subsequently, the scores are sorted in a nonincreasing

order and both the scores and the variable IDs are retained
for the subsequent processing in Line 6. Finally, the first
K variables, i.e., the top variables in the ranked list, are
simply selected to form the variable subset of size K in
Line 7. This way, only significant variables with the highest
scores in terms of their contribution to the common
principal component model remain in the selection.

Algorithm 2. CCLeVV er-Rank.

Require: an MTS data set, K {the number of variables to

select}, and � {a predefined threshold}

1. selected  ;;

2. DCPC  computeDCPC(MTS, �);

3. for i=1 to n do

4. scoreðiÞ  norm(DCPC loadings of the ith variable);

5. end for

6. ½IDX; score�  sort score in a nonincreasing order;

7. selected  IDXð1::KÞ;
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each of K clusters on DCPC loadings.

TABLE 1
Notations Used in This Paper



Many variable selection algorithms include variable
ranking as a base method due to its simplicity, scalability,
and good empirical success [1]. However, the ranking-
based variable subset selection techniques suffer from such
a common shortcoming that it may lead to the selection of
redundant variables. That is, we may possibly achieve the
same performance on the subsequent mining task even with
a smaller number of variables if the selected subset of
variables includes redundant variables. Furthermore, a
variable that is not important by itself may prove essential
for the subsequent mining task (e.g., classification) when
taken with other variables.

4.3 CCLCCLeeVVVV eer-CCluster

CCLeVV er-Cluster is proposed to tackle the above-mentioned
limitations of ranking based variable selection. The princi-
ple of this approach is to select the complementary variables
rather than individually scored variables. CCLeVV er-Cluster
utilizes a clustering method to group the similar variables
together and select the least redundant variables (see Fig. 3b
CCLeVV er-Cluster). The intuition behind using the clustering
technique for the variable selection is based on the
observation that variables with similar pattern of loading
values will be highly correlated and have high mutual
information [20].

Algorithm 3. CCLeVV er-Cluster.

Require: an MTS data set, K {the number of clusters}, and �

{a predefined threshold}

1. selected  ;;
2. DCPC  computeDCPC(MTS, �);

3. for i=1 to 20 do

4. ½indexðiÞ; centroidðiÞ�  K means(DCPC loadings, K);

5. end for

6. ½IDX;C�  choose the best clustering result with the

lowest within-cluster sums of point-to-centroid

Euclidean distances;

7. for k=1 to K do

8. selectedðkÞ  the closet variable to CðkÞ within the

kth cluster;

9. end for

Algorithm 3 takes an MTS data set and the number of
clusters as its inputs and performs K-means clustering on
the DCPC loadings obtained in Line 2. Since the K-means

clustering method can reach the local minima, we iterate
the K-means clustering 20 times (Lines 3 � 5). Among the
20 clustering trials, the one with the minimum sum of
Euclidean Distances between each cluster centroid and
the column vectors within the cluster is chosen as the
best clustering result in Line 6. Finally, the least
redundant variable subset for the given K is obtained
by extracting K column vectors closest to the centroid of
each cluster and identifying their corresponding original
variables (Lines 7 � 9).

4.4 CCLCCLeeVVVV eer-HHybrid

CCLeVV er-Hybrid utilizes both the ranking part of CCLeVV er-
Rank and the clustering part of CCLeVV er-Cluster for
variable subset selection. After performing the same
clustering as CCLeVV er-Cluster, instead of finding the

median variable for each cluster, we rank the variables
within each cluster employing the same method used for
CCLeVV er-Rank and then select the variable with the highest
score to be the representative variable for that cluster (see
Fig. 3c CCLeVV er-Hybrid). CCLeVV er-Cluster and CCLeVV er-
Hybrid effectively perform variable subset selection by
eliminating variables that contribute to the common
principal components similarly. As compared to CCLeVV er-
Rank, one of the drawbacks of these clustering-based
approaches would be that the selected variable subset is
not cumulative. That is, when we change the number of
clusters from, e.g., three to four, the variables selected with
three clusters are not necessarily the subset of the variables
selected with four clusters. Moreover, if we change the
number of clusters, i.e., the number of selected variables, we
have to repeat (the clustering part of) them. In this context,
CCLeVV er-Rank can decide the variable subsets to be used in
the subsequent processing, i.e, classification, with more
flexibility than CCLeVV er-Cluster and CCLeVV er-Hybrid.

