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Features of Similarity
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The metric and dimensional assumptions that underlie the geometric represen-
tation of similarity are questioned on both theoretical and empirical grounds.
A new set-theoretical approach to similarity is developed in which objects are
represented as collections of features, and similarity is described as a feature-
matching process. Specifically, a set of qualitative assumptions is shown to
imply the contrast model, which expresses the similarity between objects as a
linear combination of the measures of their common and distinctive features.
Several predictions of the contrast model are tested in studies of similarity with
both semantic and perceptual stimuli. The model is used to uncover, analyze,
and explain a variety of empirical phenomena such as the role of common and
distinctive features, the relations between judgments of similarity and differ-
ence, the presence of asymmetric similarities, and the effects of context on
judgments of similarity. The contrast model generalizes standard representa-
tions of similarity data in terms of clusters and trees. It is also used to analyze
the relations of prototypicality and family resemblance.

Similarity plays a fundamental role in errors of substitution, and correlation between
theories of knowledge and behavior. It serves occurrences. Analyses of these data attempt to
as an organizing principle by which individuals explain the observed similarity relations and
classify objects, form concepts, and make gen- to capture the underlying structure of the ob-
eralizations. Indeed, the concept of similarity jects under study.
is ubiquitous in psychological theory. It under- The theoretical analysis of similarity rela-
lies the accounts of stimulus and response tions has been dominated by geometric
generalization in learning, it is employed to models. These models represent objects as
explain errors in memory and pattern recogni- points in some coordinate space such that the
tion, and it is central to the analysis of con- observed dissimilarities between objects cor-
notative meaning. respond to the metric distances between the

Similarity or dissimilarity data appear in respective points. Practically all analyses of
different forms: ratings of pairs, sorting of proximity data have been metric in nature,
objects, communality between associations, although some (e.g., hierarchical clustering)

yield tree-like structures rather than dimen-

This paper benefited from fruitful discussions with sionallv. organized spaces. However, most
Y. Cohen, I. Gati, D. Kahneman, L. Sjeberg, and theoretical and empirical analyses of similarity
S. Sattath. assume that objects can be adequately repre-
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Department of Psychology, Hebrew University, sented as points m some coordinate space and
Jerusalem, Israel. that dissimilarity behaves like a metric dis-
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tance function. Both dimensional and metric
assumptions are open to question.

It has been argued by many authors that
dimensional representations are appropriate
for certain stimuli (e.g., colors, tones) but not
for others. It seems more appropriate to repre-
sent faces, countries, or personalities in terms
of many qualitative features than in terms of
a few quantitative dimensions. The assessment
of similarity between such stimuli, therefore,
may be better described as a comparison of
features rather than as the computation of
metric distance between points.

A metric distance function, 6, is a scale that
assigns to every pair of points a nonnegative
number, called their distance, in accord with
the following three axioms:

Minimality:

8(a,b) > S(a,a) = 0.

Symmetry:

S(a,b) = 5(b,a).

The triangle inequality:

«(a,b) + S(b,c) > 8(a,c).

To evaluate the adequacy of the geometric
approach, let us examine the validity of the
metric axioms when 8 is regarded as a measure
of dissimilarity. The minimality axiom implies
that the similarity between an object and itself
is the same for all objects. This assumption,
however, does not hold for some similarity
measures. For example, the probability of
judging two identical stimuli as "same" rather
than "different" is not constant for all stimuli.
Moreover, in recognition experiments the off-
diagonal entries often exceed the diagonal
entries; that is, an object is identified as an-
other object more frequently than it is identi-
fied as itself. If identification probability is
interpreted as a measure of similarity, then
these observations violate minimality and are,
therefore, incompatible with the distance
model.

Similarity has been viewed by both philoso-
phers and psychologists as a prime example of
a symmetric relation. Indeed, the assumption
of symmetry underlies essentially all theo-
retical treatments of similarity. Contrary to
this tradition, the present paper provides
empirical evidence for asymmetric similarities

and argues that similarity should not be
treated as a symmetric relation.

Similarity judgments can be regarded as
extensions of similarity statements, that is,
statements of the form "a is like b." Such a
statement is directional; it has a subject, a,
and a referent, b, and it is not equivalent in
general to the converse similarity statement
"b is like a." In fact, the choice of subject
and referent depends, at least in part, on the
relative salience of the objects. We tend to
select the more salient stimulus, or the proto-
type, as a referent, and the less salient stimu-
lus, or the variant, as a subject. We say "the
portrait resembles the person" rather than
"the person resembles the portrait." We say
"the son resembles the father" rather than
"the father resembles the son." We say "an
ellipse is like a circle," not "a circle is like an
ellipse," and we say "North Korea is like Red
China" rather than "Red China is like North
Korea."

As will be demonstrated later, this asym-
metry in the choice of similarity statements is
associated with asymmetry in judgments of
similarity. Thus, the judged similarity of
North Korea to Red China exceeds the judged
similarity of Red China to North Korea. Like-
wise, an ellipse is more similar to a circle than
a circle is to an ellipse. Apparently, the direc-
tion of asymmetry is determined by the rela-
tive salience of the stimuli; the variant is
more similar to the prototype than vice versa.

The directionality and asymmetry of simi-
larity relations are particularly noticeable in
similies and metaphors. We say "Turks fight
like tigers" and not "tigers fight like Turks."
Since the tiger is renowned for its fighting
spirit, it is used as the referent rather than
the subject of the simile. The poet writes "my
love is as deep as the ocean," not "the ocean
is as deep as my love," because the ocean
epitomizes depth. Sometimes both directions
are used but they carry different meanings.
"A man is like a tree" implies that man has
roots; "a tree is like a man" implies that the
tree has a life history. "Life is like a play"
says that people play roles. "A play is like
life" says that a play can capture the essential
elements of human life. The relations between
the interpretation of metaphors and the as-
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sessment of similarity are briefly discussed in
the final section.

The triangle inequality differs from minimal-
ity and symmetry in that it cannot be formu-
lated in ordinal terms. It asserts that one
distance must be smaller than the sum of two
others, and hence it cannot be readily refuted
with ordinal or even interval data. However,
the triangle inequality implies that if a is quite
similar to b, and b is quite similar to c, then
a and c cannot be very dissimilar from each
other. Thus, it sets a lower limit to the simi-
larity between a and c in terms of the similari-
ties between a and b and between b and c.
The following example (based on William
James) casts some doubts on the psychological
validity of this assumption. Consider the simi-
larity between countries: Jamaica is similar
to Cuba (because of geographical proximity);
Cuba is similar to Russia (because of their
political affinity); but Jamaica and Russia are
not similar at all.

This example shows that similarity, as one
might expect, is not transitive. In addition, it
suggests that the perceived distance of Jamaica
to Russia exceeds the perceived distance of
Jamaica to Cuba, plus that of Cuba to Russia
—contrary to the triangle inequality. Although
such examples do not necessarily refute the
triangle inequality, they indicate that it should
not be accepted as a cornerstone of similarity
models.

It should be noted that the metric axioms,
by themselves, are very weak. They are satis-
fied, for example, by letting 5 (a,b) = 0 if a = b,
and 5(a,b) = 1 if a j^ b. To specify the dis-
tance function, additional assumptions are
made (e.g., intradimensional subtractivity and
interdimensional additivity) relating the di-
mensional structure of the objects to their
metric distances. For an axiomatic analysis
and a critical discussion of these assumptions,
see Beals, Krantz, and Tversky (1968), Krantz
and Tversky (1975), and Tversky and Krantz
(1970).

In conclusion, it appears that despite many
fruitful applications (see e.g., Carroll & Wish,
1974; Shepard, 1974), the geometric approach
to the analysis of similarity faces several
difficulties. The applicability of the dimen-
sional assumption is limited, and the metric
axioms are questionable. Specifically, minimal-

ity is somewhat problematic, symmetry is ap-
parently false, and the triangle inequality is
hardly compelling.

The next section develops an alternative
theoretical approach to similarity, based on
feature matching, which is neither dimensional
nor metric in nature. In subsequent sections
this approach is used to uncover, analyze, and
explain several empirical phenomena, such as
the role of common and distinctive features,
the relations between judgments of similarity
and difference, the presence of asymmetric
similarities, and the effects of context on simi-
larity. Extensions and implications of the
present development are discussed in the final
section.

Feature Matching

Let A = {a,b,c,...} be the domain of objects
(or stimuli) under study. Assume that each
object in A is represented by a set of features
or attributes, and let A,B,C denote the sets of
features associated with the objects a,b,c, re-
spectively. The features may correspond to
components such as eyes or mouth; they may
represent concrete properties such as size or
color; and they may reflect abstract attributes
such as quality or complexity. The character-
ization of stimuli as feature sets has been
employed in the analysis of many cognitive
processes such as speech perception (Jakobson,
Fant, & Halle, 1961), pattern recognition
(Neisser, 1967), perceptual learning (Gibson,
1969), preferential choice (Tversky, 1972), and
semantic judgment (Smith, Shoben, & Rips,
1974).

Two preliminary comments regarding fea-
ture representations are in order. First, it is
important to note that our total data base
concerning a particular object (e.g., a person,
a country, or a piece of furniture) is generally
rich in content and complex in form. It in-
cludes appearance, function, relation to other
objects, and any other property of the object
that can be deduced from our general knowl-
edge of the world. When faced with a particular
task (e.g., identification or similarity assess-
ment) we extract and compile from our data
base a limited list of relevant features on the
basis of which we perform the required task.
Thus, the representation of an object as a col-
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A-B

APIB

B - A

Figure 1. A graphical illustration of the relation between
two feature sets.

lection of features is viewed as a product of a
prior process of extraction and compilation.

