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ABSTRACT As a novel vision sensor, the dynamic and active-pixel vision sensor (DAVIS) combines a

standard camera and an asynchronous event-based sensor in the same pixel array. In this paper, we propose a

novel asynchronous feature tracking method based on line segments with the DAVIS. The proposed method

takes asynchronous events, synchronous image frames, and IMU data as the input. We first use the Harris

detector to extract feature points and the Canny detector to extract line segment templates from image frames.

Then we select spatio-temporal windows from asynchronous events and perform registration to estimate the

optical flow. The registration is achieved by associating the extracted line segments with the events inside the

window. Expectation maximization-iterative closest point (EM-ICP) is adopted for the registration. After-

ward, we use the estimated optical flow and the IMU data to update the position of line segments, and take

them as the new templates.We evaluate our method on the public event camera datasets. The results show that

our method can achieve comparable performance to other methods in terms of accuracy and tracking time.

INDEX TERMS Feature tracking, event camera, EM-ICP, line segments, DAVIS.

I. INTRODUCTION

Feature tracking plays an important role in object track-

ing and Simultaneous Localization and Mapping (SLAM)

[1], [2], and it is widely studied in robotics and computer

vision. Images acquired from standard cameras easily pro-

duce motion blur when faced with fast movements, thus it is

difficult for standard cameras to achieve feature tracking in

this case. Besides, standard cameras provide no information

to compute precise feature motions during the blind time

between frames. What is more, standard cameras capture

redundant information in static scenes, which not only causes

waste of storage resources, but also consumes large amounts

of additional computing resources in the processing proce-

dure.

Bio-inspired event cameras, such as the Dynamic Vision

Sensor (DVS) [3], overcome the above mentioned limitations
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of standard frame-based cameras. Different from standard

cameras, event cameras only output pixel-level brightness

changes. In the pixel array, each pixel independently gen-

erates an output (named ‘‘event’’) whenever the inten-

sity change exceeds a threshold. Event cameras output

spatio-temporal streams of asynchronous events. They have

great advantages in fast movement scenes because of the low

latency. Furthermore, they can also avoid recording redun-

dant information in static or slowly changed scenes.

However, current frame-based feature tracking methods

[4], [5] cannot be used directly to process the streams of asyn-

chronous events, and new algorithms need to be developed to

achieve feature tracking based on event cameras. Considering

that event streams do not provide absolute brightness values,

which makes it difficult to perform robust and long-term

feature tracking, the combination of events and image frames

provides a good solution to achieve fast and robust feature

tracking. In this paper, we aim at the feature tracking prob-

lem based on the Dynamic and Active-pixel Vision Sensor
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FIGURE 1. The tracked event features with our method on the
shape_rotation sequence of Event Camera Dataset [7]. The start time for
tracking is 8.0038s.

(DAVIS) [6]. Introduced in 2014, the DAVIS combines a

standard camera with an asynchronous event-based sensor in

the same pixel array. So it provides the possibility to solve the

data association problem using both events and image frames.

Inspired by the fact that edges in scenes trigger events

more easily because of their large gradients, we propose a

novel feature tracking method based on line segments using

DAVIS camera. As shown in Fig. 1, in our work, the tracked

feature points are extracted using Harris et al. [8]. We adopt

the Canny detector [9] to extract line segments from the

image frame, and select spatio-temporal windows from asyn-

chronous event streams based on the lifetime [10] of events.

We then take line segments as the template to perform feature

tracking for asynchronous event streams. EM-ICP [11] is

used for the registration in the spatio-temporal coordinate.

Finally, we use the estimated optical flow and the IMU data to

update the position of line segments, and take the updated line

segments as the new template. The proposed method com-

bines events, image frames and IMU data for feature tracking,

and this combination can yield accuracy improvement and

achieve high-speed updates. The main contributions of this

paper can be summarized as below:

• We present a novel asynchronous feature association

method based on line segment templates. We detect

Harris features and line segments from image frames,

and track the Harris features in event streams by aligning

the line segment templates with spatio-temporal event

windows. EM-ICP is adopted for the alignment in order

to estimate the optical flow.

