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ABSTRACT 

The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained 

by retaining only the indispensable components inboard to the plasmadoras. MHD equili

brium calculations show that spherical torus plasmas with safety factor q > 2 are charac

terized by high toroidal beta (/J, > 0.2), low poloidal beta (0 P < 0.3), naturally large elon

gation (K > 2), large plasma current with Ivl(aB&) up to about 7 MA/mT, strong 

paramagnetism (Bt/flto > 1-5), and strong plasma helicity (F comparable to 6). A large 

near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the 

plasma in comparison with the conventional tokamaks. These features combine to engendei 

the spherical torus plasma in a unique physics regime which permits compact fusion at low 

field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus 

plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) 

plasmas, but with tokamak-like confinement and safety factor q. The general class oí 

spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > 

0), and the spherical RFP (q < 0), have magnetic field configurations unique in compari

son with conventional tokamaks and RFPs. 

v 



I. INTRODUCTION 

High beta, good confinement, and steady-state operation in a compact configuration 

at modest field have long been major goals of magnetic fusion energy research. Accom

plishing these in a single concept will permit cost-effective and attractive embodiments of 

future fusion reactors. The search for such a concept is of high interest ia the present 

austere climate of fusion research. The introduction of the spherical torus concept1 is to a 

large degree motivated by this search. 

An equally important motivation of the spherical torus concept is its prospect of 

reducing the cost and time of fusion research and development Examples of relatively 

cost-effective compact magnetic confinement experiments are already available. They 

include ZT-40M2 and OHTE3 for the RFP concept and S-l 4 and CTX5 for the spheromak 

concept. In comparison with these alternative confinement concepts, a spherical torus 

experiment is expected to be similar in compactness, low field, and high beta, but better in 

its tokamak-like confinement time by more than an order of magnitude. This advantage 

should also be expected of the spherical torus devices for proof-of-principle, ignition, 

engineering development, or reactor prototype. 

The idea of very small aspect ratio tokamaks, per se, has been advanced recently,6,7 

based primarily on conventional tokamak assumptions such as high poloidal beta, modest 

elongation, and inductive startup of the plasma current. In one case,7 high beta was con

sidered with 0 P near unity, leading to beta values much higher than permitted by the more 

recent understanding of the first stability regime.1,9 In contrast, the spherical torus projects 

high beta within the first stability regime through naturally large elongation and plasma 

current at a modest 0p. Its additional features of strong paramagnetism, 

near-omnigeneity,10,11 strong helicity, and similarities to spheromaks and RFPs distinguish 

the spherical torus from these earlier concepts of small aspect ratio tokamaks. 

1 
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The spherical torus concept is made plausible also by recent progress in advanced 

current drive schemes, such as initiation and rampr.p by lower hybrid waves 1 2 , 1 3 and 

maintenance by oscillating fields14'15 (hclkity injection16,17). This removes reliance on a 

full solenoid to induce the plasma current, permitting compact long-pulse spherical tori 

with aspect ratio significantly less than 2. Assuming these advanced current drive 

schemes, ignition spherical tori are estimated to be compact (R = 1.0 m to 1.6 m) and to 

operate at low fields (/fo = 3 T to 2 T) . 1 8 In the case of small, low-field, short-pulse 

experiments using pulsed high-current-density coils, full inductive current startup should 

remain feasible. 

In the following, we discuss the unique features of spherical torus plasmas based pri

marily on their MHD equilibria, profiles, and magnetic configurations. This paper closes 

with a discussion of the questions and implications of our results for the spherical torus 

concept. 

II. NATURAL ELONGATION 

Frse-boundary MHD equilibrium calculations show that an elongation of * = 2 

occurs naturally in a spherical torus with aspect ratio A " 1.5 when only a dipole vertical 

field is applied, which in this case is produced by two ring coils at a significant distance 

from the outboard side of the plasma [Figure 1(a)]. When a quadrupole shaping field is 

applied via coils above and below the plasma, an elongation of about 3 can be obtained 

[Figure 1(b)]. For A > 2.5 [Figures 1(c) and 1(d)], the natural plasma elongation is less 

than 1.4, and strong shaping coil currents are required to obtain elongations around 2. 

