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Abstract: In this paper, we aimed to characterize the fecal microbiome and its resistomes of healthy
and diseased subjects infected with multidrug-resistant Escherichia coli using next-generation se-
quencing (NGS). After initial screening, 26 stools samples belonging to healthy (n = 13) and diseased
subjects (n = 13) were selected and subjected to NGS. A total of 23 and 42 antibiotic-resistant genes
(ARGs) conferring resistance to 6 and 9 classes of antibiotics were identified in the resistomes of
healthy and diseased subjects, respectively. Bacteroidetes were found to be the major phylum in both
healthy and diseased subjects; however, Proteobacteria was predominantly present in the diseased
subjects only. Microbial dysbiosis and predominance of various ARGs in the resistome of diseased
subjects reflect the excessive usage of antibiotics in Pakistan and warrants immediate attention to
regulate the use of various antimicrobials.

Keywords: antibiotics; gut microbiota; next-generation sequencing; microbial dysbiosis; loss of
microbiota diversity

1. Introduction

The emergence of multidrug-resistant (MDR) bacteria is becoming a serious threat to
human health. The human gut microbiome plays an important role in the emergence and
transmission of antibiotic-resistant microbes [1]. Human gut microbiota essentially acts as
a potential reservoir of antibiotic resistance genes (ARGs). A resistome includes all ARGs
within a specific microbial niche [2,3]. Resistomes of different individuals are influenced
by various factors such as geographical location, age, antibiotic usage, diet, environment,
lifestyle, and socioeconomic status [4]. These factors also alter the composition of the
human microbiome thereby making resistome closely correlated to the microbiome [3,4].
The advent of high-throughput sequencing technologies fast-tracked the microbiome
research and characterized the gut microbiota as “superorganism” [5]. The human gut
microbiota plays essential roles in metabolism, physiology, and development of immune
system. Although gut microbiota serves as a “superorganism”, it is highly dynamic and is
frequently altered by diet, age, antibiotics, various infections, and host genetic factors [6].

Among the various factors, antibiotic administration has been reported to profoundly
affect the composition of the human microbiome and its resistome drastically [7]. An-
tibiotics administration alters the composition of the human microbiome leading to gut
microbial dysbiosis [8]. The essential functions of the gut microbiome such as vitamin
production, nutrient supply, and protection against pathogens are negatively affected
by microbial dysbiosis [9]. A dysbiotic gut microbiome has been linked with various
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ailments such as developmental, immunological, and metabolic disorders. In addition, gut
microbiome dysbiosis increases the susceptibility to develop various serious infectious
diseases [9,10].

Antibiotics with broad-spectrum activity have been reported to affect the abundance
of human gut microbiota by up to 30%, thereby causing a rapid and significant reduc-
tion in the taxonomic composition of gut microbes [11,12]. The effects of antibiotics
administration on gut microbiota may last for a long time ranging from months to years.
Furthermore, excessive antibiotic administration deteriorates the microenvironment of the
human gut microbiome leading to the emergence of “pathobionts” such as Escherichia coli,
Salmonella enterica, Shigella flexneri, Klebsiella, Acinetobacter, and Pseudomonas [12,13]. Conse-
quently, the acquisition of various ARGs by these pathobionts can lead to serious health
consequences [14]. Antibiotic mediated gut microbial dysbiosis has been characterized by
the loss of microbial diversity, reduced abundance of specific taxa [15], increased susceptibil-
ity to various infections, escalated proliferation of various superbugs (methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus) [16], and disruption
of intestinal mucus layers [14]. Currently, a number of studies demonstrated that antibiotic
mediated gut microbial dysbiosis can be effectively reversed through the incorporation of
various strategies such as use of probiotics, probiotics synbiotics, fecal microbiota transplant
(FMT), bacterial consortium transplant (BCT), and phage therapy [17,18].

Exploration of human resistome can help in designing effective diagnostic and ther-
apeutic strategies that are the need of the hour owing to the pandemic status of AMR.
Policies regulating antibiotic usage in humans and animals have been reported to influence
the prevalence of ARGs in the resistomes of various individuals from different coun-
tries [19,20]. Metagenomics studies contributed significantly to understanding the bacterial
communities associated ARGs in diverse samples such as human stools samples, animal
fecal samples, ready-to-eat food [21], and urban resistome [22]. Large-scale metagenomic
studies [19,20] explored the gut resistome of healthy people from different countries and
studied the abundance pattern of ARGs. Increased abundance of ARGs was found in the
gut resistome of individuals from the countries with higher antibiotic usage such as China
and Spain than people belonging to the countries with strict AMR regulating policies such
as Denmark. Currently, among low- to middle-income countries, Pakistan constitutes the
third highest consumer of antibiotics after India and China [23].