• We combines the estimated optical flow and the IMU

data to update line segment templates. This combination

ensures the accuracy and high speed of the template

correction, which can enhance the tracking performance.

• We implement our proposed tracking method with C++

and perform evaluational experiments on the public

Event Camera Datasets [7]. The results show that our

method demonstrates comparable performance to the

previous event tracking methods.

The rest of this paper is organized as follows. Section II

reviews the related works. The details of our proposed track-

ing method are described in Section III. Section IV gives our

experimental results. Finally, our conclusion and future work

are discussed in Section V.

II. RELATED WORK

In the past decade, visual SLAM has become a hot research

topic in both robotics and computer vision community.

With the emergence of novel event cameras, event-based

SLAM methods [12]–[15] draw lots of attention from

researchers, and as an important component of SLAM sys-

tem, event-based feature detection and tracking are widely

studied.

A. EVENT-BASED FEATURE DETECTION

Event-based feature detection can mainly be divided into two

kinds of methods: one relies on artificially synthesized event

frames and the other is directly based on asynchronous event

streams. For event frame-based feature detectors, the event

frames are synthesized by events according to a temporal

window, then the traditional feature detectors such as Har-

ris, FAST [16] can be used for feature detection on these

synthesized event frames. As for event stream based feature

detectors, they do not require artificially synthesized event

frames and can directly operate on asynchronous events.

Mueggler et al. [17] presented an event-based FAST corner

detector for event streams and improved the event-based

Harris corner detector [18]. Later, [19] presented an speed-up

version of [18]. Alzugaray and Chli [20] introduced a filter

for event streams to remove redundant events before detect-

ing, and the filter can enhance both accuracy and real-time

performance.

B. EVENT-BASED FEATURE TRACKING USING EVENTS

For feature tracking methods using asynchronous events,

Lagorce et al. [21] presented an approach which defines and

tracks various kernels in event streams. These kernels are

modeled with different mathematical tools, such as Gaussian,

Gabor, the combination of Gabor functions and arbitrary

user-defined kernels. The proposed tracker can achieve robust

tracking even when faced with variations of position, scale,

and orientation. Benosman et al. [22] computed the optical

flow for events by using a local plane-fitting algorithm. They

selected a spatio-temporal window with size L × L × 21t

centered on each event and used a plane to fit events. Then the

optical flow of events was estimated by using a differential

approach on the plane. Mueggler et al. [10] changed the

spatio-temporal window from 21t to 1t to overcome a 1t

latency. Clady et al. [23] extended the method of [22], and

selected corner events which occur at the intersection of two

or more fitting planes. The authors computed the velocities

of corner events using the intersection of several geomet-

ric constraints and avoided the aperture problem. Bardow

et al. [24] estimated optical flow and scene intensity simul-

taneously by minimizing a cost function. The cost function
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considers three constraints: the intensity changes acquired

by events in a sliding time window, the photometric con-

sistency, and the spatio-temporal smoothness. However, this

method is time-consuming and needs GPU for accelerating

the computational speed. Zhu et al. [25] proposed a method

to track corners by computing optical flow using the EM

algorithm [11]. This method can achieve long-time feature

tracking. Later, [26] extended this method into a visual iner-

tial odometry system, in which they used IMU to correct

feature positions.

Rebecq et al. [14] computed optical flow by applying

the Lukas-Kanade method [27] to motion-corrected event

frames. The motion-corrected event frames were generated

by projecting events to the same plane using rotation R and

translation t . The depth of these 3D points was estimated

by 2D linear interpolation of landmarks. Alzugaray and

Chli [20] proposed an asynchronous event corner detector

which was called ‘Arc*’. Based on the proposed ‘Arc*’,

the authors employed a graph and computed the Euclidean

distance for feature tracking. Later, they [28] also proposed

a novel descriptor for asynchronous events and used it for

tracking, and they adopted descriptor distance instead of the

Euclidean distance for tracking.

