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ABSTRACT In this article, we present a comprehensive study with an experimental analysis of federated

deep learning approaches for cyber security in the Internet of Things (IoT) applications. Specifically,

we first provide a review of the federated learning-based security and privacy systems for several

types of IoT applications, including, Industrial IoT, Edge Computing, Internet of Drones, Internet of

Healthcare Things, Internet of Vehicles, etc. Second, the use of federated learning with blockchain and

malware/intrusion detection systems for IoT applications is discussed. Then, we review the vulnerabilities

in federated learning-based security and privacy systems. Finally, we provide an experimental analysis of

federated deep learning with three deep learning approaches, namely, Recurrent Neural Network (RNN),

Convolutional Neural Network (CNN), and Deep Neural Network (DNN). For each deep learning model,

we study the performance of centralized and federated learning under three new real IoT traffic datasets,

namely, the Bot-IoT dataset, the MQTTset dataset, and the TON_IoT dataset. The goal of this article

is to provide important information on federated deep learning approaches with emerging technologies

for cyber security. In addition, it demonstrates that federated deep learning approaches outperform the

classic/centralized versions of machine learning (non-federated learning) in assuring the privacy of IoT

device data and provide the higher accuracy in detecting attacks.

INDEX TERMS Federated Learning, Intrusion Detection, Deep learning, Cyber Security, IoT,

Blockchain.

I. INTRODUCTION

The Internet of Things (IoT) is defined as the use of commu-

nication protocols and sensing equipments such as sensors,

laser scanners, radio frequency identification, etc., to enable

control system devices to be connected to the Internet. Dur-

ing the last few years, IoT technology has been widely used

in the following areas: Internet of Vehicles, Manufacturing

industry, Internet of Drones, Internet of Healthcare Things,

Mobile Crowdsensing, Cyber physical systems, Agriculture,

etc. As IoT technology develops rapidly, there are millions

of embedded physical devices, where each IoT device is

interconnected and exposing data that can potentially affect

the privacy and personal well-being of their users. In the

absence of a credible security defense systems implemented

on the IoT devices, they can be attacked by hackers [1]

and are representing a large attack surface that is actively

exploited.

The availability of modern Machine Learning (ML) is

gaining more attention than ever before for its potential

to extract useful and complex data models using large

datasets from a central location [2]. With traditional machine

learning, the learning data is collected on a centralized
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server. without addressing the privacy concerns as well as

reducing data transmission cost. In addition to other security

measures, such as Blockchain and authentication [3], [4],

the machine learning techniques can be used by intrusion

detection systems in order to identify normal and malicious

actions [5].

The term of privacy-preserving machine learning has be-

come popular nowadays [6]. The idea of federated learning

is proposed by Google [7] to overcome data privacy issues

by leveraging collaborative learning across a wide range of

devices (i.e., IoT devices). However, there are various lim-

itations to the application of traditional federated learning

in IoT applications, including, the reliability of the learning

model as well as of the central server. By modifying the

local model, if the central server (i.e., Edge server) crashed

or modified the global model maliciously, updating accuracy

of all local models at IoT devices will be significantly

affected [8]–[14]. The constraint of power in IoT devices

is a major issue for the deployment of federated learning.

This resource limitation requires that energy consumption

should be optimized for the implementation of federated

learning [15].

The federated learning achieves great success and is

widely used in many fields, e.g., mobile edge network opti-

mization [16], Google keyboard query suggestions and pre-

diction [17], [18], COVID-19 detection [19]–[21], vehicles

communications [22], Internet of Drones [23], Augmented

reality [24], Intrusion detection [25]–[27]...etc. Therefore,

many cyber security researchers have difficulty in finding

the best learning type (i.e., centralized or federated learning)

to test and evaluate their proposed security methods in IoT

applications, and selecting an appropriate federated deep

learning method is an essential issue in this field. Hence,

we are motivated to realize a comprehensive study with an

experimental analysis of the use of federated deep learning

for cyber security in the Internet of Things.

A. CENTRALIZED VS. FEDERATED LEARNING TYPES

Fig 1 illustrates the main difference between federated

learning and centralized learning.

1) Centralized learning

Machine learning for IoT applications has conventionally

been performed by uploading all the data from each IoT

device connected with the cloud servers to build a standard

model which can be shared and implemented across devices.

The main benefit of centralized learning is the ability of

the model to perform generalization using data from a

cluster of IoT devices and then work with other relevant

IoT devices instantaneously. However, there are some issues

for traditional centralized learning such as privacy, latency,

bandwidth, and connectivity.

2) Federated learning

The core concept of federated learning is to create ma-

chine learning models that are built on distributed datasets

across different devices while avoiding the leakage of data.

Specifically, federated learning is a new technique where

the current model is downloaded and an updated model is

computed on IoT devices using the local IoT data. These lo-

cally trained models are then returned from the IoT devices

to the central server for aggregation, (e.g., the weights are

averaged) and then a combined and enhanced single global

model is returned to IoT devices. The distribution of data

is important in terms of federated learning deployment and

the associated practical and technical challenges. There are

currently the following three federated learning types, as

presented in Fig 2:

• Horizontal federated learning: This type is imple-

mented in situations in which the data sets share the

same feature space but differ in the sampling space.

• Vertical federated learning: This type is implemented

in the situations in which the data sets differ in the

feature space but share the same sampling space.

• Federated transfer learning: This type is implemented

in the situations where the data sets has different feature

space as well as different sampling space.

B. RELATED SURVEYS AND OUR CONTRIBUTIONS

There are many surveys in the literature that have covered

different aspects of federated learning-based frameworks for

IoT. As shown in Tab. 1, we classify the federated learning

surveys based on the following dimensions:

• IoT application: It indicates whether the survey pre-

sented a taxonomy for federated learning-based frame-

works for cyber security in the internet of things.

• Federated learning-based IDS: It reports whether the

study provided a taxonomy for federated learning-based

cyber security intrusion detection systems for the IoT.

• Federated learning-based blockchain: It indicates

whether the survey reviewed federated learning-based

frameworks coupled with blockchain technology for

cyber security in the internet of things.