5 PERFORMANCE EVALUATION

Since the focus of our paper is to select a subset of original
variables (not the extracted features that in general lose the
correspondence to the variables), one of the best ways to
evaluate the selected variables would be to have them
validated by the domain experts, e.g., to see whether the
selected subset corresponds to the experts’ observations or
not. However, the domain knowledge is not always
available for every MTS data set and, also, the experts are
not always in agreement.

Hence, we first show the effectiveness of CCLeVV er in
terms of classification performance via Support Vector
Machine (SVM). The reason SVM is chosen for the predictor
is that it determines a classifier which minimizes not only
the empirical risk (i.e., the training error) but the confidence
interval (i.e., the generalization or test error). For the
detailed description of SVM, please refer to [25]. We
conducted several experiments on three real-world data
sets. After obtaining a subset of variables using CCLeVV er-
Rank, CCLeVV er-Cluster, and CCLeVV er-Hybrid, we performed
classification using only that selected subset of variables.
Support Vector Machine (SVM) with linear kernel is
employed as a classifier employing leave-one-out cross
validation for evaluation. For the multiclass data set, the
one-against-one method is adopted for the multiclass SVM.
All the algorithms of CCLeVV er for the experiments are
implemented in MatlabTM . SVM classification is completed
with LIBSVM [26] on a machine with Pentium IV 3.2GHz
CPU and 3 GB of RAM.

5.1 Data Sets

The HumanGait data set [6] has been used for identifying a
person by recognizing his/her gait at a distance. In order to
capture the gait data, a 12-camera VICON system was
utilized with 22 reflective markers attached to each subject.
For each reflective marker, 3D position, i.e., x, y, and z, are
acquired at 120Hz, generating 66 values at each timestamp.
15 subjects, which are the labels assigned to the data set,
participated in the experiments and were required to walk
at four different speeds, nine times for each speed. The total
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number of data items is 540 (15 � 4 � 9) and the average
length is 133.

The Motor Behavior and Rehabilitation Laboratory,
University of Southern California, collected the Brain and
Behavior Correlates of Arm Rehabilitation (BCAR) kine-
matics data set [8] to study the effect of Constraint-Induced
(CI) physical therapy on the poststroke patients’ control of
their upper extremities. The functional specific task
performed by subjects was a continuous three phase
reach-grasp-place action; he/she was asked to reach to a
target object, either a cylinder or a card, grasp it by posing
the pronated forearm posture, place it into a designated
hole, release it, and finally bring his/her hand back to the
starting switch. Four control (i.e., healthy) subjects and
three poststroke subjects experiencing a different level of
impairment participated in the experiments. Five subjects of
them repeated the task five times and the remaining
two performed it seven times under two different condi-
tions, i.e., for two different objects (cylinder and card). The
performance of each trial was traced by six 6D electro-
magnetic Mini-Bird sensors attached on the index nail,
thumb nail, dorsal hand, distal dorsal forearm, lateral mid
upper arm, and shoulder, respectively. Each of them
produced its 3D position (i.e., x, y, and z) and orientation
(i.e., pitch, yaw, and roll) which were filtered using a 0-lag
Butterworth low-pass filter with a 20Hz cut-off frequency at
the rate of 120Hz. Unlike other data sets, the BCAR data set
kept the record of 11 dependent features rather than 36 raw
variables at each timestamp. They were defined by experts

in advance and calculated from the raw variables by the
device software provided with the sensors; some of them
were just raw variables (e.g., wrist sensor X, Y, and Z
coordination) while others were synthesized from raw
variables (e.g., aperture was computed as tangential
displacement of two sensors on thumb and index nail).
Note that these 11 variables were considered as original
variables throughout the experiments. The total number of
data items per condition is 39 (5� 5þ 2� 7), i.e., 78 in total
for the two conditions, and their average length is about 454
(i.e., about 3.78 seconds).

The Brain Computer interface (BCI) data set at the Max
Planck Institute (MPI) [9] was gathered to examine the
relationship between the brain activity and the motor
imagery, i.e., the imagination of limb movements. Eight
right handed male subjects participated in the experiments,
out of which three subjects were filtered out after pre-
analysis. 39 electrodes were placed on the scalp to record
the EEG signals at the rate of 256Hz. The total number of
items is 2,000, i.e., 400 items per subject.

Table 2 shows the summary of the data sets used in the
experiments.

