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Abstract: The development of effective, feasible, stable, and inexpensive electrocatalysts has been
a great challenge in the field of overall water splitting (WS). Herein, a bifunctional electrocatalyst
(BF ECS), FeCo2S4 nanowire (FCS NWs/Ni)/nickel (Ni) foam, with superior HER/OER activity
and stability was designed and fabricated using a hydrothermal method. In addition, this efficient
method can be used for the synthesis of other bimetallic MCo2S4 sulfides (M = Cu, Zn, Mn, etc.).
Electrochemical experiments showed the as-synthesized FCS NWs/Ni exhibited overpotentials of
350.5, 203.7, 115.97, and 62.6 mV (0.05, 0.1, 0.2, and 1 M KOH) at the current density of −10 mA cm−2

for HER, including small overpotentials of 1.51, 1.36, 1.24, and 1.11 V (10 mA cm−2) in a 0.05, 0.1, 0.2,
and 1 M KOH solution for OER. The FCS NWs/Ni has a splendid electrocatalytic performance which
is related to the synergistic effect of cobalt, iron, and sulfur. Specifically, it has excellent electrical
conductivity, a higher specific capacity, and a rich redox state of iron, cobalt, and sulfur elements. The
results demonstrate a promising method for the design and fabrication of metal BF ECS for overall
water splitting.

Keywords: FeCo2S4; OER; HER; bifunctional electrocatalyst

1. Introduction

Bifunctional (BF) electrocatalysts (ECS) for the oxygen evolution reaction (OER) and
hydrogen evolution reaction (HER) have good application prospects in the field of energy
storage [1,2]. In recent years, platinum-based, iridium-based, and ruthenium-based elec-
trocatalysts have been considered the best choice for high-performance HER and OER
electrocatalysts [3]. However, the wide application of precious metals as electrocatalysts
is limited by the high cost and scarcity of resources. In addition, the HER catalyst reacts
slowly in an alkaline solution and the OER catalyst reacts slowly in an acidic solution [4].
Considering the low-cost effect, the HER and OER of the working electrode catalyst should
react at the same pH as the integrated electrolytic solutions [5]. Therefore, abundant
attempts have been made to develop bifunctional electrocatalysts which can effectively
catalyze the water splitting of HER and OER [6]. For instance, transition metal compounds
(Fe [7], Co [8], Ni [9], and Mn [10]) have been widely researched both theoretically and ex-
perimentally. Regrettably, the development and application of these materials are hindered
by their inherently low ECS performance.

Currently, broad ranges of non-precious metal ECS based on transition metal oxides
(MxOy) [11] and double metal oxides (AB2O4) have gained attention due to their high
ECT activity [12,13]. Li et al. [14] reported that the MnFe2O4/Fe hybrid nanoparticles
possess superior ECT performance in alkaline media. Furthermore, Jin et al. [15] reported
that the BF ECT activities of metal oxides are mainly determined by the σ*-orbital (eg)
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occupation of metal cations in the octahedral centers. Among several cobalt oxides [16],
the surface Co3+ are referred to as ECT active centers for HER/OER. Obviously, Co3+