• Threat models in federated learning: It indicates

whether the survey considered threat models in fed-

erated learning-based frameworks for cyber security in

IoT.

• Experimental analysis in IoT: It indicates whether the

survey provided an experimental analysis of federated

deep learning for cyber security in IoT.

Almost all of the surveys on federated learning for IoT

applications present security and privacy countermeasures

without focusing on an experimental analysis. Yang et

al. [28] proposed a review of a secure federated-learning

framework, which includes federated transfer learning, ver-

tical federated learning, and horizontal federated learning.

Aledhari et al. [30] a review of federated learning algo-

rithms, which includes use-cases, real-life applications, and

hardware platforms. Liu et al. [31] provided an introduction

about the integration of federated learning in the context

of 6G communications. Jiang et al. [32] presented the
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challenges and opportunities of the application of feder-

ated learning in smart city sensing. Mothukuri et al. [34]

provided a comprehensive survey on privacy threats of

federated learning, but without an experimental analysis in

IoT networks. Kholod et al. [35] analyzed the open-source

federated learning frameworks for IoT applications without

focusing in cyber security. Rahman et al. [36] provided a

comprehensive taxonomies covering privacy and security,

resource management, application areas, system models and

designs. Nguyen et al. [37] provided a comprehensive survey

about the recent advances in federated learning and IoT

applications. Wahab et al. [39] presented a multi-level clas-

sification of federated machine learning in communication

and networking systems. Ali et al. [40] provided an overview

about the integration of federated learning and blockchain

for IoT applications. Imteaj et al. [41] analyzed the im-
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TABLE 1: Related surveys on Federated Learning for IoT networks.

Reference Year IoT applica-

tion

FL-based

IDS

FL-based

blockchain

Threat mod-

els in FL

Experimental

analysis in IoT

Main focus/contributions

Yang et al.
[28]

2019 No No Partial No No A review of a secure federated-learning
framework.

Lim et al.
[29]

2020 Partial No Partial Yes No A comprehensive review of federated
learning as an enabler for the optimiza-
tion of mobile networks at the edge.

Aledhari et
al. [30]

2020 Partial Partial Partial No No An overview of technical details of fed-
erated learning enabling technologies.

Liu et al.
[31]

2020 No No No No No An introduction about the integration
of 6G communications-based federated
learning.

Jiang et al.
[32]

2020 No No No No No An overview of challenges and oppor-
tunities of the application of federated
learning in smart city sensing.

Lyu et al.

[33]
2020 No Partial No Partial No A brief introduction to the FL idea,

along with a classification of threat
models.

Mothukuri
et al. [34]

2021 No No No Yes No A comprehensive survey on privacy
threats of federated learning.

Kholod et
al. [35]

2021 Yes No No No No A review on open-source federated
learning frameworks for IoT applica-
tions

Rahman et
al. [36]

2021 Yes No No Partial No A comprehensive taxonomies covering
application areas of federated learning.

Nguyen et
al. [37]

2021 Yes No Yes Yes No A comprehensive survey about the re-
cent advances in federated learning and
IoT applications.

Nguyen et
al. [38]

2021 Yes No Yes No No An overview of the fundamental con-
cepts about the integration of federated
learning and blockchain.

Wahab et
al. [39]

2021 Yes No Partial Yes No A multi-level classification of federated
machine learning in communication and
networking systems.

Ali et al.
[40]

2021 Yes No Yes No No An overview about the integration of
federated learning and blockchain for
IoT applications.

Imteaj et

al. [41]
2021 Yes No Partial No No An overview the implementation chal-

lenges of federated learning algorithms
for resource-constrained IoT devices.

Our survey / Yes Yes Yes Yes Yes A comprehensive review with experi-
mental analysis of federated deep learn-
ing for cyber security in IoT applica-
tions.

plementation challenges of federated learning algorithms

for resource-constrained IoT devices. Nguyen et al. [38]

provided an overview of the essential notions about the

integration of federated learning and blockchain in mobile

edge computing networks. All these related surveys did not

cover the application of federated deep learning for cyber

security in IoT applications with focusing on experimental

analysis.

Lyu et al. [33] provided a brief introduction into FL,

alongside a classification for threat models into two major

attacks: poisoning and inference attacks. The study points

out the insights, the core techniques together with the

fundamental assumptions embraced by the different attacks.

The FL context brings an additional threat, which is model

poisoning, distinct from traditional data poisoning. The goal

is to make the global model incorrectly classify a given

set of inputs. To explore this issue, Bhagoji et al. [42]

conducted a range of attack scenarios, including: targeted

model poisoning by intensifying the malicious agent update,

improving attack stealth through the use of an alternating

minimization strategy, and bypassing Byzantine-resistant

aggregation strategies. Which validated the vulnerabilities

of FL-based settings to model poisoning attacks. Xu et

al. [43] proposed a FL-based privacy preservation scheme,

called VerifyNet, which manages the verification of the

training process, with homomorphic encryption, pseudo-

random technology, and a double-masking protocol to en-

sure user privacy, verifiability, and confidentiality during the

FL process. Results from experiments with real-world data

have proved that VerifyNet is practical.

A notable exception is Goa et.al’s [44] recent work

that reviews split and federated learning approaches with

respect to their communication overheads and conducts an

experimental evaluation against two established data-sets for

Speech Command and ECG in a Raspberry Pie setup. In this

context, we highlight the following research questions (i.e.,

Fig 17 that need to be solved:

• Q1. What are the applications of federated deep learn-
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Federated Deep Learning for Cyber
Security in the Internet of Things
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FIGURE 3: Discussed questions per article section.

TABLE 2: Acronyms used in this survey.

