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Methods  for 

A b s t r a c t .  Our principal motivation is to study time sequences of echocar- 

diographic raw data to track specific anatomical structures. First, we show 

that the image processing can make direct use of the audio signal data, 

avoiding loss of information and yielding optimal results. 
Secondly, we develop a strategy which takes a time sequence of raw 

data as input, computes edges, initiates a segmentation of a pre-selected 

anatomical structure and uses a deformable model for its temporal tracking. 

This approach is validated in a real time sequence of ultrasound images of 

the heart to track the left auricle and the mitral valve. 

1 Introduction 

1.1 Mot iva t i on  and  Objec t ives  

There is a continuously increasing demand in the automated analysis of 2D and 3D 
medical images at the hospital[I]. Among these images, ultrasound images play a crucial 
role, because they can be produced at video-rate and therefore allow a dynamic analysis 
of moving structures. Moreover, the acquisition of these images is non-invasive and the 
cost of acquisition is relatively low compared to other medical imaging techniques. 

On the other hand, the automated analysis of ultrasound images is a real challenge for 
active vision, because it combines most of the difficult problems encountered in computer 
vision in addition to some specific ones related to the acquisition mode: 

- images are usually provided in polar geometry instead of cartesian geometry, 
- images are degraded by a very high level of corrupting noise, 
- o b s e r v e d  objects usually correspond to non-static, non-polyhedric and non-rigid 

structures. 

The geometric transformation (called scan correction) which transforms the data from 
a polar representation to the correct cartesian representation is usually applied through 
a bilinear interpolation. 

We show in this paper the limitations of this scheme, which does not account for the 
varying resolution of the data, and we propose a new method, called sonar-space filtering, 
which consists of computing the scan conversion with a low-pass filtering of the cartesian 
image applied directly to the available polar data, and which can be used to optimally 

reconstruct the data with a chosen level of spatial linear filtering. 
Furthermore, we develop a methodology to automatically track s physiological struc- 

ture on an echocardiographic sequence. Interactivity is used to initiate the process on the 

first image of the sequence. Then edges are computed and an approximative segmentation 

of the structure is obtained by using deterministic algorithms. This information is finally 

combined with a deformable model to obtain the temporal tracking of the pre-selected 

structure. 
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Finally, to further demonstrate the efficiency of our approach, we apply it to a difficult 
time sequence of ultrasound images of the heart to track the left auricle and the mitral 
valve. 

1.2 P r e v i o u s  work  

Our approach is different from previous ones. This comes from the fact that we 
study directly the ultrasonic data. More commonly, feature extraction is applied to the 
cartesian video data. To our knowledge, there is only one study where all processing 
is performed on sector scans in polar coordinate form. This was published by Taxt [13] 
and reports noise reduction and segmentation in time-varying ultrasound images. But a 
comparative study of scan correction methods to obtain cartesian images has apparently 
not been pursued yet. For cartesian images, the most commonly used approach to obtain 
the contour of left ventricle (in echocardiography) is radial search [5] [2] [7]: the procedure 
starts from a point inside the heart chamber and searches along different radial lines for 
edge points. The best-known dynamic approach is the one by Zhang and Geiser [15], who 
compute temporal cooccurrences to obtain both stationary points and moving points. The 
temporal information has also been used to filter images obtained at the same instant of 
the cardiac cycle [14]. 

2 A c q u i s i t i o n  o f  a n  e c h o g r a p h i c  i m a g e  

The purpose of this section is to present some primary characteristics of image 
formation using echographic technologies. 

A basic imaging system, called a pulsed system, is illustrated in Fig. 1. When the 
switch is in the transmit position, the pulse waveform p(~) excites the transducer [9]. 1 
This results in a wavefront that is propagated in the body. The transducer produces 
a relatively narrow beam of propagation whose angular direction of propagation into 
the body is known. Immediately following the transmission, the system switches to the 
receive position, using the same transducer. The pulse is attenuated when it propagates 
through the body. When the wavefront hits a discontinuity, a scattered wave is produced. 
This scattered wave is received by the transducer and the resultant signal is processed 
and displayed along a line representing the direction of the beam. 