cations are used in the position of B3+ and the double metal oxide expression changes
to MCo2O4. Hyunsik Im et al. demonstrated that CuCo2O4 is an efficient OER ECS in
strong alkaline KOH media [17]. Unfortunately, its rate and cycle stability are hampered by
low electrical conductivity. It has been proven that the mechanical and thermal stability
of metal sulfides, rather than metal oxides, benefit from their diversified stoichiometry
and crystal structures [18]. In plentiful chalcogenides, bimetallic sulfides (MCo2S4) have
been identified as the most promising catalysts, owing to the synergistic effect of two
different metal ions. They exhibited excellent catalysis and have a richer redox state
for many chemical conversions compared to monometallic sulfides and their electrical
conductivity is also greater. Arumugam S. et al. [19] fabricated NiCo2S4 for OER/HER
with excellent activity and stability compared to Ni3S2 and NiCo2O4, which is consistent
with the above description. Moreover, Ni2+ and Co3+ metal ions occupy tetrahedral and
octahedral positions, respectively, which surround a close-range sulfide ion. Zhu et al. [20]
reported that NiCo2S4 possesses an extremely small energy band and that its conductivity
is much better than NiCo2O4 (about 100 times) and single-metal oxides (about four-order
of magnitude higher). Zhang et al. [21] reported that NiCo2S4 has more octahedral catalytic
active sites of Co3+ than the NiCo2O4 crystal structure. Sun et al. [22] reported that CuCo2S4
exhibited high-efficiency OER properties in alkaline solutions. Hence, MCo2S4 has a great
potential for BF ECT activity. Hao et al. reported that a Fe ion in MCo2S4 could provide
better electrical conductivity, while the sulfur element in redox could provide a richer redox
state and improve conductivity [23]. Promisingly, the Fe element in the earth’s crust is
abundant (reserves of non-precious metals in the earth’s crust: Fe >> Ni > Cu > Co > Mo).
Therefore, by benefiting from the high-efficiency synergy between the Co ion, Fe ion, and S
ion, the FCS remains promising in the area of HER/OER. Moreover, it is very important to
exploit a successful template for improved ECT activities, and Ni foam can be widely used
as a template because it can provide more reactive sites to contact with electrolyte ions [19].

Herein, the FCS NWs/Ni was fabricated by a hydrothermal method followed by exclu-
sive vulcanization. The as-fabricated FCS NWs/Ni foams were used as flexible electrodes
for HER/OER. Moreover, we investigated the effects of the onset-potential, Tafel slope, and
concentration of OH− in HER/OER. As a result, the FCS NWs/Ni showed splendid ECT
activity for both HER and OER. Our work provides an interesting route to designing and
fabricating stable and efficient ECS based on non-precious metals for OER/HER.

2. Experimental Section
2.1. Materials Preparation

The chemical reagents used in the experiments are shown in Table 1. All experiments
were carried out under the surrounding experimental conditions. In addition, the cleaning
method of the Ni foam substrate is consistent with the previous work of our research
group [24].

Table 1. Reagents used during the experiment.

Agents Company

Co(NO3)2•6H2O Xilong Chemical Co., Ltd.
NH4F Xilong Chemical Co., Ltd.
Urea Xilong Chemical Co., Ltd.

Fe(NO3)3•9H2O Chengdu Kelong Chemical Co., Ltd.
Na2S Chengdu Kelong Chemical Co., Ltd.

HCl (34 wt%–37 wt%) Alfa Aesar (Tianjin) Reagent Co., Ltd.
Acetone Alfa Aesar (Tianjin) Reagent Co., Ltd.

KOH (AR) Alfa Aesar (Tianjin) Reagent Co., Ltd.
All the other reagents with analytical purity were used in the synthesis process without further purification.
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2.2. Synthesis Process

The FCS NWs/Ni was synthesized with a brief hydrothermal method [24].
Co(NO3)2•6H2O (0.9 mmol) and Fe(NO3)3•9H2O (0.18 mmol) were dissolved in deion-
ized water (30 mL) and dispersed uniformly by magnetic stirring. Then NH4F (2.7 mmol)
and urea (2.7 mmol) were added to the mixture while it was still being stirred. After stir-
ring for 0.5 h, the solution was transferred into an autoclave and then the dried Ni foam
was soaked in it. The sealed autoclave was put into a hydrothermal oven, maintained at
120 ◦C for 14 h. Afterward, the sample was cleaned carefully with acetone, alcohol, and
ultrapure water several times (all about 30 mL each time), and then placed in a vacuum
oven (60 ◦C for 12 h). The dried Ni foam was immersed into 0.1 M Na2S solutions, sealed,
and placed into a hot-air oven (120 ◦C for 10 h). After the vulcanization, the sample was
carefully taken out and cleaned in the same way as previously mentioned. Eventually,
the dried sample was obtained from a vacuum oven (60 ◦C after 12 h).