Second, the term, feature usually denotes the
value of a binary variable (e.g., voiced vs.
voiceless consonants) or the value of a nominal
variable (e.g., eye color). Feature representa-
tions, however, are not restricted to binary or
nominal variables; they are also applicable to
ordinal or cardinal variables (i.e., dimensions).
A series of tones that differ only in loudness,
for example, could be represented as a sequence
of nested sets where the feature set associated
with each tone is included in the feature sets
associated with louder tones. Such a represen-
tation is isomorphic to a directional unidimen-
sional structure. A nondirectional unidimen-
sional structure (e.g., a series of tones that
differ only in pitch) could be represented by a
chain of overlapping sets. The set-theoretical
representation of qualitative and quantitative
dimensions has been investigated by Restle
(1959).

Let s(a,b) be a measure of the similarity of
a to b denned for all distinct a, b in A. The
scale s is treated as an ordinal measure of
similarity. That is, s(a,b) > s(c,d) means that
a is more similar to b than c is to d. The
present theory is based on the following
assumptions.

1. Matching:

s(a,b) = F(AH B, A - B, B - A).

The similarity of a to b is expressed as a
function F of three arguments: AHB, the
features that are common to both a and b;
A — B, the features that belong to a but not
to b; B — A, the features that belong to b but

not to a. A schematic illustration of these
components is presented in Figure 1.

2. Monotonicity:

s(a,b) > s(a,c)

whenever

, A - B C A - C ,

and

B - A C C - A.

Moreover, the inequality is strict whenever
either inclusion is proper.

That is, similarity increases with addition
of common features and/or deletion of distinc-
tive features (i.e., features that belong to one
object but not to the other). The monotonicity
axiom can be readily illustrated with block
letters if we identify their features with the
component (straight) lines. Under this as-
sumption, E should be more similar to F than
to I because E and F have more common
features than E and I. Furthermore, I should
be more similar to F than to E because I and
F have fewer distinctive features than I and E.

Any function F satisfying Assumptions 1
and 2 is called a matching function. It measures
the degree to which two objects—viewed as
sets of features—match each other. In the
present theory, the assessment of similarity is
described as a feature-matching process. It is
formulated, therefore, in terms of the set-
theoretical notion of a matching function
rather than in terms of the geometric concept
of distance.

In order to determine the functional form
of the matching function, additional assump-
tions about the similarity ordering are intro-
duced. The major assumption of the theory
(independence) is presented next; the remain-
ing assumptions and the proof of the represen-
tation theorem are presented in the Appendix.
Readers who are less interested in formal
theory can skim or skip the following para-
graphs up to the discussion of the representa-
tion theorem.

Let $ denote the set of all features associated
with the objects of A, and let X,Y,Z,... etc.
denote collections of features (i.e., subsets of
$). The expression F(X,Y,Z) is defined when-
ever there exists a, b in A such that A C\ B = X,
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A — B = Y, and B - A = Z, whence s(a,b)
= F(A H B, A - B, B - A) = F(X,Y,Z).
Next, define V c~ W if one or more of the
following hold for some X,Y,Z: F(V,Y,Z) =
F(W,Y,Z), F(X,V,Z) = F(X,W,Z), F(X,Y,V)
= F(X,Y,W).

The pairs (a,b) and (c,d) are said to agree
on one, two, or three components, respec-
tively, whenever one, two, or three of the
following hold: (A C\ B) ~ (C C\ D), (A - B)
~ ( C - D ) , ( B - A ) ~ ( D - C ) .

3. Independence: Suppose the pairs (a,b) and
(c,d), as well as the pairs (a',b') and (c',d'),
agree on the same two components, while the
pairs (a,b) and (a',b'), as well as the pairs
(c,d) and (c',d'), agree on the remaining (third)
component. Then

s(a,b) > s(a',b') iff s(c,d) > s(c',d').

To illustrate the force of the independence
axiom consider the stimuli presented in Figure
2, where

\ B = C n D = round profile = X,

A' H B' = C' H D' = sharp profile = X',

A — B = C — D = smiling mouth = Y,

A' - B' = C' - D' = frowning mouth = Y',

B - A = B ' - A ' = straight eyebrow = Z,

D-C = D'-C' = curved eyebrow = Z'.

By independence, therefore,

s(a,b) = F(AP\ B, A - B, B - A)

= F(X,Y,Z) > F(X',Y',Z)

= F(A'nB', A'-B', B'- A')

= s(a',b')

if and only if

s(c,d) = F(C n D, C - D, D - C)

= F(X,Y,Z') > F(X',Y',Z')

= F(C'C\ D', C' - D', D' - C')

Thus, the ordering of the joint effect of any
two components (e.g., X,Y vs. X',Y') is inde-
pendent of the fixed level of the third factor
(e.g.,ZorZ').

c d c' d'

Figure 2. An illustration of independence.

It should be emphasized that any test of the
axioms presupposes an interpretation of the
features. The independence axiom, for example,
may hold in one interpretation and fail in
another. Experimental tests of the axioms,
therefore, test jointly the adequacy of the in-
terpretation of the features and the empirical
validity of the assumptions. Furthermore, the
above examples should not be taken to mean
that stimuli (e.g., block letters, schematic
faces) can be properly characterized in terms
of their components. To achieve an adequate
feature representation of visual forms, more
global properties (e.g., symmetry, connected-
ness) should also be introduced. For an inter-
esting discussion of this problem, in the best
tradition of Gestalt psychology, see Goldmeier
(1972; originally published in 1936).

In addition to matching (1), monotonicity
(2), and independence (3), we also assume
solvability (4), and invariance (5). Solvability
requires that the feature space under study be
sufficiently rich that certain (similarity) equa-
tions can be solved. Invariance ensures that
the equivalence of intervals is preserved across
factors. A rigorous formulation of these as-
sumptions is given in the Appendix, along with
a proof of the following result.

Representation theorem. Suppose Assump-
tions 1, 2, 3, 4, and 5 hold. Then there exist a
similarity scale S and a nonnegative scale f
such that for all a,b,c,d in A,

(i). S(a,b) > S(c,d) iff s(a,b) > s(c,d);
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(ii). S(a,b) = 0f(AH B) - «f(A - B)

— /8f(B — A), for some 0,«,/8 > 0;

(iii). f and S are interval scales.

The theorem shows that under Assumptions
1-5, there exists an interval similarity scale S
that preserves the observed similarity order
and expresses similarity as a linear combina-
tion, or a contrast, of the measures of the
common and the distinctive features. Hence,
the representation is called the contrast model.

In parts of the following development we also
assume that f satisfies feature additivity. That
is, f (X U Y) = f (X) + f (Y) whenever X and
Y are disjoint, and all three terms are defined1.

Note that the contrast model does not define
a single similarity scale, but rather a family of
scales characterized by different values of the
parameters 0, a, and /9. For example, if 0 = 1
and a and 0 vanish, then S(a,b) = f (A H B);
that is, the similarity between objects is the
measure of their common features. If, on the
other hand, a = /3 = 1 and 0 vanishes then
-S(a,b) = f (A - B) + f (B - A); that is, the
dissimilarity between objects is the measure
of the symmetric difference between the respec-
tive feature sets. Restle (1961) has proposed
these forms as models of similarity and psycho-
logical distance, respectively. Note that in the
former model (6 = 1, a = ft = 0), similarity
between objects is determined only by their
common features, whereas in the latter model
(0 = 0, a = ft = 1), it is determined by their
distinctive features only. The contrast model
expresses similarity between objects as a
weighted difference of the measures of their
common and distinctive features, thereby al-
lowing for a variety of similarity relations over
the same domain.

The major constructs of the present theory
are the contrast rule for the assessment of
similarity, and the scale f, which reflects the
salience or prominence of the various features.
Thus, f measures the contribution of any par-
ticular (common or distinctive) feature to the
similarity between objects. The scale value
f(A) associated with stimulus a is regarded,
therefore, as a measure of the overall salience
of that stimulus. The factors that contribute
to the salience of a stimulus include intensity,
frequency, familiarity, good form, and infor-

mational content. The manner in which the
scale f and the parameters (0,a,/3) depend on
the context and the task are discussed in the
following sections.

Let us recapitulate what is assumed and
what is proven in the representation theorem.
We begin with a set of objects, described as
collections of features, and a similarity order-
ing which is assumed to satisfy the axioms of
the present theory. From these assumptions,
we derive a measure f on the feature space and
prove that the similarity ordering of object
pairs coincides with the ordering of their con-
trasts, denned as linear combinations of the
respective common and distinctive features.
Thus, the measure f and the contrast model
are derived from qualitative axioms regarding
the similarity of objects.

The nature of this result may be illuminated
by an analogy to the classical theory of deci-
sion under risk (von Neumann & Morgenstern,
1947). In that theory, one starts with a set of
prospects, characterized as probability dis-
tributions over some consequence space, and
a preference order that is assumed to satisfy
the axioms of the theory. From these assump-
tions one derives a utility scale on the conse-
quence space and proves that the preference

order between prospects coincides with the

order of their expected utilities. Thus, the
utility scale and the expectation principle are

derived from qualitative assumptions about

preferences. The present theory of similarity
differs from the expected-utility model in that

the characterization of objects as feature sets

is perhaps more problematic than the char-

acterization of uncertain options as probability

distributions. Furthermore, the axioms of util-
ity theory are proposed as (normative) prin-

ciples of rational behavior, whereas the axioms

of the present theory are intended to be de-

scriptive rather than prescriptive.

The contrast model is perhaps the simplest

form of a matching function, yet it is not the
only form worthy of investigation. Another

'To derive feature additivity from qualitative as-
sumptions, we must assume the axioms of an extensive
structure and the compatibility of the extensive and the
conjoint scales; see Krantz et al. (1971, Section 10.7).
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matching function of interest is the ratio model,

_
. , - f(AnB)+af(A-B)+^f(B-A)'

« , /3>0,

where similarity is normalized so that S lies
between 0 and 1. The ratio model generalizes
several set-theoretical models of similarity
proposed in the literature. If a = ft = 1, S (a,b)
reduces to f (A H B)/f (A (J B) (see Gregson,
1975, and Sjoberg, 1972). If « = ft = i S(a,b)
equals 2f(AH B)/(f(A) + f(B)) (see Eisler &
Ekman, 1959). If a = 1 and ft = 0, S(a,b) re-
duces to f (AH B)/f (A) (see Bush & Hosteller,
1951). The present framework, therefore, en-
compasses a wide variety of similarity models
that differ in the form of the matching function
F and in the weights assigned to its arguments.