C. EVENT-BASED FEATURE TRACKING USING BOTH

EVENTS AND IMAGE FRAMES

Tedaldi et al. [29] proposed a tracking method which used

edges from image frames to perform registration. The authors

took advantage of the fact that events were generated due to

the brightness change and most events took place on edges.

For each incoming asynchronous event, they performed reg-

istration via a transformation between edges and events.

Gehrig et al. [30] also proposed an event tracking method

which combined image frames and events. They solved

the data association problem by exploiting the strength of

brightness gradients. The features were firstly extracted from

standard image frames, and the brightness-increment images

from events were generated. Then the warp and optical flow

of features were estimated simultaneously by achieving data

association between the brightness-increment images and

intensity gradient of standard image frames.

III. METHODOLOGY

Inspired by [25], [29], our method adopts the line segments

information extracted from image frames to compute optical

flow. These line segments are used as the bridge to establish

the correspondence between events. In order to enhance per-

formance and achieve asynchrony, we also use the IMU data

to correct the line segments during the tracking process.

An overview of our proposed feature tracking method

is shown in Fig. 2. In the initialization period, the feature

points and edge map are detected from image frames, and

the edge map is divided into line segment templates for every

detected feature point. In the tracking period, spatio-temporal

windows are selected according to the lifetime of events, then

the spatio-temporal windows and line segment templates are

used for optical flow estimation by using EM-ICP algorithm.

After getting the estimated optical flow, the feature points

and line segment templates will be updated, which includes

two steps. In step 1, we update feature positions using the

estimated optical flow (see details in Section III-B). In step 2,

we first use the estimated optical flow to update the position

of line segment templates and then use the IMU data to

correct the position of line segment templates (see details in

Section III-C).

Algorithm 1 describes the implementation of the pro-

posed tracking method. The time interval [t0, tN ] can be

divided into a series of subintervals [t0, t1], . . . , [tN−1, tN ].

The spatio-temporal window is constructed by collecting

asynchronous events. The temporal size of the window is

determined by the lifetime of events, and the spatial size of

the window is s× s, in which s is 29.

Algorithm 1 Feature Tracking Based on Line SegmentsWith

DAVIS Camera
Initialization:

1: Detect features {fi}
n
i=1 from image frames using Harris

detector.

2: Detect line segments using Canny detector and select

line segment templates Pfi = {pj}
mi
j=1 for every detected

Harris feature fi.

Tracking:

3: while every subinterval 1t do

4: for i = 1 : n do

5: Select spatio-temporal windows for fi.

6: Estimate optical flow vi of fi by (6),(7).

7: Update feature fi← fi + vi1t .

8: Update the position of line segment templates Pfi
using the estimated vi.

9: Correct the position of line segment templates Pfi
using IMU data.

10: end for

11: Compute the 1t of next subinterval by lifetime of

events.

12: end while

A. FEATURE AND EDGE DETECTION FROM FRAMES

We detect feature points {fi}
n
i=1 using Harris detector and

extract the edge map using Canny detector from the image

frame at time t0. As shown in Fig. 3(b), the red points repre-

sent feature points and the blue points represent pixels on the

edge map. For every feature point, we take the line segments

(composed of the blue points) in the same red square patch

as the templates Pfi = {pj | pj(t0) ∈ Hi}
mi
j=1. Hi represents

the square patch around fi, pj is the jth template point on the

line segments in Hi, and mi is the number of template points

of fi.The patch size is determined by trial and error. It should

not be too large for the reason that we assume the pixels in the

same patch have the same optical flow. For simplicity, we set

the same size for all patches.
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FIGURE 2. The overview of the proposed feature tracking method based on line segments. The method can achieve asynchronous feature
tracking for events. We extract line segment templates from image frames, and select spatio-temporal windows from asynchronous events.
Then we estimate optical flow by associating line segment templates with spatio-temporal event windows by minimizing the distances
between them using EM-ICP algorithm. We get the updated feature points by estimated optical flow. Finally, the estimated optical flow is
used for updating the position of line segments and then the IMU data is used for correcting the position of line segments. The updated
line segments are taken as the new templates for optical flow estimation.