5.2 Threshold Value �

We first performed a set of experiments to study the
sensitivity of our proposed techniques, the CCLeVV er family,
to the threshold value � in Algorithm 1, which determines
the number of PCs, p, to be obtained. In general, the
minimum number of PCs whose corresponding eigenvalues
account for 70 percent � 90 percent of the total variance
would be chosen [21]. Hence, we performed classification
on the HumanGait data set to see how the classification
accuracies of CCLeVV er would change based on �, varying �
from 70 percent to 90 percent increasing it by 5 percent each
time. As recommended in [27], we employed stratified
10 fold cross validation on the HumanGait data set using
LIBSVM [26] with linear kernel. For a detailed description
on how to perform the classification using LIBSVM for the
MTS data sets, please refer to Section 5.3.

The experiments have been conducted using CCLeVV er-
Cluster, CCLeVV er-Rank, and CCLeVV er-Hybrid. Table 3
summarizes the classification accuracies using CCLeVV er-
Rank. The other two methods yield similar results. It shows
that CCLeVV er is only sensitive to the threshold value � when
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the number of selected features is less than 20. However,
when the number of selected features is greater than 20, the
performance differences of CCLeVV er across the specified
range of � values are almost indistinguishable.

In general, if we choose too low of a threshold value, the
PCs do not reflect sufficient variances of the data set, while,
if we choose too high of a threshold value, the PCs may
include noise information of the data set as well. For the rest
of the experiments, we choose the � value to be 80 percent,
which is the mean value of 70 percent and 90 percent.

5.3 Classification Performance

A Support Vector Machine (SVM) with linear kernel was
adopted for the classifier to evaluate the classification
performance of CCLeVV er approaches. We performed leave-
one-out cross validation (CV) for all the three data sets. For
leave-one-out CV, one of the items in the data set is chosen
to be the test data, while all the other items are employed as
the training data. This is repeated N times and the average
classification accuracy is reported.

Note that, for the MTS data set to be fed into SVM, each
of the MTS items should be represented as a vector with the
same dimension; we call this process vectorization. Some
transformations are considered for the vectorization:
1) using either upper or lower triangle of its covariance or
correlation matrix, 2) using Dynamic Time Warping (DTW)
to make every MTS items equi-length,3 and 3) using linear
interpolation. We utilized the correlation matrix transfor-
mation for our experiments. Based on our previous work
[30], where correlation matrix is used to compute the
similarity between two MTS items, using correlation matrix
either was comparable or outperformed DTW and linear
interpolation in terms of precision/recall.

We subsequently compared the classification perfor-
mance of CCLeVV er approaches to those of exhaustive search
selection, random selection, Recursive Feature Elimination
[9], Fisher Criterion [14], and all variables selected.

. Exhaustive Search Selection (ESS): All possible
combinations of variable subsets were tested to find
the combinations which yield the best and the worst
classification performance only when it was tract-
able. In addition, the corresponding classification
precisions were averaged over all possible combina-
tions given the number of selected variables. The
ESS method was performed only on the BCAR data
set due to the intractability of ESS for the large data
sets. Note that ESS is not a practical approach in
general, but it was done to generate ground-truth for
evaluation when possible.

. Random Selection (RS): We randomly selected the
target number of variables and then performed
leave-one-out cross validation using SVM with
linear kernel. Each random selection was repeated
10 times and the average performance is reported.

. Recursive Feature Elimination (RFE): As in [9], we
utilized the forward-backward linear prediction [12]
to obtain the autoregressive (AR) fit of each variable
for order 3. That is, in order to vectorize an MTS item
for SVM, each variable was represented with
three coefficients and each MTS item was conse-
quently represented as a row vector with 3� n
values, where n was the number of variables. RFE
was then employed to rank the n variables using the
average of the three primal values w0s per variable.
Linear kernel SVM was applied to train RFE for all
the data sets, and the one-versus-one multiclass
SVM is utilized for the HumanGait data set. For
small data sets, i.e., BCAR and HumanGait, RFE
within The Spider [31] was employed, while, for large
data sets, i.e., BCI_MPI, one of the LIBSVM tools [26]
was modified and utilized. Once the rank of
variables was determined by RFE, the variable
subset of size K was composed with the first
K variables with the high rankings, after which
leave-one-out cross validation was performed using
the 3�K AR fit coefficients corresponding to these
K variables selected.