In order to apply and test the present theory
in any particular domain, some assumptions
about the respective feature structure must be
made. If the features associated with each
object are explicitly specified, we can test the
axioms of the theory directly and scale the
features according to the contrast model. This
approach, however, is generally limited to
stimuli (e.g., schematic faces, letters, strings
of symbols) that are constructed from a fixed
feature set. If the features associated with the
objects under study cannot be readily speci-
fied, as is often the case with natural stimuli,
we can still test several predictions of the
contrast model ̂ which involve only general
qualitative assumptions about the feature
structure of the objects. Both approaches were
employed in a series of experiments conducted
by Itamar Gati and the present author. The
following three sections review and discuss our
main findings, focusing primarily on the test
of qualitative predictions. A more detailed de-
scription of the stimuli and the data are pre-
sented in Tversky and Gati (in press).

Asymmetry and Focus

According to the present analysis, similarity
is not necessarily a symmetric relation. Indeed,
it follows readily (from either the contrast or
the ratio model) that

s(a,b) = s(b,a) iff of (A - B) + 0f (B - A)

= of (B - A) + /3f (A - B)

iff (a - /9)f (A - B) = (a - 0)f (B - A).

Hence, s(a,b) = s(b,a) if either a = /8, or
f(A - B) = f(B - A), which implies f (A) =
f(B), provided feature additivity holds. Thus,
symmetry holds whenever the objects are equal
in measure (f(A) = f(B)) or the task is non-
directional (a = /3). To interpret the latter
condition, compare the following two forms:

(i). Assess the degree to which a and b are
similar to each other.

(ii). Assess the degree to which a is similar
tob.

In (i), the task is formulated in a nondirectional
fashion; hence it is expected that a = ft and
s(a,b) = s(b,a). In (ii), on the other hand, the
task is directional, and hence a and /3 may
differ and symmetry need not hold.

If s(a,b) is interpreted as the degree to
which a is similar to b, then a is the subject
of the comparison and b is the referent. In
such a task, one naturally focuses on the sub-
ject of the comparison. Hence, the features of
the subject are weighted more heavily than
the features of the referent (i.e., a > 0). Con-
sequently, similarity is reduced more by the
distinctive features of the subject than by the
distinctive features of the referent. It follows
readily that whenever a > ft,

s(a,b) > s(b,a) iff f(B) > f(A).

Thus, the focusing hypothesis (i.e., a > /3)
implies that the direction of asymmetry is
determined by the relative salience of the
stimuli so that the less salient stimulus is more
similar to the salient stimulus than vice versa.
In particular, the variant is more similar to
the prototype than the prototype is to the
variant, because the prototype is generally
more salient than the variant.

Similarity of Countries

Twenty-one pairs of countries served as
stimuli. The pairs were constructed so that one
element was more prominent than the other
(e.g., Red China-North Vietnam, USA-Mexico,
Belgium-Luxemburg). To verify this relation,
we asked a group of 69 subjects2 to select in

2 The subjects in all out experiments were Israeli
college students, ages 18-28. The material was pre-
sented in booklets and administered in a group setting.
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each pair the country they regarded as more
prominent. The proportion of subjects that
agreed with the a priori ordering exceeded f
for all pairs except one. A second group of 69
subjects was asked to choose which of two
phrases they preferred to use: "country a is
similar to country b," or "country b is similar
to country a." In all 21 cases, most of the
subjects chose the phrase in which the less
prominent country served as the subject and
the more prominent country as the referent.
For example, 66 subjects selected the phrase
"North Korea is similar to Red China" and
only 3 selected the phrase "Red China is
similar to North Korea." These results demon-
strate the presence of marked asymmetries in
the choice of similarity statements, whose
direction coincides with the relative promi-
nence of the stimuli.

To test for asymmetry in direct judgments
of similarity, we presented two groups of 77
subjects each with the same list of 21 pairs of
countries and asked subjects to rate their
similarity on a 20-point scale. The only differ-
ence between the two groups was the order of
the countries within each pair. For example,
one group was asked to assess "the degree to
which the USSR is similar to Poland," whereas
the second group was asked to assess "the
degree to which Poland is similar to the
USSR." The lists were constructed so that the
more prominent country appeared about an
equal number of times in the first and second
positions.

For any pair (p,q) of stimuli, let p denote
the more prominent element, and let q denote
the less prominent element. The average
s(q,p) was significantly higher than the aver-
age s(p,q) across all subjects and pairs: / test
for correlated samples yielded <(20) = 2.92,
p < .01. To obtain a statistical test based on
individual data, we computed for each subject
a directional asymmetry score defined as the
average similarity for comparisons with a
prominent referent, that is, s(q,p), minus the
average similarity for comparisons with a
prominent subject, s(p,q). The average differ-
ence was significantly positive: 2(153) = 2.99,
p < .01.

The above study was repeated using judg-
ments of difference instead of judgments of
similarity. Two groups of 23 subjects each

participated in this study. They received the
same list of 21 pairs except that one group
was asked to judge the degree to which
country a differed from country b, denoted
d(a,b), whereas the second group was asked
to judge the degree to which country b was
different from country a, denoted d(b,a). If
judgments of difference follow the contrast
model, and a > /3, then we expect the promi-
nent stimulus p to differ from the less promi-
nent stimulus q more than q differs from p;
that is, d(p,q) > d(q,p). This hypothesis was
tested using the same set of 21 pairs of countries
and the prominence ordering established earlier.
The average d(p,q), across all subjects and
pairs, was significantly higher than the average
d(q,p): t test for correlated samples yielded
/(20) = 2.72, p < .01. Furthermore, the aver-
age asymmetry score, computed as above for
each subject, was significantly positive, /(45)
= 2.24, p < .05.

Similarity of Figures

A major determinant of the salience of geo-
metric figures is goodness of form. Thus, a
"good figure" is likely to be more salient than
a "bad figure," although the latter is generally
more complex. However, when two figures are
roughly equivalent with respect to goodness
of form, the more complex figure is likely to be
more salient. To investigate these hypotheses
and to test the asymmetry prediction, two sets
of eight pairs of geometric figures were con-
structed. In the first set, one figure in each
pair (denoted p) had better form than the
other (denoted q). In the second set, the two
figures in each pair were roughly matched in
goodness of form, but one figure (denoted p)
was richer or more complex than the other
(denoted q). Examples of pairs of figures from
each set are presented in Figure 3.

A group of 69 subjects was presented with
the entire list of 16 pairs of figures, where the
two elements of each pair were displayed side
by side. For each pair, the subjects were asked
to indicate which of the following two state-
ments they preferred to use: "The left figure
is similar to the right figure," or "The right
figure is similar to the left figure." The positions
of the stimuli were randomized so that p and
q appeared an equal number of times on the
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left and on the right. The results showed that
in each one of the pairs, most of the subjects
selected the form "q is similar to p." Thus, the
more salient stimulus was generally chosen as
the referent rather than the subject of similar-
ity statements.

To test for asymmetry in judgments of
similarity, we presented two groups of 67 sub-
jects each with the same 16 pairs of figures and
asked the subjects to rate (on a 20-point scale)
the degree to which the figure on the left was
similar to the figure on the right. The two
groups received identical booklets, except that
the left and right positions of the figures in
each pair were reversed. The results showed
that the average s(q,p) across all subjects and
pairs was significantly higher than the average
s(p,q). A t test for correlated samples yielded
/(IS) = 2.94, p < .01. Furthermore, in both
sets the average asymmetry scores, computed
as above for each subject, were significantly
positive: In the first sett (131) = 2.96, p< .01,
and in the second set *(131) = 2.79, p < .01.

Similarity of Letters

A common measure of similarity between
stimuli is the probability of confusing them in
a recognition or an identification task: The
more similar the stimuli, the more likely they
are to be confused. While confusion probabili-
ties are often asymmetric (i.e., the probability
of confusing a with b is different from the
probability of confusing b with a), this effect
is typically attributed to a response bias. To
eliminate this interpretation of asymmetry,
one could employ an experimental task where
the subject merely indicates whether the two
stimuli presented to him (sequentially or
simultaneously) are identical or not. This pro-
cedure was employed by Yoav Cohen and the
present author in a study of confusion among
block letters.

The following eight block letters served as
stimuli: F, C, l~l, D, F, E, R, B. All pairs
of letters were displayed on a cathode-ray tube,
side by side, on a noisy background. The
letters were presented sequentially, each for
approximately 1 msec. The right letter always
followed the left letter with an interval of 630
msec in between. After each presentation the
subject pressed one of two keys to indicate
whether the two letters were identical or not.

Figure 3. Examples of pairs of figures used to test the
prediction of asymmetry. The top two figures are ex-
amples of a pair (from the first set) that differs in good-
ness of form. The bottom two are examples of a pair
(from the second set) that differs in complexity.

A total of 32 subjects participated in the
experiment. Each subject was tested individ-
ually. On each trial, one letter (known in
advance) served as the standard. For one half
of the subjects the standard stimulus always
appeared on the left, and for the other half of
the subjects the standard always appeared on
the right. Each one of the eight letters served
as a standard. The trials were blocked into
groups of 10 pairs in which the standard was
paired once with each of the other letters and
three times with itself. Since each letter served
as a standard in one block, the entire design
consisted of eight blocks of 10 trials each.
Every subject was presented with three repli-
cations of the entire design (i.e., 240 trials).
The order of the blocks in each design and the
order of the letters within each block were
randomized.

According to the present analysis, people
compare the variable stimulus, which serves
the role of the subject, to the standard (i.e.,
the referent). The choice of standard, there-
fore, determines the directionality of the com-
parison. A natural partial ordering of the
letters with respect to prominence is induced
by the relation of inclusion among letters.
Thus, one letter is assumed to have a larger
measure than another if the former includes
the latter. For example, E includes F and P
but not D. For all 19 pairs in which one letter
includes the other, let p denote the more
prominent letter and q denote the less promi-
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nent letter. Furthermore, let s(a,b) denote the
percentage of times that the subject judged
the variable stimulus a to be the same as the
standard b.

