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Abstract

Irrelevant features and weakly relevant features may
reduce the comprehensibility and accuracy of concepts
induced by supervised learning algorithms. We for-
mulate the search for a feature subset as an abstract
search problem with probabilistic estimates. Search-
ing a space using an evaluation function that is a
random variable requires trading off accuracy of es-
timates for increased state exploration. We show how
recent feature subset selection algorithms in the ma-
chine learning literature fit into this search problem as
simple hill climbing approaches, and conduct a small
experiment using a best-first search technique.

1 Introduction
Practical algorithms in supervised machine learning
degrade in performance (prediction accuracy) when
faced with many features that are not necessary for
predicting the desired output. An important question
in the field of machine learning, statistics, and pat-
tern recognition, is how to select a good subset set of
features.

From a theoretical standpoint, the question is not
of much interest. A Bayes classifier is monotonic,
i.e., adding features cannot decrease performance, and
hence restricting the induction algorithm to a sub-
set of features is never advised. Practical algorithms,
however, are not ideal, and the monotonicity assump-
tion rarely holds. Notable exceptions that do satisfy
monotonicity assumption are discriminant functions
and distance measures such as the Bhattacharyya dis-
tance and divergence. For these functions branch and
bound techniques can be used to prune the search space
(Narendra & Fukunaga 1977).

Common machine learning algorithms, including
top-down of decision tree algorithm, such as ID3 and
C4.5 (Quinlan 1992), and instance based algorithms,
such as IB3 (Aha, Kibler, & Albert 1991), are known
to suffer from irrelevant features. For example, run-
ning C4.5 without special flags on the Monk 1 problem
(Thrun ~: others 1991), which has three irrelevant fea-
tures, generates a tree with 15 interior nodes, five of
which test irrelevant features. The generated tree has

an error rate of 24.3%, which is reduced to 11.1% if
only the three relevant features are given. Aha (1992)
noted that "IB3’s storage requirement increases expo-
nentially with the number of irrelevant attributes."

Following the definitions in John, Kohavi, & Pfleger
(1994), features can be divided into relevant and irrele-
vant. The relevant features can be further divided into
strong and weak relevances (see Section 2 for the for-
mal definitions). Irrelevant features are features that
have no relation to the target concept; weakly relevant
features have some bearing to the target concept, but
are not essential; and strongly relevant features are in-
dispensable. A good subset of features that would be
used by an ideal classifier includes all the strongly rel-
evant features, none of the irrelevant features, and a
subset of the weakly relevant features.

In the next section we give the basic definitions for
the rest of the paper. In Section 3, we describe the
wrapper model. In Section 4, we abstract the subset
selection into a search problem in which the evaluation
function is probabilistic. In Section 5, we show how
some recent suggestions for feature selection fit into the
search framework. Section 6 describes a small exper-
iment using best-first search instead of hill-climbing,
and Section 7 concludes with a summary and future
work.

2 Definitions
The following definitions closely follow those defined
in John, Kohavi, L: Pfleger (1994). The input to 
supervised learning algorithm is a set of n training
instances. Each instance X is an element of the set
F1 × F2 × ¯ ¯. x Fro, where F~ is the domain of the ith
feature. Training instances are tuples (X, Y) where 
is the label, or output. Given an instance, we denote
the value of feature Xi by zi.

The task of the induction algorithm is to induce a
structure (e.g., a decision tree, a neural net, or simply
a list of instances), such that given a new instance, it is
possible to accurately predict the label Y. We assume
a probability measure p on the space F1 × F2 × ..- ×
FmxY.
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Let S,. be the set of all features except Xi, i.e., Si =
{X1,..., Xi-1, Xi+l,..., X,~}. Denote by si a value-
assignment to all features in Si.

Definition 1 (Strong relevance)
Xi is strongly relevant iff there exists some xi, y, and
si for which p(Xi = xi, Si = si) > 0 such that

p(Y = y I xi = xi, = # p(y = v I = 
Definition 2 (Weak relevance)
A feature Xi is weakly relevant iff it is not strongly
relevant, and there exists a subset of features S~ of Si
for which there exists some xi, y, and s~ with p(Xi 
xi, S’i = s~) > 0 such that

pW = u I x, = = # p(r = u I = 
A feature is relevant if it is either weakly relevant

or strongly relevant. A feature is irrelevant if it is not
relevant.

