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Our gut microbiota provide a number of important functions, one of which is the metab-

olism of dietary �ber and other macronutrients that are undigested by the host. The 

main products of this fermentation process are short-chain fatty acids (SCFAs) and other 

intermediate metabolites including lactate and succinate. Production of these metabo-

lites is dependent on diet and gut microbiota composition. There is increasing evidence 

for the role of SCFAs in host physiology and metabolic processes as well as chronic 

in�ammatory conditions such as allergic disease and obesity. We aimed to investigate 

differences in fecal SCFAs and intermediate metabolites in 163 infants at 3–5 months of 

age according to breastfeeding status. Compared to no exposure to human milk at time 

of fecal sample collection, exclusive breastfeeding was associated with lower absolute 

concentrations of total SCFAs, acetate, butyrate, propionate, valerate, isobutyrate, and 

isovalerate, yet higher concentrations of lactate. Further, the relative proportion of ace-

tate was higher with exclusive breastfeeding. Compared to non-breastfed infants, those 

exclusively breastfed were four times more likely (aOR 4.50, 95% CI 1.58–12.82) to have 

a higher proportion of acetate relative to other SCFAs in their gut. This association was 

independent of birth mode, intrapartum antibiotics, infant sex, age, recruitment site, and 

maternal BMI or socioeconomic status. Our study con�rms that breastfeeding strongly 

in�uences the composition of fecal microbial metabolites in infancy.

Keywords: short-chain fatty acids, lactate, succinate, breastfeeding, infants, gut microbiota

inTrODUcTiOn

Gut microbiota have coevolved over millennia in a largely symbiotic relationship with the host. 
For the majority of time, human milk has been the sole source of nutrition for infants, providing 
essential nutrients for infant growth, as well as bioactive components to stimulate the gut micro-
biome. Both breastfeeding and gut microbial composition have been associated with a number of 
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health outcomes during infancy and later life (1). In addition to 
providing a wide range of pathogen exclusion and immune and 
biosynthesis functions (2), a major role of gut microbiota is the 
metabolism of dietary �ber and other complex macronutrients 
that escape digestion in the small intestine.

�e main products of nutrient breakdown by microbes are 
short-chain fatty acids (SCFAs), the predominant ones being 
acetate, butyrate, and propionate and to a lesser degree branched-
chain fatty acids (BCFAs), valerate, isobutyrate, and isovalerate 
(3). Less well studied are lactate and succinate, intermediate 
metabolites in the microbial production of SCFAs (4). In adults, 
the majority of the SCFAs are rapidly absorbed or used as an 
energy source by colonocytes (5). �ere is increasing evidence 
that gut microbial metabolites have wider systemic e�ects in the 
host through their action as signaling molecules and involvement 
in regulators of gene expression (6, 7). SCFAs have been linked to 
appetite suppression by activating free fatty acid receptors in the 
intestine and increasing circulating anorectic gut hormones (3). 
�ey have also been shown to play an important role in the activa-
tion and di�erentiation of immune cells and have been implicated 
in in�ammatory and allergic disease (3, 8, 9).

�e quantity and relative proportion of metabolites produced 
in the colon of adults has been closely linked to diet, as well as 
microbiota composition, diversity, and activity (10). Infancy 
represents a rapid period of gut microbial development, which 
is shaped by early-life events such as birth mode, antibiotic 
administration, and importantly, infant feeding (11–13). Human 
milk provides optimal nutrition for infants in the �rst 6 months 
of life and contains signi�cant amounts of carbohydrates that 
escape digestion in the small intestine, identi�ed as human milk 
oligosaccharides (HMOs), which are the preferred substrates for 
certain gut microbiota in the production of SCFAs (14). Studies 
have shown that infants who are exclusively breastfed have lower 
microbial diversity, with a predominance in Proteobacteria and 
Actinobacteria (most notably bi�dobacteria), whereas formula-
fed infants tend to have a more diverse microbiota with increased 
abundance of Clostridia and Bacteroides species (15–17).

Gut microbiota dysbiosis and subsequent changes to metabo-
lite pro�les may be particularly important in infancy, which 
presents a critical window of opportunity in programming of 
future metabolic and immune health. Understanding how diet 
in early life can shape gut microbiota-associated metabolites 
is therefore of interest. While studies have previously reported 
di�erences in fecal SCFAs by infant diet (18–24), many had a 
small sample size, and few studies have reported on di�erences 
in relative proportions of SCFAs or intermediate metabolites. 
In addition, limited studies to date have assessed the impact of 
other birth factors, implicated in early microbiota development, 
on these associations (21).

