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ABSTRACT

The spherical torus is a very small aspect ratio (4 < 2) confinement concept obtained
by retaining only the indispensable components inboard to the plasmastorus. MHD equili-
brium calculations show that spherical torus plasmas with safety factor g > 2 are charac-
terized by high toroidal beta (8 > 0.2), Jow poloidal beta (8, < 0.3), naturally large clon-
gation (x > 2), large plasma current with I,/(aBy) up to about 7 MA/mT, strong
paramagnetism (B,/Byg > 1.5), and strong ,lasma helicity (F comparable to 8). A large
near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the
plasma in comparison with the conventional tokamaks. These features combine to engende:
the spherical torus plasma in a unique physics regime which permits compact fusion at low
field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus
plasma shares some of the desirable features of spheremak and reversed-field pinch (RFP)
plasmas, but with tokamak-likc confinement and safety factor g. The general class of
spherical tori, which includes the spherical tokamak (g > 1), the spherical pinch (1 > ¢ >
0), and the spherical RFP (¢ < 0), have magnetic field configurations unique in compari-

son with conventional tokamaks and RFPs.
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L. INTRODUCTION

High beta, good confinement, and steady-state operation in a compact configuration
at modest ficld have long been major goals of magnetic fusion energy rescarch. Accom-
plishing these in a single concept will permit cost-cffective and attractive embodiments of
future fusion reactors. The search for such a concept is of high interest in the present
austere climate of fusion research. The introduction of the spherical torus concept! is to a
large degree motivated by this search.

An cqually important motivation of the spherical torus concept is its prospect of
reducing the cost and time of fusion rescarch and development. Examples of relatively
cost-effective compact magnetic confinement cxperiments are already available. They
include ZT-40M? and OHTE? for the RFP concept and S-14 and CTX? for the spheromak
concept. In comparison with these alternative confinement concepts, a spherical torus
experimens is expected to be similar in compactness, low ficld, and high beta, but better in
its tokamak-like confinement time by more than an order of magnitude. This advantage
should also be expected of the spherical torus devices for proof-of-principle, ignition,
engineering development, or reactor prototype.

The idea of very small aspect ratio tokamaks, per se, has been advanced recently,’
based primarily on conventional tokamak assumptions such as high poloidal beta, modest
elongation, and inductive startup of the plasma current. In one case,” high beta was con-
sidered with 8, near unity, leading to beta values much higher than permitted by the more
recent understanding of the first stability regime.® In contrast, the spherical torus projects
high beta within the first stability regime through naturally large clongation and plasma
current at a modest B, Its additional features of strong paramagnetism,
near-omnigeneity,'®!! strong helicity, and similarities to spheromaks and RFPs distinguish

the spherical torus from these earlier concepts of small aspect ratio tokamaks.




The spherical torus concept is made plausible also by recent progress in advanced
current drive schemes, such as initiation and rampr.p by lower hybrid waves'>! and
maintenance by oscillating fields'*!® (hlicity injection'®!”). This removes reliance on a
full solenoid to inducc the plasma current, permitting compact long-pulse spherical tori
with aspect ratio significantly less than 2. Assuming these advanced current drive
schemes, ignition spherical tori are estimated to be compact (R = 1.0 m to 1.6 m) and tu
operate at low fields (By = 3 T to 2 T).'"® In the case of small, low-field, short-pulse
experiments using pulsed high-current-density coils, full inductive current startup should
remain feasible.

In the following, we discuss the unique features of spherical torus plasmas based pri-
marily on their MHD equilibria, profiles, and magnetic configurations. This paper closes
with a discussion of the questions and implications of our results for the spherical torus

concept.

II. NATURAL ELONGATION

Free-boundary MHD equilibrium calculations show that an clongation of x = 2
occurs raturally in a spherical torus with aspect ratio 4 = 1.5 when only a dipole vertical
field is applied, which in this case is produced by two ring coils at a significant distance
from the outboard side of the plasma (Figure 1(a)]. When a quadrupole shaping field is
applied via coils above and below the plasma, an clongation of about 3 can be obtained
[Figure 1(b)]. For A > 2.5 [Figures 1(c) and 1(d)], the natural plasma elongation is less
than 1.4, and strong shaping coil currents are required to obtain elongations around 2.