~ receive 
cPosition 

t ~  tracsjnit 
P( posmon 

signal display 
processor 

Fig. 1. Elementary pulsed ultrasonic system 

I Other types of echographs using pseudo-random code correlation are studied in the Litera- 
ture [11] 
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3 I m a g e  r e p r e s e n t a t i o n  in  c a r t e s i a n  c o o r d i n a t e s  

The process of converting from the polar coordinates representation to the cartesian 
coordinates representation is necessary for the convenience of the users. Physicians are 
accustomed to viewing images in cartesian data and it would be difficult for them to 
interpret polar data. Moreover vizualisation hardware and image processing algorithms 
are designed for data in cartesian coordinates. 

Let us suppose that M different orientations are used to obtain an echocardiographic 
image, and that each return signal is digitized to L points. Fig. 2 shows an echographic 
image, with M rows and L columns, obtained with a commercial echographic machine, 
providing an image represented in polar coordinates. Fig. 3 shows the cartesian image 
corresponding to the same data. 

F i g .  2 .  U l t r a s o u n d  i m a g e  o n  r a w  d a t a  

Fig. 3. Cartesian image after conversion 

Scan conversion requires the knowledge of the following set of parameters (see Fig. 4): 

- the angular extent of data acquisition wedge a, 
- minimal distance d for data acquisition, 
- total distance D for data acquisition (these distances being calculated from the skin), 

and 
- the number of rows, N, desired in the ouput cartesian image (The number of columns 

will be related to a, and will assume square pixels). 
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Fig .  4.  Parameters of the conversion process 

Several methods may b e  used for the conversion process. Usually, the video image on 
the echographic machine is obtained by assigning to a cartesian point the grey level of 
the nearest available point in polar coordinates, or the value of the bi]inear interpolation 
of its four nearest points. In fact, we found that these methods donor  make an optimal 
use of the available original data, and we introduced a new method, called sonar-space 
filtering, which Can be used to optimally reconstruct the data with a chosen level of 
spatial linear filtering. 

3 . 1  C o n v e r s i o n  b y  s o n a r - s p a c e  f i l t e r ing  

We assume that it is desired t h a t  the continuous input cartesian image I (z ,  V) be 
filtered by the impulse response f i l t e r / (z ,  y). The resulting image R ( z ,  y) ,  in continuous 
space, is given by the convolution product: 

/ / ;  R(z, y) : / ( ~  - u, y - v) . I ( u ,  v)  d u d v  . (1) 
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However, the input is only available in the polar coordinate space. We thus apply the 
following change of variables: 

( J ( ~  - ~o) ~ + y~) �9 e - ~ . 

where: 

- A~v = d * ~ represents the distance from the surface of the skin where the 

acquisition process begins, measured in pixel units along a scan line of the raw data,  

- A~ = ~ is the angular difference between two successive angular positions of 
k S  

the probe, 

D (L - 1) performs the change of pixel sampling rates along the axial - e = (D-d)(N-1) 

direction of the beam, according to the desired height N of the cartesian image. 

We obtain: 

f0 2~r f0 ~176 R(~,  y) = f ( ~  - ~(p, e), y - ~(p, 0 ) ) .  I(p,  0). I J(P, 0) I d p d 0 .  (2) 

Here [3(p, 0) I is the determinant of the Jacobian matrix corresponding to the inverse 
transformation of variables: 

( +eP--T-~ - sin(0Aa + - - 'T - -  "/r -- o~ ) . 

It is easily seen that  

I J(P, 0) l =  (" + ~ N )  * ~ a  e 2 

We have transformed the convolution in the cartesian coordinates to an infinite inte- 
gral in polar coordinates, corresponding to the domain of the raw data.  

