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Abstract. Recently, the Rival Penalized Expectation-Maximization (RPEM) al-
gorithm (Cheung 2004 & 2005) has demonstrated its outstanding capability to
perform the model selection automatically in the context of density mixture mod-
els. Nevertheless, the RPEM is unable to exclude the irrelevant variables (also
called features) from the clustering process, which may degrade the algorithm’s
performance. In this paper, we adopt the concept of feature salience (Law et al.
2004) as the feature weight to measure the relevance of features to the cluster
structure in the subspace, and integrate it into the RPEM algorithm. The pro-
posed algorithm identifies the irrelevant features and estimates the number of
clusters automatically and simultaneously in a single learning paradigm. Experi-
ments show the efficacy of the proposed algorithm on both synthetic and bench-
mark real data sets.

1 Introduction

Density mixture clustering has been widely applied to a variety of scientific fields such
as neural networks, image processing, pattern recognition, and so forth. In such a clus-
tering, each component of a density mixture represents the density distribution of a cor-
responding cluster of data, and thus clustering can be viewed as identifying the dense
regions of the input densities. In general, Expectation Maximization (EM) algorithm [1]
has provided a general solution for the parameter estimate in a density mixture model.
However, the EM algorithm needs to pre-specify an appropriate number of components
in a mixture, which, unfortunately, is difficult or even impossible from the practical
viewpoint.

More recently, the Rival Penalized Expectation-Maximization (RPEM) algorithm
has been developed from the learning framework, namely Maximum Weighted Like-
lihood [6, 7]. This algorithm makes the components in a density mixture compete with
each other as given an input (also called an obervation interchangeably). Not only are
the associated parameters of the winner (i.e. the winning mixture component) updated
to adapt to the input, but also all rivals’ parameters are penalized with the strength pro-
portional to the corresponding posterior density probabilities. Compared to the EM,
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such a rival penalization mechanism enables the RPEM to gradually fade out the redun-
dant densities in a density mixture. The experiments in [6,7] have shown its outstanding
performance on model selection, i.e., determining the number of mixture components
(also called the number of clusters hereinafter). Nevertheless, analogous to the EM,
the RPEM performs the clustering by using all variables (also called features inter-
changeably) within the whole input space without a mechanism to exclude the irrelevant
variables, i.e., some variables without contribution to the cluster structure, from the
clustering process. Subsequently, the performance of RPEM may deteriorate if some
irrelevant variables exist.

Earlier methods for feature selection in clustering can be roughly fallen into two
categories: the feature filter approaches and the wrapper approaches. The feature filter
approaches, e.g. principal component analysis (PCA) [2, 3, 4], try to pick out the most
influential subset of features, which reflects the characteristics of the original data set.
Such an approach may significantly reduce the dimensionality, but the clustering al-
gorithm is not involved in the feature extraction. Consequently, the extracted features
may not be well suited to the follow-up clustering algorithm. In contrast, the wrapper
approaches utilize a clustering algorithm to evaluate the qualities of each candidate fea-
ture subsets [3, 5] generated via a combinatorial search. The classification accuracy of
such an approach may be improved in comparison to the filter approaches, but its com-
putation is rather laborious. Essentially, these two kinds of feature selection methods
are prone to find a sub-optimal solution because they perform the feature and model
selections, which are closely related each other, in two separate steps. Actually, a better
solution can be achieved provided that the feature and model selections are performed
in a single learning paradigm. In the literature, some works have been done along this
promising way. For example, Huang et al. [8] present a k-means type algorithm that
weights the importance of each feature in the clustering process. The numerical results
have shown that this algorithm can successfully identify noisy variables with compar-
atively small weights. Nevertheless, this method may be sensitive to the initial cluster
centroids and the initial weights. Furthermore, its performance depends on the choice of
parameter β, whose value is, however, determined by trial and error. Furthermore, Law
et al. [9] adopt a definition of feature salience with respect to the independence of its
distribution to a given cluster, and integrate the Minimum Message Length (MML) cri-
terion to the log-like likelihood. Eventually, an EM-like algorithm has been developed
to automatically determinate the number of clusters and the feature weights. In addi-
tion, Constantinopoulos et al. [10] utilize the same model proposed by [9], but present
a variational Bayesian learning for estimating the feature weights and cluster parame-
ters. Paper [10] has shown its superiority in the presence of sparse data by adopting the
Bayesian framework other than the statistical MML criterion.