A sequence of equilibria is obtained with an edge safety factor (inverse rotational 

transform) of qa — 2.4 and A ranging from 3 to 1.5 while * is increased from 1.7 (the 

usual elongation at large A) to 2. Poloidal field (PF) coils are placed at a distance of twice 

the minor radius (2a) from the plasma edge (Figure 2). The magnitudes of the coil 
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FIGURE 1. Naturally elongated and strongly elongated 

plasma cross sections at A — l.S (a and b, respectively), 

and at A — 2.S (c and d, respectively). 
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currents for these equilibria are plotted in Figure 3, showing that the vertical fíeld (VF) 

current per coil relative to the plasma current, /VF/A» decreases slightly from 0.4 to 0.3 as 

A decreases. However, the relative shaping field (SF) current, Isr/Ip, decreases from 2.8 to 

0 as A decreases from 4 to l.S, resulting in a dramatic reduction in the total relative 

ampere-turns in the relatively faraway PF coils, 2) I^PFI/V from 6.4 to 0.6. The toroidal 

field (TF) coil ampere-turns, Ire/Ip, also decreases drastically to levels comparable with 

the poloidal field ampere-turns. When a shaping field is applied to obtain a« = 3 spheri-

cal torus, 2) kpFv'/p is seen to increase from 0.6 to about 1.2. 

Large elongation (relative to that of tokamaks with conventional aspect ratios) is a 

natural feature of the spherical torus. These drastically reduced ampere-turns in a compact 

configuration should lead to substantial savings in the cost of the reactor magnet systems. 

III. PLASMA CURRENT AND BETA 

The typical profiles of the plasma pressure, toroidal current, and safety factor in these 

MHD equilibria are given in Figure 4, indicating a broad but not hollow current profile 

even with qa
 = 1 a n a " <¡a — 2.4. The equilibrium toroidal plasma current can be approxi-

mated by the formula: 

/ p(MA) - [5a (m)Ba(T)/qa] [Clt/{1 -< 2 ) 2 ] [(1 + <2)/2] , (1) 

where Dl0 is the vacuum toroidal field at the plasma major radius R, t — I/A, and C\ « 

1.22 — 0.68f. Thus, for a small spherical torus experiment with R — 0.45 m, a — 0.27 m, 

K ** 2, qa — 2.2, and BtQ — 0.5 T, a plasma current of 0.9 MA is indicated. For this 

configuration with qa > 2.2 we find that 

/ p(MA)/[a(fn)*,o(T)]<7 , (2) 
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which leads to a potential for high plasma beta in the first stability regime.8,9 According to 

recent experimental indications,19 the beta limit can be given approximately by: 

0c = J ! ? ^ 7 1 - - 0.033 / p (MA)/[a (m) BM (T)] , (3) 
"to 

indicating beta values above 20%. Unless otherwise mentioned, the equilibria presented in 

this paper have j3t values close to the 0 C given here. 

That such a high plasma current is permití xi in a spherical torus can be seen in Fig

ures 5 and 6. Figure S plots the poloidal and toroidal fields on the plasma mid-plane for a 

spherical torus (A = 1.5, K = 3) and a conventional elongated tokamak plasma (A = 2.S, 

K = 1.8). It is seen that in a spherical torus plasma the poloidal field becomes comparable 

with and larger than the toroidal field at the outboard region, while the fields are 

comparable in the inboard region. On the other hand, while the toroidal circumference at 

the outboard region is comparable with the poloidal circumference, the former is drasti

cally shorter than the latter at the inboard region (Figure 6). As depicted by a field line 

plotted on the q = 2 surface, this gives highly pitched field lines at the outboard region, 

introducing only a snnil amount of toroidal rotation, but gives moderately pitched field 

lines at the inboard region, introducing a large amount of toroidal rotation. The net result 

is a strongly enhanced total toroidal rotation (higher q) for a given plasma current, or a 

higher plasma current for a given qa. In comparison with this, a conventional tokamak per

mits only a small pitch to the field line for a given q, and hence a relatively modest plasma 

current. Equation (1) approximates this dependence on A. 