Once the two-dimensional convolution filter f is chosen, we define its rectangle of 
essential support:  say a rectangular window of width 2X and 2Y. Outside this region 
of support the absolute value of the impulse response must be lower than a pre-selected 
threshold s, i.e.,: 

If( ~,v)l < " if ((lul > X)  OR (Ivl _> Y)) . 

Therefore the integral is approximated by a finite integral over the domain 

( z - X < u < x + X )  AND ( y - Y  < v < y + Y )  . 

The filter is also sampled in this domain in order to approximate the integral by 
a discrete summation.  Filtered numerical outputs are evaluated at original da ta  point 
locations within the continuous domain. 

We thus obtain the following equation: 

R(~,  y) = c ~ / ( ~  - ~ ( ,~ ,  0~ ), y - v(p~, 0~)) .  I(p~,  e~). I J ~ ( p ~ ,  0~) I, 
k 

(3) 
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where the summation is over the discrete collection of point (Pk, 8k) in polar coordinates, 
where C is used to normalize the data and: 

I J(p~, 0~) I = (p~ + raN) �9 za~ 
e 2 

We have transformed the computation of R(z, y) into a discrete summation on a 
window of size 2X by 2Y, making use of image data only at points where it is defined 
in the polar coordinate domain. Note that for the raw data, or more generally for any 
sonar-like data, the sampling of the filter is not regular along the z and y axes but it 
rather conforms to the sampling density of raw data. In this formula, the I~l(p~,Sk) I 
value represents the surface area of the polar pixel patch in the cartesian domain. We 
will present in the following subsections the different values that we have chosen for the 

function f for different processing of the echocardiographic raw data. 

3.2 Visua l i za t ion  app l i ca t ion  

In practice, the convolution filter f ( z ,y )  is typically separable and is denoted by 

f(z)g(y). Then, classical 1-D smoothing and derivation filters can be used. 

For visualization applications of sonar-space filtering, we used the Deriche's smoothing 

function [4] with f(z)  : g(z) = L(z): 

L(z) = k2(e~sin(w I z I) + wcos(w [ z I)) -alxl . (4) 

The conversion algorithm performs simultaneously a conversion to cartesian coor- 

dinates and a smoothing of the data (whose amplitude can be adjusted with cz) thus 
producing a cartesian image with a reduced speckle. Other smoothing functions could be 
used instead. 

It will be noted that the visualization quality is not significantly different, or better, 

with sonar-space filtering than with classical bi-linear interpolation method. But our 
objective is not to improve visualization, but rather to improve automatic analysis of 
echocardiographic sequences. 

3.3 Edge  de t ec t ion  app l i ca t ion  

For further automatic boundary tracking, our goal is to use spatio-temporal ap- 
proaches [10]. A time-varying edge may be represented as a surface in 3-D space, in 
which z and l/are two spatial dimensions (in the cartesian coordinates space) and t is 
the temporal dimension. We modify Deriche's edge detector for this goal. Another ap- 
proach could be to generalize Deriche's detector with spatio-temporal functions as in [6]. 
We denote G,  and Gy the two spatial components of the gradient vector and I(z,  y, t) 
the 3-dimensional grey level function. Let D be the Deriche differentiation filter and L 
the associated smoothing filter: 

z ( ~ )  = k ( ~ , i n ( ~  I �9 I) + ~ c o , ( ~  I �9 I)) -~ l ' l ,  (~) 

D(z) = ksin(oJ I z I) -al~l 

The two components of the gradient vector have the following expression: 

(~) 

G. = (D, LuLt) | l(z,y,t) 
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Gy -- (L~DyLt) | I(z,  y,t)  

where the subscripts are used to explain along which axis the corresponding filter is 
applied. Each component is obtained by differentiation in the associated direction and 
filtering in the other spatial direction and in the temporal direction. 

The norm of the gradient is defined by: 

y ,  t )  = + . 