We aimed to investigate di�erences in fecal SCFAs and inter-
mediate metabolites in infants at 3–5 months of age according to 
breastfeeding. Speci�cally, we investigated whether fecal total and 
individual SCFAs, lactate, and succinate (measured as both abso-
lute concentrations and relative proportions) di�ered according 
to breastfeeding status at the time of metabolite measurement 
and duration of exclusive breastfeeding. A secondary aim was to 
investigate whether these associations were independent of birth 

mode and intrapartum antibiotics use, as well as other early-life 
factors.

MaTerials anD MeThODs

study Design and covariates
�e study included an unselected subset of 163 infants from the 
Canadian Healthy Infant Longitudinal Development national 
population-based birth cohort (25) (www.canadianchildstudy.ca)  
whose mothers were enrolled between November 2009 and 
February 2012 and who had fecal samples available for analysis 
collected between 3 and 5 months of age.

Mothers reported infant feeding practices using standardized 
questionnaires administered at 3, 6, and 12 months postpartum. 
Questionnaires asked mothers to record if they had ever breastfed 
their child, if they were currently breastfeeding their child, and the 
age of the child when breastfeeding ceased, if applicable. Mothers 
were also asked questions regarding formula feeding initiation 
and cessation. From these questionnaires, variables on feeding 
habits between birth and fecal sample collection were calculated. 
�ese included whether infants had ever been breastfed, duration 
of exclusive breastfeeding (never, <3 months, and ≥3 months), 
and breastfeeding status at the time of fecal sample collection 
(exclusively breastfed, partially breastfed, and not breastfed).

Mode of birth [classi�ed as vaginal, elective, or emergency 
cesarean section (CS)] and maternal intrapartum antibiotic 
prophylaxis (IAP) were extracted from hospital records. �is 
was used to create a four-category variable for birth mode/IAP  
exposure: vaginal birth (no IAP), vaginal birth IAP, elective cesar-
ean, and emergency cesarean, which we have previously reported 
on in association with infant gut microbiota (11). Information 
on other covariates including maternal age, ethnicity and educa-
tion, infant sex, gestational age, and birth weight were obtained 
from hospital records or through standardized questionnaires 
completed by mothers. Maternal weight status [body mass index, 
weight (kilograms)/height (square meter)] was calculated from 
height and weight data taken from hospital records or measured 
at the 1-year postpartum clinic visit. �ere was a small amount of 
missing data for some variables (see Table 1).

sample collection, Preparation,  
and nuclear Magnetic resonance  
(nMr) analysis
Samples were analyzed using NMR spectroscopy, which allows 
for the simultaneous measurement of a wide range of metabolites 
in a sample and has been successfully applied to metabolite meas-
urement in fecal samples (26). Fecal samples (fresh or refrigerated 
for a short period) were collected using a standard protocol at a 
home visit at a mean age of 3.7 months (SD 0.47). Samples were 
refrigerated during transport and stored at −80°C until analysis.

Approximately 100 mg of fecal sample was homogenized and 
quickly transferred to an Eppendorf tube. One milliliter of ice 
cold water was added to the fecal powder and vortexed vigor-
ously for 5 min followed by sonication at 4°C for 20 min. �e 
samples were further subjected to vortex shaking at 250 rpm for 
20  min. �e fecal water extract thus obtained was centrifuged 

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
http://www.frontiersin.org/Nutrition/archive
http://www.canadianchildstudy.ca


TaBle 1 | study characteristics.

characteristic

Mean (sD)

Maternal age (years) (n = 162) 32 (4.7)

Gestational age (weeks) (n = 155) 38.9 (1.5)

Birth weight (g) (n = 158) 3,462 (503)

Age at stool sample collection (months), n (%) 3.65 (0.47)

city of birth, n (%)

Edmonton 52 (32)

Vancouver 95 (58)

Winnipeg 16 (10)

infant sex, n (%)

Male 90 (55)

Female 73 (45)

Maternal ethnicity, n (%) (n = 160)

Caucasian 119 (74)

Asian 24 (15)

Other 17 (11)

Birth mode, n (%) (n = 158)

Vaginal—no IAP 78 (49)

Vaginal—IAP 31 (20)

Cesarean section—emergency 29 (18)

Cesarean section—elective 20 (13)

Breastfeeding status at fecal sample collection, n (%) (n = 158)

None 44 (28)

Partial 66 (42)

Exclusive 48 (30)

ever breastfed, n (%)

No 17 (10)

Yes 146 (90)

exclusive breastfeeding duration, n (%)

Never 51 (31)

<3 months 54 (33)

≥3 months 58 (36)

N = 163 unless otherwise speci�ed.

IAP, intrapartum antibiotic prophylaxis.
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at 15,000 × g for 1 h at 4°C, and the supernatant was carefully 
aspirated into a fresh Eppendorf tube. �is supernatant was 
centrifuged again at 15,000 × g for 1 h at 4°C to precipitate any 
particulate fecal matter (that might have been introduced during 
the �rst separation), and the clear extract was transferred into 
a clean Eppendorf tube. �e resultant fecal water was stored  
at −20°C until further analysis.