It follows from the contrast model, with
a > /3, that the proportion of "same" responses
should be larger when the variable is included
in the standard than when the standard is
included in the variable, that is, s(q,p) >
s(p,q). This prediction was borne out by the
data. The average s(q,p) across all subjects
and trials was 17.1%, whereas the average
s(p,q) across all subjects and trials was 12.4%.
To obtain a statistical test, we computed for
each subject the difference between s(q,p) and
s(p,q) across all trials. The difference was
significantly positive, <(31) = 4.41, p < .001.
These results demonstrate that the prediction
of directional asymmetry derived from the
contrast model applies to confusion data and
not merely to rated similarity.

Similarity of Signals

Rothkopf (1957) presented 598 subjects with
all ordered pairs of the 36 Morse Code signals
and asked them to indicate whether the two
signals in each pair were the same or not. The
pairs were presented in a randomized order
without a fixed standard. Each subject judged
about one fourth of all pairs.

Let s(a,b) denote the percentage of "same"
responses to the ordered pair (a,b), i.e., the
percentage of subjects that judged the first
signal a to be the same as the second signal b.
Note that a and b refer here to the first and
second signal, and not to the variable and the
standard as in the previous section. Obviously,
Morse Code signals are partially ordered ac-
cording to temporal length. For any pair of
signals that differ in temporal length, let p and
q denote, respectively, the longer and shorter
element of the pair.

From the total of 555 comparisons between
signals of different length, reported in Rothkopf
(1957), s(q,p) exceeds s(p,q) in 336 cases,
s(p,q) exceeds s(q,p) in 181 cases, and s(q,p)
equals s(p,q) in 38 cases, p < .001, by sign
test. The average difference between s(q,p)
and s(p,q) across all pairs is 3.3%, which is
also highly significant. A t test for correlated
samples yields <(554) = 9.17, p < .001.

The asymmetry effect is enhanced when we
consider only those comparisons in which one
signal is a proper subsequence of the other.
(For example, • • is a subsequence of • • - as
well as of • - •) • From a total of 195 comparisons
of this type, s(q,p) exceeds s(p,q) in 128 cases,
s(p,q) exceeds s(q,p) in 55 cases, and s(q,p)
equals s(p,q) in 12 cases, p < .001 by sign
test. The average difference between s(q,p)
and s(p,q) in this case is 4.7%, f (194) = 7.58,
p < .001.

A later study following the same experi-
mental paradigm with somewhat different sig-
nals was conducted by Wish (1967). His sig-
nals consisted of three tones separated by two
silent intervals, where each component (i.e.,
a tone or a silence) was either short or long.
Subjects were presented with all pairs of 32
signals generated in this fashion and judged
whether the two members of each pair were
the same or not.

The above analysis is readily applicable to
Wish's (1967) data. From a total of 386 com-
parisons between signals of different length,
s(q,p) exceeds s(p,q) in 241 cases, s(p,q) ex-
ceeds s(q,p) in 117 cases, and s(q,p) equals
s(p,q) in 28 cases. These data are clearly
asymmetric, p < .001 by sign test. The aver-
age difference between s(q,p) and s(p,q) is
5.9%, which is also highly significant, <(385)
= 9.23, p < .001.

In the studies of Rothkopf and Wish there
is no a priori way to determine the directional-
ity of the comparison, or equivalently to iden-
tify the subject and the referent. However, if
we accept the focusing hypothesis (a > ft} and
the assumption that longer signals are more
prominent than shorter ones, then the direc-
tion of the observed asymmetry indicates that
the first signal serves as the subject that is
compared with the second signal that serves
the role of the referent. Hence, the direc-
tionality of the comparison is determined, ac-
cording to the present analysis, from the
prominence ordering of the stimuli and the
observed direction of asymmetry.

Rosch's Data

Rosch (1973, 1975) has articulated and sup-
ported the view that perceptual and semantic
categories are naturally formed and denned in
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terms of focal points, or prototypes. Because
of the special role of prototypes in the forma-
tion of categories, she hypothesized that (i)
in sentence frames involving hedges such as
"a is essentially b," focal stimuli (i.e., proto-
types) appear in the second position; and (ii)
the perceived distance from the prototype to
the variant is greater than the perceived dis-
tance from the variant to the prototype. To
test these hypotheses, Rosch (1975) used three
stimulus domains: color, line orientation, and
number. Prototypical colors were focal (e.g.,
pure red), while the variants were either non-
focal (e.g., off-red) or less saturated. Vertical,
horizontal, and diagonal lines served as proto-
types for line orientation, and lines of other
angles served as variants. Multiples of 10
(e.g., 10, 50, 100) were taken as prototypical
numbers, and other numbers (e.g., 11, 52, 103)
were treated as variants.

Hypothesis (i) was strongly confirmed in all
three domains. When presented with sentence
frames such as " is virtually . ," sub-
jects generally placed the prototype in the
second blank and the variant in the first. For
instance, subjects preferred the sentence "103
is virtually 100" to the sentence "100 is virtu-
ally 103." To test hypothesis (ii), one stimulus
(the standard) was placed at the origin of a
semicircular board, and the subject was in-
structed to place the second (variable) stimulus
on the board so as "to represent his feeling of
the distance between that stimulus and the
one fixed at the origin." As hypothesized, the
measured distance between stimuli was signifi-
cantly smaller when the prototype, rather than
the variant, was fixed at the origin, in each of
the three domains.

If focal stimuli are more salient than non-
focal stimuli, then Rosch's findings support
the present analysis. The hedging sentences
(e.g., "a is roughly b") can be regarded as a
particular type of similarity statements. In-
deed, the hedges data are in perfect agreement
with the choice of similarity statements. Fur-
thermore, the observed asymmetry in distance
placement follows from the present analysis of
asymmetry and the natural assumptions that
the standard and the variable serve, respec-
tively, as referent and subject in the distance-

placement task. Thus, the placement of b at

distance t from a is interpreted as saying that
the (perceived) distance from b to a equals t.

Rosch (1975) attributed the observed asym-
metry to the special role of distinct prototypes
(e.g., a perfect square or a pure red) in the
processing of information. In the present
theory, on the other hand, asymmetry is
explained by the relative salience of the
stimuli. Consequently, it implies asymmetry
for pairs that do not include the prototype
(e.g., two levels of distortion of the same
form). If the concept of prototypicality, how-
ever, is interpreted in a relative sense (i.e., a
is more prototypical than b) rather than in an
absolute sense, then the two interpretations of
asymmetry practically coincide.

Discussion

The conjunction of the contrast model and
the focusing hypothesis implies the presence
of asymmetric similarities. This prediction was
confirmed in several experiments of perceptual
and conceptual similarity using both judg-
mental methods (e.g., rating) and behavioral
methods (e.g., choice).

The asymmetries discussed in the previous
section were observed in comparative tasks in
which the subject compares two given stimuli
to determine their similarity. Asymmetries
were also observed in production tasks in which
the subject is given a single stimulus and asked
to produce the most similar response. Studies
of pattern recognition, stimulus identification,
and word association are all examples of pro-
duction tasks. A common pattern observed in
such studies is that the more salient object
occurs more often as a response to the less
salient object than vice versa. For example,
"tiger" is a more likely associate to "leopard"
than "leopard" is to "tiger." Similarly, Garner
(1974) instructed subjects to select from a
given set of dot patterns one that is similar—
but not identical—to a given pattern. His re-
sults show that "good" patterns are usually
chosen as responses to "bad" patterns and not
conversely.

This asymmetry in production tasks has
commonly been attributed to the differential
availability of responses. Thus, "tiger" is a
more likely associate to "leopard" than vice
versa, because "tiger" is more common and
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hence a more available response than "leop-
ard." This account is probably more applicable
to situations where the subject must actually
produce the response (as in word association
or pattern recognition) than to situations
where the subject merely selects a response
from some specified set (as in Garner's task).

Without questioning the importance of re-
sponse availability, the present theory suggests
another reason for the asymmetry observed in
production tasks. Consider the following trans-
lation of a production task to a question-and-
answer scheme. Question: What is a like?
Answer: a is like b. If this interpretation is
valid and the given object a serves as a subject
rather than as a referent, then the observed
asymmetry of production follows from the
present theoretical analysis, since s(a,b) >
s(b,a) whenever f (B) > f (A).

In summary, it appears that proximity data
from both comparative and production tasks
reveal significant and systematic asymmetries
whose direction is determined by the relative
salience of the stimuli. Nevertheless, the sym-
metry assumption should not be rejected al-
together. It seems to hold in many contexts,
and it serves as a useful approximation in
many others. It cannot be accepted, however,
as a universal principle of psychological
similarity.

Common and Distinctive Features

In the present theory, the similarity of
objects is expressed as a linear combination,
or a contrast, of the measures of their common
and distinctive features. This section investi-
gates the relative impact of these components
and their effect on the relation between the
assessments of similarity and difference. The
discussion concerns only symmetric tasks,
where a = /3, and hence s(a,b) = s(b,a).

Eiicitation of Features

The first study employs the contrast model
to predict the similarity between objects from
features that were produced by the subjects.
The following 12 vehicles served as stimuli:
bus, car, truck, motorcycle, train, airplane,
bicycle, boat, elevator, cart, raft, sled. One
group of 48 subjects rated the similarity be-

tween all 66 pairs of vehicles on a scale from
1 (no similarity) to 20 (maximal similarity).
Following Rosch and Mervis (1975), we in-
structed a second group of 40 subjects to list
the characteristic features of each one of the
vehicles. Subjects were given 70 sec to list the
features that characterized each vehicle. Dif-
ferent orders of presentation were used for
different subjects.