The edges are obtained as local maxima of the gradient norm in the direction of the 2D 
gradient vector. The temporal dimension is only used to smooth the result. This produces 

a significant image enhancement in regions that are not moving too fast. 

We denote a~, ay and at the filtering parameters of the Deriche filters (cf. Equ. 5 

and 6) for the respective axes z, y and t. Since the 2D space is homogeneous, we can 

choose a~ = ay. The value of at is independent and must be chosen according to the 

temporal resolution. 

4 T e m p o r a l  t r a c k i n g  

At this stage, we assume that we will work on ultrasound cartesian images and 

on edges represented in a cartesian space, whatever the methods used to obtain this 

information. 

Our objective is to perform temporal tracking of a pre-selected anatomical structure 

by combining different kinds of information. First, we want to obtain an approximate 

segmentation of the structure by using simple deterministic processing. Secondly we 

want to use the edges computed directly on the raw data. These will be combined by a 

regularisation process that takes an initial segmentation and deforms it from its initial 

position to make it better conform to the pre-detected edges. This approach is the idea 

behind the use of deformable models. 

4 . 1  E s t i m a t i o n  o f  t h e  b o u n d a r i e s  o f  t h e  a n a t o m i c a l  s t r u c t u r e  

To obtain a crude estimation of the boundaries of anatomical structures, we use 

techniques from mathematical morphology. The model of a cardiac cavity is very simple. 

This is an ovoid region with low intensity. These regions cannot be obtained by simple 

thresholding because of the speckle noise. But the fine structures of the speckle may be 

easily suppressed by the following morphological operations [12]: 

- A first order opening eliminates the small bright structures on dark background. 

- The dual operation (first order closing) suppresses the small dark structures. 

After these operations, a simple thresholding gives an image C where all the cardiac 
cavities are represented in white. This detection can be refined by  the use of higher level 
information. The specialist points out, using a computer mouse, the chosen cavity on the 
first image of the sequence. The whole cavity is then obtained by a conditional dilatation 
which begins at this point. 
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4.2 Use o f  a de fo rmab le  m o d e l  

The previous operations usually provide an approximately-correct but locally- 
inaccurate positioning of the structure boundaries. In order to improve this crude seg- 
mentation to an accurate determination of the boundaries, we use the deformable models 
of [3], in the spirit of [8]. 

The deformable model is initialized in the first image by the crude approximation of 
the structure boundary. It evolves under the action of image forces, which are counter- 
balanced by its own internal forces to preserve its regularity. Image forces are computed 
as the derivative of an attraction potential related to the previously computed spatio- 

temporal edges. Typically, the potential is inversely proportional to the distance of the 
nearest edge point. 

Deformable models may be used independantly on each frame or iteratively on the 
sequence: once the model has converged in the first frame, its final position is used as 
the initial one in the next frame, and the process is repeated. 

5 Experimental  results for sonar-space filtering 

This section gives the results obtained by bilinear interpolation and sonar-space 

filtering evaluated in terms of the visualization and edge detection capabilities of the 

methods. 

A simple example concerns polar scanning of a thin dark structure (represented by 

horizontal lines in polar data) in a white background. Fig. 5 presents the polar data: 512 
rays of 128 pixels. The dark structure has a width of 3 rays. Fig. 6 presents edges obtained 

on cartesian images reconstructed by bilinear interpolation and sonar-space filtering. 

Because bilinear interpolation does not make use of all available polar data, informa- 

tion is lost which can never be retrieved by further processing such as edge detection or 
segmentation. 

To conclude this section with ultrasound data, one can see in Fig. 7 the reconstructed 
image using sonar-space filtering with a = l ,  and the same image with the detected edges 
superimposed. The value of the parameter a is determined experimentally but is the 
same for all ultrasound images provided by an echographic machine. 