In this paper, we adopt the concept of feature salience [9] to measure the relevance of
each feature to cluster structure. Subsequently, we utilize a general probability distribu-
tion model for the Gaussian mixture proposed by [9], and integrate it into the Maximum
Weighted Likelihood (MWL) framework, through which we develop a variant of the
RPEM, namely Feature Weighted RPEM (FW-RPEM) algorithm. Not only is this new
algorithm able to make a model selection analogous to the RPEM, but also weights the
features based on their relevance to the cluster structure so that the irrelevant features
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can be gradually excluded from the clustering process. As a result, an appropriate clus-
ter structure in the subspace of inputs can be found. Experimental results have shown
the efficacy of the proposed algorithm in comparison to the existing methods.

2 Overview of the RPEM Algorithm

Suppose an observation comes from a mixture of k∗ probability density functions (pdf):

p(x|Θ∗) =
k∗∑

j=1

α∗
jp(x|θ∗j ),

k∗∑

j=1

α∗
j = 1, and ∀1 ≤ j ≤ k∗, α∗

j > 0, (1)

where the pdf p(x|θ∗j ) is the jth component of the mixture, Θ∗ = {α∗
j , θ

∗
j }k∗

j=1 de-
notes the set of the true parameters in the mixture model, and k∗ is the true number of
components. The main learning purpose is to estimate the parameters Θ∗ from N i.i.d.
observations, denoted as x1, x2, . . ., xN , where each observation xt is a column vector
of d features, written as x1t, x2t, . . ., xdt.

The Rival Penalized EM (RPEM) algorithm [7] has been developed from the MWL
framework via maximizing the following weighted likelihood:

Q(Θ;XN ) =
1
N

N∑

t=1

M(Θ;xt), XN = {x1,x2, . . . ,xN} (2)

with

M(Θ;xt) =
k∑

j=1

g(j|xt, Θ) ln p(xt|Θ)

=
k∑

j=1

g(j|xt, Θ) ln[αjp(xt|θj)]

−
k∑

j=1

g(j|xt, Θ) ln h(j|xt, Θ), (3)

where Θ = {αj , θj}k
j=1 and k are an estimate of Θ∗ and k∗, respectively. Furthermore,

we have

p(xt|Θ) =
k∑

j=1

αjp(xt|θj), (4)

p(xt|θj) = p(x1t, . . . , xlt, . . . , xdt|θj), (5)

and ∀1 ≤ j ≤ k (k ≥ k∗), αj ≥ 0,
k∑

j=1
αj = 1. Also,

h(j|xt, Θ) =
αjp(xt|θj)
p(xt|Θ)

(6)
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is the posterior probability that x belongs to the jth component in the mixture. In (3),
g(j|xt, Θ) is a designable weight with:

k∑

j=1

g(j|xt, Θ) = ζ, (7)

and

∀j, lim
h(j|xt,Θ)→0

g(j|xt, Θ) ln h(j|xt, Θ) = 0, (8)

where ζ is a positive constant. In [7], they are constructed by:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ) − εth(j|xt, Θ) (9)

with

I(j|x, Θ) =
{

1 if j = c ≡ argmax1≤i≤k h(i|x, Θ);
0 j = r �= c.

(10)

where the εt is a small positive quantity. Paper [7] learns Θ towards maximizing (2) via
the following alternating steps:

– E-step: Given an input xt and Θold, compute h(j|xt, Θ
old) and g(j|xt, Θ

old)
through (6) and (9), respectively.

– M-step: Fixing h(j|xt, Θ
old) and g(j|xt, Θ

old), update Θ along the direction of
maximizing (2) by the gradient ascent approach, i.e.

Θnew = Θold + η
∂M(Θ;xt)

∂Θ

∣∣∣∣
Θold

. (11)

It has been shown in [7] that the RPEM can automatically select the number of com-
ponents by fading out the redundant densities from a density mixture. Nevertheless,
analogous to the most existing clustering algorithms, the RPEM assumes that each fea-
ture has the same importance to the intrinsic cluster structure, which, however, may not
be always true from the practical viewpoint. In the next section, we therefore present
the FW-RPEM algorithm that is able to identify the cluster structure by estimating the
feature weights and perform the model selection simultaneously.