A sequence of equilibria is obtained with an edge safety factor (inverse rotational
transform) of g, = 2.4 and A ranging from 3 to 1.5 while « is incrcased from 1.7 (the
usual elongation at large A4) to 2. Poloidal field (PF) cnils are placed at a distance of twice

the minor radius (2a4) from the plasma edge (Figure 2). The magnitudes of the coil
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FIGURE 1. Naturally clongated and strongly clongated
plasma cross sections at A = 1.5 (a and b, respectively),
and at A = 2.5 (¢ and d, respectively).
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currents for these equilibria are plotted in Figure 3, showing that the vertical field (VF)
current per coil relative to the plasma current, Ivg/I,, decreases slightly from 0.4 to 0.3 as
A decreases. However, the relative shaping field (SF) current, Isg/I, decreases from 2.8 to
0 as A4 decreases from 4 to 1.5, resulting in a dramatic reduction in the total ;clat.ive
ampere-turns in the relatively faraway PF coils, 3 llple,, from 6.4 to 0.6. The toroidal
field (TF) coil ampere-tums, I/l also decreases drastically to levels comparable with
the poloidal field ampere-turns. When a shaping field is applied to obtain a x = 3 spheri-
cal torus, 3 Vpgl/J, is scen to increase from 0.6 to about 1.2.

Large clongation (relative to that of tokamaks with conventional aspect ratios) is a
natural feature of the spherical torus. These drastically reduced ampere-turns in a compact

configuration should lead to substantial savings in the cost of the reactor magnet systems.

III. PLASMA CURRENT AND BETA

The typical profiles of the plasma pressure, toroidal current. and safety factor in these
MHD equilibria are given in Figure 4, indicating a broad but not hollow current profile

even with go = 1 and g, = 2.4. The cquilibrium toroidal plasma current can be approxi-

mated by the formula:

I,(MA) = [5a (m) B,y (T)/q,] [Ci /] - (1 + £)2] m

where By, is the vacuum toroidal field at the plasma major radius R, ¢ = 1/4, and C; =
1.2Z2 — 0.68¢. Thus, for a small spherical torus experiment with R = 0.45 m,a = 0.27 m,

xk =29, = 22 and By = 0.5 T, a plasma current of 0.9 MA is indicated. For this

configuration with g, = 2.2 we find that

I,(MA)la (m)B(T)] €7 , (2)
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FIGURE 3. Dependence of vertical field (VF), shaping
field (SF), poloidal field (PF), and toroidal field (TF) coil
ampere-turns, relative to the plasma current, on the aspect
ratio for the clongations indicated.

APAE R R 1 MR

SRR, AN AR IO SNSRI RCIRNL S TR I SRR SHARE P AN MO A SR il L D




Y i Rie AR s

LR L R B

T Y T BIRETT T

TRFYeL

ORNL-DWG 85C-2721A FED

0.75

0.50

0.25

o 2} -
1 .
[~ n
0 R (SR IS S (N S T |
o 0.2 04 06 0.8 1.0
AXIS X EDGE

FIGURE 4. Typical profiles of plasma
pressure p(R), toroidal current density Jy(R),
and the safety factor g(X), where X is the
normalized poloidal flux, used in the equilib-
rium calculations.




which leads to a potential for high plasma beta in the first stability regime.®® According to

recent experimental indications,!” the beta limit can be given approximately by:

=222 — 00331, (MAYLa (m) Bo(T)) @

t0

indicating beta values above 20%. Unless otherwise mentioned, the cquilibria presented in
this paper have g, values close to the g given here.

That such a high plasma current is permitt>d in a spherical torus can be seen in Fig-
ures 5 and 6. Figure 5 plots the poloidal and toroidal fields on the plasma mid-plane for a
spherical torus (4 = 1.5, x = 3) and a conventional elongated tokamak plasma (4 = 2.5,
x = L.8). It is seen that in a spherical torus plasma the poloidal field becomes comparable
with and larger than the toroidal field at the outboard region, while the fields are
comnparable in the inboard region. On the other hand, while the toroidal circumference at
the outboard region is comparable with the poloidal circumference, the former is drasti-
cally shorter than the latter at the inboard region (Figure 6). As dcpicted by a field line
plotted on the ¢ = 2 surface, this gives highly pitched field lines at the outboard region,
introducing only a smaiil amount of toroidal rotation, but gives moderately pitched field
lines at the inboard region, introducing a large amount of toroidal rotation. The net result
is a strongly enhanced total toroidal rotation (higher g) for a given plasma current, or a
higher plasma current for a given g,. In comparison with this, a conventional tokamak per-
mits only a small pitch to the field line for a given ¢, and hence a relatively modest plasma
current. Equation (1) approximates this dependence on A.