For scenes of complex texture, the detected edge map may

obtain some useless edges which have a negative impact on

establishing correspondences between template points and

events. The filter can be used to reject useless edges and

extract the main edges from the edge map.

B. OPTICAL FLOW ESTIMATION AND FEATURE UPDATE

Fig. 3(c), 3(d) show the process of estimating optical flow

and updating feature positions. Considering the ith feature

fi detected from the image frame at time t0. In the time

subinterval [t0, t1], the motion of fi in image plane can be

described as follow:

fi(t1) = fi(t0)+

∫ t1

t0

ḟi(t)dt (1)

ḟi(t) is the optical flow of fi at time t . For the reason that

the time subinterval [t0, t1] is small, we assume fi has the con-

stant optical flow v during [t0, t1]. Based on this assumption,

we compute v by following steps.

1) SELECT THE SPATIO-TEMPORAL WINDOW

For the event set W1 during the tracking procedure in subin-

terval [t0, t1], we define a subset ofW1 as:

W
fi
1 = {ek |t0 < tek < t1, xk ∈ Hi}

li
k=1 (2)

where W
fi
1 is the spatio-temporal window around feature fi,

and ek (xk , tek ) is the kth event of W
fi
1 which happens at time

tek and its pixel location is xk . li represents the number of

events inW
fi
1 .

2) ASSOCIATING THE SPATIO-TEMPORAL WINDOW WITH

THE LINE SEGMENT TEMPLATES

We assume that the events in W
fi
1 have the same optical flow

considering the small size ofHi. Then we can get the updated

position of ek at time t0 using the optical flow v:

x′k = xk − v(tek − t0) (3)

For convenience, we define t̄ek = tek − t0. Assuming ek
is generated by the motion of pj, we have ek = π (pj) and

x′k = pj(t0). pj is the jth template point of the line segment

templates Pfi . And pj(t0) represents the position of the tem-

plate point pj at time t0. In this way, we have associated the

event ek with the template point pj by optical flow v. Notice

that one template point may correspond to multiple events.

Then the following equation should hold for any pair (k, j):

‖ (xk − t̄ekv)− pj(t0) ‖
2
ek=π(pj)

= 0 (4)

However the correspondence π between ek and pj is

unknown. Referring to [25], we represent the correspondence

between events and template points with probability rkj :=

P(ek = π(pj)). The symbol ‘:=’ means it is a definition.

Then the optical flow v of fi is computed by minimizing the

following function:

min

li
∑

k=1

(

mi
∑

j=1

rkj ‖ (xk − t̄ekv)− pj(t0) ‖
2) (5)

where we take the probability rkj as the weight of the distance

between the updated position of ek at t0 and pj(t0). rkj can be
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FIGURE 3. The tracking process of our method. (a) The standard image frame. (b) The feature points(red points) and the line segment
templates (blue line segments inside the red square patches). (c) Optical flow estimation by aligning the line segment template and the
spatio-temporal event window. The color arrows represent the optical flow. The brown points represent events. (d) Feature position
update. The color points on the top represent the updated features. (e) Line segment position update using both estimated optical flow
and IMU data. The pentagram on the top composes of updated line segments. (f) The tracking performance. We draw the line segment
templates during the tracking.

calculated by:

rkj =
‖ (xk − t̄ekv)− pj(t0) ‖

2

∑mi
j=1 ‖ (xk − t̄ekv)− pj(t0) ‖2

(6)

Since the calculation of rkj is related to the optical flow v,

we use the EM-ICP algorithm [11] to iteratively calculate v.

Themethod are summarized in Algorithm 2. At the initial part

of the algorithm, we initialize the optical flow v as 0.

In the E step, we update rkj with (6) where v is given from

the M step of last iteration.