Identifying the key features of country specific resistome can help understanding
the abundance pattern of particular ARGs and designing interventory strategies. Large
scale metagenomics studies aiming to explore the microbiome and resistome of healthy
Pakistani people are scarce, and to the best of our knowledge the poultry gut microbial
and abundance profile of various ARGs are only explored so far by one of our previous
studies [24].

Strict national policies regulating the antimicrobial usage (AMU) in both human and
veterinary medicine are lacking in Pakistan [23,25,26]. Higher AMU in Pakistan warrants
investigating the gut resistomes of healthy and sick individuals infected with AMR bacteria
in order to ascertain the prevalence of various ARGs; however, such metagenomics studies
are needed in Pakistan. This cross-sectional metagenomic study aimed to investigate for
the first time the fecal microbiome and its resistomes of healthy and individuals infected
with AMR bacteria belonging to the Peshawar, Khyber Pakhtunkhwa region of Pakistan
using next-generation sequencing (NGS).

2. Materials and Methods

2.1. Study Design

This cross-sectional study was carried out at the tertiary healthcare center of Pe-
shawar, Pakistan (34◦1′33.3012′ ′ N and 71◦33′36.4860′ ′ E). Ethical approval (Ref: RMI/RMI-
REC/Approval/33) for this study was obtained from the Ethics Committee of Tertiary
Healthcare Center, Peshawar Pakistan.
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2.2. Sample Collection

A tertiary health care center of Peshawar, Pakistan was selected for the sample col-
lection. The study objectives were explained to the patients and informed consents were
signed. Initially, we screened inpatients (n = 420) diagnosed with various bacterial in-
fections. Inpatients with the confirmed bacterial infection and willingness to participate
in this study were enrolled for further analysis. All the important clinical and demo-
graphic data were carefully recorded from the selected patients and healthy controls
(Tables S1 and S2, Supplementary Materials). Stool samples were collected from all en-
rolled patients and screened for MDR bacterial strains. Stool samples under aseptic mea-
sures were streaked onto the MacConkey and Eosin Methylene Blue agar plates (Oxoid,
Basingstoke, Hampshire, UK). The streaked plates were incubated for 18–24 h at 35–37 ◦C.
Slow-growing strains were incubated for a longer duration extending up to 48 h. All
the bacterial isolates were identified using the standard morphological and biochemical
tests [27]. Antibiotic susceptibility testing (AST) was performed using the Kirby–Bauer
disc diffusion method. Bacterial strains were tested against aminoglycosides, neomycin,
gentamycin, streptomycin, chloramphenicol, quinolones and fluoroquinolones, ofloxacin,
nalidixic acid, sulfonamides, sulfamethoxazole, tetracycline, beta-lactam, ampicillin, nitro-
furans, and cephalosporins following Clinical and Laboratory Standards Institute (CLSI)
guidelines [28]. Patients testing negative for MDR bacterial strains were excluded from
this study. Stool samples from the 13 healthy participants (7 males, 6 females; mean age
48.6 ± 11 years) with no antibiotic usage in the last six months were used as negative
controls for fecal microbiome and its resistome profiling.

2.3. Extraction, Quantification and Normalization of Genomic DNA

Genomic DNA was isolated from a 0.2 g stool sample using a commercial kit
(PureLinkTM Microbiome DNA Purification Kit) following the manufacturer’s instruc-
tions (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) with little modifications.
The use of standard bead-beater recommended by the manufacturer was replaced by sim-
ple laboratory benchtop vortexer (CLASSIC Vortex Mixer product code F202A0173, VELP
Scientifica, Via Stazione 16-20865-Usmate Velate (MB), Italy). Bead-tubes containing the
samples were fixed horizontally on the pad of bench top vortexer with the help of scotch
tape at room temperature and vortexed at 2000 rpm for 8 min. To assure the NGS quality
control (QC), all the extracted DNA samples were then quantified using Qubit fluorometer
following manufacturer’s instructions (Qubit™ fluorometer, Invitrogen, Carlsbad, CA,
USA) [29]. The quality of DNA samples were also checked using 1.0% agarose gel. Follow-
ing quality control (DNA qualitative and quantitative analysis), all the DNA samples were
then normalized to 0.2 ng/µL (1 ng/5µL).