3 The Feature Weighted Rival Penalized EM Algorithm

Without loss of generality, we suppose that the features in each observation are inde-
pendent each other, and the contribution of each dimension is invariant among all the
clusters. Considering not all the features of an observation are important, we therefore
adopt the measure in [9] to weight the relevancy of these features. That is, the weight
is denoted as W = [w1, . . . , wd]T with 0 ≤ wl ≤ 1, ∀1 ≤ l ≤ d, where wl represents
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the probability that the lth feature is relevant to all the clusters. The irrelevant features
have little contribution to a given cluster in the subspace, thus their distributions may
be common to all these clusters in this case. Then, the probability density function of a
general Gaussian mixture model can be written below as in [9]:

p(x|Θ) =
k∑

j=1

αj

d∏

l=1

[wlp(xl|θlj) + (1 − wl)q(xl|λl)] (12)

where p(xl|θlj) = G(mlj ; S2
lj) denotes a Gaussian density function of xl with the mean

mlj , and standard deviation Slj . q(xl|λl) is the common density of the lth feature with
the parameter λl if it is irrelevant. The prior knowledge about the density distribution of
the irrelevant feature can be Gaussian distribution, uniform distribution, and so forth. In
this paper, we let it be a Gaussian for a general purpose, i.e., q(xl|λl) = G(cMl, cS

2
l ).

Subsequently, we define the full parameter set of the general Gaussian mixture model
as Θ = {{αj}k

j=1, Φ} and Φ = {{θlj}d,k
l=1,j=1, {wl}d

l=1, {λl}d
l=1}. Note that

p(xlt|Φ) = wlp(xlt|θlj) + (1 − wl)q(xlt|λl) (13)

is a coupling form with two possible density models for each feature, where the feature
weight wl acts as a regulator to determine which distribution is more appropriate to
describe the feature. By putting (13) into (3), we then obtain:

M(xt; Θ) =
k∑

j=1

g(j|xt, Θ) ln[αjp(xt|Φ)]

−
k∑

j=1

g(j|xt, Θ) ln h(j|xt, Θ)

=
k∑

j=1

g(j|xt, Θ) ln{αj

d∏

l=1

[wlp(xlt|θlj)

+ (1 − wl)q(xlt|λl)]}

−
k∑

j=1

g(j|xt, Θ) ln h(j|xt, Θ), (14)

where we let the weight function g(j|xt, Θ) be:

g(j|xt, Θ) = I(j|xt, Θ) + h(j|xt, Θ). (15)

which satisfies the conditions in (7) and (8).
Consequently, we can estimate the parameter set Θ towards maximizing M(xt; Θ)

of (14) via the adaptive learning algorithm, namely Feature weighted RPEM (FW-
RPEM) algorithm, whose learning mechanism is analogous to the RPEM algorithm.
In the implementation of FW-RPEM, we have noticed that {αj}k

j=1 must satisfy the
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constraint of
k∑

j=1
αj = 1. To circumvent the complicated constraint optimization, we

alternatively let

αj =
exp(βj)

k∑
i=1

exp(βi)
, for ∀1 ≤ j ≤ k. (16)

As a result, we update {βj}k
j=1s instead of {αj}k

j=1 like the RPEM in [7].
In summary, the FW-RPEM algorithm is implemented in the following steps after

initializing Θ:

– Step 1: Calculate h(j|xt, Θ
old) and g(j|xt, Θ

old):

h(j|xt, Θ
old) =

αold
j

d∏
l=1

[wold
l p(xlt|θold

lj ) + (1 − wold
l )q(xlt|λold

l )]

k∑
j=1

αold
j

d∏
l=1

[wold
l p(xlt|θold

lj ) + (1 − wold
l )q(xlt|λold

l )]
(17)

g(j|xt, Θ
old) = I(j|xt, Θ

old) + h(j|xt, Θ
old). (18)

– Step 2: Update the parameter set {{θlj}d,k
l=1,j=1, {λl}d

l=1, {αj}k
j=1, {wl}d

l=1} along
the direction of maximizing M(xt; Θ) by fixing h(.|.) and g(.|.) obtained in Step
1 for each observation:

βnew
j = βold

j + ηβ
∂M(xt; Θ)

∂βj

∣∣∣∣
Θold

= βold
j + ηβ [g(j|xt, Θ

old) − αold
j ],

mnew
lj = mold

lj + η
∂M(xt; Θ)

∂mlj

∣∣∣∣
Θold

= mold
lj + ηg(j|xt, Θ

old)h
′
(1|xlt, Φ

old)
xtl − mold

lj

(Sold
lj )2

,

Snew
lj = Sold

lj + η
∂M(xt; Θ)