Acronym Description

FL Federated Learning

IoT Internet of Things

IIoT Industrial Internet of Things

AI Artificial Intelligence

IDS Intrusion Detection System

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

ML Machine Learning

MEC Mobile Edge Computing

UAV Unmanned Aerial Vehicle

RF Radio Frequency

HE Homomorphic Encryption

DP Differential Privacy

SGD Stochastic Gradient Descent

DRL Deep Reinforcement Learning

EV Electric Vehicle

DDoS Distributed Denial of Service

DoS Denial of Service

IoHT Internet of Health Things

PoCI Proof of Common Interest

GAN Generative Adversarial Network

IID Independent and Identically Distributed

Non-IID Non-Independent and Identically Distributed

ROC The Receiver Operating Characteristic

MQTT Message Queue Telemetry Transport

FNN Feed-forward Neural Network

SNN Self-normalizing Neural Network

ing in IoT networks?

• Q2. What and how is the federated learning used for

intrusion and malware detection?

• Q3. What characteristics do the federated learning

approaches with blockchain technology have for each

of the IoT applications?

• Q4. What are potential vulnerabilities that can be

exploited by adversaries in federated learning-based

systems for IoT networks?

• Q5. What is currently the best solution between

federated deep learning approaches and the clas-

sic/centralized versions of machine learning (non-

federated learning) in assuring the privacy of IoT device

data and providing the highest accuracy in detecting

attacks?

To answer the previous questions, the main contributions

of this work are:

• We review the federated learning-based security and

privacy systems for several types of IoT applications.

• We review the federated learning-based cyber security

intrusion detection systems.

• We present the use of federated learning with

blockchain for IoT applications.

• We review vulnerabilities that can be exploited by

adversaries in federated learning-based security and

privacy systems.

• We provide an experimental analysis of federated deep

learning with three deep learning approaches, namely,

RNN, CNN, and DNN. For each deep learning model,

we study the performance of centralized and federated

learning under three new real IoT traffic datasets,

namely, the Bot-IoT dataset, the MQTTset dataset, and

the TON_IoT dataset.

The rest of this paper is organized as follows. Section II

presents the federated learning-based security and privacy

systems for several types of IoT applications. In Section

III, we provide the federated learning-based cybersecurity

intrusion detection systems. In Section IV, we clearly high-

light the use of federated learning with blockchain for IoT

applications. Then, we review vulnerabilities that can be

exploited by adversaries in federated learning-based security

and privacy systems in Section V. Section VI provides

an experimental analysis of federated deep learning with
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three deep learning approaches. Section VII highlight the

importance of the study and discuss the significance of

our research on the future of the IoT and its applications,

together with current open challenges. Lastly, Section VIII

presents our conclusions.

II. FEDERATED MACHINE LEARNING APPROACHES

FOR THE IOT APPLICATIONS

Fig 4 shows the federated learning-based cybersecurity for

IoT. Tab. 2 provides the acronyms used in this study.

Tab. 3 presents the federated learning-based solution for

cybersecurity in IoT applications.

A. DETECTING COMPROMISED IOT DEVICES

IoT devices are being increasingly deployed in the everyday

life. Many of those devices, however, are susceptible to

attack through unsafe design, deployment, and configura-

tions. Accordingly, many existing systems already contain

vulnerable IoT devices that are open to being compromised,

which is furthermore harmful in sensitive tasks such as

surveillance, as shown by the work of Ciuonzo et al. [57],

which focused on the issue of distributed detection of a non-

cooperative object in a wireless sensor network.

While centralized learning-based intrusion detection ap-

proaches have been successful, including the hybrid hi-

erarchical and AutoEncoder techniques, as presented by

Bovenzi et al. [58], which provided a two-tier hierarchical

network-based IDS that performs anomaly detection with a

multimodal deep autoencoder, and soft output classifiers.

And also, the work of Mirsky et al. [59], which pro-

vided Kitsune, a network-based plug-and-play IDS that can

efficiently classify attacks on the local network without

supervision. However, data privacy, network latency, and

similar centralized learning-based issues are not considered

in these approaches.

To identify compromised IoT devices, Nguyen et al. [55]

proposed an autonomous self-learning distributed scheme,

named DIOT, which is based on a federated learning ap-

proach. The flask and flask socketio libraries are used during

the implementation of the federated learning algorithm. The

performance evaluation shows that the DIOT scheme is

able to detect 95.6% of attacks in an average of 257 mil-

liseconds. Zhao et al. [60] developed a federated learning-

based intrusion detection system, which can be used for

detecting compromised IoT devices. The proposed system

proposes that the global initial long short-term memory

model is distributed among all user servers. Then, the user

servers form their own unique model and start uploading

their model settings to the central server. Last, the central

server aggregates the model settings in order to form a new

aggregate global model and then sends it to the user servers.

The results of simulation on the SEA dataset (i.e., produced

by the AT&T Shannon Lab) demonstrate that the proposed

system reaches better accuracy and coherence compared to

the conventional systems. To find the best candidate clients

and solve the issue of accuracy optimization in federated

learning, Mohammed et al. [61] introduced an online state-

ful heuristic based on federated learning combined with

an IoT client alarm application, which can be used to

notify clients of any unauthorized IoT devices in the IoT

environment. The results of simulation on a real data set

demonstrates that the suggested system surpasses the online

randomized algorithm with up to 27% gain in terms of

accuracy.

B. SECURE INDUSTRIAL INTERNET OF THINGS

With small size, small cost, and limited energy consumption,

these appealing capabilities have made Internet of Things

(IoT) largely endorsed in smart factories to supervise ma-

chinery, guide their automatic processes, or to help create a

virtual representation of systems for advanced simulation

purposes using digital twins [62]. To provide the tensor

based data mining while guaranteeing the data security in

industrial internet of things, Kong et al. [63] proposed a

framework Federated Tensor Mining, named FTM, which

is based on homomorphic encryption methods. The FTM

framework is claimed to achieve high accuracy due to the

homomorphic attribution. Khoa et al. [64] presented an

IDS based on collaborative learning which can be applied

effectively in the Industrial IoT and Industry 4.0. The

proposed system builds intelligent "filters" for deployment

at IoT gateways to quickly identify and prevent cyberattacks.