2.4. NGS Libraries Preparation

Sequencing libraries were prepared using Illumina® (San Diego, CA, USA) Nextera
XT DNA Library Preparation Kit (FC-131-1096) and Nextera XT Index Kit v2 Set A (FC-
131-2001) as per the manufacturer’s instructions. For library preparation, 1ng dsDNA was
subjected to tagmentation. dsDNA was fragmented and adapters were added to both ends.
Unique Illumina idexes (i7/i5) were added to tagmented DNA through limited cycles of
PCR amplification. The PCR amplified products were purified using AMPure XP beads
and washed twice with 80% freshly prepared ethanol. Then, bead-based normalization of
the purified products were done by using 45µL mixture of beads Library Normalization
Additives 1 (LNA1), and Library Normalization Beads 1 (LNB1), and washed by using
wash solution provided in the kit. Finally, each library was eluted in 0.1N NaOH and stored
in storage buffer. All the libraries were pooled by mixing 5 µL each and subsequently 24 µL
from the pooled sample (pooled DNA libraries) was mixed with 576 µL HTI (Hybridization
Buffer) and subjected to denaturation at 98 ◦C for 2 min. Furthermore, 30 µL of 12.5 pM
PhiX (internal sequencing control) was added to the pooled libraries thereby making a final
volume of 600 µL, which was then loaded on to Illumina MiSeq Reagent Kit v2 (300 cycles;
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MS-103-1002, Illumina Inc., CA, USA) for paired end sequencing (2 × 150 bp) on Illumina
MiSeq sequencer (Illumina, San Diego, CA, USA).

2.5. NGS Bioinformatics Analysis

After FASTQ files (raw data) were generated through MiSeq (Illumina sequencer),
26 dual-index barcoded metagenomes were demultiplexed using CASAVA 1.8.2. The
sorted FASTQ files were then subjected to NGS QC using Trimmomatic 0.36 to remove all
technical biases, low-quality reads (Q > 30), and adapters. To assure shotgun metagenome
sequencing QC, filtered FASTQ files were further filtered from the host DNA using a
computational tool KneadData v. 0.6. The filtered, high quality metagenomics data sets
(n = 26) were subjected to unique clade-specific marker genes based microbial profiling
using a computational tool Metagenomic Phylogenetic Analysis (MetaPhlAn3) [30]. Bacte-
rial taxonomic profiling was followed by resistome analysis. All the high quality filtered
reads were subjected to the resistome analysis using the default settings of Bowtie2 through
Antimicrobial Resistance Identification By Assembly (ARIBA) MEGAres database [31].
All ARGs were confirmed through a minimum of 16 reads (2 × 150 bp) each and a 100%
identity match to the reference genome. All read alignments were manually inspected to
validate the existence of various ARGs. The abundance of ARGs were estimated on the
basis of relative number of reads assigned to each ARG.

3. Results

3.1. Selection of Samples for Shotgun Metagenome Analysis

Out of 420 screened patients, 13 patients (7 males, 6 females) with a mean age of
48.6 ± 11 years were found resistant to more than 3 major classes of antibiotics and were
named as MDR E. coli infected patients. To explore the gut microbiome and resistome
of MDR E. coli infected patients (hereafter named as diseased subjects) in addition to the
healthy controls, we selected the 13 MDR infected stool samples for shotgun metagenome
sequencing. A total of 26 stool samples belonging to healthy and diseased subjects (13 each)
were analyzed using shotgun metagenome sequencing.

3.2. Shotgun Metagenome Sequencing

The NGS quality filtering system discarded reads quality score <Q30 and read length
less than 60 nucleotides. A total of 28,842,214 filtered paired-end reads were obtained. The
high-quality NGS reads (comprising of healthy and diseased samples) were processed for
bacterial taxonomic and resistome profiling.

3.3. Bacterial Profiling of Fecal Microbiome of Healthy Subjects at Various Levels

The percentage abundance of different taxonomic ranks was quantified based on
reads assigned to each clade. A total of 3 phyla, 6 classes, 6 orders, 6 families, and
9 genera. Diverse species were identified in the fecal microbiome of healthy subjects
(Figure 1), among which 15 were dominantly found. Bacteroidetes were identified as the
major representative phylum with the relative abundance of 90.8% followed by Firmicutes
(9%). Proteobacteria was identified as the minor phylum with the relative abundance of
<1% (Figure 1A). The major class identified was Bacteroidia (90.8%), followed by Clostridia
(6.6%), and Negativicutes (1.9%). While the minor (<1%) classes identified Bacilli, Firmicutes
unclassified, and Gammaproteobacteria. Among the total 6 orders identified, Bacteroidales
(90.8%) were identified as the major one followed by Clostridiales (6.6%), and Veillonellales
(1.9%). While the minor orders (<1%) identified were Lactobacillales, Firmicutes unclassified,
and Enterobacterales. Prevotellaceae (90.3%) was identified as the dominant family followed
by Lachnospiraceae (5.7%), and Veillonellaceae (1.9%). The minor (<1%) families identified
were Enterobacteriaceae, Ruminococcaceae, and Bacteroidaceae. Prevotella was identified as
the major genus with the relative abundance of 90.3%. Genus Prevotella was followed by
Roseburia (2.2%), Butyrivibrio (2.1%), Dialister (1.8%), unclassified Lachnospiraceae (1.1%). The
minor genera (<1%) were found to be Bacteroides, Faecalibacterium, Escherichia, and Klebsiella
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(Figure 1B). Prevotella copri was identified as the major species (74.6%). A number of other
Prevotella species were also dominantly found, for instance Prevotella sp. AM42 24 (8.2%),
Prevotella sp. CAG 520 (3.6%), Prevotella sp. 885 (1.7%), and Prevotella sp. CAG 279 (1.3%).
Similarly, dominant species other than Prevotella spp., are Butyrivibrio crossotus (2.1%),
Dialister sp. CAG 357 (1.8%), Roseburia faecis (1.3%), Eubacterium rectale (1.1%). Diverse
minor species (<1%) were identified (Figure 1C), for instance, E. coli, Klebsiella pneumoniae,
Prevotella stercorea, Prevotella sp. CAG 5226, and Prevotella stercorea.