In the M step, we update v by solving the linear least

squares problem of (5):

v =

∑li
k=1

∑mi
j=1 rkj t̄ek (xk − pj(t0))

∑li
k=1

∑mi
j=1 rkj t̄

2
ek

(7)

We iteratively conduct E step and M step until the change

1v is below a threshold σ , and we can get the final estimated

optical flow v. We then update the position of feature fi at

time t1 using optical flow:

fi(t1) = fi(t0)+ v(t1 − t0) (8)

C. LINE SEGMENT TEMPLATES UPDATE

Considering the assumption that events in the same square

patch have the same optical flow, we also use the esti-

mated optical flow to update the position of the line segment

templates.

Algorithm 2 Optical Flow Estimation for Feature fi

Input: The line segment templates Pfi = {pj}
mi
j=1, the patch

Hi, the threshold σ , the time intervel [t0, t1].

Output: Estimated optical flow v.

1: Initialize the optical flow v = 0.

2: Select the events setW
fi
1 = {ek |t0 < tek < t1, xi ∈ Hi}.

3: while 1v > σ do

4: for k = 1 : li do

5: for j = 1 : mi do

6: if pj is associated with ek then

7: Update rkj using (6).

8: else

9: rkj = 0.

10: end if

11: end for

12: end for

13: Update v using (7).

14: Compute the change 1v.

15: end while

However, the estimated optical flow can only help to

update the translation of the line segment templates. Without

rotation correction for line segment templates, the tracked

position of feature points will deviate from ground truth

after several iterations. To solve this problem, we introduce

IMU to correct the position of the line segment templates

in spatio-temporal event coordinate (as shown in Fig. 3(e)).
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We compute the relative positions between the template

points and corresponding feature point and correct the relative

positions by IMU.

For the jth template point pj ∈ Pfi , we update the position

of pj as follows.

1) UPDATE THE POSITION OF pj BY OPTICAL FLOW

pj(t1) = pj(t0)+ v(t1 − t0) (9)

v is the optical flow of feature fi computed from

Section III-B.

2) CORRECT THE POSITION OF pj USING IMU DATA

we correct the position of pj by recalculating the relative

position between the template point pj and feature point fi at

time t1. Define the relative position p
relative
j (t) = pj(t)− fi(t).

We use IMU data to calculate the relative position prelativej (t1)

at time t1.

We use P, F to represent the 3D points corresponding to

pj, fi at time t0. Template point pj and feature point fi in 2D

pixel coordinate are represented by homogeneous coordinates

(u, v, 1), and the 3D points P and F in 3D camera coordinate

are represented by (x, y, z). Then we have below equations at

time t0 and t1:
{

s0pj
pj(t0) = KP

s0fi fi(t0) = KF
(10)

{

s1pj
pj(t1) = K (RP+ t)

s1fi fi(t1) = K (RF + t)
(11)

where R, t are the rotation matrix and translation vector of

event camera which are obtained by integrating the IMU data.

K is the camera projection matrix. s0pj
, s0fi are the depth of P,

F in camera coordinate at time t0, and s
1
pj
, s1fi are the depth of

P, F in camera coordinate at time t1. Then we get the relative

position prelativej (t1) by (11):

prelativej (t1) = pj(t1)− fi(t1)

= (
1

s1pj

KRP−
1

s1fi

KRF)+ (
1

s1pj

Kt −
1

s1fi

Kt) (12)

Assuming s1pj
= s1fi which means the template point P

and feature point F have the same depth in event camera

coordinate at time t1. Then we have:

prelativej (t1) =
1

s1pj

KRP−
1

s1fi

KRF (13)

Substituting (10) into (13), we get:

prelativej (t1) =
s0pj

s1pj

KRK−1pj(t0)−
s0fi

s1fi

KRK−1fi(t0) (14)

Considering the homogeneous representation of point pj
and fi, the final formula for calculating the relative position is:

prelativej (t1) = Nor(KRK−1pj(t0))− Nor(KRK
−1fi(t0))

(15)

where Nor(·) represents the normalization operation which

normalizes the vector (x, y, z) to ( x
z
,
y
z
, 1). The coefficients

s0pj

s1pj
,
s0fi
s1fi

can be omitted by the normalization operation.