A 570  µL aliquot of fecal water was placed in a 1.5-mL 
Eppendorf tube followed by the addition of 70  µL of D2O and 
60 µL of standard bu�er solution [585 mM NaHPO4 (pH 7.0), 
11.667  mM disodium-2,2-dimethyl-2-silapentane-5-sulfonate 
(DSS), and 0.47% NaN3 in H2O]. �e samples (700 µL) were then 
transferred to a regular NMR tube for subsequent NMR spectral 
analysis.

All 1H-NMR spectra were collected on a Varian 500  MHz 
Inova spectrometer equipped with a 5-mm HCN Z-gradient 
pulsed-�eld gradient cyrogenic probe. 1H-NMR spectra were 
acquired at 25°C using the �rst transient of the Varian tnnoesy 
pulse sequence, which was chosen for its high degree of selec-
tive water suppression and quantitative accuracy of resonances 
around the solvent. Water suppression pulses were calibrated to 

achieve a bandwidth of 80  G. Spectra were collected with 128 
transient and 8 steady-state scans using a 4-s acquisition time 
(48,000 complex points) and a 1-s recycle delay.

Before spectral analysis, all free induction decays were zero-
�lled to 64,000 data points and line broadened 0.5 Hz. �e methyl 
singlet produced by a known quantity of DSS was used as an 
internal standard for chemical shi� referencing (set to 0  ppm) 
and for quanti�cation. All 1H-NMR spectra were processed and 
analyzed using the Chenomx NMR Suite Professional so�ware 
package version 8.1 (Chenomx Inc., Edmonton, AB, Canada). 
�e Chenomx NMR Suite so�ware allows for qualitative and 
quantitative analysis of an NMR spectrum by manually �tting 
spectral signatures from an internal database to the spectrum. 
Typically 90% of visible peaks were assigned to a compound, and 
more than 90% of the spectral area could be routinely �t using 
the Chenomx spectral analysis so�ware. Most of the visible peaks 
were annotated with a compound name.

statistical analysis
Fecal metabolites were analyzed as absolute concentrations 
(micromoles per gram of feces) and as relative proportions (%) 
of total SCFAs/BCFAs (labelled as SCFAs for short, and taken as 
the sum of acetate, butyrate, propionate, valerate, isobutyrate, 
and isovalerate). Median concentrations of total SCFAs (acetate, 
butyrate, propionate, valerate, isobutyrate, and isovalerate) and 
individual SCFAs as well as lactate and succinate were compared 
according to breastfeeding duration and breastfeeding at time of 
fecal sample collection using Kruskal–Wallis test (non-paramet-
ric ANOVA, with Bonferroni posttest for multiple comparison). 
Median relative proportions of SCFAs were also compared using 
Kruskal–Wallis test (with Bonferroni posttest).

Given the skewed nature of the data, fecal metabolites were 
categorized into a binary variable (high and low) using the 
median as a cut point, and associations with breastfeeding at 
stool collection were tested using logistic regression. Models were 
adjusted for birth mode and IAP exposure, age of stool sample 
collection as well as maternal and infant factors found to be asso-
ciated with breastfeeding in our study (infant sex, city of birth, 
maternal education and BMI). All analysis was conducted using 
IBM SPSS (version 24). Statistical signi�cance was considered 
when P ≤ 0.05.

resUlTs

Fecal samples were collected from 163 infants between the ages of 
3–5 months (mean age 3.65 ± 0.47 months). Subject characteris-
tics of our sample are shown in Table 1. At fecal sample collection, 
30% were exclusively breastfed and 42% of infants were partially 
breastfed. Twenty-two (14.2%) infants had started solid foods. 
�e majority of infants (69%) were born vaginally, while almost a 
third of infants (31%) were born by CS. Twenty-eight percent of 
vaginally delivered infants received IAP, and all cesarean infants 
received IAP as is standard practice in Canada.

Breastfeeding exclusivity at fecal sample collection di�ered by 
city of birth (Table  2). Males were less likely to be exclusively 
breastfed than females (25 versus 37%), as were infants born to 
overweight or obese mothers and mothers with a lower level of 
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TaBle 2 | associations between breastfeeding and subject 

characteristics.

characteristic Breastfeeding status, N (%)

none Partial exclusive P value

city of birth

Edmonton 19 (37) 25 (49) 7 (14) 0.002

Vancouver 18 (20) 35 (38) 39 (42)

Winnipeg 7 (47) 6 (40) 2 (13)

infant sex

Male 22 (25) 44 (50) 22 (25) 0.06

Female 22 (31) 22 (31) 26 (37)

Maternal ethnicity (n = 155)

Caucasian 31 (27) 50 (44) 33 (29) 0.96

Asian 6 (25) 10 (42) 8 (33)

Other 5 (29) 6 (35) 6 (35)

Maternal education (n = 155)