2.3. Characterization and Electrochemical Measurements

The microscopic morphologies of the FCS NWs/Ni were revealed by scanning electron
microscopy (SEM, VEGA3 SBH, Tescan, Brno, Czech Republic). The X-ray diffraction (XRD)
patterns were performed using Kratos Analytical Ltd. (Cu Ka radiation, D/MAX-2500).
The entire electrochemical test was performed in a three-electrode system with various
concentrations of KOH electrolyte (0.05 M, 0.1 M, 0.2 M, and 1 M), using an electrochemical
workstation (CHI660D, CH Instruments, Inc., Austin, TX, USA). The as-prepared FCS
NWs/Ni foam acted as the working electrode, the saturated calomel electrode (SCE) was
used as the reference electrode, and the platinum plate was used as the cathode. During the
test process, the electrolyte was stirred with a magnet while slowly introducing nitrogen.
The LSV (linear sweep voltammetry) of the as-fabricated FCS NWs/Ni was tested at a scan
rate of 10 mV s−1. Electrochemical Impedance Spectrum (EIS) tests were carried out by
applying an alternating current voltage with 5 mV perturbation amplitude and a frequency
range from 100 kHz to 0.005 Hz. The chronopotentiometric measurements were used to
test its long-term durability. Furthermore, the electrode potential could be transformed into
the RHE (reversible hydrogen electrode) potential, which is related to the Nernst equation
(the details were in Table 2).

Table 2. The electrode potential versus the SCE transferred to the RHE (reversible hydrogen elec-
trode) potential.

The Nernst equation:
E (vs. RHE) = E (vs. SCE) + ESCE + 0.0591 pH = E (SCE) + 0.241 + 0.0591 pH

Electrolyte (M/KOH) pH E (RHE)

0.05 12.8 E (SCE) + 0.99748 V
0.1 13 E (SCE) + 1.0093 V
0.2 13.3 E (SCE) + 1.02703 V
1 14 E (SCE) + 1.0684 V

3. Results and Discussion
3.1. Morphology and Microstructure Characterization

The crystallinity of the FCS NWs/Ni was characterized via XRD. In Figure 1a, the
diffraction peaks at 44.5◦ and 51.8◦ respond to the crystal orientations of Ni (111) and (200),
respectively (JCPDS 04-0850). The 22.28◦, 31.58◦, 38.18◦, 50.26◦, and 55.92◦ diffraction peaks
are in agreement with the characteristic peak of FCS [25,26]. Simultaneously, the typical
XRD patterns of the precursor of FCS (FeCo2(C2O4)3) possess three strong diffraction peaks
(ranging from 30◦ to 40◦) which are consistent with the reported literature [20]. SEM images
of FCS NWs/Ni are shown in Figure 1b–d. Figure 1d displays the entire surface of the
Ni foam. It was evenly covered by numerous FCS NWs. This nanostructure possesses
two advantages: (i) it better penetrates the electrolyte and (ii) it provides a large specific



Crystals 2023, 13, 717 4 of 13

surface area. Thus, the transmission of electrons and ions between the nanowires and the
conductive substrate can be greatly improved.
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Figure 1. (a) XRD patterns of the FeCo2S4 nanowire and the precursor of FeCo2S4 (FeCo2(C2O4)3).
(b–d) SEM images of the FeCo2S4 nanowire with different magnifications.

3.2. HER/OER Performance

Interestingly, since Ni foam has excellent conductivity, FCS NWs/Ni can be used as an
electrode for HER and OER. The geometric surface area of these electrodes was 1 × 1 cm2.
The electrocatalytic HER activity of the FCS NWs/Ni was assessed in a KOH solution with
high-purity N2 and magnetic stirring. Figure 2a demonstrates the polarization curves with
a scan of 10 mV s−1. The cathode current of each sample was dramatically increased by
increasing the negative potential. As shown in Figure 2a, the FCS NWs/Ni can provide
an extraordinarily low overpotential (η) of 62.6 mV (1 M KOH) with a current density of
−10 mA cm−2. Meanwhile, the tests of FCS NWs/Ni were conducted at −10 mA cm−2

under 0.05 M, 0.1 M, and 0.2 M KOH environments; the overpotential was 350.5 mV,
203.7 mV, and 115.97 mV, respectively. For comparison, the overpotential of the bare
Ni foam was 328.5 mV (−10 mA cm−2, 0.05 M KOH). While the cathodic current density
achieved−20 mA cm−2, the FCS NWs/Ni foam in 1 M KOH only required an overpotential
of 158.6 mV, smaller than 524.5 mV (0.05 M), 334.7 mV (0.1 M), and 227.97 mV (0.2 M).
The Tafel slope is dependent on the intrinsic kinetics of the catalyst, as shown in Figure 2b.
Generally, a smaller Tafel slope indicates that a higher current density can be achieved at
a lower overpotential [27]. The Tafel slope b can be obtained by the equation [28]: η = a
+ b log j. Interestingly, the FCS NWs/Ni electrode shows a Tafel slope of 71.24 mV dec−1