The number of features per vehicle ranged
from 71 for airplane to 21 for sled. Altogether,
324 features were listed by the subjects, of
which 224 were unique and 100 were shared
by two or more vehicles. For every pair of
vehicles we counted the number of features
that were attributed to both (by at least one
subject), and the number of features that were
attributed to one vehicle but not to the other.
The frequency of subjects that listed each
common or distinctive feature was computed.

In order to predict the similarity between
vehicles from the listed features, the measures
of their common and distinctive features must
be defined. The simplest measure is obtained
by counting the number of common and dis-
tinctive features produced by the subjects.
The product-moment correlation between the
(average) similarity of objects and the number
of their common features was .68. The cor-
relation between the similarity of objects and
the number of their distinctive features was
— .36. The multiple correlation between simi-
larity and the numbers of common and dis-
tinctive features (i.e., the correlation between
similarity and the contrast model) was .72.

The counting measure assigns equal weight
to all features regardless of their frequency of
mention. To take this factor into account, let
Xa denote the proportion of subjects who at-
tributed feature X to object a, and let NX de-
note the number of objects that share feature
X. For any a,b, define the measure of their
common features by f(A f~\ B) = SXaXb/Nx,
where the summation is over all X in kt~\ B,
and the measure of their distinctive features
by

f (A - B) + f (B - A) = SYa + SZb

where the summations range over all YeA — B
and ZeB — A, that is, the distinctive features
of a and b, respectively. The correlation
between similarity and the above measure
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of the common features was .84; the corre-
lation between similarity and the above
measure of the distinctive features was —.64,
The multiple correlation between similarity
and the measures of the common and the dis-
tinctive features was .87.

Note that the above methods for defining the
measure f were based solely on the elicited
features and did not utilize the similarity data
at all. Under these conditions, a perfect cor-
relation between the two should not be ex-
pected because the weights associated with
the features are not optimal for the prediction
of similarity. A given feature may be fre-
quently mentioned because it is easily labeled
or recalled, although it does not have a great
impact on similarity, and vice versa. Indeed,
when the features were scaled using the addi-
tive tree procedure (Sattath & Tversky, in
press) in which the measure of the features is
derived from the similarities between the
objects, the correlation between the data and
the model reached .94.

The results of this study indicate that (i)
it is possible to elicit from subjects detailed
features of semantic stimuli such as vehicles
(see Rosch & Mervis, 1975); (ii) the listed
features can be used to predict similarity ac-
cording to the contrast model with a reason-
able degree of success; and (iii) the prediction
of similarity is improved when frequency of
mention and not merely the number of fea-
tures is taken into account.

Similarity versus Difference

It has been generally assumed that judg-
ments of similarity and difference are comple-
mentary; that is, judged difference is a linear
function of judged similarity with a slope of
— 1. This hypothesis has been confirmed in
several studies. For example, Hosman and
Kuennapas (1972) obtained independent judg-
ments of similarity and difference for all pairs
of lowercase letters on a scale from 0 to 100.
The product-moment correlation between the
judgments was —.98, and the slope of the
regression line was —.91. We also collected
judgments of similarity and difference for 21
pairs of countries using a 20-point rating scale.
The sum of the two judgments for each pair
was quite close to 20 in all cases. The product-

moment correlation between the ratings was
again —.98. This inverse relation between
similarity and difference, however, does not
always hold.

Naturally, an increase in the measure of the
common features increases similarity and de-
creases difference, whereas an increase in the
measure of the distinctive features decreases
similarity and increases difference. However,
the relative weight assigned to the common
and the distinctive features may differ in the
two tasks. In the assessment of similarity be-
tween objects the subject may attend more to
their common features, whereas in the assess-
ment of difference between objects the subject
may attend more to their distinctive features.
Thus, the relative weight of the common
features will be greater in the former task than
in the latter task.

Let d(a,b) denote the perceived difference
between a and b. Suppose d satisfies the
axioms of the present theory with the reverse
inequality in the monotonicity axiom, that is,
d(a,b) < d(a,c) whenever A Pi B D AP\ C,
A - B C A - C , a n d B - A C C - A . Fur-
thermore, suppose s also satisfies the present
theory and assume (for simplicity) that both
d and s are symmetric. According to the
representation theorem, therefore, there exist
a nonnegative scale f and nonnegative con-
stants 6 and X such that for all a,b,c,e,

s(a,b) > s(c,e) iff

0f(AP» B) - f(A - B) - f(B - A) >

0f (C HE)- f (C - E) - f (E - C),

and

d(a,b) > d(c,e) iff

f (A - B) + f (B - A) - Xf (A n B) >

f (C - E) + f (E - C) - Xf (C n E).

The weights associated with the distinctive
features can be set equal to 1 in the symmetric
case with no loss of generality. Hence, d and X
reflect the relative weight of the common fea-
tures in the assessment of similarity and dif-
ference, respectively.

Note that if 6 is very large then the similarity
ordering is essentially determined by the
common features. On the other hand, if X is
very small, then the difference ordering is
determined primarily by the distinctive fea-
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tures. Consequently, both s(a,b) > s(c,e) and
d(a,b) > d(c,e) may be obtained whenever

f (Ar \B) > f (Cr \E )

and

f (A - B) + f (B - A) >

f (C - E) + f (E - C).

That is, if the common features are weighed
more heavily in judgments of similarity than
in judgments of difference, then a pair of
objects with many common and many dis-
tinctive features may be perceived as both
more similar and more different than another
pair of objects with fewer common and fewer
distinctive features.

To test this hypothesis, 20 sets of four
countries were constructed on the basis of a
pilot test. Each set included two pairs of
countries: a prominent pair and a nonpromi-
nent pair. The prominent pairs consisted of
countries that were well known to our subjects
(e.g., USA-USSR, Red China-Japan). The
nonprominent pairs consisted of countries that
were known to the subjects, but not as well as
the prominent ones (e.g., Tunis-Morocco,
Paraguay-Ecuador). All subjects were pre-
sented with the same 20 sets. One group of
30 subjects selected between the two pairs in
each set the pair of countries that were more
similar. Another group of 30 subjects selected
between the two pairs in each set the pair of
countries that were more different.

Let II8 and Hd denote, respectively, the per-
centage of choices where the prominent pair
of countries was selected as more similar or as
more different. If similarity and difference are
complementary (i.e., 0 = X), then ns + lid
should equal 100 for all pairs. On the other
hand, if 6 > X, then HB + Ed should exceed
100. The average value of ns + nd, across all
sets, was 113.5, which is significantly greater
than 100, *(59) = 3.27, p < .01.

Moreover, on the average, the prominent
pairs were selected more frequently than the
nonprominent pairs in both the similarity and
the difference tasks. For example, 67% of the
subjects in the similarity group selected West
Germany and East Germany as more similar
to each other than Ceylon and Nepal, while
70% of the subjects in the difference group
selected West Germany and East Germany as

more different from each other than Ceylon
and Nepal. These data demonstrate how the
relative weight of the common and the dis-
tinctive features varies with the task and sup-
port the hypothesis that people attend more
to the common features in judgments of simi-
larity than in judgments of difference.

Similarity in Context

Like other judgments, similarity depends on
context and frame of reference. Sometimes the
relevant frame of reference is specified explic-
itly, as in the questions, "How similar are
English and French with respect to sound?"
"What is the similarity of a pear and an apple
with respect to taste ?" In general, however, the
relevant feature space is not specified explic-
itly but rather inferred from the general
context.

When subjects are asked to assess the simi-
larity between the USA and the USSR, for
instance, they usually assume that the relevant
context is the set of countries and that the
relevant frame of reference includes all politi-
cal, geographical, and cultural features. The
relative weights assigned to these features, of
course, may differ for different people. With
natural, integral stimuli such as countries,
people, colors, and sounds, there is relatively
little ambiguity regarding the relevant feature
space. However, with artificial, separable
stimuli, such as figures varying in color and
shape, or lines varying in length and orienta-
tion, subjects sometimes experience difficulty
in evaluating overall similarity and occasion-
ally tend to evaluate similarity with respect to
one factor or the other (Shepard, 1964) or
change the relative weights of attributes with
a change in context (Torgerson, 1965).

In the present theory, changes in context or
frame of reference correspond to changes in
the measure of the feature space. When asked
to assess the political similarity between coun-
tries, for example, the subject presumably
attends to the political aspects of the countries
and ignores, or assigns a weight of zero to,
all other features. In addition to such restric-
tions of the feature space induced by explicit
or implicit instructions, the salience of features
and hence the similarity of objects are also
influenced by the effective context (i.e., the
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Set 1

44% 42%

Set 2

12% 80%

Figure 4. Two sets of schematic faces used to test the diagnosticity hypothesis. The percentage of sub-
jects who selected each face (as most similar to the target) is presented below the face.
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set of objects under consideration). To under-
stand this process, let us examine the factors
that determine the salience of a feature and
its contribution to the similarity of objects.

The Diagnosticity Principle

The salience (or the measure) of a feature is
determined by two types of factors: intensive
and diagnostic. The former refers to factors
that increase intensity or signal-to-noise ratio,
such as the brightness of a light, the loudness
of a tone, the saturation of a color, the size
of a letter, the frequency of an item, the
clarity of a picture, or the vividness of an
image. The diagnostic factors refer to the
classificatory significance of features, that is,
the importance or prevalence of the classifica-
tions that are based on these features. Unlike
the intensive factors, the diagnostic factors
are highly sensitive to the particular object
set under study. For example, the feature
"real" has no diagnostic value in the set of
actual animals since it is shared by all actual
animals and hence cannot be used to classify
them. This feature, however, acquires con-
siderable diagnostic value if the object set is
extended to include legendary animals, such
as a centaur, a mermaid, or a phoenix.

When faced with a set of objects, people
often sort them into clusters to reduce infor-
mation load and facilitate further processing.
Clusters are typically selected so as to maxi-
mize the similarity of objects within a cluster
and the dissimilarity of objects from different
clusters. Hence, the addition and/or deletion
of objects can alter the clustering of the re-
maining objects. A change of clusters, in turn,
is expected to increase the diagnostic value of
features on which the new clusters are based,
and therefore, the similarity of objects that
share these features. This relation between
similarity and grouping—called the diagnosti-
city hypothesis—is best explained in terms of a
concrete example. Consider the two sets of
four schematic faces (displayed in Figure 4),
which differ in only one of their elements
(p and q).