Less than University 29 (46) 23 (37) 11 (18) <0.001

University or higher 14 (15) 42 (46) 36 (39)

Maternal BMi (kg/m2) (n = 155)

Normal (<25) 20 (22) 35 (39) 36 (40) 0.02

Overweight or obese (≥25) 23 (36) 29 (45) 12 (19)

Birth weight (n = 153)

≤4 kg 38 (29) 54 (41) 41 (31) 0.45

>4 kg 5 (25) 11 (55) 4 (20)

gestational age (n = 150)

Early term (<38 weeks) 4 (20) 9 (45) 7 (35) 0.78

Term (38–40) 33 (30) 45 (41) 32 (29)

Late term (41+ weeks) 6 (30) 10 (50) 4 (20)

Birth mode (n = 153)

Vaginal—no IAP 24 (32) 26 (34) 26 (34) 0.34

Vaginal—IAP 5 (17) 16 (55) 8 (28)

Cesarean section—emergency 8 (29) 11 (39) 9 (32)

Cesarean section—elective 6 (30) 11 (55) 3 (15)  

Breastfeeding status at fecal sample collection. N = 158 unless otherwise speci�ed.  

P value Pearson chi-square test.

IAP, intrapartum antibiotic prophylaxis.
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education. Breastfeeding also di�ered according to birth mode, 
with exclusive breastfeeding at the time of fecal collection being 
highest in vaginally delivered infants not exposed to IAP and low-
est in elective CS infants (34 and 15%, respectively), although this 
di�erence was not statistically signi�cant (chi-square P = 0.16).

absolute concentrations of scFas and 
intermediate Metabolites and 
Breastfeeding status
Concentrations (micromoles per gram of feces) of SCFAs, lactate, 
and succinate in all infants are presented in Table 3. Total SCFA 
concentration was 142.0 µmol/g with the most abundant SCFA 
being acetate followed by propionate and butyrate.

In univariate analysis, infants who had ever been breastfed 
had lower concentrations of total SCFAs, acetate, butyrate, 
propionate, valerate, isobutyrate, and isovalerate and higher 
concentrations of lactate and succinate than those who had never 
been breastfed (Table 3). Compared to those not being breastfed 
at time of fecal metabolite pro�ling, those who were exclusively 
breastfed had signi�cantly lower total SCFAs concentrations and 
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lower concentrations of all individual SCFAs (Table 3). Lactate 
was signi�cantly higher in those exclusively breastfed versus 
those not breastfed (7.2 versus 2.3  µmol/g; P  <  0.001). �ose 
who were partially breastfed had similar concentrations of total 
SCFAs, acetate, and propionate compared to those not breastfed 
at the time of fecal metabolite pro�ling or concentrations fall-
ing midway between those not breastfed and those exclusively 
breastfed (seen for butyrate, valerate, isobutyrate, isovalerate, and 
lactate). Similar di�erences were observed according to duration 
of exclusive breastfeeding with those breastfed for ≥3  months 
having signi�cantly lower concentrations of SCFAs than infants 
who had never been breastfed (Table  3). Similar results were 
observed when data were restricted to infants who had not 
started solid foods (Table S1 in Supplementary Material) and 
vaginally delivered infants without exposure to IAP (Table S3 in 
Supplementary Material).

relative Proportions of scFas  
and Breastfeeding
In all infants, acetate made up the largest proportion of the 
SCFAs (80%) followed by propionate (10%) and butyrate (5%) 
with isovalerate being the least abundant (Table 4). In univariate 
analysis, infants exclusively breastfed at time of fecal metabolite 
pro�ling had signi�cantly higher relative proportions of acetate 
and lower proportions of butyrate, propionate, isobutyrate, and 
isovalerate compared to those not breastfed (Table 4; Figure 1). 
Similar results were seen for those exclusively breastfed 
≥3  months versus those never exclusively breastfed (Table  4). 
Compared to infants who had never been breastfed, breastfed 
infants also tended to have higher proportions of acetate and 
lower proportions of butyrate, propionate, isobutyrate, and 
isovalerate although di�erences were only signi�cant for the 
latter two metabolites. Similar trends were observed when data 
were restricted to infants who had not started solid foods (Table 
S2 in Supplementary Material) and infants vaginally delivered 
without exposure to IAP (Table S4 in Supplementary Material), 
although loss in statistical signi�cance was observed in some 
instances.

�e higher relative proportion of acetate seen in exclusively 
breastfed infants is in contrast to the lower overall concentra-
tion of acetate in fecal samples of these infants as illustrated in 
Figure 2.