. Fisher Criterion (FC): As is done for RFE, every MTS
item was vectorized with three AR fit coefficients per
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Fig. 4. (a) HumanGait data set, Classification Evaluation, (b) 22 Markers are utilized to capture the human walking motion for the HumanGait data

set [32]. The markers with a filled circle represent 18 markers from which the 22 variables are selected by CCLeVV er-Rank, which yields the same

performance accuracy as the one using all the 66 variables.

3. Even though the main purpose of DTW is not to make MTS items equi-
length, DTW has indeed been used to generate the sequences of the same
length [28], [29]. In this paper, DTW is considered as a way of vectorizing an
MTS item into one row vector, after which the MTS items will be fed into
SVM for classification.



variable. The Fisher Criterion implemented within
The Spider [31] was then employed to rank the
variables. As in [9], the implementation was slightly
modified so that the average of three Fisher scores
per variable was used to finally rank the original
n variables. The subsequent variable subset selection
and classification experiments were performed ex-
actly the same way as RFE.

Fig. 4a presents the generalization performances of the
selected subsets of variables on the HumanGait data set.
The X axis is the number of selected subset of variables, i.e.,
the number of clusters K for the CCLeVV er family, and the Y
axis is the classification accuracy. The figure shows that a
subset of 22 variables selected by CCLeVV er-Rank out of 66
performs the same as the one using all the variables, which
is more than 99.4 percent of accuracy. When 35 or more
variables are selected, the performances of CCLeVV er-Cluster,
CCLeVV er-Rank, and CCLeVV er-Hybrid are more or less the
same. The 22 variables selected by CCLeVV er-Rank are from
only 18 markers (marked with a filled circle in Fig. 4b) out
of 22, which would mean that the values generated by the
remaining four markers do not contribute much to the
identification of the person. From this information, we may
be able to better understand the characteristics of the
human walking.

The performance using the subsets of variables obtained
by RFE and Fisher Criterion is much worse than the ones
using the CCLeVV er approaches. It is even worse than
random selection of variable subsets. Even when using all
the variables, the classification accuracy is around 52 per-
cent, which is worse than that of 10 variables selected by the

CCLeVV er approaches. Considering the fact that RFE on
three AR coefficients performed well in [9], this may
indicate that, for the HumanGait data set, the correlation
information among variables is more important than for the
BCI MPI data set. Hence, each variable should not be taken
out separately to compute the autoregressive coefficients,
by which the correlation information would be lost. Note
that, in [9], the order 3 for the autoregressive fit is identified
after proper model selection experiments, which would
mean that for the HumanGait data set, the order of the
autoregressive fit should be determined, again, after
comparing models of different orders. This shows that
transforming an MTS item into a vector is not a trivial task.

Fig. 5 shows the classification performance of the
selected variables on the BCAR data set under two different
conditions: cylinder and card. In the cylinder (or card)
condition, a cylinder (or a card) was used as the target
object, while the pronated forearm posture was taken by a
subject to perform the continuous reach-grasp-place task.
BCAR is the simplest data set with 11 original variables and
the number of MTS items for each condition is just 39 (17
out of 39 are performed by poststroke subjects). Hence, we
applied the Exhaustive Search Selection (ESS) method to
find all the possible variable combinations, for each of
which we performed leave-one-out cross validation with
the SVM linear classifier. It took about 27 minutes to
complete the whole ESS experiments. The result of ESS
shows that 100 percent classification accuracy can be
achieved by no less than four variables out of 11 in both
conditions. The dotted lines in Fig. 5 represent the best, the
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Fig. 5. BCAR data set, Classification Evaluation. (a) Cylinder: CCLeVV er. (b) Cylinder: CCLeVV er versus RFE/FC. (c) Card: CCLeVV er. (d) Card: CCLeVV er

versus RFE/FC.



average, and the worst performance obtained by ESS,
respectively, given the number of selected variables.

Figs. 5a and 5c illustrate the comparative result of
CCLeVV er-Rank, CCLeVV er-Cluster, and CCLeVV er-Hybrid for
the cylinder and the card condition, respectively. All
three members of the CCLeVV er family show comparable
performance when more than four variables are selected
and the best performance of CCLeVV er is far beyond the
average accuracy of ESS in most cases. Besides, CCLeVV er can
achieve the same performance as the one using all
11 variables by using less number of variables, i.e., six
and seven for the card and cylinder conditions, respec-
tively. In particular, CCLeVV er-Rank produces 100 percent
accuracy with seven and eight variables for the cylinder and
the card condition, respectively, which is even better than
the one using all variables.