(1 M KOH), which is much lower than that in 0.05 M KOH (177.3 mV dec−1), 0.1 M KOH
(161.9 mV dec−1), 0.2 M KOH (141.9 mV dec−1), and the bare Ni foam in 0.05 M KOH
(221.3 mV dec−1). The performance of the FCS NWs/Ni electrode is much better than
most HER electrocatalysts, which were reported previously, in KOH solutions (Table 3).
In addition, the inherent HER performance of FCS NWs/Ni is regulated by the OH−
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concentration. Meanwhile, typical HER results in different concentrations of OH− (C[OH−])
were summarized and compared in Figure 3a. It is revealed that with the improvement of
C[OH−], the HER property is greatly enhanced. The higher electrocatalytic performance
of the FCS NWs/Ni is mainly attributed to the remarkable synergy between Co, Fe, and
S, and that the Ni foam can promote the entry of electrolyte ions at the active site [19].
Hence, the small Tafel slope and the low HER onset potential suggest that FCS NWs/Ni is
a qualified candidate to act as an HER electrocatalyst [29]. The ADT (accelerated durability
tests) of FCS NWs/Ni in KOH solutions with various concentrations were tested at the
same scan rate of 100 mV s−1 for 1000 cycles. In Figures 2c and 4, we can see that the
polarization curves of FCS NWs/Ni have almost no obvious attenuation after 1000 cycles.
Compared to other concentrations of KOH electrolytes, the polarization curve for the 0.1 M
KOH electrolyte exhibited a more noticeable divergence (Figure 4b). This divergence can
be attributed to the accidental shedding of the active material during HER reaction. In
addition, as shown in Figure 2d, the cathodic current density for the FCS NWs/Ni catalyst
achieves a small degradation after 17 h in 0.05 M KOH with a −0.8 V overpotential.
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Figure 2. (a) Polarization curves obtained with bare Ni foam in 0.05 M KOH and FeCo2S4 nanowire
in different electrolytes (0.05, 0.1, 0.2, and 1 M KOH); (b) the bare Ni foam and FeCo2S4 nanowires
corresponding to Tafel diagrams; (c) photozation curves of the initial LSV polarization curve of
FeCo2S4 nanowires after 1000 cycles; and (d) the chronoamperometric response of a FeCo2S4 nanowire
at a constant potential of −0.8 V. All experiments were conducted for HER.
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Figure 3. (a) The current density of −10 mV/cm2 and the Tafel slope calculated at a potential of
−0.5 V, which is used as a function of the concentration of OH−(C[OH−]) with all experiments were
performed for HER; (b) The current density at 1.25 V vs. RHE of FeCo2S4 nanowire in 0.2 M KOH;
(c) the slope of Tafel of 10 mA/cm2 current density and 1.5 V potential calculated as a function of
the concentration of OH− (C[OH−]); all experiments were conducted for OER; and (d) 1 M KOH
achieved at different scan (5, 10, 15, 20, 25, and 30 mV/s).

The test conditions for the OER activity of FCS NWs/Ni are the same as those for HER.
Figure 5a shows that the FCS NWs/Ni has a low overpotential (η) of 1.11 V (10 mA cm−2