The four faces of each set were displayed in
a row and presented to a different group of 25
subjects who were instructed to partition them
into two pairs. The most frequent partition of

Set 1 was c and p (smiling faces) versus a and
b (nonsmiling faces). The most common parti-
tion of Set 2 was b and q (frowning faces)
versus a and c (nonfrowning faces). Thus, the
replacement of p by q changed the grouping
of a: In Set 1 a was paired with b, while in
Set 2 a was paired with c.

According to the above analysis, smiling has
a greater diagnostic value in Set 1 than in
Set 2, whereas frowning has a greater diagnos-
tic value in Set 2 than in Set 1. By the diagnos-
ticity hypothesis, therefore, similarity should
follow the grouping. That is, the similarity of
a (which has a neutral expression) to b (which
is frowning) should be greater in Set 1, where
they are grouped together, than in Set 2,
where they are grouped separately. Likewise,
the similarity of a to c (which is smiling)
should be greater in Set 2, where they are
grouped together, than in Set 1, where they
are not.

To test this prediction, two different groups
of 50 subjects were presented with Sets 1 and
2 (in the form displayed in Figure 4) and
asked to select one of the three faces below
(called the choice set) that was most similar
to the face on the top (called the target).
The percentage of subjects who selected each
of the three elements of the choice set is
presented below the face. The results con-
firmed the diagnosticity hypothesis: b was
chosen more frequently in Set 1 than in Set 2,
whereas c was chosen more frequently in Set
2 than in Set 1. Both differences are statisti-
cally significant, p < .01. Moreover, the re-
placement of p by q actually reversed the
similarity ordering: In Set 1, b is more similar
to a than c, whereas in Set 2, c is more similar
to a than b.

A more extensive test of the diagnosticity
hypothesis was conducted using semantic
rather than visual stimuli. The experimental
design was essentially the same, except that
countries served as stimuli instead of faces.
Twenty pairs of matched sets of four countries
of the form {a,b,c,p} and {a,b,c,q} were con-
structed. An example of two matched sets is
presented in Figure 5.

Note that the two matched sets (1 and 2)
differ only by one element (p and q). The
sets were constructed so that a (in this case
Austria) is likely to be grouped with b (e.g.,
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Sweden) in Set 1, and with c (e.g., Hungary)
in Set 2. To validate this assumption, we pre-
sented two groups of 25 subjects with all sets
of four countries and asked them to partition
each quadruple into two pairs. Each group
received one of the two matched quadruples,
which were displayed in a row in random
order. The results confirmed our prior hypothe-
sis regarding the grouping of countries. In
every case but one, the replacement of p by q
changed the pairing of the target country in
the predicted direction, p < .01 by sign test.
For example, Austria was paired with Sweden
by 60% of the subjects in Set 1, and it was
paired with Hungary by 96% of the subjects
in Set 2.

To test the diagnosticity hypothesis, we
presented two groups of 35 subjects with 20
sets of four countries in the format displayed
in Figure 5. These subjects were asked to
select, for each quadruple, the country in the
choice set that was most similar to the target
country. Each group received exactly one
quadruple from each pair. If the similarity
of b to a, say, is independent of the choice set,
then the proportion of subjects who chose b
rather than c as most similar to a should be
the same regardless of whether the third ele-
ment in the choice set is p or q. For example,
the proportion of subjects who select Sweden
rather than Hungary as most similar to
Austria should be independent of whether the
odd element in the choice set is Norway or
Poland.

In contrast, the diagnosticity hypothesis
implies that the change in grouping, induced
by the substitution of the odd element, will
change the similarities in a predictable manner.
Recall that in Set 1 Poland was paired with
Hungary, and Austria with Sweden, while in
Set 2 Norway was paired with Sweden, and
Austria with Hungary. Hence, the proportion
of subjects who select Sweden rather than
Hungary (as most similar to Austria) should
be higher in Set 1 than in Set 2. This predic-
tion is strongly supported by the data in
Figure 5, which show that Sweden was selected
more frequently than Hungary in Set 1, while
Hungary was selected more frequently than
Sweden in Set 2.

Let b(p) denote the percentage of subjects
who chose country b as most similar to a when

Setl

Set 2

b
Sweden

49%

b
Sweden

14%

a
Austria

P
Poland

15%

a
Austria

q
Norway

26%

c
Hungary

36%

c
Hungary

60%

Figure 5. Two sets of countries used to test the diagnos-
ticity hypothesis. The percentage of subjects who se-
lected each country (as most similar to Austria) is
presented below the country.

the odd element in the choice set is p, and so
on. As in the above examples, the notation is
chosen so that b is generally grouped with q,
and c is generally grouped with p. The dif-
ferences b(p) — b(q) and c(q) — c(p), there-
fore, reflect the effects of the odd elements, p
and q, on the similarity of b and c to the
target a. In the absence of context effects,
both differences should equal 0, while under
the diagnosticity hypothesis both differences
should be positive. In Figure 5, for example,
b(p) - b(q) = 49 - 14 = 35, and c(q) - c(p)
= 60 — 36 = 24. The average difference, across
all pairs of quadruples, equals 9%, which is
significantly positive, 2(19) = 3.65, p < .01.

Several variations of the experiment did not
alter the nature of the results, The diagnosti-
city hypothesis was also confirmed when (i)
each choice set contained four elements, rather
than three, (ii) the subjects were instructed to
rank the elements of each choice set according
to their similarity to the target, rather than
to select the most similar element, and (iii) the
target consisted of two elements, and the sub-
jects were instructed to select one element of
the choice set that was most similar to the
two target elements. For further details, see
Tversky and Gati (in press).

The Extension Effect

Recall that the diagnosticity of features is
determined by the classifications that are based
on them. Features that are shared by all the
objects under consideration cannot be used to
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classify these objects and are, therefore, devoid
of diagnostic value. When the context is ex-
tended by the enlargement of the object set,
some features that had been shared by all
objects in the original context may not be
shared by all objects in the broader context.
These features then acquire diagnostic value
and increase the similarity of the objects that
share them. Thus, the similarity of a pair of
objects in the original context will usually be
smaller than their similarity in the extended
context.

Essentially the same account was proposed
and supported by Sjoberg (Note 1) in studies
of similarity between animals, and between
musical instruments. For example, Sjoberg
showed that the similarities between string
instruments (banjo, violin, harp, electric guitar)
were increased when a wind instrument (clari-
net) was added to this set. Since the string
instruments are more similar to each other
than to the clarinet, however, the above result
may be attributed, in part at least, to subjects'
tendency to standardize the response scale,
that is, to produce the same average similarity
for any set of comparisons.

This effect can be eliminated by the use of
a somewhat different design, employed in the
following study. Subjects were presented with
pairs of countries having a common border
and assessed their similarity on a 20-point
scale. Four sets of eight pairs were con-
structed. Set 1 contained eight pairs of Euro-
pean countries (e.g., Italy-Switzerland). Set
2 contained eight pairs of American countries
(e.g., Brazil-Uruguay). Set 3 contained four
pairs from Set 1 and four pairs from Set 2,
while Set 4 contained the remaining pairs from
Sets 1 and 2. Each one of the four sets was
presented to a different group of 30-36 subjects.

According to the diagnosticity hypothesis,
the features "European" and "American"
have no diagnostic value in Sets 1 and 2, al-
though they both have a diagnostic value in
Sets 3 and 4. Consequently, the overall average
similarity in the heterogeneous sets (3 and 4)
is expected to be higher than the overall aver-
age similarity in the homogeneous sets (1 and
2). This prediction was confirmed by the data,
/(IS) = 2.11, p < .05.

In the present study all similarity assess-
ments involve only homogeneous pairs (i.e.,

pairs of countries from the same continent
sharing a common border). Unlike Sjoberg's
(Note 1) study, which extended the context
by introducing nonhomogeneous pairs, our
experiment extended the context by construct-
ing heterogeneous sets composed of homogene-
ous pairs. Hence, the increase of similarity
with the enlargement of context, observed in
the present study, cannot be explained by
subjects' tendency to equate the average
similarity for any set of assessments.

The Two Faces of Similarity

According to the present analysis, the sali-
ence of features has two components: intensity
and diagnosticity. The intensity of a feature
is determined by perceptual and cognitive
factors that are relatively stable across con-
texts. The diagnostic value of a feature is
determined by the prevalence of the classifica-
tions that are based on it, which change with
the context. The effects of context on similar-
ity, therefore, are treated as changes in the
diagnostic value of features induced by the
respective changes in the grouping of the
objects.

This account was supported by the experi-
mental finding that changes in grouping (pro-
duced by the replacement or addition of ob-
jects) lead to corresponding changes in the
similarity of the objects. These results shed
light on the dynamic interplay between simi-
larity and classification. It is generally assumed
that classifications are determined by similari-
ties among the objects. The preceding discus-
sion supports the converse hypothesis: that
the similarity of objects is modified by the
manner in which they are classified. Thus,
similarity has two faces: causal and derivative.
It serves as a basis for the classification of
objects, but it is also influenced by the adopted
classification. The diagnosticity principle which
underlies this process may provide a key to
the analysis of the effects of context on
similarity.

Discussion

In this section we relate the present de-
velopment to the representation of objects in
terms of clusters and trees, discuss the con-
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Table 1
ADCLUS Analysis of the Similarities Among the Integers 0 Through 9
(from Shepard & A rabie, Note 2)

Rank

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

Weight

.305

.288

.279

.202

.202

.175

.163

.160

.146

Elements of subset

2 4 8
6 7 8 9
3 6 9
0 1 2

1 3 5 7 9
1 2 3
5 6 7
0 1

0 1 2 3 4

Interpretation of subset

powers of two
large numbers
multiples of three
very small numbers
odd numbers
small nonzero numbers
middle numbers (largish)
additive and multiplicative identities
smallish numbers

cepts of prototypicality and family resem-
blance, and comment on the relation between
similarity and metaphor.