3 The Wrapper Model

A good subset of features for an inductive learning al-
gorithm should include a subset of the relevant features
that optimizes some performance function, usually pre-
diction accuracy.

The pattern recognition literature (Devijver & Kit-
tier 1982), statistics literature (Miller 1990; Neter,
Wasserman, & Kutner 1990), and recent machine
learning papers (Almuallim & Dietterich 1991; Kira 
Rendell 1992; Kononenko 1994) consist of many such
measures that are all based on the data alone. Most
measures in the pattern recognition and statistics lit-
erature are monotonic, i.e., for a sequence of nested
feature subsets F1 ~ F2 _D -.. D F~, the measure f
obeys f(F1) :> f(F~) > ... > f(Fk). Monotonic mea-
sures allow pruning the search space using a branch
and bound algorithm, but most machine learning in-
duction algorithms do not obey the monotonic restric-
tion. Even when branch and bound can be used, the
space is usually too big when there are more than 20
features, and suboptimal methods are used in practice.

All of the above measures and algorithms, however,
ignore the fact that induction algorithms are not op-
timal, and that most induction algorithms conduct a
very limited search in the space of possible structures.
Ignoring these limitations can lead to feature subsets
which are inappropriate for the induction algorithm
used. As was shown in by John, Kohavi, & Pfleger
(1994), even features with high predictive power may
impair the overall accuracy in some cases. Selecting a
subset of features must, therefore, not be based solely
on the intrinsic discriminant properties of the data, but
should be made relative to a given algorithm.

In the wrapper model, shown in Figure 1, the feature
subset selection is done using the induction algorithm
as a black box. The feature subset selection algorithm
conducts a search for a good subset using the induc-
tion algorithm itself as part of the evaluation function.

In order to evaluate the prediction accuracy of the in-
duced structure, k-fold cross validation (Breiman et
al. 1984) can be used. The training data is split into 
approximately equally sized partitions. The induction
algorithm is then run k times, each time using k - 1
partitions as the training set and the other partition
as the test set. The accuracy results from each of the
k runs are then averaged to produce the estimated ac-
curacy.

4 Feature Subset Selection as Search

The problem of feature subset selection is basically a
problem of state space search. Each state represents
a subset of features, and the goal is to find the state
with the best performance measure.

The wrapper model, which uses cross validation to
estimate accuracy, complicates the search problem fur-
ther. The fact that k-fold cross validation returns an
estimate that is a random variable for k < n, implies
that there is uncertainty in the returned value.

One way to decrease the variance is to run k-fold
cross validation more than once and average the re-
sults, shuffling the data before each k-fold cross valida-
tion run. Averaging the results will yield a mean, such
that the variance of the mean depends on the number
of iterations conducted. Increasing the number of it-
erations shrinks the confidence interval for the mean,
but requires more time. The tradeoff between more
accurate estimates and more extensive exploration of
the search space leads to the following abstract search
problem.

Search with Probabillstic Estimates Let S be a
state space with operators between states. Let f : S F-~

be an unbiased probabilistic evaluation function that
maps a state to a real number, indicating how good the
state is. The number returned by f(s) comes from a
distribution :D(s) with mean f* (s), which is the actual
(unknown) value of the state. The goal is to find the
state s with the maximal value of f* (s).

The mapping to the feature subset selection prob-
lem is as follows. The states are the subsets, and
the operators are "add one feature," "delete one fea-
ture," etc. The evaluation function is the cross valida-
tion accuracy3

Searching in the space of feature subsets has been
studied for many years. Sequential backward elim-
ination, sometimes called sequential backward selec-
tion, was introduced by Marill & Green in 1963. Kit-
tler generalized the different variants including forward
methods, stepwise methods, and "plus t-take away

1Evaluation using cross validation is pessimistically bi-
ased due to the fact that only part of the data is used for
training. The estimate from each fold is an unbiased esti-
mator for that fold, which contains only n. (k - 1)/k of the
instances. For model selection, this pessimism is of minor
importance.
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Figure 1: The wrapper model. The induction algorithm is used as a "black box" by the subset selection algorithm.

r." Branch and bound algorithms were introduced by
Narendra & Fukunaga (1977). Finally, more recent
papers attempt to use AI techniques, such as beam
search and bidirectional search (Siedlecki & Sklansky
1988), best first search (Xu, Van, & Chang 1989), 
genetic algorithms (Vafai & De Jong 1992). All the
algorithms described above assume that the evaluation
function is deterministic. When the evaluation func-
tion is a random variable, the search becomes more
complicated.