Figure 1. Taxonomic profiling of fecal microbiome in healthy and diseased subjects at various levels. Relative abundance of
fecal microflora of healthy and diseased subjects at phylum level (A), genus level (B), and species level (C).

3.4. Bacterial Profiling of Fecal Microbiome of Diseased Subjects at Various Levels

A total of 4 phyla, 6 classes, 6 orders, 10 families, 13 genera, and 23 species were
identified in the fecal microbiome of diseased subjects (Table 1, Figure 1). Bacteroidetes
(58.3%) was identified as the major phylum followed by Proteobacteria (15.8%), Actinobac-
teria (14.7%), and Firmicutes (11.2%) (Figure 1A). Bacteroidia (58.3%) was identified as the
major class followed by Gammaproteobacteria (15.8%), Actinobacteria (14.7%), Bacilli (6.7%),
and Clostridia (4.3%), while minor (<1%) class identified was Negativicutes. Bacteroidales
was identified as the dominant order followed by Enterobacterales (15.8%), Bifidobacteriales
(14.7%), Lactobacillales (6.7%), and Clostridiales (4.3%), while Selenomonadales was identi-
fied as the minor (<1%) order. Prevotellaceae 39.6% was identified as the major family
followed by Bacteroidaceae 18.7%, Enterobacteriaceae 15.8%, Bifidobacteriaceae 14.7%, Ente-
rococcaceae 6.3%, and Ruminococcaceae (3.8%). The minor (<1%) families identified were
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Lachnospiraceae, Streptococcaceae, Clostridiaceae, and Selenomonadaceae. Prevotella (39.6%) was
identified as the major genus followed by Bacteroides (18.7%), Bifidobacterium (14.7%), Es-
cherichia (9.6%), Enterococci (6.3%), Klebsiella (4.9%), and Faecalibacterium (3.8%). The minor
(<1%) genera identified were Streptococcus, Clostridium, Blautia, Megamonas, Citrobacter,
and Kluyvera (Figure 1B). The species identified were Prevotella copri (34.5%) Bifidobac-
terium longum (14.7%), Bacteroides dorei (13.3%), E. coli (9.5%), Enterococcus faecium (6.3%),
Faecalibacterium prausnitzii (3.8%), Klebsiella pneumoniae (3%), Bacteroides vulgatus (2.8%),
Prevotella stercorea (2.6%), Prevotella sp. CAG 5226 (1.5%), Klebsiella quasipneumoniae (1.4%),
and Bacteroides plebeius (1.2%). Furthermore, 11 minor (<1%) species were also identified in
the fecal microbiome of diseased subjects (Figure 1C).

Table 1. Bacterial profiling fecal microbiota of healthy and diseased subjects were calculated using Metagenomic Phyloge-
netic Analysis (MetaPhlAn3).

Taxonomic Rank Control Group (%) Diseased Group (%) SD±

Phylum

Bacteroidetes 90.8 58.3 23

Firmicutes 9 11.2 1.6

Proteobacteria 0.2 15.8 11.1

Actinobacteria NA 14.7 NA

Family

Bacteroidaceae 0.4 18.7 12.9

Prevotellaceae 90.3 39.6 35.8

Lachnospiraceae 5.7 0.4 3.7

Ruminococcaceae 0.5 3.8 2.3

Veillonellaceae 1.9 NA NA

Enterobacteriaceae 0.2 15.8 11.1

Bifidobacteriaceae NA 14.7 NA

Enterococcaceae NA 6.3 NA

Genus

Bacteroides 0.4 18.7 12.9

Prevotella 90.3 39.6 35.8

Butyrivibrio 2.1 NA NA

Lachnospiraceae
unclassified

1.1 NA NA

Roseburia 2.2 NA NA

Faecalibacterium 0.5 3.8 2.4

Dialister 1.8 NA NA

Escherichia 0.1 9.6 6.7

Klebsiella 0.05 4.9 3.5

Bifidobacterium NA 14.7 NA

Enterococcus NA 6.3 NA
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Table 1. Cont.