That such a magnetic field configuration should give high beta for MHD stability can 

also be seen from Figure (v lr> comparison with a conventional tokamak, the spherical 

torus has a short field line length in the bad-curvature region relative to that in the good-

curvature region. 
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IV. PLASMA PARAMAGNETISM 

Defining the average poloidal field at the plasma edge, Bp, as the line-averaged field 

along the poloidal circumference, the poloidal beta can be approximated by. 

OVft) - [5fl(m)tf,o(T)//p(MA)]2[(l + ¿)/2] . (4) 

It can be seen that the poloidal beta should be around 0.3 and comparable to the limiting 

toroidal beta according to Equations (2) and (3). As a result, the plasma equilibrium is 

essentially force-free, that is, highly paramagnetic with the plasma current density, J, 

nearly parallel to the magnetic field. Since the magnetic field lines have a high pitch, a 

large poloidal current component is produced, leading to a strongly enhanced toroidal field, 

B„ at the plasma axis. As indicated in Figure S, {BJB^) is around 2 for a spherical torus, 

whereas it is within a few percent of unity in a conventional tokamak. Also, strong 

paramagnetism contributes to increasing the plasma current for a given q0 via the 

increased toroidal field in the plasma core (see Sec. III). 

The dependence of paramagnetism on the aspect ratio and the elongation is calculated 

and given in Figure 7. It is seen that, for a naturally elongated plasma, the plasma 

paramagnetism is significant only when A is less than 2, as long as 8 — 8e according to 

Equation (3). For a strong elongation of about 3, significant paramagnetism sets in when 

A becomes less than 2.3. Since a highly pitched magnetic field line and a small poloida! 

beta are required for paramagnetism, a reduced 7p (an increased q) diminishes 

paramagnetism, and tends to regress a spherical torus to a conventional tokamak, even at a 

small aspect ratio (see also Figure 10). The presence of a strong paramagnetism thus 

serves as an indicator of the spherical torus characteristics. 

Strong paramagnetism also introduces an important uncertainty in the application of 

Equation (3) in that the latter is based on data and calculations of plasmas where there is 
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negligible difference between B& and fi, at the plasma axis. Replacing both B^'s in Equa-

tion (3) by Bt would lead to an increase of the plasma pressure at the limiting beta by a 

factor of (BJBtf). When only one of the A^'s is replaced by Bt, the range of uncertainty 

in pressure becomes proportional to (Bt/Bto)3. However, since paramagnetism decreases 

with increasing plasma pressure, the range of this uncertainty is limited to Bf < 1. 

V. NEAR4)MNIGENErrY,WI 

The strong paramagnetism of the spherical torus introduces a magnetic configuration 

that is dramatically different from that of a conventional tokamak. As shown in Figure 8, 

the strongly enhanced Bt at the plasma core and the dominating poloidal field at the out-

board region of the plasma create a strong curvature of the surfaces of constant field 

strength, \B\, making them largely parallel to the flux surfaces there. In this region, the 

particle drift orbits coincide with the flux surfaces since the curvature and gradient drifts20 

are now parallel to the flux surfaces. 

This nearly omnigeneous region (Figure 8) largely coincides with the region of bad 

curvature of MHD instability where the pressure gradient and the field line curvature, B • 

V B, have positive scalar product. This region is nearly free of locally trapped particles, 

contributing to the kinetic stability of the plasma, although trapped particles still exist 

between the top and bottom regions of the plasma. These trapped particles have orbits that 

deviate weakly from the flux surfaces because of the reduced region where the curvature 

and gradient drifts deviate from the parallel drift. This should result in a reduced 

"banana" width and is expected to lead to a reduced neoclassical transport. 

It should be noted that this region of near-omnigeneity is also characterized by a 

near-constancy of \B\. This can be seen in Figure 9, where the VF coils are placed some-

what closer to the plasma, introducing some finer structures to the surfaces of constant 

\B\. Although this may introduce additional features to the trapped-particle orbits, the 
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FIGURE 8. Configurations of sphtrícal torus 

plasma flux surfaces (solid and dotted lines) and 

\B\-surfaces (dashed lines). The near-omnigeneous 

region is to the right of the bold dashed line. 
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major radius. 
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near-constancy of \B\ should retain the near-omnigeneity of this region. Since the size of 

the region depends on plasma elongation, beta, and paramagnetism, it is subject to external 

controls of the shaping field, plasma heating, and safety factor (plasma current). 