Features, Clusters, and Trees

There is a well-known correspondence be-
tween features or properties of objects and the
classes to which the objects belong. A red
flower, for example, can be characterized as
having the feature "red," or as being a member
of the class of red objects. In this manner we
associate with every feature in €> the class of
objects in A which possesses that feature. This
correspondence between features and classes
provides a direct link between the present
theory and the clustering approach to the

representation of proximity data.

In the contrast model, the similarity be-
tween objects is expressed as a function of
their common and distinctive features. Rela-
tions among overlapping sets are often repre-
sented in a Venn diagram (see Figure 1). How-
ever, this representation becomes cumbersome
when the number of objects exceeds four or

five. To obtain useful graphic representations

of the contrast model, two alternative simpli-

fications are entertained.

First, suppose the objects under study are
all equal in prominence, that is, f(A) = f(B)
for all a,b in A. Although this assumption is
not strictly valid in general, it may serve as a
reasonable approximation in certain contexts.
Assuming feature additivity and symmetry,

we obtain

S(a,b) = W(AH B) - f(A - B) - f(B - A)

= 0f (A C\ B) + 2f (A C\ B) - f (A - B)

-f(B -A) - 2f(AHB)

= (6 + 2)f (A n B) - f (A) - f (B)

since f(A) = f(B) for all a,b in A. Under the
present assumptions, therefore, similarity be-
tween objects is a linear function of the mea-
sure of their common features.

Since f is an additive measure, f(AO B) is
expressible as the sum of the measures of all
the features that belong to both a and b. For
each subset A of A, let <i>(A) denote the set of
features that are shared by all objects in A,
and are not shared by any object that does
not belong to A. Hence,

S(a,b) =

XeAHB

AD{a,b}.

Since the summation ranges over all subsets of
A that include both a and b, the similarity
between objects can be expressed as the sum
of the weights associated with all the sets that
include both objects.

This form is essentially identical to the addi-
tive clustering model proposed by Shepard and
Arabie (Note 2). These investigators have de-
veloped a computer program, ADCLUS, which
selects a relatively small collection of subsets
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Figure 6. The representation of letter similarity as an additive (feature) tree. From Sattath and Tversky
(in press).

and assigns weight to each subset so as to
maximize the proportion of (similarity) vari-
ance accounted for by the model. Shepard and
Arabic (Note 2) applied ADCLUS to several

studies including Shepard, Kilpatric, and
Cunningham's (1975) on judgments of simi-
larity between the integers 0 through 9 with
respect to their abstract numerical character.
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A solution with 19 subsets accounted for 95%
of the variance. The nine major subsets (with
the largest weights) are displayed in Table 1
along with a suggested interpretation. Note
that all the major subsets are readily interpret-
able, and they are overlapping rather than
hierarchical.

The above model expresses similarity in
terms of common features only. Alternatively,
similarity may be expressed exclusively in
terms of distinctive features. It has been shown
by Sattath (Note 3) that for any symmetric
contrast model with an additive measure f,
there exists a measure g denned on the same
feature space such that

S(a,b) = Of (AH B) - f(A - B) - f(B - A)

= X - g(A - B) - g(B - A)

for some X > 0.

This result allows a simple representation of
dissimilarity whenever the feature space <£ is
a tree (i.e., whenever any three objects in A
can be labeled so that A H B = A n C C
Bn C). Figure 6 presents an example of a
feature tree, constructed by Sattath and
Tversky (in press) from judged similarities
between lowercase letters, obtained by Kuen-
napas and Janson (1969). The major branches
are labeled to facilitate the interpretation of
the tree.

Each (horizontal) arc in the graph repre-
sents the set of features shared by all the
objects (i.e., letters) that follow from that arc,
and the arc length corresponds to the measure
of that set. The features of an object are the
features of all the arcs which lead to that
object, and its measure is its (horizontal) dis-
tance to the root. The tree distance between
objects a and b is the (horizontal) length of
the path joining them, that is, f(A — B) +
f(B — A). Hence, if the contrast model holds,
a = j8, and * is a tree, then dissimilarity (i.e.,
— S) is expressible as tree distance.

A feature tree can also be interpreted as a
hierarchical clustering scheme where each arc
length represents the weight of the cluster
consisting of all the objects that follow from
that arc. Note that the tree in Figure 6 differs
from the common hierarchical clustering tree
in that the branches differ in length. Sattath
and Tversky (in press) describe a computer

program, ADDTREE, for the construction of
additive feature trees from similarity data and
discuss its relation to other scaling methods.

It follows readily from the above discussion
that if we assume both that the feature set $
is a tree, and that f (A) = f (B) for all a,b in A,
then the contrast model reduces to the well-
known hierarchical clustering scheme. Hence,
the additive clustering model (Shepard &
Arabic, Note 2), the additive similarity tree
(Sattath & Tversky, in press), and the hier-
archical clustering scheme (Johnson, 1967) are
all special cases of the contrast model. These
scaling models can thus be used to discover
the common and distinctive features of the
objects under study. The present development,
in turn, provides theoretical foundations for
the analysis of set-theoretical methods for the
representation of proximities.

Similarity, Prototypicality, and Family

Resemblance

Similarity is a relation of proximity that
holds between two objects. There exist other
proximity relations such as prototypicality and
representativeness that hold between an object
and a class. Intuitively, an object is proto-
typical if it exemplifies the category to which
it belongs. Note that the prototype is not
necessarily the most typical or frequent mem-
ber of its class. Recent research has demon-
strated the importance of prototypicality or
representativeness in perceptual learning (Pos-
ner & Keele, 1968; Reed, 1972), inductive
inference (Kahneman & Tversky, 1973), se-
mantic memory (Smith, Rips, & Shoben,
1974), and the formation of categories (Rosch
& Mervis, 1975). The following discussion
analyzes the relations of prototypicality and
family resemblance in terms of the present
theory of similarity.

Let P(a,A) denote the (degree of) proto-
typicality of object a with respect to class A,
with cardinality n, defined by

P(a,A) = pn(XSf(Ar\ B) - S(f(A - B)

+ f (B - A))),

where the summations are over all b in A.
Thus, P(a,A) is defined as a linear combina-
tion (i.e., a contrast) of the measures of the
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features of a that are shared with the elements
of A and the features of a that are not shared
with the elements of A. An element a of A is
a prototype if it maximizes P(a,A). Note that
a class may have more than one prototype.

The factor pn reflects the effect of category
size on prototypicality, and the constant X
determines the relative weights of the common
and the distinctive features. If pn = 1/n, X = 6,
and a = /3 = 1, then P(a,A) = l/n2S(a,b)
(i.e., the prototypicality of a with respect to
A equals the average similarity of a to all
members of A). However, in line with the
focusing hypo theses discussed earlier, it appears
likely that the common features are weighted
more heavily in judgments of prototypicality
than in judgments of similarity.

Some evidence concerning the validity of the
proposed measure was reported by Rosch and
Mervis (1975). They selected 20 objects from
each one of six categories (furniture, vehicle,
fruit, weapon, vegetable, clothing) and in-
structed subjects to list the attributes associ-
ated with each one of the objects. The proto-
typicality of an object was denned by the
number of attributes or features it shared
with each member of the category. Hence, the
prototypicality of a with respect to A was
denned by 2N(a,b), where N(a,b) denotes the
number of attributes shared by a and b, and
the summation ranges over all b in A. Clearly,
the measure of prototypicality employed by
Rosch and Mervis (1975) is a special case of
the proposed measure, where X is large and
f(AMB) = N(a,b).

These investigators also obtained direct
measures of prototypicality by instructing
subjects to rate each object on a 7-point scale
according to the extent to which it fits the
"idea or image of the meaning of the category."
The rank correlations between these ratings
and the above measure were quite high in all
categories: furniture, .88; vehicle, .92; weapon,
.94; fruit, .85; vegetable, .84; clothing, .91.
The rated prototypicality of an object in a
category, therefore, is predictable by the
number of features it shares with other mem-
bers of that category.

In contrast to the view that natural cate-
gories are definable by a conjunction of critical
features, Wittgenstein (1953) argued that
several natural categories (e.g., a game) do
not have any attribute that is shared by all

their members, and by them alone. Wittgen-
stein proposed that natural categories and con-
cepts are commonly characterized and under-
stood in terms of family resemblance, that is,
a network of similarity relations that link the
various members of the class. The importance
of family resemblance in the formation and
processing of categories has been effectively
underscored by the work of Rosch and her
collaborators (Rosch, 1973; Rosch & Mervis,
1975; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). This research demonstrated
that both natural and artificial categories are
commonly perceived and organized in terms
of prototypes, or focal elements, and some
measure of proximity from the prototypes.
Furthermore, it lent substantial support to
the claim that people structure their world in
terms of basic semantic categories that repre-
sent an optimal level of abstraction. Chair,
for example, is a basic category; furniture is
too general and kitchen chair is too specific.
Similarly, car is a basic category; vehicle is
too general and sedan is too specific. Rosch
argued that the basic categories are selected
so as to maximize family resemblance—defined
in terms of cue validity.

The present development suggests the fol-
lowing measure for family resemblance, or cate-
gory resemblance. Let A be some subset of A
with cardinality n. The category resemblance
of A denoted R(A) is defined by

R(A) = rn(XSf(An B) - S(f(A - B)

+ f(B - A))),

the summations being over all a,b in A. Hence,
category resemblance is a linear combination
of the measures of the common and the dis-
tinctive features of all pairs of objects in that
category. The factor rn reflects the effect of
category size on category resemblance, and the
constant X determines the relative weight of
the common and the distinctive features. If
X = 6, a = /3 = 1, and rn = 2/n(n - 1), then

R(A) =
SS(a,b)

(a)'
the summation being over all a,b in A; that is,
category resemblance equals average similarity
between all members of A. Although the pro-
posed measure of family resemblance differs
from Rosch's, it nevertheless captures her
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basic notion that family resemblance is highest
for those categories which "have the most
attributes common to members of the category
and the least attributes shared with members
of other categories" (Rosch et al., 1976, p.
435).