Taxonomic Rank Control Group (%) Diseased Group (%) SD±

Species

Bacteroides vulgatus 0.1 2.9 1.9

Prevotella copri 74.6 34.5 28.4

Prevotella sp. 885 1.7 0.9 0.6

Prevotella sp. AM42 24 8.2 NA NA

Prevotella sp. CAG 279 1.3 NA NA

Prevotella sp. CAG 520 3.6 NA NA

Prevotella sp. CAG 5226 0.7 1.6 0.6

Prevotella stercorea 0.2 2.6 1.8

Butyrivibrio crossotus 2.1 NA NA

Eubacterium rectale 1.1 NA NA

Roseburia faecis 1.3 NA NA

Faecalibacterium
prausnitzii

0.53 3.8 2.4

Dialister sp. CAG 357 1.8 NA NA

E. coli 0.1 9.6 6.7

Klebsiella pneumoniae 0.05 3.1 2.1

Bifidobacterium longum NA 14.7 NA

Bacteroides dorei NA 13.3 NA

Bacteroides plebeius NA 1.2 NA

Enterococcus faecium NA 6.3 NA

Klebsiella quasipneumoniae NA 1.5 NA

NA—not applicable (absence of particular taxonomic rank or parameter).

3.5. Comparative Bacterial Profiling of Healthy and Diseased Subjects

Bacteroidetes were identified as a major abundant phylum in both healthy controls
(90.8%) and diseased subjects (58.3%). Albeit, Bacteroidetes constitute the major abundant
phylum in both healthy and diseased subjects, however, relative percentage abundance
of Bacteroidetes was found to be higher in healthy controls (Figure 1, Table 1). Firmicutes
(8.9%) constitute as the second abundant phylum in healthy controls while Proteobacteria
(15.8%) was the second major phylum in the diseased subjects. Conversely, Proteobacteria
was found to be the least (<1%) abundant phylum in the healthy controls. The percentage
abundance of microbial communities at different taxonomic ranks such as phylum, class,
order, family, genus, and species of both healthy and diseased subjects are shown in
Figure 1A–C. Prevotella was identified as the major genus in both healthy controls (90.3%)
and diseased subjects (39.6%); however, the relative percentage abundances of both groups
vary greatly (Figure 1C, Table 1). Furthermore, the various pathobionts genera such
as Escherichia and Klebsiella were abundantly found in the fecal microbiome of diseased
subjects, while in the healthy controls these genera constituted for <1%.

3.6. NGS-Based Resistome Analysis

Resistome analysis of healthy and diseased subjects revealed the presence of diverse
ARGs (355,959 reads) conferring resistance to multiple antibiotics; namely, tetracycline,
beta-lactam, macrolide-lincosamide-streptogramin (MLS), aminoglycoside, sulphonamide,
multidrug efflux pump system, rifampin, quinolone, and trimethoprim.
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3.7. Resistome of Healthy Subjects

The resistome of healthy controls were composed of 23 ARGs conferring resistance
to various classes of antibiotics such as tetracycline, beta-lactam, MLS, sulphonamide,
aminoglycoside, and multidrug efflux pumps. The abundance of various ARGs were
estimated on the basis of their reads for instance, tetracycline associated ARGs (80%; n = 7,
tet32, tet40, tetA) were found to be the major genes followed by beta-lactam (17.3%; n = 5;
blacfxA3, blacfxA6, blaCTX), and MLS (2.5%; n = 3, MphA, ermF, ermB). Tetracycline, beta-
lactam, and MLS associated ARGs were found as the dominant genes while the relative
abundance of ARGs associated with efflux pump (n = 3, mdtA, emrK, mdtL), aminoglycoside
(n = 3, aadA5, aph(3′ ′)-Ib, aacA4), sulphonamide (n = 2, sul1/sul3) were found to be < 1%
(Figure 2, Table 2).—

— —

Figure 2. The relative abundance of various antibiotic resistance gene (ARG) types identified in the resistomes of healthy
and diseased subjects. The relative abundance of each ARG type was estimated on the basis of total number of reads.
MLS—macrolide-lincosamide-streptogramin; MDR—multidrug efflux pump.

Table 2. Diversity of various antibiotic resistance genes (ARGs) in the gut resistome of healthy and diseased subjects.