Odds of high scFas and intermediate 
Metabolites according to Breastfeeding, 
adjusted for Birth Mode, and iaP
Exclusively breastfed infants had 86% lower odds of having high 
absolute concentrations of total SCFAs (concentrations greater 
than the group median) compared to those not breastfed at 
metabolite pro�ling [odds ratio (OR) 0.14, 95% CI 0.06–0.38; 
Table 5]. Odds of high total SCFAs was not signi�cantly lower 
in those partially breastfed versus not breastfed (OR 0.92, 95% 
CI 0.42–2.05), although partial breastfeeding was associated with 
reduced odds of having high butyrate, valerate, isobutyrate, and 
isovalerate. Exclusively breastfed infants also had signi�cantly 
reduced odds of having high acetate, butyrate, propionate, 
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FigUre 1 | Mean relative proportion of short-chain fatty acid according to breastfeeding status. N = 158. Breastfeeding status at fecal sample collection.

6

Bridgman et al. Variations in Fecal SCFAs by Breastfeeding in Infancy

Frontiers in Nutrition | www.frontiersin.org April 2017 | Volume 4 | Article 11

valerate, isobutyrate, and isovalerate compared to those not 
breastfed (Table  5). Similar results were seen in these infants 
following adjustment for birth mode and IAP, as well as age at 
stool collection, sex, city of birth, maternal education, and BMI 
(Table 5).

Exclusively breastfed infants were seven times more likely to 
have high concentrations of lactate, and partially breastfed infants 
four times more likely than those not breastfed (OR 7.81, 95% 
CI 2.99–20.37 and OR 4.56, 95% CI 1.88–11.04, respectively; 
Table  5). �ese associations remained a�er adjustment for 
covariates. Partially breastfed infants, but not exclusively breast-
fed infants, had signi�cantly higher odds of high succinate (OR 
3.45, 95% CI 1.53–7.79).

Infants exclusively breastfed were over four times more likely 
to have high relative proportions of acetate compared to those not 
breastfed (OR 4.26, 95% CI 1.76–10.36; Table 6). �is association 
was independent of birth mode and IAP, as well as other covari-
ates (aOR 4.50, 95% CI 1.58–12.82). In line with this, odds of high 
butyrate, propionate, valerate, isobutyrate, and isovalerate were 
signi�cantly lower in exclusively breastfed infants. Associations 
with valerate did not remain a�er adjustment with all covariates. 
Partial breastfeeding was associated with reduced odds of high 
butyrate (OR 0.34, 95% CI 0.15–0.80), and isovalerate (OR 0.36, 

95% CI 0.16–0.81) although these associations were no longer 
signi�cant a�er additional adjustment for maternal education 
and BMI.

DiscUssiOn

In this subsample of 163 Canadian infants aged between 3 and 
5  months from a general population birth cohort, we found 
strong associations between breastfeeding exclusivity and infant 
fecal metabolites. Exclusive breastfeeding was associated with 
lower absolute concentrations of total SCFAs, acetate, butyrate, 
propionate, valerate, isobutyrate, and isovalerate, yet higher 
concentrations of lactate. Further, the relative proportion of 
acetate was higher with exclusive breastfeeding. Compared to 
non-breastfed infants, those exclusively breastfed were four 
times more likely (aOR 4.50, 95% CI 1.58–12.82) to have a 
higher proportion of acetate relative to other SCFAs in their gut. 
�is association was independent of birth mode, intrapartum 
antibiotics, infant sex, age, recruitment site, and maternal BMI 
or socioeconomic status.

Our results are similar to that of Edwards et  al. who also 
found a predominance in relative proportions of acetate (76%) in 
breastfed infants at 4 weeks of age (19). Higher relative abundance 
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FigUre 2 | acetate fecal concentration (a) and as a relative proportion of total short-chain fatty acid (B), according to breastfeeding status at fecal 

sample collection. N = 158. Comparisons by non-parametric Kruskal–Wallis test (with Bonferroni posttest for multiple comparison). Box plots present the group 

median (thick black line), upper quartile (top of box), and lower quartile (bottom of box). Whiskers present the maximum and minimum values excluding outliers 

(denoted by circles).
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of acetate in exclusively breastfed infants may in part be due to  
the presence of HMOs in breast milk, not present in formula. 
HMOs, which represent the third largest component of breast 
milk, are soluble carbohydrates that are undigested by the host and 
provide substrates for select gut microbiota (27). Bi�dobacterium 
species have been shown to be one of a narrow selection of gut 
bacteria that are able to metabolize HMO (28) and subsequently 
are overrepresented in the microbiota of breastfed infants com-
pared to formula-fed infants (11, 16, 29). Results from our group 
by Azad et al. found the Bi�dobacteriaceae family to be enriched 
with breastfeeding (11). Bi�dobacterium have been shown to 
metabolize HMO to produce acetate and lactate (30, 31). Martin 
et  al. observed that increases in bi�dobacteria counts corre-
sponded to increases in fecal acetate (12). Although evidence is 
limited, higher acetate in breastfed infants may a�ord protection 
against intestinal pathogens and allergic disease (3). Fukudo et al. 
demonstrated that acetate, produced by bi�dobacteria, improved 
intestinal defense and protected against Escherichia coli O157:H7 
in mice (30). �ornburn et al. have proposed that acetate-mediated  
inhibition of histone deacetylases, demonstrated in an adult 
mouse model, increases transcription of the Foxp3 gene that may 
promote Treg-suppressing airway in�ammation and inducing 
oral tolerance. In infants, Arrieta et al. found that reduced fecal 

acetate at 3 months was associated with allergic disease in later 
infancy (32).