Specifically, each filter utilizes the data collected in a filter’s

network in order to train its model for cyberattack detection

through a deep learning system. Afterward, the trained

model is distributed to other IoT gateways to increase

the accuracy of intrusion detection throughout the overall

system.

Rehman et al. [25] proposed an idea to enable a fully

decentralized cross-device federated learning system, named

TrustFed, which uses Industrial IoT devices as federated

learning candidates. To maintain participants’ reputations,

the proposed TrustFed system uses smart contract technol-

ogy and the Ethereum blockchain. TrustFed can identify

and eliminate outliers in the training distributions prior to

combining the model updates. The results of the simulation

on the Turbofan Engine Degradation simulation dataset

(released by NASA) demonstrates that the proposed system

performs better in terms of the lower loss irrespective

of the population size. Sun et al. [45] introduced a new

framework based on digital twin to assist federated learning

in Industrial IoT. The digital twin are used for capturing

the characteristics of industrial devices. Hao et al. [56]

developed a privacy-enhanced federated learning system,

named PEFL, for industrial artificial intelligence, which

is based on Augmented Learning with Error (A-LWE)

term embedded with the homomorphic ciphertext of private

gradients. To provide differential privacy, the PEFL system

adopts a distributed Gaussian mechanism. The performance

evaluation on MNIST dataset demonstrates that the PEFL

system in terms of accuracy as well as communication and

computation costs. To reduce the communication burden on

6 VOLUME 4, 2016
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TABLE 3: Federated Learning-based solution for cyber security in IoT applications.

Scheme Year Network

model

Countermeasures Threat models Datasets Pros (+) Cons (+)

ur Rehman
et al. [25]

2021 Industrial
Internet of
Things

- Cross-Device Federated
Learning
- Blockchain technology

Poisoning attacks Turbofan Engine
Degradation sim-
ulation dataset

+ Less loss regardless of pop-
ulation size
- The threat model is limited

Sun et al.
[45]

2021 Industrial
Internet of
Things

- Digital Twin
- Deep reinforcement learning

Byzantine attack MNIST dataset + Efficent in terms of energy
saving, convergence rate, and
learning accuracy
- Vulnerable to dishonest users

Yang et al.
[46]

2021 Cyber physi-
cal systems

Optimized federated soft-
impute algorithm

Differential attack Two synthetic
tensors

+ Low recovery error under
differential privacy protection
- Energy consumption

Kong et al.
[22]

2021 Internet of
Vehicles

- Limited Laplace mechanism
- Homomorphic threshold en-
cryption mechanism

Unregistered dishon-
est users

N/A + Robustness against dishonest
users
- Computation and communi-
cation cost

Thwal et
al. [47]

2021 Internet of
Healthcare
Things

- Deep learning-based clinical
decision support system

Unregistered dishon-
est users

Laboratory
network setup

+ Guarantee the safety of pa-
tient privacy
- Computation and communi-
cation cost

Fang et al.
[48]

2020 Cloud Com-
puting

- Lightweight encryption proto-
col

Colluding parties and
an honest but curious
server

MNIST and UCI
Human Activity
Recognition
Dataset

+ Highest accuracy compared
to existing works
- Vulnerable to the generative
adversarial network

Dong et al.
[49]

2020 Ternary fed-
erated learn-
ing

- Shamir’s threshold secret
sharing(TSS)
- Paillier homomorphic encryp-
tion(PHE)

Honest-but-curious or
semi-honest adversary

MNIST and
SVHN

+ Communication overheads
and computational time
- Vulnerable to the generative
adversarial network

Yu et al.
[50]

2020 5G-enabled
IoT

- Blockchain technology
- Deep reinforcement learning

Sniffer attacks and
jamming attacks

MATLAB RL
toolbox

+ Energy consumption
- Differential privacy protec-
tion is not considered

Lu et al.
[51]

2020 Digital
Twin Edge
Networks

- Blockchain technology
- Deep reinforcement learning

N/A MNIST dataset
with Fashion-
MNIST

+ Communication efficiency
and data security
- Vulnerable to blockchain-
related attacks

Liu et al.
[52]

2020 Mobile
Crowdsens-
ing

- Bresson’s cryptosystem
- Shamir’s secret sharing

- Inference attack
- Chosen plaintext at-
tack

ADULT and
MNIST

+ Computation and communi-
cation cost reduction
- Robustness against dishonest
users

Lu et al.
[53]

2020 Vehicular
cyber-
physical
systems

- Random sub-gossip updating
- Distributed model aggrega-
tion

- Differential attack 20 Newsgroups
dataset

+ Protecting privacy in updat-
ing
- Energy consumption

Wang et al.
[23]

2020 Internet of
Drones

- Blockchain technology
- Local differential privacy
- Reinforcement learning

- Privacy leakage at-
tack
- Poor quality local
model update attack

MNIST + Enhanced the quality of the
local model update (QoLM)
metric
- Computation and communi-
cation cost

Lu et al.
[54]

2019 Internet of
Vehicles

- Neural network model Unregistered dishon-
est users

The core control
systems of elec-
tric vehicle

+ Privacy preserving as well as
driver personalization
- Vulnerable to differential at-
tack

Nguyen et
al. [55]

2019 IoT devices - Gated recurrent units - Adversarial machine
learning
- Poisoning federated
learning

Laboratory
network setup

+ 95.6% of attacks are detected
in 257 milliseconds
- Communication overheads

Hao et al.

[56]
2019 Industrial ar-

tificial intel-
ligence

- Augmented Learning with Er-
ror

Inference attack MNIST dataset + Communication and compu-
tation costs
- Threat model is limited
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FIGURE 4: Federated Learning for IoT networks.

the federated learning server, a proxy server can be used

which is proposed Zhao et al. [65] to achieve anonymity of

participants.