in 1 M KOH); it is obviously lower than 1.51 V (0.05 M), 1.36 V (0.1 M), 1.24 V (0.2 M),
and 1.72 V (bare Ni foam in 0.05 M KOH). Furthermore, it is lower than most of the other
OER electrocatalysts, which were reported previously (as shown in Table 3). When the
current density of the FCS NWs/Ni electrode increased to 20 mA cm−2 in 1 M KOH, the
overpotential was only 1.25 V, which is lower than 1.69 V (0.05 M), 1.50 V (0.1 M), and
1.38 V (0.2 M). The peak of bifunctional activity is influenced by the octahedral centers of
the electrocatalyst [15]. In tetrahedrons and octahedrons, a dense array of large S2− anions
with iron and cobalt metal cations allows FCS NW to have excellent performance at the
active octahedral position of the Co3+ cation [21]. Nevertheless, FCS showed a significant
oxidation peak at 1.6 V (vs. RHE) which can be attributed to the surface reaction, as shown
in the following equation.
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Figure 4. Polarization curves for FeCo2S4 nanowire with an initial LSV polarization curve after
1000 cycles in different electrolytes: (a) 0.05 M KOH, (b) 0.1 M KOH, (c) 0.2 M KOH, and (d) 1 M
KOH. All experiments were carried out for HER.

The Tafel slope was used to assess OER kinetics, as shown in Figure 5b. The Tafel slope
of FCS NWs/Ni in 1 M KOH was 102.1 mV dec−1, smaller than the electrode in all other
electrolytes (0.05 M: 379.4 mV dec−1, 0.1 M: 249.8 mV dec−1, and 0.2 M: 212.2 mV dec−1),
including bare Ni foam in 0.05 M KOH (326.7 mV dec−1). The smaller Tafel slope also
indicates the efficient electron and ion transform. The ADT test conditions of FCS NWs/Ni
for the OER are the same as for the HER. In Figure 5c, the polarization curves of the
FCS anodic current almost have no reduction after 1000 cycles. Figure 5d showed the
chronoamperometric response of FeCo2S4 at a constant applied potential (0.8 V). After
18 h of testing, there was only a slight decrease in current density. As for the case of 1 M
KOH electrolyte, the current density decreased by about 8.5%, which might result from the
irreversible phase transformation of metal sulfides to metal oxide/oxyhydroxide [26,30].
Furthermore, the intrinsic OER properties of FCS were affected by the concentration of
OH− (Figure 3c). The OER performance was hugely improved with increased C[OH−]; the
required overpotential changed almost linearly with C[OH−].
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FeCo2S4 at a constant applied potential (0.8 V).

Figure 6 shows the CV (cyclic voltammetric) curves of FCS NWs/Ni electrolytes in
0.05 M, 0.1 M, 0.2 M, and 1 M KOH. The scanning rates were from 5 mV s−1 to 30 mV s−1.
The distorted rectangular-like shape of FCS NWs/Ni was similar to NiCo2S4 reported
previously in the literature [20]. Furthermore, the CV curve remained in good shape,
indicating that the electron and ion transfer rates are fast enough [31]. In Figure 3b,d, we
can see that the fitting curve of FCS NWs/Ni at the potential of 1.25 vs. RHE (in 0.2 M
and 1 M KOH) with different scan rates (5, 10, 15, 20, 25, and 30 mV s−1). These excel-
lent properties indicate that FCS NWs/Ni has great potential for application in OER. The
remarkable conductivity represents a fast electron transfer rate and accelerated reaction
kinetics. Figure 7 showed the Polarization curves for the FeCo2S4 nanowire with an initial
LSV polarization curve and after 1000 cycles. The curves almost overlapped completely,
indicating the stability of OER performance of the FeCo2S4 nanowire. The EIS measure-
ments of FCS NWs/Ni were conducted, in 0.05 M, 0.1 M, 0.2 M, and 1 M KOH, as shown in
Figure 8. Figure 8a–c, reveals that the FeCo2S4 in 1 M KOH had a smaller EIS compared to
the three other concentrations of KOH solution and that it increased slightly after cycling.
In addition, as shown in Figure 8d, the current density curve had a small attenuation at an
overpotential of 0.8 V (0.1 M KOH). Therefore, all the above results reveal that the hybrid
structure of FCS NWs/Ni has stupendous potential in the overall water-splitting field.



Crystals 2023, 13, 717 9 of 13

Table 3. The performance of the FeCo2S4 electrode compared with the OER/HER electrocatalysts
reported previously in KOH solutions.