We also observed lower absolute concentrations of SCFAs 
in exclusively breastfed infants, which are consistent with other 
published studies. In 111 fecal samples analyzed by NMR, Martin 
et al. found lower concentrations of SCFAs in breastfed infants 
at 3 and 6 months born to overweight or obese mothers (20). In 
a small study on 4 infants using GC and LC mass spectrometry, 
valerate and isovalerate concentrations were higher in formula-fed 
infants, the latter over 40 times higher than breastfed infants (18). 
A study of 67 infants not only found lower fecal SCFA concentra-
tions in breastfed infants but also observed that the addi  tion of 
milk (formula or cows milk) to the diet of breastfed infants was 
su�cient to change the SCFA pro�le (22). We observed similar 
results, in that partially breastfed infants had SCFA and lactate 
concentrations more similar to exclusively formula-fed infants 
than infants exclusively breastfed.

�e higher absolute concentrations of SCFAs observed in 
formula-fed infants may be a consequence of greater bacterial 
diversity observed in these infants in comparison to breastfed 
fed infants (11) and thus increased capability to metabolize 
substrates present in the gut. Indeed, previous results from our 
group found breastfeeding exclusivity to be inversely associated 
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TaBle 5 | associations between breastfeeding status and high metabolite concentrations, adjusting for birth mode and iaP, and other covariates.
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Exclusive 13/48 (27.1) 0.11 (0.04–0.28) 0.11 (0.04–0.29) 0.12 (0.04–0.35) 0.13 (0.04–0.39)

Propionate

None 33/44 (75.0) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 40/66 (60.6) 0.50 (0.22–1.17) 0.45 (0.18–1.09) 0.42 (0.17–1.05) 0.48 (0.18–1.25)

Exclusive 8/48 (16.7) 0.07 (0.03–0.20) 0.68 (0.02–0.18) 0.06 (0.02–0.19) 0.07 (0.02–0.24)

Valerate

None 32/44 (72.7) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 33/66 (50.0) 0.32 (0.14–0.75) 0.31 (0.13–0.74) 0.35 (0.14–0.86) 0.42 (0.16–1.07)

Exclusive 12/48 (25.0) 0.11 (0.04–0.28) 0.10 (0.04–0.27) 0.13 (0.04–0.36) 0.15 (0.05–0.45)

isobutyrate

None 34/44 (77.3) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 31/66 (47.0) 0.25 (0.11–0.59) 0.23 (0.09–0.55) 0.18 (0.07–0.47) 0.23 (0.09–0.63)

Exclusive 15/48 (31.3) 0.13 (0.05–0.34) 0.13 (0.05–0.35) 0.12 (0.04–0.33) 0.15 (0.05–0.45)

isovalerate

None 34/44 (77.3) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 34/66 (51.5) 0.30 (0.13–0.72) 0.30 (0.12–0.71) 0.25 (0.10–0.63) 0.33 (0.13–0.86)

Exclusive 11/25 (22.9) 0.08 (0.03–0.23) 0.09 (0.03–0.23) 0.08 (0.03–0.22) 0.09 (0.03–0.29)

lactate

None 10/44 (22.7) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 36/66 (54.5) 4.56 (1.88–11.04) 4.51 (1.82–11.18) 5.75 (2.16–15.26) 5.37 (1.90–15.15)

Exclusive 32/48 (66.7) 7.81 (2.99–20.37) 8.81 (3.27–23.72) 13.94 (4.39–44.24) 12.29 (3.64–41.46)

succinate

None 15/44 (34.1) 0.15 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 41/66 (62.1) 3.45 (1.53–7.79) 3.25 (1.42–7.41) 3.03 (1.30–7.02) 3.21 (1.31–7.88)

Exclusive 24/48 (50.0) 2.07 (0.88–4.90) 2.03 (0.85–4.84) 1.85 (0.72–4.72) 1.93 (0.71–5.22)

Breastfeeding status at fecal sample collection. High metabolite concentration denotes values above the median. Model 1: adjusted for birth mode and IAP; model 2: adjusted for 

birth mode and IAP, age of stool collection, sex, and city of birth; model 3: adjusted for birth mode and IAP, age of stool collection, sex, city of birth, maternal BMI, and education.

OR, odds ratio; SCFA, short-chain fatty acid; IAP, intrapartum antibiotic prophylaxis.