VI. PLASMA HELICITY 

Toroidal plasma helicity can be expressed by the helicity parameter O:21 

e - ( V A ) v . (5) 

where the subscripts S and V indicate rcrface and volume averages, respectively, of a 

toroidal plasma. As the plasma current increases in a spherical torus configuration (A -* 

1.6, K — 2), the plasma evolves from a low-current (high-?), weakly paramagnetic confi-

guration to a high-current (low-?), strongly paramagnetic configuration. This transforma-

tion can be depicted in the F-6 space (Figure 10), where F (the pinch parameter) 

represents the relative toroidal field strength at the plasma surface: 

F - (Bt)s/(Bt)y . (6) 

As 6 increases, F decreases from near 1 because of the increasing paramagnetism, a trend 

consistent with the indications of the Bessel function approximation21 of the force-free 

cylindrical configuration. Preliminary calculations of the values ol F and 6 in a spherical 

torus with qa > I suggest that they are comparable in magnitude, indicating a strong 

plasma helicity. This strong helicity is consistent with the nature of the field line contours 

depicted in Figure 6. 

Although current drive via ac helicity injection (oscillating field) was first introduced 

for the RFP1 4 and spheromak,15 its application to tokamak plasmas was also suggested 
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recently.16,17 The efficacy of this process in spherical tori is enhanced by the following fac

tors. First, the total stored magnetic flux is modest relative to the plasma energy content 

(high beta and low field). Second, in the cylindrical approximation of an RFP, the induced 

toroidal loop voltage increases with increasing (1 — F) and increasing Q,u suggesting that 

the efficiency of ac helicity injection in a spherical torus should be of the same order of 

magnitude as in an RFP. 

VII. CLASSES OF SPHERICAL TORI 

As the value of B^ is reduced relative to the plasma current (with qa reduced to <I), 

plasma paramagnetism is further enhanced because of the increased pitch of the magnetic 

field line. This gedanken process can in principle be continued through 5^ = 0 and 

beyond to Bt0 < 0. An example of a spherical torus with qa < 0 is shown in Figure 11, 

indicating that the plasma retains its naturally large elongation, and that the \B\-surfaces 

are drastically different in configuration from those of a spherical torus of qa > 1. Near-

omnigeneity in the outboard region of the plasma appears to be a feature unique to the 

spherical torus with q > 1. 

The following classes of spherical tori are therefore evident: 

1. spherical tokamak with qa > 1, 

2. spherical pinch with 1 > qa > 0, 

3. spheromak with qa = 0, and 

4. spherical RFP with qa < 0. 

The domains of these different classes of spherical tori relative to the tokamak, spheromak, 

and RFP are depicted in Figure 12. 
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FIGURE 11. (a) Flux and \B\-surfaces for a spherical RFP 
with qa — —0.26, with (b) its magnetic field distributions on the 
plasma midplane, and (c) its q profile as a function of normalized 
poloidal flux, X. 
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those of tokamak, spheromak, and RFP in the qa and A 

space. 
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Although the features of the spherical torus plasmas discussed here are based only on 

a limited number of MHD equilibria, they appear qualitatively different from the conven

tional tokamak plasmas in the case of qa > 1. These features include naturally large elon

gation, large plasma current, high beta in the first stability regime, low polotdal beta, com

parable toroidal and poloiHal fields, strong paramagnetism, near-omnigeneity, and strong 

belicity. Because results are exceptionally interesting so far, independent calculations with 

a broader range of the assumed input profile functions and parameters are encouraged. 

In discussing the implications of these plasma features, much of the conventional wis

dom of the toroidal plasma physics is applied here. Since there is no concrete data base for 

spherical tori, our discussions serve primarily to indicate possible important directions of 

theoretical analysis and experimental testing. Examples include the uncertainties in the 

effects ot strong paramagnetism on achievable plasma beta; the effects of near-omnigeneity 

on plasma kinetic properties; plasma energy confinement at tight aspect ratio and high 

current; the efficacy of lower hybrid wave and oscillating field current drive approaches; 

and the viability of the spherical pinch and spherical RFP configurations. The attractive

ness of the spherical torus as a compact magnetic fusion concept depends on the resolution 

of questions such as these. 
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