In Figs. 5b and 5d, the best performance produced by
CCLeVV er is compared to RFE and FC. As illustrated, both
RFE and FC never beat CCLeVV er-Rank and CCLeVV er-Hybrid
except when two variables are selected. These observations
imply that CCLeVV er never eliminates useful information in
its variable selection on the BCAR data set, where
synthesized features capturing the kinematics information
are used for the original variables and the number of
variables is relatively small.

For the BCI MPI data set, Fig. 6 shows the performance
comparison. Note that this is the same data set used in [9],
where they performed the feature subset selection per
subject. However, our goal is to obtain the variable subsets
across all the subjects, which would make the subset of
variables selected by CCLeVV er more applicable for subse-
quent data mining tasks. All the items from the five subjects
were therefore considered for variable subset selection in our
experiments. Moreover, while the regularization parameter
Cs was estimated via 10 fold cross validation from the
training data sets in [9], we used the default value, which is 1.

Fig. 6 depicts that when the number of selected variables
is less than six, RFE performs better than the CCLeVV er family
and the FC technique. When the number of selected
variables is greater than six, however, CCLeVV er-Cluster
performs far better than RFE, and when more than
21 variables are selected, CCLeVV er family by far outperforms
RFE and FC. The classification performance using all the
variables is shown in solid horizontal line. Note again that,
even using all the variables, the performance of RFE is
worse than that of 11 variables selected by CCLeVV er-Cluster.

5.4 Redundancy Reduction

In order to evaluate the effectiveness of the selected feature
subsets, other than the classification accuracy, the repre-
sentation entropy [33] is employed to measure the amount
of redundancy present in the selected variable subsets. The
variable subset selection algorithms based on the variable
ranking such as RFE, FC, and CCLeVV er-Rank suffer from a
common shortcoming that redundant variables may be
selected. Besides, a variable that is not significant by itself
but possibly essential in the subsequent mining tasks when
taken with others may never be selected because variables
are individually scored in the ranking based methods.
Therefore, the representation entropy would be a valid
index to determine the effectiveness of the proposed
clustering-based variable subset selection methods, i.e.,
CCLeVV er-Cluster and CCLeVV er-Hybrid, in terms of redun-
dancy reduction.

First, we describe the representation entropy measure
proposed in [33]. Let the eigenvalues of theK �K covariance
matrix of a selected feature set of size K be �j; j ¼ 1; . . . ; K.
Let ~�� be defined as

~��j ¼
�j

PK
j¼1 �j

: ð3Þ

~��j has similar properties like probability, that is, 0 � ~��j � 1

and
PK

j¼1
~�j�j ¼ 1. Then, the representation entropy ðERÞ is

defined as

ER ¼ �
X

K

j¼1

~��jlog ~��j: ð4Þ

The representation entropy attains a minimum value
when all the information is present along a single feature.
That is, the other features selected are redundant. In
contrast, ER is maximum when information is equally
distributed among all the features. That is, the least
redundant subset of variables is selected. Hence, in our
case, the higher the ER, the better. We first compute the
DCPCs as in Algorithm 1. For the � in (3), the eigenvalues
corresponding to the common principal components de-
scribing the common space across all MTS items only with
theK selected variables are exploited. Then, the ER value in
(3), i.e., the representation entropy for the selected variable
subset of size K, is obtained.

Table 4 summarizes the representation entropy for the
three data sets used in the previous experiments. The
representation entropy is computed when the number of
selected variables is approximately half the number of all
variables, i.e., when K 	 n=2.

As expected, in most cases, the clustering-based feature
subset selection methods produce higher representation
entropy than the ranking based feature subset selection
methods. More specifically, CCLeVV er-Cluster and CCLeVV er-
Hybrid produce consistently higher representation entropy
than CCLeVV er-Rank across all three data sets. This indicates
redundant variables are really eliminated during the
process ofK-means clustering and selecting a representative
variable of each cluster. As compared to RFE and FC,
CCLeVV er-Cluster and CCLeVV er-Hybrid attain lower presenta-
tion entropy than RFE and FC in two cases. Hence, further
investigation is required to understand these unexpected
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Fig. 6. BCI MPI data set, Classification Evaluation.



results. Nonetheless, for the data sets where unsupervised
variable selection is the only option due to the absence of
class labels, this representation entropy would be one of the
evaluation indexes to validate the selected variables.