The maximization of category resemblance
could be used to explain the formation of
categories. Thus, the set A rather than F is
selected as a natural category whenever R(A)
> R(F). Equivalently, an object a is added to
a category A whenever R({A Ua}) > R(A).
The fact that the preferred (basic) categories
are neither the most inclusive nor the most
specific imposes certain constraints on rn.

If rn = 2/n(n - 1) then R(A) equals the
average similarity between all members of A.
This index leads to the selection of minimal
categories because average similarity can gen-
erally be increased by deleting elements. The
average similarity between sedans, for ex-
ample, is surely greater than the average
similarity between cars; nevertheless, car
rather than sedan serves as a basic category.
If rn = 1 then R(A) equals the sum of the
similarities between all members of A. This
index leads to the selection of maximal cate-
gories because the addition of objects increases
total similarity, provided S is nonnegative.

In order to explain the formation of inter-
mediate-level categories, therefore, category re-
semblance must be a compromise between an
average and a sum. That is, rn must be a de-
creasing function of n that exceeds 2/n(n — 1).
In this case, R(A) increases with category size
whenever average similarity is held constant,
and vice versa. Thus, a considerable increase
in the extension of a category could outweigh
a small reduction in average similarity.

Although the concepts of similarity, proto-
typicality, and family resemblance are inti-
mately connected, they have not been previ-
ously related in a formal explicit manner. The
present development offers explications of
similarity, prototypicality, and family resem-
blance within a unified framework, in which
they are viewed as contrasts, or linear combina-
tions, of the measures of the appropriate sets
of common and distinctive features.

Similes and Metaphors

Similes and metaphors are essential ingredi-
ents of creative verbal expression. Perhaps the

most interesting property of metaphoric ex-
pressions is that despite their novelty and
nonliteral nature, they are usually understand-
able and often informative. For example, the
statement that Mr. X resembles a bulldozer is
readily understood as saying that Mr. X is a
gross, powerful person who overcomes all ob-
stacles in getting a job done. An adequate
analysis of connotative meaning should account
for man's ability to interpret metaphors with-
out specific prior learning. Since the message
conveyed by such expressions is often pointed
and specific, they cannot be explained in terms
of a few generalized dimensions of connotative
meaning, such as evaluation or potency (Os-
good, 1962). It appears that people interpret
similes by scanning the feature space and
selecting the features of the referent that are
applicable to the subject (e.g., by selecting
features of the bulldozer that are applicable
to the person). The nature of this process is
left to be explained.

There is a close tie between the assessment
of similarity and the interpretation of meta-
phors. In judgments of similarity one assumes
a particular feature space, or a frame of
reference, and assesses the quality of the
match between the subject and the referent.
In the interpretation of similes, one assumes
a resemblance between the subject and the
referent and searches for an interpretation of
the space that would maximize the quality of

the match. The same pair of objects, therefore,
can be viewed as similar or different depending
on the choice of a frame of reference.

One characteristic of good metaphors is the
contrast between the prior, literal interpreta-
tion, and the posterior, metaphoric interpreta-
tion. Metaphors that are too transparent are
uninteresting; obscure metaphors are uninter-

pretable. A good metaphor is like a good
detective story. The solution should not be
apparent in advance to maintain the reader's

interest, yet it should seem plausible after the
fact to maintain coherence of the story. Con-
sider the simile "An essay is like a fish." At
first, the statement is puzzling. An essay is not
expected to be fishy, slippery, or wet. The

puzzle is resolved when we recall that (like a
fish) an essay has a head and a body, and it
occasionally ends with a flip of the tail.
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Appendix

An Axiomatic Theory of Similarity

Let A = (a,b,c, . . .} be a collection of objects
characterized as sets of features, and let A,B,C,
denote the sets of features associated with
a,b,c, respectively. Let s(a,b) be an ordinal
measure of the similarity of a to b, denned for
all distinct a,b in A. The present theory is
based on the following five axioms. Since the
first three axioms are discussed in the paper,
they are merely restated here; the remaining
axioms are briefly discussed.

1. Matching: s(a,b) = F(An B, A - B,
B — A) where F is some real-valued function in
three arguments.

2. Monotonicity: s(a,b) > s(a,c) whenever
A n B D A H C, A - B C A - C , and
B — A C C — A. Moreover, if either inclusion
is proper then the inequality is strict.

Let $ be the set of all features associated
with the objects of A, and let X,Y,Z, etc. de-
note subsets of $. The expression F(X,Y,Z) is
defined whenever there exist a,b in A such that
A n B = X, A - B = Y, and B - A = Z,
whence s(a,b) = F(X,Y,Z). Define V=~ W if
one or more of the following hold for some
X.Y.Z: F(V,Y,Z) = F(W,Y,Z), F(X,V,Z)
= F(X,W,Z), F(X,Y,V) = F(X,Y,W). The
pairs (a,b) and (c,d) agree on one, two, or three
components, respectively, whenever one, two,
or three of the following hold : (A (~\ B)
~ (C C\ D), (A - B) ~ (C - D), (B - A)
~ (D - C).

3. Independence: Suppose the pairs (a,b)
and (c,d), as well as the pairs (a',b') and (c',
d'), agree on the same two components, while
the pairs (a,b) and (a',b'), as well as the pairs
(c,d) and (c',d'), agree on the remaining (third)
component. Then

s(a,b) > s(a',b') iff s(c,d) > s(c',d').

4. Solvability:
(i). For all pairs (a,b), (c,d), (e,f), of objects

in A there exists a pair (p,q) which agrees with
them, respectively, on the first, second, and
third component, that is, Pr\Q~AC\B,
P - Q ~ C — D, a n d Q — P ~ F - E.

(ii). Suppose s(a,b) > t > s(c,d). Then there
exist e,f with s(e,f) = t, such that if (a,b) and
(c,d) agree on one or two components, then
(e,f) agrees with them on these components.

(iii). There exist pairs (a,b) and (c,d) of ob-
jects in A that do not agree on any component.

Unlike the other axioms, solvability does not
impose constraints on the similarity order; it

merely asserts that the structure under study is
sufficiently rich so that certain equations can
be solved. The first part of Axiom 4 is analogous
to the existence of a factorial structure. The
second part of the axiom implies that the range
of s is a real interval: There exist objects in A
whose similarity matches any real value that
is bounded by two similarities. The third part
of Axiom 4 ensures that all arguments of F are
essential.

Let $1, $2, and $3 be the sets of features that
appear, respectively, as first, second, or third
arguments of F. (Note that $2 = <£3.) Suppose
X and X' belong to $1, while Y and Y' belong
to <t>2. Define (X.X')i^ (Y,Y')a whenever the
two intervals are matched, that is, whenever
there exist pairs (a,b) and (a',b') of equally
similar objects in A which agree on the third
factor. Thus, (X,X')i^ (Y,Y')2 whenever

s(a,b) = F(X,Y,Z) = F(X',Y',Z) = s(a',b').

This definition is readily extended to any other
pair of factors. Next, define (V,V')i=^ (W,
W')i, i = 1,2,3 whenever (V,V')i ̂  (X,X')j
^ (W,W')i, for some (X,X')j, j ̂  i. Thus, two
intervals on the same factor are equivalent if
both match the same interval on another fac-
tor. The following invariance axiom asserts
that if two intervals are equivalent on one fac-
tor, they are also equivalent on another factor.

5. Invariance: Suppose V,V', W,W' belong
to both 4>; and $j, i,j = 1,2,3. Then

(V,V')i^ (W,W')i iff (V,V')j^ (W,W')j.

Representation Theorem

Suppose Axioms 1-5 hold. Then there exist
a similarity scale S and a nonnegative scale f
such that for all a,b,c,d in A

(i). S(a,b) > S(c,d) iff s(a,b) > s(c,d),
(ii). S(a,b) = 0f(APi B) - af(A - B) -

(9f (B - A), for some 0,a,/3 > 0.
(iii). f and S are interval scales.

While a self-contained proof of the repre-
sentation theorem is quite long, the theorem
can be readily reduced to previous results.

Recall that <f>i is the set of features that ap-
pear as the ith argument of F, and let ̂ i = *i/
~, i = 1,2,3. Thus, *i is the set of equivalence
classes of $1 with respect to ̂ . It follows from
Axioms 1 and 3 that each S^i is well defined,
and it follows from Axiom 4 that * = *i X ^2
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X SFj is equivalent to the domain of F. We
wish to show that ̂ , ordered by F, is a three-
component, additive conjoint structure, in the
sense of Krantz, Luce, Suppes, and Tversky
(1971, Section 6.11.1).

This result, however, follows from the analy-
sis of decomposable similarity structures, de-
veloped by Tversky and Krantz (1970). In
particular, the proof of part (c) of Theorem 1 in
that paper implies that, under Axioms 1, 3, and
4, there exist nonnegative functions f; defined
on ^j, i = 1,2,3, so that for all a,b,c,d in A

s(a,b) > s(c,d) iff S(a,b) > S(c,d)

where S (a, b) = f i (AH B)

+ fs(A-B) - A),

and fj, f2, fa are interval scales with a common
unit.

According to Axiom 5, the equivalence of in-
tervals is preserved across factors. That is, for
all V,V, W,W in ^iH^j, i,j, = 1,2,3,

fi(V) - fi(V') = fi(W) - fi(W') iff

f i (V)-f j (V) =f , (W)-f , (W).

Hence by part (i) of Theorem 6.15 of Krantz
et al. (1971), there exist a scale f and constants

81 such that f s(X) = 6{f (X), i = 1,2,3. Finally,
by Axiom 2, S increases in fi and decreases in

fa and fs. Hence, it is expressible as

S(a,b) = B) - «f(A - B)
- 0f (B - A),

for some nonnegative constants 6,a,{i.
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