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Abstract

Dynamic time warping (DTW) can be used to compute the similarity between two sequences of generally differing

length. We propose a modification to DTW that performs individual and independent pairwise alignment of feature

trajectories. The modified technique, termed feature trajectory dynamic time warping (FTDTW), is applied as a

similarity measure in the agglomerative hierarchical clustering of speech segments. Experiments using MFCC and PLP

parametrisations extracted from TIMIT and from the Spoken Arabic Digit Dataset (SADD) show consistent and

statistically significant improvements in the quality of the resulting clusters in terms of F-measure and normalised

mutual information (NMI).
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1 Introduction
Dynamic time warping (DTW) is a method of optimally

aligning two distinct time series of generally different

length. In addition to the alignment, DTW computes a

score indicating the similarity of the two sequences. This

ability to quantify the similarity between time series has

led to the application of DTW in automatic speech recog-

nition (ASR) systems several decades ago [1, 2]. It has

remained popular in this field, with more recent develop-

ments reported in [3] and [4].

DTW has also found application in fields related to

ASR. For example, it has been used successfully in key-

word spotting and information retrieval (IR) systems

[5–7]. To accomplish IR, sub-sequences in a speech signal

that match a template with certain degree of time warp-

ing are detected. The direct approach to keyword spotting

has recently been extended by training a convolutional

neural network (CNN) to emulate the template match-

ing performed by DTW, thereby providing a substantial

computational advantage [8, 9].

In the related task of acoustic pattern discovery, DTW

can be allowed to consider multiple local alignments

between speech signals during the overall search [10]. In

this way, DTW can find similar segment pairs in speech
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audio, followed by a clustering step [11]. The resulting

cluster labels are used to train hidden Markov models

(HMMs).

In an effort to improve performance, several varia-

tions of DTW have been proposed since its inception.

For example, a one-against-all index (OAI) for each time

series under consideration is proposed in [4]. The OAI

is subsequently used to weight the corresponding DTW

alignment score in a speech recognition system.

Another modification of DTW which was reported

to improve performance is the parametric derivative

dynamic time warping (DDTW) that was applied to hier-

archical clustering of UCR Time Series Classification

Archive data [12]. Parametric DDTWcombines the scores

produced by DTW and by DDTW to provide a final sim-

ilarity measure. A similar weighted modification of DTW

has been proposed in [13].

Finally, DTW has also been applied to the direct match-

ing of points along the best alignment for use in a sig-

nature verification system [14]. A stability function is

subsequently applied, and the resulting score is used as a

similarity measure.

We describe a modification of DTW and demonstrate

its improved performance when used as a similarity mea-

sure to cluster speech segments. Our DTW modification

exploits the asynchronous temporal structure of features

extracted from speech. Related work has considered such

feature trajectories by training separate hidden Markov
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models (HMMs) for each mel frequency cepstral coeffi-

cients (MFCC) feature dimension [15]. This work reports

improvements in both phoneme and word recognition.

The clustering of speech segments also has several useful

applications in ASR [16–18]. Recently, it has been partic-

ularly useful in the automatic discovery of sub-word units

[19, 20].

Section 2 reviews the standard formulation of DTW and

Section 3 describes our proposed modification. Section 4

presents the evaluation tools we employ and Section 5

describes the data we use for experimentation. Section 6

presents an experimental evaluation of the proposed

method. Section 7 discusses the results and concludes the

paper.

2 Classical dynamic time warping
We consider speech segments as temporal sequences of

multidimensional feature vectors in the Euclidean space.

Sequences are of arbitrary and generally different length,

but all vectors are of equal dimension. The DTW algo-

rithm recursively determines the best alignment between

two such vector time series by minimizing a cumulative

path cost that is commonly based on Euclidean distances

between time-aligned vectors [2, 21].

Consider N such sequences Xi, i = 1, 2, . . . ,N , each

composed of Ti feature vectors, as defined in Eq. 1.

Xi = {xi1, xi2, . . . , xiTi}, i = 1, 2, . . . ,N (1)

Each feature vector xit has m dimensions, as indicated

in Eq. 2.

xit =

〈

x
(1)
it , x

(2)
it , . . . , x

(m)
it

〉

, t = 1, 2, ..,T (2)

Two sequences Xi and Xj are aligned by constructing

a Ti-by-Tj distance matrix Dij(p, q) whose entries con-

tain the distances d(xip, xjq). Typical choices for d are

the Euclidean distance and the Manhattan distance. A

matrix of minimum accumulated distances γij(p, q) is

then constructed by considering all paths from Dij(1, 1)

to Dij(p, q). Using the local and global path constraints,

γij(p, q) is computed recursively according to the principle

of dynamic programming, as shown in Eq. 3 [2].