C. SECURE EDGE COMPUTING

Newly emerging technologies such as Mobile Edge Comput-

ing (MEC) and new generation communication technologies

are essential to support the fast development and deployment

of the IoT networks. As IoT networks grow in scale,

determining the optimal allocation of limited resources to

deliver high-quality IoT services is a critical challenge. Edge

computing involves the processing of data at the edge of

a network compared to processing in the cloud or on a

remote server. To provide privacy and data security, Taïk and

Cherkaoui [66] designed a system model based on federated

learning and edge computing. The edge devices are used

to train models by federated learning, which can minimize

security issues. Lu et al. [51] designed a new system, named

DITEN, that integrating blockchain and federated learning

in edge networks. The proposed DITEN system uses Deep

Neural Networks (DNN) as a strategy scheduler to ensure

data privacy of users and enhance learning security. The

experimental results on two datasets, namely, the real-world

MNIST dataset and the Fashion-MNIST show that the

proposed DITEN system is efficient compared to the con-

ventional federated learning in terms of learning accuracy,

learning loss, and communication time cost. Qian et al. [67]

developed a privacy-preserving data analytic system, where

the federated learning at the centralized fog devices. The

proposed system uses an active learning in edge devices,

which can harvest the potential privacy benefits as well as

reduce latency and communication overhead.

To provide joint IoT network and edge server optimiza-

tion, Xiao et al. [68] proposed a federated edge intelligence

faremwork, named FEI. The FEI consists of a group of edge

servers that trains a shared model using the data collected

and uploaded from IoT devices. Cui et al. [69] introduced

a secure and decentralized platform, named SAPE, for

securing edge computing. The SAPE platform enables users

to send their assignments, which are then planned to the

relevant edge nodes to reduce the time it takes to complete

the tasks. To prevent attacks, the SAPE platform uses feder-

ated deep reinforcement learning (DRL). The reliability of

the federated training process is improved by a blockchain-

based verification scheme. The findings demonstrate that

SAPE overcomes some of the shortcomings conventional

schemes during the defense against adversarial attacks.

D. SECURE INTERNET OF DRONES

The combination of unmanned aerial vehicles (UAVs) and

artificial intelligence (AI) technology created opportunities

to facilitate existing ground-based mobile crowdsensing

platforms to achieve more difficult missions. More precisely,

drones enable autonomous crowdsensing at any time and

any place due to their remarkable benefits of lower cost,

faster operational deployment, and more flexible movement,

as presented by Motlagh et al. [70], which provided a

demonstration of the use of drones for crowd surveillance
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through face recognition. Federated learning can provide

significant privacy protection by allowing a collection of

UAVs to train a shared AI model collaboratively while

preserving the training data (i.e., sensed data) on their

devices at the local level. Fig 5 illustrate the federated

learning-based cybersecurity for internet of drones. For

secure and efficient AI model training in UAV-assisted

mobile crowdsensing, Wang et al. [23] designed a practical

federated learning framework, named SFAC, which is based

on three technologies, namely, blockchain, local differential

privacy, and reinforcement learning. Blockchain technology

is used to preserve data training and contribution verification

between drones, whereas reinforcement learning is used

to achieve optimal strategies. Their performance evaluation

using the MNIST dataset showed that the SFAC framework

enhanced the quality of the local model update (QoLM)

metric in the federated learning process learning, compared

with conventional frameworks. To defend against jamming

attacks, Mowla et al. [71] introduced an adaptive federated

reinforcement learning system, which can be applied for

flying ad-hoc networks. The simulation results indicated a

39.9% improved average accuracy of the federated jamming

detection scheme used in the defense mechanism.

To counteract eavesdropping in a fog-aided IoD network,

Yao et al. [72] proposed a secure federated learning scheme.

The main idea of this proposed scheme is that monitoring

the energy of all the unmanned aerial vehicles (UAVs) to

optimize the safety rate of the federated learning system

is limited by the UAV battery capacity and the Quality of

Service (QoS) constraint. The performance evaluation of the

proposed scheme shows that it performs better than two

existing related algorithms with a small federated learning

training time. Therefore, Yazdinejadna et al. [73] designed

an authentication system based on federated learning using

drones’ Radio Frequency (RF) features. The proposed au-

thentication system uses the Deep Neural Network (DNN)

and Homomorphic Encryption (HE). The DNN network

is implemented locally on drones with Stochastic Gradi-

ent Descent (SGD) optimization, while the HE system is

used to secure model parameters. From the experimental

findings, the proposed authentication system obtains a high

true positive rate when authenticating drones and improved

performances in comparison to alternative machine learning-

based systems.

E. SECURE INTERNET OF HEALTHCARE THINGS

The management of health has emerged as a major issue and

challenge as new complex types of diseases and symptoms

are introduced like COVID-19. Fig 6 present how the

healthcare sector can use federated learning techniques in

order to maintain patients’ data privacy, while benefiting

from other hospitals’ knowledge. Thwal et al. [47] designed

a deep learning-based clinical decision support solution,

which is trained and managed in a federated learning model.

The proposed solution focused on an approach to ensure

patients’ privacy and address the threat of cyberattacks by

allowing for the mining of clinical data at a large scale.

Based on a federated learning model, the proposed solution

can exploit rich clinical data to train every local neural

network with no requirement to share patient private data.

To decrease energy consumption in the federated learning

process, Hao et al. [74] designed a new scheme, which

separates the model into three sections and transfers the

central section to the cloud server with a high computational

cost. To perform gradients aggregation in ciphertext con-

text, the proposed scheme applies homomorphic encryption,

which can resist several existing deep learning privacy

attacks. For securing wearable healthcare, Chen et al. [75]

a federated transfer learning framework, named FedHealth.

The FedHealth framework combines different organizations’

data without losing information privacy and performs com-

paratively personalized learning of models using transfer of

knowledge.

The COVID-19 pandemic triggered a global crisis that

required collaborative efforts to combat it. A critical factor

in evaluating and responding to COVID-19 is the effective

identification of infected patients, and AI is a key part of

this. However, the problem with the old centralized AI is

the sharing of data among hospitals around the world, which

raises many privacy issues, and that’s where FL comes in.

Zhang et al. [21] proposed a dynamic fusion-based FL

system to analyze medical diagnostic images such as CT

scans and X-rays, and decide dynamically which clients

participate according to the performance of their local model

and plan the fusion of models depending on the training

time. The results demonstrated that the system is practical in

terms of performance, communication and failure tolerance.