After we get the relative position prelativej (t1) between the

template point pj on line segment and feature point fi through

IMU data, the final position of the template point pj at time

t1 is updated as below:

pj(t1) = prelativej (t1)+ fi(t1) (16)

IV. EXPERIMENTS

We implement our proposed feature tracking method

using C++, and evaluate it on the public Event Camera

Datasets [7]. The datasets contain a series of sequences

acquired by the event camera in different scenes. We gener-

ate the ground truth using Lukas-Kanade method [31]. The

feature positions between image frames are obtained by lin-

ear interpolation. For parameter settings in spatio-temporal

window, the spatial patch size is set to 29 × 29 pix-

els, and the temporal size is set according to the life-

time of events. In experiments, we set the temporal size to

3×lifetime [10](three times lifetime), which means the event

moves about 3 pixels. All experiments are implemented on

a laptop equipped with an Intel Core i7 2.8GHz CPU, and

8G RAM.

A. QUALITATIVE EVALUATION OF

OUR TRACKING METHOD

We test our feature tracker on sequences of shapes, poster,

boxes and outdoors from the public Event Camera Datasets.

As shown in Fig. 4, we draw the trajectories of the tracked

asynchronous event features over a time interval on image

frames. Fig. 4(a) shows the tracking result of our method in

the shapes sequence which contains rotation of event camera.

For the poster sequence, as shown in Fig. 4(b), we select a

subsequence that the event camera moves towards an oppo-

site direction suddenly. The inflection of the trajectories

in Fig. 4(b) occurs at the time that the velocity of the event

camera is 0. The result shows our method can also track the

features when the event camera changes its motion direction.

Fig. 4(c) shows the 3D textured scene with boxes. Fig. 4(d)

shows the trajectories of feature tracking on the sequence

of outdoors. This sequence was obtained by a hand-held

event camera in an outdoor environment. The event camera

sometimes shook in the hand during recording.

We also give the tracking results on a subsequence from

the shapes_translation sequence which contains high-speed

motion of event camera. Fig. 5 shows the trajectories of

tracked features. The colored points represent the positions

of features over time. We show five consecutive image

frames for reference. Our method updates the position of

the event features about 10 times between two consecutive

image frames. Fig. 6 shows the case with high-speed rotation

of event camera. In this figure, the event camera changed

its movement direction between the third and fourth image
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FIGURE 4. The trajectories of the tracked event features in different scenes: (a) the shapes sequence with the rotational motion. (b) the poster
sequence with an event camera moving in two opposite directions. (c) the boxes sequence in a 3D environment. (d) the outdoors sequence which was
recorded with a hand-held event camera. The colored lines represent the trajectories of features during a time interval. The blue arrows represent the
velocities of features.

FIGURE 5. Feature tracking performance on shapes_translation sequence. The figure contains five consecutive image frames, and the colored points
represent the position of event features.

FIGURE 6. Feature tracking performance on shapes_rotation sequence. The figure contains five consecutive image frames, and the colored points
represent the position of event features.

frames, and it is difficult for feature tracking. As shown

in Fig. 6, our method still works well and the asynchronous

event features are tracked accurately. We do not require to

extract line segments from every image frame, and in the

tracking process, the line segment templates can be updated

continuously by the IMU data and the estimated optical flow,

so our method can still work in the case of motion blur.

B. QUANTITATIVE EVALUATION OF

OUR TRACKING METHOD

To evaluate our tracking method quantitatively, we test the

average tracking error and average tracking time of our

method. Meanwhile, we compare our tracking method with

different tracking methods [12], [26]. For the method pro-

posed by Zhu et al. [26], we use the public implementation1

of [26] and test it on the same datasets. In addition, in order

to maintain consistency, we use the same initial features

detected from the image frames in our method with [26].