ARG Type Resistome of Healthy Subjects Resistome of Diseased Subjects

Tetracycline tet32, tet40, tetA, tetO, tetQ, tetR, tetW tetM, tetO, tetQ, tetS, tetW, tetA, tetB, tetR

Beta-lactam aci1, blacfxA3, blacfxA6, blaCTX, blaTEM
blaCTX-M, blaCMH-1, blaCMY, blacfxA3,
blacfxA6, blaNDM-1, blaOXY-1, blaTEM-1

MLS 1 MphA, ermF, ermB ermB, ermF, ermX, mef A, MsrD

Sulphonamide sul1, sul3 sul1, sul2

Aminoglycoside aadA5, aph(3”)-Ib, aacA4 aac6, aadA5, acrE, acrF, aph3

MDR 2 mdtA, emrK, mdtL
mdtG, mdtH, mdtN, mdtF, mdtC, mdtO, msbA,

adeC, emrK, emrR
1 MLS—macrolide-lincosamide-streptogramin, 2 MDR—multidrug efflux pump system.
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3.8. Resistome of Diseased Subjects

The resistome of diseased subjects were composed of 42 ARGs conferring resistance
to 9 classes of antibiotics such as tetracycline, beta-lactam, rifampin, MLS, multidrug efflux
pumps, quinolone, aminoglycoside, sulphonamide, and trimethoprim (Figure 2, Table 2).
Tetracycline associated ARGs were found to be the major genes (50.4%; n = 8, tetM, tetO,
tetQ), followed by beta-lactam (21.3%; n = 8, blaCTX-M, blaCMH-1, blaCMY), rifampin (10%;
n = 1, rpoB), MLS (5.9%; n = 5, ermB, ermF, ermX), multidrug efflux pump (5.3%, n = 10 mdtG,
mdtH, mdtN), quinolone (2.7%; n = 2, qnrB, qnrS), aminoglycoside (2.6%; n = 5, aac6, aadA5,
acrE), sulphonamide (1.6%; n = 2 sul1, sul2), and trimethoprim (0.2%; n = 1, DfrA17).

3.9. Comparative Resistome Analysis

A greater number of ARGs were identified in diseased subjects (n = 42) than that of
healthy controls (n = 23). Similarly, in contrast to the healthy subjects, the resistome of dis-
eased subjects showed higher diversity in terms of ARGs to be associated with 9 classes of
antibiotics namely tetracycline, beta-lactam, macrolide-lincosamide-streptogramin (MLS),
aminoglycoside, sulphonamide, multidrug efflux pump system, rifampin, quinolone, and
trimethoprim (Figure 2). While resistome of healthy controls showed resistance to only
6 classes of antibiotics namely tetracycline, beta-lactam, MLS, sulphonamide, aminoglyco-
side, and multidrug efflux pumps (Table 2). Moreover, tetracycline associated ARGs were
found abundantly in the gut resistomes of both healthy (80%) and diseased (50.4%) subjects.
Similarly, beta-lactam-associated ARGs were found to be the second most abundant ARGs
in the gut resistomes of both healthy and diseased subjects with a relative abundance of
17.3% and 21.3%, respectively (Figure 2).

4. Discussion

Shotgun metagenome sequencing has been widely used to explore various ARGs
in diverse hosts [14,19,20]. NGS-based metagenomic approach is widely adopted by
the developed countries for resistome analysis for surveillance and diagnostic purposes
however, being a third-world country with limited resources, Pakistan still lags behind
in this race [32,33]. The present study is the first of its kind, which used an NGS-based
metagenomic approach to investigate the gut resistome of healthy and diseased human
subjects belonging to Peshawar, Pakistan. A number of ARGs were identified in the
resistome of both healthy and diseased subjects. The presence of various ARG types in
the resistome of healthy subjects is in agreement with a recent metagenomic study [34]. A
metagenomic study identified various ARGs in the resistome of Yanomami Amerindian
villagers whose ancestors were isolated for more than 11,000 years and have never been
administered any synthetic antibiotics [35]. The presence of ARGs in these isolated villagers
implies that ARGs are inherent features of the human microbiome. Although ARGs
have been implicated as the inherent features of the human microbiome, albeit excessive
antibiotic administration upsurges the acquisition, transmission, and dissemination of
ARGs in the gut resistomes of different hosts [36]. Moreover, the antibiotic treatment causes
the modification of gut resistome thereby leading to the predominance of resistant strains
and their associated ARGs [37,38]. In Pakistan, antibiotics are available over the counter
and self-medication is commonly practiced in the general population and also in hospital
community settings [39]. A recent multicenter cross-sectional study carried out in urban
areas of Punjab, Pakistan, evaluated the sale extent of non-prescribed antibiotics. Out
of 353 pharmacy stores, 96.9% of medical stores and pharmacy centers were found to be
dispensing antibiotics without any prescription where as 3.1% of pharmacy stores were
found to be dispensing antibiotics on the basis of authentic prescription [40]. Recently, the
total consumption of antibiotics in Pakistan has been increased by 65% from the year 2000
to 2010 [41]. Furthermore, a recent study also highlighted that the inappropriate use of
antibiotics in both general and hospital community settings contributes to the deadly AMR
situation in Pakistan [42]. We, therefore, speculate that widespread presence of diverse
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ARGs in the resistomes of healthy subjects is likely due to the unjustified use of antibiotics
in Pakistan.