Kumar et al. [19] proposed a blockchain-based FL system

for COVID-19 detection, which was trained and evaluated

on real COVID-19 patient data that was collected and pub-

licly published from various hospitals with different types of

CT scanners, as well as a data normalization strategy. Liu et

al. [20] proposed an FL-based model for learning COVID-

19 data. The authors evaluated the performance of popular

models, including MobileNet, ResNet18, and COVIDNet,

with and without the FL framework. The authors concluded

that ResNeXt shows the highest efficiency in images with

COVID-19 labels. Whereas, MoblieNet possessed the low-

est number of parameters. Hence, the work suggests that

ResNeXt and ResNet18 are selected to be better for COVID-

19 identification among the models used.

F. SECURE CLOUD COMPUTING

While conventional machine learning training models share

data centrally in the cloud, an increasing number of cus-

tomers are not interested in participating in data sharing due

to privacy or peer competition issues. Federated learning has

been suggested as a distributed platform to overcome these

limitations, where multiple customers collectively train a

machine learning model without partitioning their individual

datasets. Fang et al. [48] designed a federated learning

scheme with strong privacy preservation, named HFWP, for
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FIGURE 5: Federated Learning for secure Internet of Drones.

securing cloud computing. Based on a lightweight encryp-

tion protocol, the HFWP scheme is robust against colluding

parties and an honest but curious server. The experimental

results on two real-world datasets, namely, MNIST and UCI

Human Activity Recognition Dataset, shows the highest

accuracy compared to other existing works. Zhang et al. [76]

introduced a federated learning scheme that takes the local

characteristics of AI IoT applications, which can enhance

the accuracy of prediction of any individual AI IoT-enabled

device.

For enhancing cloud computing-based 5G heterogeneous

network, Wei et al. [77] designed a federated learning

scheme based on end-edge-cloud cooperation. Within this

scheme, the nodes that are equipped with mechanisms for

attack detection are deployed in the end, edge, and cloud

of the 5G heterogeneous network. To reduce the negative

impacts due to heterogeneity in a cloud-edge architecture,

Wu et al. [78] proposed a personalized federated learning

scheme, which the power of edge computing is used for

high throughput and low latency.

G. DATA COLLABORATIONS IN IOTS

As IoT technologies are rapidly emerging, network applica-

tions require cross-domain collaborative computational pro-

cessing, which necessitates the aggregation and cooperation

of a large number of network data sources. Different data

owned by various stakeholders and having distinct properties

will be combined into the network applications within these

processes. The information that is revealed to the providers

of applications, results in the inevitable risks of losing

data privacy control. To enable the secure collaboration of

massive data sources, Yin et al. [79] designed a secure data

collaboration scheme, called FDC, which can be applied in

an IoT environment. The FDC scheme uses three parties:

a blockchain system, public data center, and a private data

center. The blockchain system is used to sustain flexibility

and access control, while the private data center is applied

for registration, management, storage, and IoT data collec-

tion. The performance evaluation on wearable sensor data

shows that the proposed FDC scheme provides efficient

accuracy and loss.

H. SECURE 5G-ENABLED IOT

The IoT network environments are time-varying, and the

network devices’ heterogeneous resources make it difficult

to provide reliable, secure, and real-time communications

among the network devices and their service servers, es-

pecially in the 5G-enabled IoT. Yu et al. [50] proposed a

federated learning-based distributed model, named UDEC,

in order to address the following three challenges: 1) Privacy

and security-preserving services, 2) Dynamic and low-cost

scheduling, and 3) Full use of system resources. The UDEC

model train deep reinforcement learning to secure critical

users’ service request data at the edge nodes. Their per-

formance evaluation shows the effectiveness of the UDEC

model in terms of energy consumption.
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I. SECURE INTERNET OF VEHICLES

Vehicular IoT provides a safer travel environment and better

on-board experience, leading us to a smart and self-driving

automotive future. In particular, there are a number of

applications that can be found in the field of automotive

IoT, including, autonomous vehicles, driver assistance, ve-

hicle telematics, and predictive automotive maintenance. A

federated learning approach is implemented in the field of

data-driven navigation, which uses the data that mobile users

collect and embedded processing resources. Fig 7 illustrate

the use of federated leaning-based cybersecurity for Inter-

net of Vehicles applications. To address the challenge of

flexibility of participants under a federated learning-based

navigation application, Kong et al. [22] proposed a privacy-

preserving model aggregation technique, named FedLoc,

which can secure updates to locally trained models, provid-

ing robust support for participant fluctuation. The FedLoc

scheme is robust against malicious unauthorized participants

by employing the limited Laplace mechanism as well as

the homomorphic threshold encryption mechanism. Lu et

al. [54] designed a collaborative edge learning framework,

named CLONE, by using real-world data set captured from

a large electric vehicle (EV) manufacturing enterprise. The

CLONE framework is based on long-term memory networks

and a federated learning algorithm to proves latency saving,

privacy enforcement, safety preservation, and the efficacy of

driver personalization. The CLONE framework selects the

fault of an EV battery and related hardware as a case study

to demonstrate that the CLONE system can predict failures

with accuracy to achieve collaborative and reliable driving.

Lu et al. [53] proposed a scheme for federated peer-to-peer

vehicle learning that uses random updating of sub-pots with

no conservators, which increases both safety and reliability.

The process of aggregation is performed in all vehicles in

an asynchronous manner. When performing a joint learning

task that includes data sharing or leak detection, all vehicles

act as participants to perform federated learning. The infor-

mation from vehicle data retrieval is stored on neighboring

RSUs in the system in a distributed hash table form. Lu

et al. [53] proposed a scheme for federated peer-to-peer

vehicle learning that uses random updating of sub-pots with

no conservators, which increases both safety and reliability.

The process of aggregation is performed in all vehicles in

an asynchronous manner. When performing a joint learning

task that includes data sharing or leak detection, all vehicles

act as participants to perform federated learning. The infor-

mation from vehicle data retrieval is stored on neighboring

RSUs in the system in a distributed hash table form.