For the method proposed by Kueng et al. [12], we use the

experimental results of [12] reported in [30].

1https://github.com/daniilidis-group/event_feature_tracking

Fig. 7 shows the details of average tracking error and

number of features over time of our method and the pro-

posedmethod in [26] tested on the sequences of shapes_6dof,

poster_6dof and boxes_6dof. As shown in Fig. 7(a), our

method is more accurate and can track features for a

longer time than [26] on the shapes_6dof sequence. The

average tracking error of our method is below 2 pixels.

At the first 3 seconds, most features are tracked well.

At the 3rd second, for the reason that some features move

out of the camera view, the number of available features

reduce rapidly. For the poster_6dof sequence in Fig. 7(b),

our method achieves longer tracking when compared with

the proposed method in [26]. In Fig. 7(c), our method

have better accuracy than the method proposed in [26],

but from the 2nd second, our method has fewer available

features.

Table 1 shows the performances of average tracking

error and average tracking time with different methods: our

method, [26] and [12]. Besides, in order to evaluate the con-

tribution of IMU to tracking performance, we perform our

method with and without IMU. We only get the result of [12]

on sequences of shapes_6dof, poster_6dof and boxes_6dof.
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FIGURE 7. The average tracking error and the number of features over time of our method and [26]. We used the sequences of
shapes_6dof(a), poster_6dof(b) and boxes_6dof(c) for testing. For figures in the first row, the center lines represent the average pixel
error of feature positions over time. The width of the band around the center line represents the proportion of available feature
tracks. For figures in the second row, the lines represent the number of feature points over time.

TABLE 1. Average tracking error and average tracking time with different methods tested on several sequences of the public Event Camera Datasets [7].
The best results are made in bold.

For the performance of average tracking error, our method

with IMU has smaller average tracking error than [26]

and [12] as shown in Table 1. On the sequence of shapes,

the average tracking error of our method with IMU is about

1 pixel. There is about a 0.5-pixel reduction compared with

the method proposed in [26]. For high complexity sequences,

the average tracking error of our method with IMU also

reduces. In total, the average tracking error of our method

with IMU is below 2 pixels. For the performance of average

tracking time, our tracking method with IMU achieves longer

time feature tracking than [26] and [12] on the sequences

of shapes and poster. Specially, for the shapes sequence,

the average tracking time of our method with IMU is about

3 times in comparison with [26]. This proves the robustness

of our proposed method. Different from the method proposed

in [26] which has obvious shorter tracking time on the rota-

tion sequences than that on the translation sequences, our

method with IMU shows good performance in both trans-

lational and rotational cases. The last line shows the overall

average tracking error and average tracking time among dif-

ferent sequences with different methods. It shows our method

with IMU and without IMU both have smaller average track-

ing error and longer average tracking time compared with the

other two methods.

To evaluate the contribution of IMU to our method, we also

compare the results of our method with and without IMU.
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For the performance of average tracking error, our method

with IMU has smaller error than the case without IMU

on the rotation sequences. However, for the sequences of

shapes_translation and shapes_6dof, the average tracking

error without IMU is smaller while the average tracking time

is close to the case with IMU. As to the performance of

average tracking time, our method with IMU achieves longer

time for feature tracking than the case without IMU. Besides,

on the rotation sequences, the average tracking time is very

short when not using IMU.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel asynchronous feature track-

ing method which is based on image frames, events, and

IMU data. We extract line segments from image frames and

take them as templates to estimate the optical flow. The

optical flow is estimated by minimizing the distance between

spatio-temporal event windows and the templates. Then we

introduce IMU data to correct the position of line segments

and take them as the new templates. We test our method on

several sequences of the public Event Camera Datasets [7]

and it shows comparable performance in terms of accuracy

and robustness in comparison with other methods.

In the future, we will improve our tracking method by

adopting effective filter and outlier rejecter. Additionally,

based on our proposed tracking method, We will also achieve

semi-dense map construction based on asynchronous events

and 6-DoF pose estimation with DAVIS.
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