That such a magnetic field configuration should give high beta for MHD stability can
also be seen from Figure (. in comparison with a conventional tokamak, the spherical
torus has a short field line length in the bad-curvature region relative to that in the good-

curvature region.
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2.5, x = 1.8) with g, = 2.4.
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tion of the field lines in the good-curvature region is dashed.
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IV. PLASMA PARAMAGNETISM

Cefining the average poloidal ficld at the plasma edge, B_‘,, as the line-averaged ficld

along the poloidal circumference, the poloidal beta can be approximated by:

(Bp/B:) = [5a (m) BT/, (MA)[(1 + 2] . (4)

It can be seen that the poloidal beta should be around 0.3 and comparable to the limiting
toroidal beta according to Equations (2) and (3). As a result, the plasma equilibrium is
essentiaily force-free, that is, highly paramagnetic with the plasma current density, J,
nearly parallel to the magnetic field. Since the magnetic ficld lines have a high pitch, a
large poloidal current component is produced, leading to a strongly enhanced toroidal field,
B,, at the plasma axis. As indicated in Figure 5, (B,/B,) is around 2 for a spherical torus,
whereas it is within a few percent of unity in a conventional tokamak. Also, strong
paramagnetism contributes to increasing the plasma current for a given ¢¢ via the
increased toroidal field in the plasma core (see Sec. III).

The dependence of paramagnetism on the aspect ratio and the elongation is calculated
and given in Figure 7. It is seen that, for a naturally clongated plasma, the plasma
paramagnetism is significant only when A is less than 2, as long as 8 ~ B, according to
Fquation (3). For a strong clongation of about 3, significant paramagnetism sets in when
A becomes less than 2.3. Since a highly pitched magnetic field line and a small poloidal
beta are required for paramagnetism, a reduced I, (an increased g) diminishes
paramagnetism, and tends to regress a spherical torus to a conventional tokamak, even at a
small aspect ratio (sec also Figure 10). The presence of a strong paramagnetism thus
serves as an indicator of the spherical torus characteristics.

Strong paramagnetism also introduces an important uncertainty in the application of

Equation (3) in that the latter is based on data and calculations of plasmas where there is
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negligible difference between By and B, at the plasma axis. Replacing both Byg's in Equa-
tion (3) by B, would lead to an increase of the plasma pressure at the limiting beta by a
factor of (B,/Bg)- When only one of the By’s is replaced by B,, the range of uncertainty
in pressure becomes proportional to (B,/By)’. However, since paramagnetism decreases

with increasing plasma pressure, the range of this uncertainty is limited to 8, < 1.
V. NEAR-OMNIGENEITY'*!!

The strong paramagnetism of the spherical torus introduces a magnetic configuration
that is dramatically different from that of a conventional tokamak. As shown in Figure 8,
the strongly enhanced B, at the plasma core and the dominating poloidal field at the out-
board region of the plasma create a strong curvature of the surfaces of constant field
strength, |Bl, making them largely parallel to the flux surfaces there. In this region, the
particle drift orbits coincide with the flux surfaces since the curvature and gradient drifts?
are now parallel to the flux suriaces.

This nearly omnigeneous region (Figure 8) largely coincides with the region of bad
curvature of MHD instability where the pressure gradient and the ficld line curvature, B -
V B, have positive scalar product. This region is nearly free of locally trapped particles,
contributing to the kinetic stability of the plasma, although trapped particles still exist
between the top and bottom regions of the plasma. These trapped particles have orbits that
deviate weakly from the flux surfaces because of the reduced region where the curvature
and gradient drifts deviate from the parallel drift. This should result in a reduced
“banana” width and is expected to lead to a reduced neoclassical transport.