Greiner (1992) describes how a to conduct a hill-
climbing search when the evaluation function is prob-
abilistic. The algorithm stops at a node that is a
local optimum with high probability. Yah & Mukai
(1992) analyze an algorithm based on simulated an-
nealing and show that it will find the global optimum
if given enough time.

5 Instantiations of the Abstract

Search Problem

In this section we look at three instantiations of the
abstract search problem.

5.1 Hill climbing using the mean value

One simple approach used by John, Kohavi, & Pfleger
(1994) is to do a k-fold cross validation and use the
mean value as the estimate. This approach was used
with forward stepwise selection and backward stepwise
elimination.

Backward stepwise elimination is a hill-climbing ap-
proach that starts with the full set of features and
greedily removes or adds one feature that improves per-
formance, or degrades performance slightly. Forward
stepwise selection is a similar algorithm that starts
from the empty set of features.

The main disadvantage of this algorithm is that it
does not take into account the uncertainty in the esti-
mated accuracy. In the empirical observations it was
noted that the values returned from the cross vali-
dation estimates had a large variance. This variance
causes the algorithm to stop prematurely both during
forward stepwise selection and during backward step-
wise elimination.

5.2 Hoeffding races

Maron & Moore (1994) in an approach very similar 
Greiner (1992), attempt to shrink the confidence in-
terval of the accuracy for a given set models, until one
model can be proven to be optimal with high probabil-
ity. The evaluation function is a single step in leave-
one-out cross validation, i.e., the algorithm is trained
on randomly chosen n - 1 instances and tested on the
one that is left.

The idea in the above paper is to race competing
models, until one is a clear winner. Models drop out of
the race when the confidence interval of the accuracy
does not overlap with the confidence interval of the ac-
curacy of the best model (this is analogous to imposing
a higher and lower bound on the estimation function
in the B* algorithm). The race ends when there is 
winner, or when all n steps in the leave-one-out cross
validation have been executed. The confidence interval
is defined according to Hoeffding’s formula (Hoeffding
1963):

Pr(if(s)-f(s) > 2e- 2m~2 / B2

where f(s) is the average of m evaluations and B
bounds the possible spread of point values. Given a
confidence level, one can determine e, and hence a con-
fidence interval for f* (s), from the above formula.

The paper, however, does not discuss any search
heuristic, and assumes that a fixed set of models is
given by some external source.

5.3 Hill climbing utilizing races

Moore 8z Lee (1994) describe an algorithm for feature
subset selection that has both ingredients of the ab-
stract problem--it has a search heuristic, and it uses
the probabilistic estimates in a non-trivial manner.

The algorithm does a forward selection and back-
ward elimination (see Section 5.1), but instead of esti-
mating the accuracy of each added (deleted) feature us-
ing leave-one-out cross validation, all the features that
can be added (deleted) are raced in parallel. Assum-
ing that the distribution of f(s) is normal, confidence
intervals are used to eliminate some features from the
race.
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Dataset Baseline C4.5 C4.5-HCS C4.5-BFS BFS Cpu Subset
Acc. ACE. Acc. AcE. time (sec)

Breast-cancer 73.7% 74.7% 73.7% 74.7% 873 I, 4, 6, 8
Chess 53.2% 99.5% 93.9% 97.4% 27289 0,5,9, 13,14,

20, 31, 32, 34
Glass 30.6% 63.9% 61.1% 62.5% 937 O, I, 2, 3
Glass2 58.2% 72.7% 80.0% 80.0% 515 O, I, 3, 7
Heart-disease 62.4% 74.3% 79.2% 79.2% 787 8, 11, 12
Hepatitis 86.5% 80.8% 82.7% 84.6% 2100 4, 6, 16, 17
Horse-colic 60.3% 80.9% 85.3% 85.3% 2073 O, 2, 9, 21
Hypothyroid 94.8% 99.2% 99.2% 99.2% 10826 13, 14, 22
Iris 30.0% 94.0% 92.0% 92.0% 68 3
Labor 64.7% 82.4% 82.4% 82.4% 401 I, 10
Lymphography 60.0% 76.0% 78.0% 78.0% 923 O, 8, 12, 16
Mushroom 31.1% lOO.O% 100.0% 100.0% 19937 4,7,11,14,19
Sick-euthyroid 90.4% 97.7% 97.8% 97.8% 13125 9,14,16,22
Soybean-small 31.1% 100.0% 100.0% 100.0% 937 20, 21
Vote 64.8% 95.2% 95.2% 95.2% 534 3
Votel 64.8% 88.3% 89.7% 89.7% 751 2, 3, 5
Average 59.78% 86.2% 86.9% 87.4%

Table 1: Comparison of C4.5 and C4.5 with best-FS feature subset selection.