5.5 Processing Time

Table 5 summarizes the processing time of the five feature
subset selection methods employed for the experiments. The
processing time for the CCLeVV er family includes the time to
perform Algorithm 1 and the time to perform each of the
three variationswhile varyingK from 2 to n� 1 for each data
set. For example,K changes from 2 to 65 for the HumanGait
data set. The processing time for RFE and FC includes the
time to transform the data to three Autoregressive fit
coefficients and the time to perform the feature subset
selection, i.e., to obtain the ranks of all the variables.

For CCLeVV er-Rank, as soon as Algorithm 1 is done, the
ranks of all the variables are computed instantly. For
example, it took only about 4 seconds to obtain the ranks of
all the 66 variables of the HumanGait data set. However, for
CCLeVV er-Cluster and CCLeVV er-Hybrid, the majority of time
is spent on performing the K-means clustering. For
example, it took more than 85 seconds to perform the
K-means clustering, while it took less than four seconds to
execute Algorithm 1 for the HumanGait data set. This is due
to the fact that K-means clustering is repeated 20 times and
the one with the minimum sum of Euclidean Distances

between each cluster centroid and the column vectors
within the cluster is chosen as the best clustering result in
Line 7 of Algorithm 3.

For RFE and FC, the time to transform the data takes
more than 95 percent of the total time. That is, it took
113 seconds to transform the HumanGait data set, while
only a couple of seconds were required for the rest of FC.
For the BCI MPI data set, whose average length is 1,280, it
took around 7,600 seconds to transform the data set. Recall
that the order of the autoregressive (AR) model, which is 3
in [9], has been decided after comparing models of different
orders employing 10 fold cross validation, which would
increase the total processing time even more, if the time to
decide the AR order is considered.

Even after the transformation of the data set, a consider-
able amount of time is still required for RFE. This is because
RFE is a wrapper feature selection method. That is, RFE
utilizes the classifier within the feature selection procedure
to select the best features which produce the best classifica-
tion precision. CCLeVV er, on the other hand, is an unsupervised
feature selection method [15]. That is, CCLeVV er does not
utilize the class label, nor, thusly, the classification accuracy.
Intuitively, CCLeVV er computes the similarities between
variables and the importance of each variable based on
how much each variable contributes to the common
principal components, without using the class labels.

Since CCLeVV er does not include the classification proce-
dure, it takes less time to yield the feature subset selection
than the wrapper methods. For example, for the BCI MPI
data set, CCLeVV er took less than 12 seconds to compute the
DCPCs and around 35 seconds to perform the K-means

clustering on the loadings of the DCPCs, while RFE took
more than 7,800 seconds. Across the data sets, the CCLeVV er
approaches take up to 2 orders of magnitude less time than
RFE, while performing better than RFE in classification
accuracy by up to a factor of two.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a family of three novel
unsupervised feature subset selection methods for multi-
variate time series (MTS), based on common principal
component analysis (CPCA), termed descriptive Common
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principal component Loading based Variable subset selection
method (CCLeVV er). CCLeVV er utilizes the properties of the
principal components and the descriptive common princi-
pal components (DCPCs) to retain the correlation informa-
tion among the variables. CCLeVV er-Rank ranks the variables
based on their contribution to the common principal
components. Subsequently, the top K ranked variables are
chosen. CCLeVV er-Cluster and CCLeVV er-Hybrid perform
clustering on the loadings of the DCPCs to select a subset
of variables. Our exhaustive experiments on three real-
world data sets indicate that the family of CCLeVV er
techniques outperforms other feature selection methods,
such as Recursive Feature Elimination (RFE), Fisher
Criterion (FC), and random selection by up to a factor of
two in terms of the classification accuracy. Moreover,
CCLeVV er takes up to 2 orders of magnitude less processing
time than RFE and FC.

We intend to extend this research in two directions. First,
we plan to extend this work to be able to estimate the
optimal number of variables, i.e., the optimal number of
clusters K using, e.g., the Gap statistic in [34]. We also plan
to generalize this research and use k-way PCA [35] to
perform PCA on a k-way array. Hence, all the MTS items are
to be represented in a 3-way array, and this would require
no transformation such as vectorization that may still result
in information loss.
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