It should be noted that this region of near-omnigencity is also characterized by a
near-constancy of |B|. This can be seen in Figure 9, where the VF coils are placed some-
what closer to the plasma, introducing some finer structures to the surfaces of constant

|B]. Although this may introduce additional features to the trapped-particle orbits, the
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major radius.
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near-constancy of |B| shou!d retain the ncar-omnigeneity of this region. Since the size of
the region depends on plasma clongation, beta, and paramagnetism, it is subject to external
controls of the shaping field, plasma heating, and safety factor (plasma current).

VL. PLASMA HELICITY
Toroidal plasma helicity can be expressed by the helicity parameter 6:2!

8 = (By)s/(By)v , ()

where the subscripts S and V indicate rrface and volume averages, respectively, of a
toroidal plasma. As the plasma current increases in a spherical torus configuration (A4 =
1.6, x = 2), the plasma evolves from a low-current (high-¢), weakly paramagnetic confi-
guration to a high-current (low-g), strongly paramagnetic configuration. This transforma-
tior. can be depicted in the F-0 space (Figure 10), where F (the pinch parameter)

represents the relative toroidal field strength at the plasma surface:

F = (B\)s/(B)v . (6)

As O increases, F decreases from ncar 1 because of the increasing paramagnetism, a trend
consistent with the indications of the Bessel function approximation? of the force-frec
cylindrical configuration. Preliminary calculations of the values of F and © in a spherical
torus with g, > | suggest that they arc comparable in magnitude, indicating a strong
plasma helicity. This strong helicity is consistent with the nature of the ficld line contours
depicted in Figure 6.

Although current drive via ac helicity injection (oscillating ficld) was first introduced

for the RFP'* and spheromak,'® its application to tokamak plasmas was also suggested
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recently.'!7 The efficacy of this process in spherical tori is enhanced by the following fac-
tors. First, the total stored magnetic flux is modest relative to the plasma energy content
(high beta and low ficld). Second, in the cylindrical approximation of an RFP, the induced
toroidal loop voltage increases with increasing (I — F) and increasing 8,22 suggesting that
the efficiency of ac helicity injection in a spherical torus should be of the same order of

magnitude as in an RFP.

VII. CLASSES OF SPHERICAL TORI

As the value of By is reduced relative to the plasma current (with g, reduced to <1),
plasma paramagnetism is further enhanced because of the increased pitch of the magnetic
field line. This gedanken process can in principle be continued through By = 0 and
beyond to By < 0. An example of a spherical torus with g, < 0 is shown in Figure 11,
indicating that the plasma retains its naturally large clongation, and that the |B|-surfaces
are drastically different in configuration from those of a spherical torus of ¢, > 1. Near-
omnigeneity in the outboard region of the plasma appears to be a feature unique to the

spherical torus withg > 1.

The following classes of spherical tori are therefore evident:

1. spherical tokamak with g, > 1,
2. spherical pinch with 1 > ¢,> 0,
3. spheromak with g, = 0, and

4. spherical RFP with g, < 0.

The domains of these different classes of spherical tori relative to the tokamak, spheromak,

and RFP are depicted in Figure 12.
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VIII. DISCUSSION

Although ihe features of the spherical torus plasmas discussed here are based only on
a limited number of MHD equilibria, they appear qualitatively different from the conven-
tional tokamak plasmas in the case of g, > 1. These features include naturally large elon-
gation, large plasma current, high beta in the first stability regime, low poloidal beta, com-
parable toroidal and poloidal fields, strong paramagnetism, ncar-omnigeneity, and strong
belicity. Because results are exceptionally interesting so far, independent calculations with
a broader range of the assumed input profile functions and parameters are encouraged.

In discussing the implications of thesc plasma features, much of the conventional wis-
dom of the toroidal plasma physics is applied here. Since there is no concrete data base for
spherical tori, our discussions serve primarily to indicate possible important directions of
theoretical analysis and experimental testing. Examples include the uncertainties in the
cffects ot strong paramagnetism on achievable plasma beta; the effects of near-omnigeneity
on plasma kinetic propertics; plasma energy confinement at tight aspect ratio and high
current; the efficacy of lower hybrid wave and oscillating field current drive approaches;
and the viability of the spherical pinch and spherical RFP configurations. The attractive-
ness of the spherical torus as a compact magnetic fusion concept depends on the resolution

of questions such as these.
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