∂Slj

∣∣∣∣
Θold

= Sold
lj + ηg(j|xt, Θ

old)h
′
(1|xlt, Φ

old)
(xtl − mold

lj )2 − (Sold
lj )2

(Sold
lj )3

,

cMnew
l = cMold

l + η
∂M(xt; Θ)

∂cMl

∣∣∣∣
Θold

= cMold
l + η

k∑

j=1

g(j|xt, Θ
old)h

′
(2|xlt, Φ

old)
xlt − cMold

l

(cSold
l )2

,

cSnew
l = cSold

l + η
∂M(xt; Θ)

∂cSl

∣∣∣∣
Θold
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= cSold
l + η

k∑

j=1

g(j|xt, Θ
old)h

′
(2|xlt, Φ

old)
(xlt − cMold

l )2 − (cSold
l )2

(cSold
l )3

,

wnew
l = wold

l + η
∂M(xt; Θ)

∂wl

∣∣∣∣
Θold

= wold
l + η

k∑

j=1

g(j|xt, Θ
old)

[
h

′
(1|xlt, Φ

old)
wold

l

− h
′
(2|xlt, Φ

old)
1 − wold

l

]
,

where

h
′
(1|xlt, Φ

old) =
wold

l p(xlt|θold
lj )

wold
l p(xlt|θold

lj ) + (1 − wold
l )q(xlt|λold

l )
,

h
′
(2|xlt, Φ

old) =
(1 − wold

l )q(xlt|λold
l )

wold
l p(xlt|θold

lj ) + (1 − wold
l )q(xlt|λold

l )
.

Note that the learning rate of βjs should be chosen as ηβ < η to alleviate the sensi-
tivity of αjs to the small fluctuation of βjs (we suggest ηβ = 0.1η). Furthermore,
the values of wls should be essentially controlled within the range of [0, 1], but
the update of wls in Step 2 may not. To avoid this awkward situation, we can use
a soft-max function (e.g. see (16)) to transform wls to the new variables, say �ls,
analogous to the case of αjs and βjs, whereby the constraints of wls can be au-
tomatically satisfied. Here, we alternatively adopt a simple procedure. That is, we
set wl at 0.001 when wl < 0.001, and set it at 0.999 when wl > 0.999 during the
learning process.

Step 1 and Step 2 are repeated for each observation until Θ converges. As a result,
one can identify those features that are more relevance to cluster structure than the oth-
ers, and the corresponding component parameters can be picked out from
{mlj , Slj}d,k

l=1,j=1 with {wl}d
l=1 and {αj}k

j=1 as guides.

4 Experimental Results

4.1 Experiment 1

This experiment was to investigate the performance of the FW-RPEM on identifying the
cluster structure in the presence of irrelevant features. We first generated 2-dimension
1, 000 synthetic data from a mixture of 3 Gaussian components: G

[
x|

(
1
1

)
;
(

0.1 0.0
0.0 0.1

)]
,

G
[
x|

(
1
5

)
;
(

0.1 0.0
0.0 0.1

)]
, G

[
x|

(
5
5

)
;
(

0.1 0.0
0.0 0.1

)]
,with 0.3, 0.4, 0.3 being their mixture pro-

portions, respectively. Then we drew 2, 48 and 98 features from the Gaussian noise
G(2, 52) and appended them to the bivariate Gaussian mixture, yielding a 4-dimension
(low-dimension), a 50-dimension (medium-dimension), and a 100-dimension (high-
dimension) data sets, respectively. Further, we initialized k at 10, and all αjs and wls
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were set at 1
k and 0.5, respectively. The remaining parameters were initialized as fol-

lowing (in MATLAB form):

[dim, N ] = size(x);
index = randperm(N);
m = x(:, index(1 : k));
s = repmat(sqrt(var(x′))′, 1, k);
cM = mean(x, 2);
cS = sqrt(var(x′))′;

The learning rates were η = 10−3, ηβ = 10−4. The algorithm was performed on
these three data sets 10 times each, and the numerical results are depicted in Fig. 1-3,
respectively. Fig. 1(a)-3(a) show that the three out of 10 αjs has converged to give
a good estimate of the true values, meanwhile all the remaining αjs have converged
towards zero. That is, the FW-RPEM has successfully identified three components in
all cases we have tried so far. Furthermore, as expected, the feature weights of the first
two dimensions were close to 1, while the rest dimensions were assigned close to 0 as
shown in Fig. 1(b)-3(b). That is, the proposed algorithm has correctly identified a large
number of noisy features in the input space.
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Fig. 1. Results of the experiment on low-dimension data set. (a) The learning curve of αjs of
a typical run. (b) The feature weights, where the average values are marked with “+”, and the
standard deviations over ten runs are presented by the error bars around the mean values.