Materials Electrolyte J (mA/cm2) Overpotential (V) Tafel Slope
(mV dec−1) References

HER FeCo2S4/Ni foam
1 M KOH

0.2 M KOH
0.1 M KOH

0.05 M KOH

10
10
10
10

0.0626
0.11597
0.2037

0.35052

71.24
141.9
161.9
177.3

This work

OER FeCo2S4/Ni foam
1 M KOH

0.2 M KOH
0.1 M KOH
0.05 M KOH

10
10
10
10

1.1124
1.237

1.3603
1.50748

102.1
212.2
249.8
379.4

This work

HER/
OER Ni3Se2/Ni foam 1 M KOH 10

100
0.097
0.353

79
144 [32]

HER/
OER NiSe2 NSs-120 1 M KOH

1 M KOH
10
40

0.207
1.562

186.5
109.4 [33]

HER/
OER NiCo2S4/CC 1 M KOH 50

50
0.263
0.31

141
89 [34]

OER CuCo2O4 1 M KOH 20 0.29 117 [17]
HER CoOx@CN 1 M KOH 10 0.232 . . . [35]
OER FeCoW oxyhydroxides 1 M KOH 10 0.191 . . . [36]
HER β-InSe 1 M KOH 10 0.483 135 [37]
OER CuCo2S4/CF 1 M KOH 60 0.259 110 [38]
HER/
OER NiSe2 NCs 1 M KOH 10

10
0.54
0.25

139
38 [39]

FeOOH + OH− → FeO(OH)2 + e− (1)

FeO(OH)2 + OH− → [FeO(OH)2]+ + e− (2)

[FeO(OH)2]+ + 2OH− → [FeO]+ + O2 + 2H2O + 2e− (3)

[FeO]+ + OH− → FeOOH (4)
Crystals 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 6. Electrochemical cycle voltammograms of the FeCo2S4 nanowire in different electrolytes 

(a) 0.05 M KOH, (b) 0.1 M KOH, (c) 0.2 M KOH, and (d) 1 M KOH under the conditions of different 

potential scanning rates. The potential range of the selected no-faradic current was 0–0.3 V. 

 

Figure 6. Electrochemical cycle voltammograms of the FeCo2S4 nanowire in different electrolytes
(a) 0.05 M KOH, (b) 0.1 M KOH, (c) 0.2 M KOH, and (d) 1 M KOH under the conditions of different
potential scanning rates. The potential range of the selected no-faradic current was 0–0.3 V.



Crystals 2023, 13, 717 10 of 13

Crystals 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 6. Electrochemical cycle voltammograms of the FeCo2S4 nanowire in different electrolytes 

(a) 0.05 M KOH, (b) 0.1 M KOH, (c) 0.2 M KOH, and (d) 1 M KOH under the conditions of different 

potential scanning rates. The potential range of the selected no-faradic current was 0–0.3 V. 
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KOH. All experiments were carried out for OER.
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4. Conclusions

In this study, a smart FCS NWs/Ni hybrid structure was prepared as a non-noble
metal electrocatalyst in different alkaline solutions for OER/HER. The unique design of the
microstructure endowed the FCS NWs/Ni with a high ion/electron transport capacity and
a large specific surface area. Moreover, its excellent conductivity, higher specific capacity,
and rich redox state are attributed to its iron, cobalt, and sulfur elements, respectively.
The FCS NWs/Ni catalysts achieved 10 mA cm−2 at HER overpotential of 62.6 mV (1 M
KOH) and 129.56 mA cm−2 at OER overpotential of 1.5 V (1 M KOH). Lastly, the method
presented in this work will instruct the future reasonable design and development of
efficient bifunctional non-precious metal electrocatalysts to be widely used in the field of
electrochemical hydrogen and oxygen production in water electrolytic systems.

Author Contributions: J.T. contributed to the experiment and wrote the paper; the data was pro-
cessed and analyzed by S.L. (Shuhua Liu), Y.L. (Yanmo Liao), H.Q. and Y.W.; Y.L. (Yu Liu), H.C., M.T.
and S.L. (Sanjie Liu) conducted the experiment and discussed the results; Z.Q., C.L. and X.Q. pro-
posed the study conception and were responsible for part of the experimental data, data discussion,
and grammar revision. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
11504312), the Provincial Natural Science Foundation of Hunan (No. 2021JJ30298), the Science and
Technology Program of Hunan Province, China (Grant No. 2019TP1014), and the Changjiang Scholars
and Innovative Research Team in University (IRT_17R91).
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corresponding author.
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