*Pearson chi-square P value for linear trend (univariate).
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with both microbiota richness and diversity (11). Our �nding 
may also be a result of di�erences in the composition or absorp-
tion of breast milk versus formula milk and thus di�erences 
in availability of substrates. Further, higher concentrations of 
branch-chain fatty acids, valerate, isobutyrate and isovalerate, 
derived from the metabolism of amino acids indicate reduced 
protein absorption or excess protein intake [potentially due 
to higher protein content of formula versus human milk (33)] 
in formula-fed infants. �e availability of these substrates 
likely drive the higher abundance of proteolytic bacteria such 
as Bacteroides and Clostridia seen in formula-fed infants as 
reported in our study by Azad et  al. (11). Higher concentra-
tions of proteolytic metabolites in formula-fed infants may also 
be due to reduced carbohydrate availability in the absence of 

HMOs and hence to greater derivation of energy from protein 
metabolism. Chow et al. demonstrated that when fermentable 
carbohydrates were not present in fecal cultures from both 
breast and formula-fed infants, metabolites indicative of pro-
tein fermentation were mainly produced; their production was 
reduced a�er the addition of various fermentable carbohydrate 
substrates similar to HMOs. Increased fecal SCFAs seen in 
formula-fed infants may have metabolic consequences. Several 
studies have reported greater concentrations of fecal SCFAs in 
overweight adults and children compared to lean counterparts 
(34–38) and correlations with other metabolic risk factors (38). 
Although causality is yet to be established, the authors of these 
studies hypothesize that higher SCFAs may re�ect an increased 
capacity of the gut microbiota to harvest energy from the diet.
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TaBle 6 | associations between breastfeeding status and high relative proportions of scFa, adjusting for birth mode and iaP, and other covariates.

Breastfeeding 

status

number of infants with 

high relative proportion 

of metabolite, n/N (%) 

(n = 158)

P value for 

trend*

Odds of high relative proportion of metabolite

Unadjusted Or (95% ci) 

(n = 153)

Model 1 aOr (95% ci) 

(n = 153)

Model 2 aOr (95% ci) 

(n = 153)

Model 3 aOr (95% ci) 

(n = 148)

acetate

None 15/44 (34.1) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 35/66 (53.0) 2.25 (1.02–5.00) 2.25 (0.99–5.09) 2.18 (0.94–5.09) 2.12 (0.86–5.23)

Exclusive 34/48 (70.8) 4.26 (1.76–10.36) 4.38 (1.78–10.83) 5.28 (1.96–14.26) 4.50 (1.58–12.82)

Butyrate

None 32/44 (72.7) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 34/66 (51.5) 0.34 (0.15–0.80) 0.33 (0.14–0.78) 0.35 (0.14–0.87) 0.51 (0.19–1.35)

Exclusive 16/48 (33.3) 0.17 (0.07–0.42) 0.17 (0.07–0.43) 0.17 (0.06–0.47) 0.22 (0.07–0.65)

Propionate

None 27/44 (61.4) 0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 37/66 (56.1) 0.79 (0.36–1.73) 0.79 (0.35–1.79) 0.68 (0.29–1.59) 0.72 (0.29–1.77)

Exclusive 13/48 (27.1) 0.26 (0.11–0.63) 0.24 (0.10–0.60) 0.21 (0.08–0.56) 0.25 (0.09–0.71)

Valerate

None 25/44 (56.8) 0.04 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 32/66 (48.5) 0.64 (0.29–1.39) 0.58 (0.26–1.30) 0.65 (0.28–1.50) 0.84 (0.35–2.06)

Exclusive 17/48 (35.4) 0.38 (0.16–0.91) 0.39 (0.16–0.92) 0.44 (0.17–1.12) 0.58 (0.21–1.58)

isobutyrate

None 30/44 (68.2) 0.002 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 33/66 (50.0) 0.45 (0.20–1.01) 0.42 (0.19–0.97) 0.37 (0.16–0.88) 0.53 (0.21–1.33)

Exclusive 17/48 (35.4) 0.26 (0.11–0.62) 0.26 (0.11–0.64) 0.22 (0.08–0.58) 0.30 (0.11–0.85)

isovalerate

None 32/44 (72.7) <0.001 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Partial 31/66 (47.0) 0.32 (0.14–0.73) 0.33 (0.14–0.77) 0.33 (0.14–0.78) 0.45 (0.18–1.09)

Exclusive 13/48 (27.1) 0.14 (0.05–0.35) 0.13 (0.05–0.34) 0.13 (0.05–0.35) 0.16 (0.06–0.47)

Breastfeeding status at fecal sample collection. High metabolite proportion denotes values above the median. Model 1: adjusted for birth mode and IAP; model 2: adjusted for birth 

mode and IAP, age of stool collection, sex, and city of birth; model 3: adjusted for birth mode and IAP, age of stool collection, sex, city of birth, maternal BMI, and education.