4.2 Experiment 2

Besides the synthetic data, we also conducted a number of experiments on three well-
known databases from UCI Machine Learning Repository [11]:

– Wine. There are 178 data points. The analysis is to determine the quantities of 13
constituents found in each of the three types of wines.
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Fig. 2. The result of the experiment on medium-dimension data set. (a) The learning curve of αjs
of a typical run. (b)The feature weights, where the average values are marked with “+”, and the
standard deviations over ten runs are presented by the error bars around the mean values.
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Fig. 3. Results of the experiment on high-dimension data set. (a) The learning curve of αjs of
a typical run. (b) The feature weights, where the average values are marked with “+”, and the
standard deviations over ten runs are presented by the error bars around the mean values.

– Australian credit card. This data set consists of 653 credit card applications, and is
classified to two classes: approved and rejected according to the first 14 features.

– Ionosphere. There are 351 instances and 34 attributes. The task is to classify the
collections from radar into 2 classes denoting obstruction existing or not in the
ionosphere.

We utilized a 50% Jackknifing procedure to separate the original data set into the
training and testing sets. The training set was formed by randomly picking data from
the original data set to its half size, and the remaining points were reserved for testing.
The process was repeated 20 times, yielding 20 pairs of different training and testing
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Table 1. Comparison on the performance for each algorithm on the real data

Data set FW-RPEM RPEM method in [9]
%error ± std Avg.No. ± std %error ± std Avg.No. ± std %error ± std Avg.No. ± std

Wine 6.18 ± 1.04 fixed at 3 9.06 ± 2.61 2.5 ± 0.71 6.73 ± 2.86 3.28 ± 1.44
Australian 20.63 ± 1.68 fixed at 2 45.15 ± 3.37 3.2 ± 0.447 45.94 ± 12.11 3.9 ± 1.21
Ionosphere 23.15 ± 6.20 2.8 ± 0.78 44.7 ± 6.39 1.5 ± 0.527 27.44 ± 10.38 4.7 ± 0.48

sets. After abandoning the class labels in the set, the proposed algorithm was conducted
20 times on each training set. We then utilized the trained model to classify the testing
data and evaluated the accuracy by comparing the obtained labels with the ground-truth
class labels. For comparison, we also performed the RPEM and Law’s algorithm [9]
individually on the same pairs of data sets with the same initializations. Their perfor-
mances over 20 runs are all reported in Table 1. Also, Table 2 lists the average weight-
ing results of the 20 runs on the Wine and Australian credit card sets, where the feature
weights for ionosphere are excluded because the number of their features is too large to
be listed in Table 2.

Table 2. The average weighting results of FW-RPEM on the real data

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wine 0.999 0.652 0.331 0.750 0.102 0.999 0.999 0.279 0.999 0.999 0.288 0.999 0.999

Australian 0.001 0.001 0.455 0.999 0.208 0.001 0.001 0.999 0.999 0.001 0.001 0.999 0.001 0.001

From Table 1, we can see that the error obtained from the FW-RPEM has been sig-
nificantly reduced compared to the RPEM because the FW-RPEM is able to identify the
features that have unequal contribution to the cluster structure (see Table 2), whereby an
appropriate cluster structure can be found in a sub-space. Furthermore, the FW-RPEM
also outperforms the algorithm in [9] with the smaller error, particularly on the data of
Australian credit card and Ionosphere as listed in Table 1. Further, the algorithm in [9]
is prone to use more “components” for the mixture. In contrast, the proposed algorithm
not only produces a lower mismatch error, but also gives a better estimation to the num-
ber of mixture components.

5 Conclusion

In this paper, we have presented the FW-RPEM algorithm, which extends the RPEM al-
gorithm to deal with the case when some irrelevant features exist in the input space. We
have adopted the concept of feature salience as the feature weight to measure the rele-
vance of features to the cluster structure in the subspace, and integrate it into the RPEM
algorithm. Consequently, the FW-RPEM can identify the irrelevant features and per-
form model selection automatically and simultaneously in a single learning paradigm.
The promising performance of the algorithm has been shown on both the synthetic data
and real benchmark data sets.
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