γij(p, q) = Dij(xip, xiq) + min
{

γij(p − 1, q − 1),

γij(p − 1, q), γij(p, q − 1)
} (3)

The similarity DTW(Xi,Xj) between vector sequences

Xi and Xj is then given by Eq. 4. Here, K is the length of

the optimal path fromDij(1, 1) toDij(Ti,Tj) and is used to

normalise the similarity value.

DTW(Xi,Xj) =
1

K
γij

(

Ti,Tj

)

(4)

This standard formulation of dynamic time warping will

in the remainder of the paper be referred to as classi-

cal DTW. Figure 1 shows the classical DTW alignment

between two different sequences of 21-dimensional spec-

tral feature vectors representing the same sound uttered

by different speakers. These spectral features are obtained

by straightforward binning of the short-time power spec-

tra. To avoid clutter, the alignment of just four of the

feature vectors is shown.

3 Feature trajectory DTW (FTDTW)

We define a feature trajectory X
(l)
i as the time series

obtained when considering the l-th element of each fea-

ture vector in a sequence Xi, as shown in Eq. 5.

X
(l)
i =

{

x
(l)
i1 , x

(l)
i2 , . . . , x

(l)
iTi

}

, l = 1, 2, . . . ,m (5)

Hence, X
(l)
i is a one-dimensional time series for fea-

ture l. We now calculate the similarity of two feature

vector sequences by applying classical DTW to each cor-

responding pair of feature trajectories, and subsequently

normalise the sum, as shown in Eq. 6.

FTDTW(Xi,Xj) =
1

β

m
∑

l=1

DTW
{

X
(l)
i ,X

(l)
j

}

(6)

where β =

√

∑m
l=1 K

2
l , K is the path length and DTW(.) is

non-normalised classical DTW.

As illustrated, we repeat the alignment of the two speech

segments shown in Fig. 1 with FTDTW. Figure 2a iden-

tifies seven features from each of the four feature vectors

shown in Fig. 1a. Figure 2b demonstrates how each of

these seven features align with the second speech seg-

ment. The features themselves are the same as those illus-

trated in Fig. 1. For the illustrated example, application of

Eq. 6 involves 21 separate alignments, each between cor-

responding feature trajectories as also indicated in Fig. 2.

The resulting 21 scores are summed and normalised by β .

Figure 2 illustrates how, in contrast to the classical DTW,

FTDTW does not require features coincident in time in

one segment to align with features in the other segment

also coincident in time. Finally, we note that, because

each of the m DTW alignments in the summation of the

right-hand side of Eq. 6 is computed independently, the

FTDTW computation can be easily parallelised over m

processors or cores. This provides a computational advan-

tage over DTW, which involves the alignment of vector

sequences and is not so easily parallelised.

4 Evaluation
We evaluate the effectiveness of our proposed modifica-

tion to DTW by using it to compute similarities between

speech segments, and then using these similarities to per-

form agglomerative hierarchical clustering [22, 23]. We

will cluster speech segments corresponding to triphones

extracted from the TIMIT corpus as well as isolated

digits extracted from the Spoken Arabic Digit Dataset
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Fig. 1 Alignment by classical DTW of spectral features extracted from the triphone b-aa+dx as uttered by amale speaker mrfk0 and b by female

speaker fdml0 in the TIMIT corpus

(SADD). Since the phonetic alignment is provided in the

former and the word alignments in the latter, the ground

truth is available. Hence, we can use the external met-

rics to quantify the quality of the resulting clusters [24].

We chose F-measure and normalised mutual information

(NMI) asmetrics for cluster evaluation in our experiments

[25, 26]. These two metrics represent two commonly

used categories of external evaluation measures called

set-matching-based measures and information theoretic-

based measures. The F-measure was chosen because it is

a widely used set matching-based measure for the eval-

uation of clustering and classification systems [27]. The

NMI is a popular choice among the information theoretic-

based clustering evaluation measures [28].

4.1 Agglomerative hierarchical clustering

In agglomerative hierarchical clustering (AHC), the

agglomeration of data objects (speech segments in

the case of our experimental evaluation) is initialised

by the assumption that each object is the sole occu-

pant of its own cluster. A binary tree referred to as a

dendrogram is created by successively merging the closest

cluster pairs until a single cluster remains [29]. We use

the popular Ward method to quantify inter-cluster simi-

larity [30]. The input to the AHC algorithm is a symmet-

ric N × N proximity matrix populated by the values of

DTW(·, ·) or FTDTW(·, ·) and the output consists of the

R clusters.

4.2 F-measure

The F-measure is based on the quantity precision (PR) and

recall (RE). Precision indicates the degree to which a clus-

ter is dominated by a particular class, while recall indicates

the degree to which a particular class is concentrated in a

specific cluster. Precision and recall are defined in Eqs. 7

and 8 respectively.