OR, odds ratio; SCFA, short-chain fatty acid; IAP, intrapartum antibiotic prophylaxis.

*Pearson chi-square P value for linear trend (univariate).
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In addition to SCFAs, we also measured concentrations of 
lactate and succinate. Both are important intermediates in the 
production of SCFAs (3). Succinate is primarily converted to 
propionate through the succinate pathway. Lactate, produced by 
many colonizers of the infant gut including bi�dobacteria and 
lactobacilli, can also be converted to propionate through the 
acrylate pathway but is also an important substrate used in cross-
feeding by lactate-utilizing bacteria in the production of SCFAs 
as demonstrated by Pham et  al. (24). Similar to other studies  
(18–20, 22), we observed higher lactate concentrations in exclu-
sively breastfed infants, which is indicative of the predominance 
of lactate-producing bacteria, Lactobacillus and bi�dobacteria, in 
the gut of breastfed infants. Lactate production in the gut a�ects 
luminal pH, and stool from breastfed infants typically has a lower 
fecal pH compared to formula-fed infants (5.8 versus 6.3–7.10) 
(22, 39). Studies in adults have suggested that accumulation of 
lactate in the gut may have undesirable health consequences 
including increased risk of ulcerative colitis; however, in infancy, 
it may be an important mechanism in preventing overgrowth of 
pH-sensitive pathogenic bacteria, such as Enterobacteriaceae and 
Clostridia (40, 41). Lactate has also been shown to be important 
in modulating immune and in�ammatory processes and main-
taining gut barrier function through stimulation of enterocyte 
proliferation (42). We are the �rst to report on di�erences in 

fecal succinate in infants. Although understudied, succinate 
may be an important signaling molecule and has been shown to 
activate GPR91 on dendritic cells and thus may play a role in 
modulation of gut immunity and in�ammation (6, 43). Unlike 
the other associations we observed, di�erences in succinate were 
only apparent in those partially breastfed. �is observation may 
in part be explained by the higher abundance of Bacteroidetes 
observed in partially breastfed infants reported in our study 
infants by Azad et  al  (11). Bacteroidetes utilize the succinate 
pathway in the formation of propionate (4, 44).

One of the strengths of our study is the use of infants from a 
well-characterized general birth cohort, a�ording detailed infor-
mation on birth and early-life characteristics. �is, along with our 
relatively large sample size, enabled us to account for prenatal and 
postnatal factors shown to impact early gut microbiota develop-
ment (most importantly birth mode and perinatal antibiotic 
exposure) in our estimates of associations between fecal metabo-
lites and breastfeeding. While we adjusted for IAP, shown to be 
signi�cantly associated with gut microbiota dysbiosis in early life 
(11), we did not additionally adjust for postnatal infant antibiotic 
use due to missing data in our sample. However, it has been shown 
that IAP is a good proxy for perinatal antibiotic use in infancy 
(11). One limitation of our study was the indirect measurement of 
luminal metabolites via analysis of fecal samples. Concentrations 
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of SCFA and intermediate metabolites exert local effects on the gut environment and act as signaling molecules effecting host metabolism and immune system. 

These actions may have important programming effects on in�ammatory-mediated diseases in childhood, including obesity and allergic disease (b).
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of metabolites in feces are a function not only of production but 
also of absorption, utilization by other microbes and stool transit 
time. Few studies have estimated whether fecal SCFA output is a 
reliable proxy for luminal content, particularly in early childhood 
although it is estimated that 95% of the SCFAs produced in the 
gut are rapidly absorbed with only 5% being excreted in the feces 
(45). In a study on healthy adults, Vogt and Wolever found fecal 
acetate to be inversely correlated to acetate absorption, suggesting 
that fecal acetate concentration may re�ect intestinal absorption 
rather than production (46). However, given that the potential of 
analyzing fecal metabolites is to provide a biomarker to predict 
future disease risk, analysis of fecal samples provides a non-
invasive and cost-e�ective method for use in epidemiological 
cohort studies. Our sampling was also only at one time point in 
infancy, and therefore, our data do not provide information on 
trends in metabolites over time in relation to diet.

In conclusion, exclusive breastfeeding has been associated 
with a number of bene�cial health outcomes in early childhood 
including reduced infections, allergic disease, and improved 
metabolic markers (1). Recent research has highlighted the 
importance of our gut microbiota and associated metabolites as 
a potential causal factor or mediator in the programming of later 
disease states. Our study con�rms that breastfeeding is strongly 
associated with gut metabolites, which may be an important 
mediator in the protective e�ect of breastfeeding on later-onset 
diseases (Figure 3). Given di�erences seen in the study between 
metabolites measured as absolute concentrations and relative 
proportions, we encourage future studies to report on both of 
these measures in relation to health outcomes.
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