Schemata search is another search variant that al-
lows taking into account interactions between features.
Instead of starting with the empty or full set of fea-
tures, the search begins with the unknown set of fea-
tures. Each time a feature is chosen and raced between
being "in" or "out." All combinations of unknown fea-
tures are used in equal probability, thus a feature that
should be "in" will win the race, even if correlated with
another feature.

Although this method uses the probabilistic esti-
mates in a Bayesian setting, the basic search strategy
is simple hill-climbing.

6 Experimental Results
In order to estimate the utility of broadening the
search, we used a best-first search in the space of fea-
ture subsets. The initial node was the empty set of fea-
tures and the evaluation function was a single 10-fold
CV.2 At each expansion step, best-first search chooses
to expand an unexpanded node with the highest esti-
mated accuracy. The search stops when five node ex-
pansions do not yield improved performance of more
than 0.1%.

The datasets shown in Table 1 are the same ones
used in Holte’s paper (Holte 1993) from the UC Irvine
repository (Murphy &: Aha 1994). For all datasets
that did not have a test set, we generated an indepen-
dent sample of one third of the instances for testing.3

The table shows the baseline accuracy, £e., a major-
ity predictor; C4.5’s accuracy; C4.5’s accuracy for the

2The same 10-way split was done for all subsets.
3Note that the accuracies are from a single randomly

selected test set, not averaging over multiple runs as was
done by Holte.

subset selected by a hill-climbing search (C4.5-HCS);
C4.5’s accuracy for the subset selected by a best-first
search (C4.5-BFS); the CPU time for C4.5-BFS on 
Sparc 10 512; and the subset selected by the best-first
search (feature numbers starting from zero).

The results show that the hill-climbing search for a
good subset improve C4.5’s average accuracy by 0.7%,
and that the best-first search strategy improves it by
1.2%. By themselves, these improvements may not
seem significant, but it is well known that it is very
hard to improve on C4.5’s performance, and in some
cases (e.g., glass2, heart-disease, horse-colic), the im-
provements are substantial.

On some artificial datasets, we have seen more dra-
matic examples of the improvement of a good search
strategy. For example, on the monkl dataset (Thrun

others 1991), C4.5’s accuracy is 75.7%, C4.5-HCS’s
accuracy is 75.0%, and C4.5-BFS’s accuracy is 88.9%.
On the Corral dataset (John, Kohavi, & Pfleger 1994),
C4.5’s accuracy is 81.2%, C4.5-HCS’s accuracy is 75%,
and C4.5-BFS’s accuracy is 100.0%.

7 Summary and Future Work
We have abstracted the feature subset selection using
cross validation into a search problem with a proba-
bilistic evaluation function. We have shown (Section 5)
how three different instantiations of the abstract algo-
rithm differ in their treatment of the evaluation func-
tion and search. While one algorithm ignores the fact
that the evaluation is probabilistic and uses the mean
value of a series of evaluations (k-fold cross validation),
the other two use confidence intervals to aid in finding
the best state (subset) fast. The two search algorithms
examined are basic hill-climbing algorithms.

Preliminary experiments using best-first search and
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simple 10-fold cross validation for evaluation, show
that broadening the search may indeed help. A more
extensive experiment utilizing the fact that the evalu-
ation function is probabilistic is now being conducted.

The algorithms discussed attempted to improve pre-
diction accuracy. In many cases comprehensibility is
very important, even when resulting in a small loss of
accuracy. Biasing the algorithms towards smaller sub-
sets may be important in such cases.

The search for a good subset is conducted in a very
large space. All algorithms mentioned in this paper
start the search either from the empty set of features,
or from the full set of features. Since an optimal
classifier should include all strongly relevant features,
it might be beneficial to estimate which features are
strongly relevant, and start the search from this sub-
set.
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