J. SECURE MOBILE CROWDSENSING

Mobile Crowdsensing is an emerging key element of IoT,

which is a model that employs individuals wearing smart

devices, called "workers", to conduct different sensing ac-

tivities. To resolve two challenges for mobile crowdsensing,

namely, user dropout and forced aggregation, Liu et al. [52]

proposed a federated extreme gradient boosting framework,

named FEDXGB, which is based on two kinds of parts, a

central cloud server and a set of users. FEDXGB performs

the following process. The central server takes an iterative

invocation of a sequence of secure schemes to construct

the XGBoost classification and regression tree. Within the

schemes, the FEDXGB framework uses a secure aggregation

protocol to aggregate user gradients. Through a combination

of Bresson’s cryptosystem and Shamir’s secret sharing,

FEDXGB allows the central server to perform constrained

aggregation on the gradients and is able to recover dropout

users’ data. The performance evaluation under both ADULT

and MNIST datasets show that the FEDXGB framework can

provide a computation and communication cost reduction

with negligible performance loss.

The data aggregation techniques based on homomorphic

encryption for privacy-preserving have been well-studied for

improving the privacy of FL systems. Zhang et al. [80]

proposed a secure data aggregation system, named FedSky,

for federated mobile crowdsensing, which is based on an

effective worker selection mechanism. Instead of choosing

a random cluster of users, The FedSky system chooses a

cluster of users based on the size of the users’ local data

and the computing power of their mobile devices. Compared
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to the conventional FedAvg approach [81], the proposed

system can reduce significantly the computation time of the

users as well as the latency of the system. The performance

evaluation on the MNIST dataset shows that the proposed

system the maximum training time can be as high as 6 hours

under the experimental setting of B3 = 15 and : = 100 (B3

: the standard deviation for computational power; :: the

number of selected workers).

K. CYBER PHYSICAL SYSTEMS

Cyber physical systems process multi-source and large-

scale data in various domains of application. These data

are generally composed of private personal and incomplete

information, usually distributed across various devices and

locations. Federated learning is proposed as an efficient

approach for ensuring the privacy of cyber physical systems.

Based on a Gaussian mechanism and an optimized federated

soft-impute algorithm, Yang et al. [46] introduced a privacy-

preserving tensor completion method. Through a formal re-

covery error bound, the proposed privacy-preserving tensor

completion method is proven that can provide a privacy

guarantee with high accuracy.

III. FEDERATED LEARNING-BASED CYBER SECURITY

INTRUSION DETECTION

Tab. 4 presents the federated learning-based systems for

intrusion and malware detection in IoT applications.

A. FEDERATED LEARNING-BASED ANOMALY

DETECTION

Federated learning is a decentralized machine learning ap-

proach that exploits the performance computing power of

edge devices with no explicit exchange of user data patterns.

The local models are trained on user data on the device, and

those models are forwarded to a central server. Since it is

trained on sensitive user data, federated learning can suffer

from machine learning attacks against the locally created

models. To overcome this problem, Al-Marri et al. [87]

proposed an IDS based on federated mimic learning. The

proposed system is implemented and evaluated using Python

on Google Colab with the real-world dataset (NSL-KDD),

which the results show 98.11% detection accuracy with

federated mimic learning compared to centralized machine

learning-based IDSs. To address the need for securing traffic

and maintaining privacy in heterogeneous networks, Li et

al. [88] designed a distributed an IDS based on federated

learning for satellite-terrestrial integrated networks for an-

alyzing and blocking harmful traffic, especially distributed

denial of service (DDoS) attacks. The proposed IDS uses

two technologies, namely, 1) homomorphic encryption to

provide secure multi-party computing in federated learning

and 2) convolutional neural network for achieving higher

recognition accuracy.

To detecting various types of cyber threats against in-

dustrial cyber physical systems, Li et al. [90] designed

an IDS based on federated learning with a convolutional

neural network and a gated recurrent unit. The proposed

IDS system employs the Paillier public-key cryptosystem to

ensure that the model parameters remain secure and private
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TABLE 4: Federated Learning-based systems for Intrusion and malware detection in IoT applications.

IDS model Year Network model FL technique Threat models Validation Performance eval-

uation

Comments

Li et al.

[82]
2021 Industrial internet

of things
An iterative
model averaging
with GRU

DDoS attacks OPNET Mod-
eler

The detection ac-
curacy is approxi-
mately 98%

The energy cost is
not calculated

Wang et

al. [26]
2021 Industrial internet

of things
Deep
reinforcement
learning
algorithm

Privacy leakage at-
tack

10 computers
are deployed
to simulate a
local anomaly
detection
center

Miss detection
rate= 2.5%

The proposed IDS
is not validated with
network intrusion
detection dataset

Cvitiæ et
al. [27]

2021 IoT applications Logistic Model
Trees (LMT)
method

DDoS attacks Network intru-
sion detection
dataset

Detection
accuracy= 99.21%
- 99.96%

The communication
and energy costs are
not calculated

Mothukuri
et al. [83]

2021 IoT applications Gated Recurrent
Units (GRUs)
models

DDoS attacks Modbus-based
network dataset

Detection
accuracy= 99.5%

The energy cost is
not calculated

Huong et
al. [84]

2021 IoT Edge Com-
puting

Traditional neural
network

Data exfiltration
attacks,
Keylogging, Server
Scanning, DoS
(HTTP, TCP, UDP),
and DDoS (HTTP,
TCP, UDP).

Network
intrusion
detection
dataset (BoT-
IoT dat)

AUC = 99 % The energy cost is
not calculated

Zhao et al.