PR(r, v) =
nrv

nr
(7)

RE(r, v) =
nrv

nv
(8)
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Fig. 2 Alignment by FTDTW of spectral features extracted from the triphone b-aa+dx as uttered by amale speaker mrfk0 and b by female speaker

fdml0 in the TIMIT corpus

Here, nrv indicates the number of objects of class v in

cluster r; nr and nv indicate the number of objects in clus-

ter r and class v respectively. The F-measure (F) is given

in Eq. 9.

F(r, v) =
2 × RE(r, v) × PR(r, v)

RE(r, v) + PR(r, v)
(9)

When the clusters are perfect, nrv = nr = nv, and hence,

F(r, v) = 1.

4.3 Normalised mutual information

Normalised mutual information (NMI) employs the fol-

lowing formulations:

• The set of R clusters G = {G1,G2, . . . ,GR}, and
• The set of V classes C = {C1,C2, . . . ,CV }

representing ground truth.

NMI is based on the mutual information I(G,C) between

classes and clusters [26, 31]. The mutual information is

not sensitive to varying number of clusters, and there-

fore, it is normalised by a factor based on the cluster

entropy H(G) and class entropy H(C). These entropies

measure cluster and class cohesiveness respectively. The

NMI criterion is given in Eq. 10.

NMI(G,C) =
2I(G,C)

[H(G) + H(C)]
(10)

The mutual information I(G,C) and the entropiesH(G)

and H(C) are given in Eqs. 11, 12 and 13 respectively.

I(G,C) =
∑

r∈G

∑

v∈C

P(Gr)P(Cv) log
P(Gr ∩ Cv)

P(Gr)P(Cv)
(11)

In Eq. 11, P(Gr), P(Cv), and P(Gr ∩Cv) are the probabil-

ities of a segment belonging to cluster Gr , class Cv and the

intersection of Gr and Cv respectively.

H(G) = −
∑

r∈G

P(Gr) logP(Gr) (12)

H(C) = −
∑

v∈C

P(Cv) logP(Cv) (13)

It can be shown that I(G,C) is zero when the clustering

is random with respect to class membership and that it

achieves a maximum of 1.0 for perfect clustering [31].
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Table 1 Datasets used for experimental evaluation

Dataset Description

1 8772 TIMIT triphones (evenly balanced).

2 8800 SADD isolated digits (evenly balanced).

3 123,182 TIMIT SI and SX triphones divided randomly into

10 subsets (not evenly balanced).

5 Data
Our first set of experiments uses speech segments taken

from the TIMIT speech corpus [32]. TIMIT has been

chosen because it includes accurate time-aligned pho-

netic transcriptions, meaning that both phonetic labels

and their start/end times are known. As our desired clus-

ters, we use triphones, which are phones in specific left

and right contexts [33]. We consider triphones that occur

at least 20 times and at most 25 times in the corpus. This

leads to an evenly balanced set of 8772 speech segments,

which also corresponds approximately to the number of

segments in our second set of experiments.

For comparison and confirmation purposes, we per-

formed a second set of experiments using the Spoken

Arabic Digit Dataset (SADD) [34]. SADD consists of

8800 utterances already parametrised as 13-dimensional

MFCCs. The utterances were spoken by 44 male and

44 female Arabic speakers. Each utterance in the SADD

corresponds to a single Arabic digit and will therefore

be considered to be a single segment in our experi-

ments. Each digit (0 to 9) was uttered ten times by each

speaker.

A third set of experiments is based on 10 independent

subsets of speech segments drawn from the TIMIT SI and

SX utterances, irrespective of occurrence frequency. This

better represents the unbalanced distribution of triphones

that may be expected in unconstrained speech. Table 1

summarises the datasets used in each of the three sets of

experiments.

We considered two feature vector parametrisations

popular in the field of speech processing, namely mel

frequency cepstral coefficients (MFCCs) and perceptual

linear prediction (PLP) coefficients [35, 36]. For the for-

mer, log frame energy was appended to the first 12MFCCs

to produce a 13-dimensional feature vector. The first

and second differentials (velocity and acceleration) were

subsequently added to produce the final 39-dimensional

Fig. 3 Clustering performance for dataset 1 when using MFCC features in terms of a F-measure and b NMI
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MFCC feature vector. For the latter, 13 PLP coefficients

were considered, to which velocity and acceleration were

added, again resulting in a 39-dimensional feature vec-

tor. One such feature vector was extracted for each 10 ms

frame of speech, where consecutive frames overlapped by

5 ms. All TIMIT feature vectors were computed using

HTK [37]. SADD provides pre-computed MFCC features,

and hence, PLP features were not used in the associated

experiments.

6 Experiments
To evaluate the performance of feature trajectory DTW

(FTDTW) as an alternative to classical DTW as a simi-

larity measure, we will employ it to perform AHC of the

speech segments described in Section 5. The quality of

the automatically determined clusters will be determined

using the F-measure and in several cases also NMI.