Greater diversity and predominance of ARGs were observed in the resistome of
diseased subjects, which could be justified by the fact that they were already on antibiotic
treatment for various bacterial infections. The association of antibiotic administration to
the emergence of increased ARGs in the diseased subjects is supported by a previous study
indicating that intake of antimicrobials causes potential expansion of gut resistome [43]. A
number of studies indicated the widespread presence of various AMR bacterial strains and
their associated ARGs, for instance, a study carried out in tertiary health care hospital of
indicated that all Acinetobacter and greater than 70% P. aeruginosa isolates were found to be
MDR [44,45]. Furthermore, our results are supported by a prior study that explored the
publicly available datasets of 24 metagenomic samples collected from the healthy controls
(n = 6) and antibiotic-treated individuals (n = 18). Their results indicate that antibiotic
administration in diseased subjects for a short duration causes the diversification of gut
resistome, increases the abundance of ARGs and specific pathogenic bacterial strains [46].
Moreover, using shotgun metagenomics, a group of researchers quantified alterations in
the gut microbiota of hematological patients under antibiotic prophylaxis grouped in two
different cohorts. Ciprofloxacin was administered in one cohort while cotrimoxazole in the
other. Their results indicated reduction in gut microbial diversity of both the treated cohorts
up to the similar extent, however their gut resistome differs owing to the use of a particular
group of antibiotics [1]. In addition, the higher diversity of ARGs in diseased subjects is in
agreement with a recent study indicating that the overall relative abundance of various
ARGs was higher significantly in patients than that of healthy controls [34]. We observed
a high abundance of tetracycline and beta-lactam associated ARGs in the resistomes of
both healthy and diseased subjects. The prevalence of tetracycline associated ARGs in
the healthy subjects is consistent with a previous study [47]. Feng et al. [47] established
a catalog of resistome to study the abundance pattern of various ARG types and fecal
microbial communities from healthy people (n = 180) belonging to 11 different countries.
They identified 507 subtypes (from 20 types of ARGs), among which the tetracycline
associated ARGs have been grouped in the top seven prevalent ARGs. Their results
implies that tetracycline associated ARGs occurs commonly in human resistome [47].
Globally, tetracycline associated ARGs predominantly present in the human gut resistomes
as evidenced by few studies indicating the high abundance of tetracycline associated ARGs
among all the identified ARG types in the resistomes of Chinese, Danish, American, and
Spanish people [20,48].

Data related to metagenomic studies are scarce in Pakistan; however, the drug re-
sistance pattern of Shigella isolates belonging to the Faisalabad region was studied using
a molecular approach. Shigella isolates exhibited resistance predominantly to ampicillin
(96.84%) and tetracycline (93.68%) which is in line with our results indicating a high abun-
dance of tetracycline and beta-lactam associated ARGs in the diseased subjects [49]. The
high diversity of various ARGs conferring resistance to multiple classes of antibiotics
(Table 2) in the diseased subjects can be attributed to the self-medication, over-the-counter
availability of antibiotics, wrong prescription practices, and lack of legislation regulating
antibiotic usage across Pakistan [50]. Furthermore, physicians in Pakistan usually prescribe
antibiotics to the patients prior to the result of AST which could be another possible reason
for the diversification of their gut resistomes. Prescription of antibiotics without AST
has been considered as the potential cause of AMR in the developing countries such as
India and Pakistan [51,52]. The widespread inappropriate use of antibiotics in Pakistan
has led to the emergence of ARGs not only in human but also in food animals and their
surrounding environments such as water bodies. In addition to humans, various ARGs
have been detected in various environmental samples of Pakistan. Using real-time PCR,
a research group detected the high abundance of sulI and dfrA1 in the river bodies of
Northern Pakistan [53].
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The increased abundance of Bacteroidetes in the fecal microbiota of healthy controls
is supported by the fact that Bacteroidetes are the major representatives of the normal
gut [54]. Bacteroidetes were identified as the most abundant phylum in both healthy and
diseased subjects; however, their relative abundances varied greatly (Figure 1, Table 1).
Moreover, Proteobacteria was identified as the second major phyla in the diseased subjects
while in the healthy controls it accounted for <1% which implies that the lower diversity
of microbial communities was likely caused by microbial dysbiosis in diseased subjects.
The predominance of Proteobacteria in the diseased subjects is in agreement with previous
studies indicating its association with different diseases and microbial disruption [55–57].
Disruption of gut microbiota with antibiotic usage is a well-established fact [56,57]. Dif-
ferent antibiotics cause gut microbial dysbiosis in mice; for instance, mice treated with
aztreonam and metronidazole cause a reduction in the relative abundance of Bacteroidetes
while the growth of Klebsiella sp., Helicobacter sp., and Ruminococcus sp. were found to be
enhanced [58].