6 Experimental  results for temporal tracking 

We first note that temporal smoothing reduces some local distortions on the deeper 
edges of the left auricle (compare the bottom right cavity of Fig. 8). Simultaneously, 
temporal smoothing can cause a problem for the mitral valve (middle thin structure of 
Fig. 8), which is moving fast with respect to the temporal resolution. The strategy is thus 
to use temporal smoothing only to study cavities and to apply spatial gradient techniques 
to study fast moving structures like the valves. 

Secondly, we present the use of deformable models to analyse echocardiographic data 
after the scan-correction process has been applied. 

For structures moving slowly (heart cavities), deformable models may be applied it- 
eratively using an initialization process and the results of edge detection. The software 
of L. Cohen and I. Cohen [3] requires three parameters. The elasticity and rigidity coeffi- 
cients model the properties of the cavity boundary curve. The third coefficient is a weight 
representing the attraction of the edges. The results of this application of the deformable 
model may be seen in the first frame of Fig. 12 for the segmentation of left auricle. The 
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Fig.  5. Polar data 

F |g .  6. Left: edges on bilinear interpolation image. Right: sonar-space filtering 

F |g .  7. Cartesian image and best edges obtained by sonar-space filtering 
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Fig. 8. Left: no temporal smoothing of edges, right: temporal smoothing of edges. 

result is then used to initialize the second frame. The parameters are the same and the 
process is repeated sequentially through all frames, as it can be seen on Fig. 12. 

For structures moving fast (mitral valve), deformable models are applied indepen- 
dantly on each frame and results of these applications may be seen on Fig. 11. 

We summarize the advantages of using deformable models to analyze echocardio- 
graphic data: 

- Deformable models allow a compromise between an initial segmentation based on 
grey levels and texture properties and an edge detection process performed directly 

on raw data. 

- The values of the parameters required by the deformable model are the same for both 

the regularization application on a single frame and for the tracking application on 

a sequence. They can be chosen interactively on the first image of the sequence. 

The methods presented in this paper were applied to four different sequences obtained 

from two different echographs. The data  presented here were obtained in a polar coor- 

dinate form on a VIGMED echograph at Henri Mondor hospital in Creteil, France. A 

sequence contains 38 images from a cardiac cycle. Fig. 9 shows a cartesian representation 

of the original data. (Only one image in four is displayed.) The left heart cavities (auricle 

and ventricle) and the mitral valve are visible in a typical image. Our aim is to track 

them. Tracking of the latter structure is successfully achieved in this example due to the 
fact that  the edges were obtained from sonar-space filtering. Other methods (bilinear 

interpolation followed by edge detection) generally do not give accurate edges for the 

deep structures and cannot therefore be used for further temporal tracking. Edges are 

shown in Fig. 10, and temporal tracking is presented in Figs. 11 and 12. 

7 Conclusions 

We showed in this paper the importance of using an appropriate conversion method 
when dealing with images produced in polar coordinates. We introduced a new method 
which computes both the conversion and a convolution of the polar data  with a smoothing 
filter in a single process. Using this approach, the quality of the edges and features that  
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Fig.  9. data after scan-correction 
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Fig. 10. Edges 

are extracted can be enhanced. This approach is more flexible because it allows a variable 

level of smoothing to be chosen according to the actual resolution of the original data. 

This is not the case when an additional smoothing is required after a conversion by other 

algorithms. We showed the enhancement produced on edge detection by our approach. 

Finally, we demonstrated the effectiveness of this approach by solving a complete 

application. We used morphological operators to initialize a deformable model in the first 

image of a time sequence. Then we applied our edge detector and we let the deformable 
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model converge toward the detected edges. Using the solution as an initialization in the 

following image, we tracked the left auricle boundary  in a sequence of 38 images. 

Our future research will concentrate on the generalization of these methods to be 

applied to 3-D ultrasound images produced in spherical coordinates. 
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Fig.  11. Temporal tracking of the mitral valve 
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Fig. 12. Temporal tracking of the left auricle 