In a first set of experiments, we cluster dataset 1

(Table 1).

Figure 3 reflects the clustering performance in terms

of (a) the F-measure and (b) NMI, when using MFCCs

as features. Both the F-measure and NMI are plotted as

a function of the number of clusters. Note that the F-

measure continues to decline as the number of clusters

exceeds 1200.

Figure 3a and b show that FTDTW improves on the per-

formance of the classical DTW in this clustering task in

terms of both F-measure and NMI. Especially in terms of

F-measure, this improvement is substantial.

A corresponding set of experiments using PLP features

was carried out for dataset 1, and the results are shown

in Fig. 4. The same trends seen for MFCCs in Fig. 4 are

observed, with substantial improvements particularly in

terms of F-measure.

Fig. 4 Clustering performance for dataset 1 when using PLP features in terms of a F-measure and b NMI
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In a second set of experiments, we clustered dataset 2

(Table 1) which consists of isolated Arabic digits. Figure 5

indicates the clustering performance, both in terms of F-

measure and NMI for this dataset. Again, we observe that

FTDTW outperforms the classical DTW in terms of both

F-measure and NMI in practically all cases.

In a third and final set of experiments, we considered

dataset 3 (Table 1). The 10 independent subsets of the

TIMIT training set each contained between 12034 and

12495 triphone segments. In contrast to the experiments

for dataset 1, all triphone tokens were considered irrespec-

tive of occurrence frequency. Furthermore, the number

of clusters was chosen to be 2394, a figure which corre-

sponds to the number of triphone types with more than

10 occurrences in the data. A single number of clusters,

rather than a range as presented in Figs. 3, 4 and 5, has

been used here in order to make the required compu-

tations practical. Figure 6 presents the clustering perfor-

mance for each of the 10 subsets in terms of F-measure.

We observe that FTDTW achieves an improvement over

classical DTW in all cases. A paired t test indicated

p < 0.0001, and hence, the improvements are statistically

highly significant. Similar improvements were observed in

terms of NMI.

7 Discussion and conclusions
The experiments in Section 6 have applied our modified

DTW algorithm (FTDTW) to the clustering of speech

segments. Our experiments show consistent and statis-

tically significant improvement over the classical DTW

baseline for both MFCC and PLP parametrisations and

across three datasets. We conclude that FTDTW is more

effective as a similarity measure for speech signals than

the classical DTW.

Because the classical DTW operates on a feature-vector

by feature-vector basis, it enforces absolute temporal

synchrony between the feature trajectories. In contrast,

FTDTW does not impose this synchrony constraint, but

aligns feature trajectories independently on a pair-by-pair

basis. Since FTDTW is observed to lead to better clusters

Fig. 5 Clustering performance for dataset 2 in terms of a F-measure and b NMI
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Fig. 6 Clustering performance for the 10 independent subsets of dataset 3 in terms of F-measure

in our experiments, we conclude that the strict temporal

synchrony imposed by the classical DTW is counter-

productive in the case of speech signals. We further spec-

ulate that segments of speech that human listeners would

regard as similar also exhibit such differing time-scale

warping among the feature trajectories. It remains to be

seen whether this decoupling of the feature trajectories is

advantageous for signals other than speech.

Finally, and noting that it is not a focus of this paper, we

may consider the maxima observed in the F-measure in

Figs. 3 and 4, and in both the F-measure and NMI in Fig. 5.

A peak in the quality of the clusters as a function of the

number of clusters may be taken to indicate the best esti-

mate of the ‘true’ number of clusters in the data. For the

experiments using theMFCC parametrisation of dataset 1

(Fig. 4), we see that an optimum in the F-measure is

reached at 501 and 421 clusters for FTDTW and classical

DTW respectively. The ‘true’ number of clusters corre-

sponds to the number of triphone types in dataset 1, which

is 404. Hence, both DTW formulations over-estimate the

number of clusters. A similar tendency is seen for the

PLP parametrisations of the same dataset, where the F-

measure peaks at 439 and 559 clusters for the classical

DTW and the proposed DTW respectively, and also for

dataset 2 in Fig. 5.

Although the ground truth is known, the class defini-

tions (triphones for datasets 1 and 3 and isolated digits

for dataset 2) may be called into question. In particular,

although all triphones correspond to acoustic segments

from the same phone within the same left and right con-

texts, there are many other possible sources of systematic

variability, such as the accent of the speaker. Hence, it

may be reasonable to expect that a larger number of clus-

ters are needed to optimally model the data. To determine

whether this is the case, the clusters should be used to

determine acoustic models for an ASR system. Then, the

performance of varying clusterings of the data can be

compared by comparing the performance of the resulting

ASR systems. We intend to address this question in the

ongoing work.
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