Dietary interventions also significantly alter the composition of gut microbiota [59].
Pakistani diet is mainly omnivorous type; however, during various ailments people
usually prefer to consume soft fermented foods in combination with other food items
(Table S1, Supplementary Materials). The diseased subjects in our study changed their diet
from an omnivorous type to softer and/or fermented items composed of natural home-
made yoghurt, boiled rice with lentils, and custard. Compared to the healthy subjects, the
high abundance of Actinobacteria in the diseased subjects could be justified by their dietary
interventions (especially intake of natural yoghurt) which is in line with the previous
studies indicating the prevalence of Bifidobacterium in patients receiving yoghurt [60–62].

Overall, a greater microbial diversity was observed in healthy controls than that of
diseased subjects which are in agreement with the previous studies [34,47,55,56]. At the
genus level, a high abundance of Prevotella was observed in the healthy controls than
that of diseased subjects. The predominance of Prevotella in both healthy and diseased
subjects can be attributed to the Pakistani diet which is mostly plant-based [63]. However,
we speculate that antibiotic administration in diseased subjects reduced the abundance
of Prevotella thereby leading to the expansion of pathobiontic genera such as Klebsiella
and Escherichia. Moreover, a higher abundance of important pathobiontic species such
as E. coli, Klebsiella pneumonia, and Klebsiella quasipneumoniae was observed in diseased
subjects while the healthy controls harbored a high proportion of several beneficial bacteria
(Table 1). The high abundance of pathobionts in the diseased subjects is in line with a
previous study [34]. The various pathogenic species such as E. coli, Klebsiella pneumonia,
and Klebsiella quasipneumoniae has been considered as the signatures of gut microbial
dysbiosis [57]. The relative abundance of E. coli, Klebsiella spp. are normally low however,
these species have the potential to expand and dominates in the intestines during microbial
dysbiosis thereby leading to serious health consequences [64].

5. Conclusions and Future Perspective

The present study investigated the fecal microbiome and resistome of healthy and
diseased Pakistani individuals. Higher microbial diversity was observed in the fecal
microbiome of healthy controls than that of diseased subjects. A high abundance of ARGs
conferring resistance to multiple antibiotics was observed in the resistome of diseased
subjects than that of healthy individuals. Microbial dysbiosis and predominance of various
ARGs in the resistome of diseased subjects reflect the excessive usage of antibiotics in
Pakistan and warrants immediate attention to regulate the use of various antimicrobials.
Using a high-throughput shotgun metagenome sequencing, the present study is the first
of its kind which characterized the fecal microbiome and resistome of both healthy and
diseased Pakistani subjects. This study showed that how a healthy gut microbiome and
its resistome differs from the diseased one. Furthermore, this study also highlighted how
antibiotic misuse perpetuates the structure of gut microbial communities leading to a
dysbiotic flora.



Microorganisms 2021, 9, 616 12 of 15

Identifying the pathogenic bacterial strains and their associated ARGs can help to
design novel precision medicine-based therapeutic strategies for targeted mitigation of
resistant microbes. Currently, microbial strategies used for targeted mitigation of resistant
microbes are either based on bacteriophages or microbial remediation [65]. Bacteriophages
have been considered as the potential weapon against MDR, extensively drug-resistant
(XDR), and pan drug-resistant (PDR) in developed counties [66]. A group of researchers
used a cocktail of different members of wild phages to successfully treat a wound infection
caused by MDR A. baumannii [67]. Similarly, compared to the conventional antibiotic
therapy, FMT profoundly improved the treatment outcomes of Clostridioides difficile infec-
tion [68]. Currently, in the USA and Canada, FMT has been considered as a biological
medicine (biologic drug) [69].

With continued misuse of antibiotics, gut microbial diversity will be reduced leading
to the severe absence of useful bacteria thereby causing grave future health issues. Going
forward, strict legislation with proper implementation of antibiotic usage is required.
Here, we propose the establishment of a biobank of useful microbes ready to be used as
a supplement in case it disappeared from the gut microbial ecosystem. In the future, a
detailed study with a large sample size is required to create a comprehensive library of all
the microbes from different host species for subsequent use and reference backed up by a
comprehensive biobank of the identified microbes.
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