[60]
2020 One central

server
communing with
users servers

Long short-term
memory model

Directory traversal
attacks

SEA dataset
(i.e., produced
by the AT&T
Shannon Lab)

F1 Score= 99.21%,
Precision= 99.19%,
Recall= 99.23%,
Accuracy= 99.21%

The dataset used
in the performance
evaluation does not
include IoT traffic

Taheri et

al. [85]
2020 Industrial IoT - Generative ad-

versarial network
- Federated gen-
erative adversar-
ial network

Poisoning attack Contagio
dataset, Drebin
dataset, and
Genome
dataset

Accuracy ratio is
around 96%

Inference attacks
are not considered

Chen et al.
[86]

2020 Wireless Edge
Networks

Gated Recurrent
Units (GRUs)
models

Poisoning attack KDD CUP
99 data set,
CICIDS2017
data set,
and WSN-
DS wireless
network data
set

Detection
accuracy= 99%

The dataset used
in the performance
evaluation does not
include IoT traffic

Al-Marri
et al. [87]

2020 IoT devices Federated mimic
learning

The following four
types of attacks are
considered : DoS,
Probe, R2L, and
U2R

Network intru-
sion detection
dataset (NSL-
KDD dataset)

Detection
accuracy=98.11%

The dataset used
in the performance
evaluation does not
include IoT traffic

Li et al.
[88]

2020 Satellite-
terrestrial
integrated
networks

Federated learn-
ing with convolu-
tional neural net-
work

Distributed denial
of service (DDoS)
attacks

Network intru-
sion detection
dataset

Detection
accuracy=90%

The types of DDoS
attacks is limited

Rahman et

al. [89]
2020 IoT application - Neural network

architecture
Dos, Probe, U2R,
and R2L attacks

Network intru-
sion detection
dataset (NSL-
KDD dataset)

An accuracy fluctu-
ating around 83.09
%

The dataset used
in the performance
evaluation does not
include IoT traffic

Li et al.
[90]

2020 Industrial Cyber-
Physical Systems

Federated learn-
ing with convolu-
tional neural net-
work and a gated
recurrent unit

Cyber threats
against industrial
CPSs

Gas pipelining
system

F-score = 98.14%,
recall= 97.47%,
precision=98.85%,
accuracy= 99.20%

RoC curve metric is
not reported

Payne and
Kundu
[91]

2019 IoT-based cloud
computing

A hierarchical
approach towards
deep federated
defenses

Hyperjacking,
Hypercall attacks,
DDoS attacks...etc.

N/A N/A There is no ex-
perimental analysis
with IoT datasets

Chen et al.
[92]

2019 Traditional
networks

Federated deep
autoencoding
gaussian mixture
model

The following four
types of attacks are
considered : DoS,
Probe, R2L, and
U2R

Network intru-
sion detection
dataset (KDD-
CUP 99)

Recall = 98.03% Detection accuracy
is not reported
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throughout the training process. The performance evaluation

under the gas pipeline system dataset show the following

results : F-score = 98.14 %, recall = 97.47 %, precision =

98.85 %, accuracy= 99.20 %, which are better compared

to three related works [55], [93], and [75]. Mothukuri et

al. [83] uses Gated Recurrent Units (GRUs) models-based

anomaly detection approach to provide real-time proactive

recognition of intrusions in IoT networks through the use of

decentralized device data. The proposed IDS can preserve

the integrity of data stored on local IoT devices by shar-

ing only the weights learned with the federated learning’s

central server. Huong et al. [84] designed an IDS, named

LocKedge, for IoT networks. The LocKedge system uses

the detection task right at the edge layer with high accuracy.

Therefore, the detection system is based on two modules:

feature extraction and classification. The feature extraction

stage focuses on minimizing features from the input samples

that are fed to the detection stage. The performance evalua-

tion under the BoT-IoT dataset shows that federated learning

results are lower than its centralized mode counterpart. Chen

et al. [92] proposed a federated deep autoencoding Gaussian

mixture model, named FDAGMM, for network anomaly

detection. Through the performance evaluation under the

use of the network intrusion detection dataset (KDDCUP

99), the results show that the FDAGMM model is efficient

in three metrics, including, F1-Score, Precision, and Recall,

compared to the deep autoencoding gaussian mixture model.

Based on the performing inference of detection models

and local training, Rahman et al. [89] proposed a federated

learning-based system for detecting IoT intrusion, which

can preserve data privacy. Therefore, the IoT devices can

take advantage of the knowledge of their peers by sharing

only the updates to a remote server. Then, the remote server

aggregates the updates and exchanges an enhanced detection

framework with the collaborating devices. The performance

evaluation on an NSL-KDD dataset shows that the proposed

system have an accuracy fluctuating around 83.09 %. Cetin

et al. [94] proposed an IDS, named FedAGRU, which

is based on federated learning. For collaborative training,

FedAGRU takes advantage of the computing resources of

edge devices and local datasets for training the model

and then uploads the settings to a server. Through the

performance evaluation under the use of the three network

intrusion detection dataset, namely, KDD CUP 99 data set,

CICIDS2017 data set, and WSN-DS wireless network data

set, the results show that the FedAGRU system provides less

communication overhead with higher detection accuracy.

McElwee et al. [95] proposed a federated analysis security

triage tool, named FASTT, for prioritizing and responding

to IDS alerts. The FASTT tool resolves the issue of the

high volume of intrusion detection threats that need to be

reviewed by security analysts in a manual process. Based on

the TensorFlow deep neural network approach, the FASTT

can categorize intrusion detection alerts and identify which

types of security analysts are to review the threats.

To construct a generalized model for anomaly detection

in the industrial internet of things, Wang et al. [26] proposed

hierarchical federated learning, where every local model is

trained by deep reinforcement learning algorithm. As the

local datasets are not needed during federated learning,

the privacy leakage risk is minimized. Moreover, through

injecting a degree of privacy leakage and an interaction

function into the anomaly detection concept, the proposed

system can significantly increase the accuracy of detection.

Based on a boosting method of logistic model trees,

Cvitic et al. [27] proposed a DDoS traffic detection for

different IoT device classes. For collecting federated data

from heterogeneous sources in IoT networks, Moustafa et al.

[96] introduced the testbed TON IoT datasets for Windows

operating systems, which is deployed in three layers: edge,

fog, and cloud. The edge layer includes IoT devices, the

Fog layer includes gateways and virtual machines, and the

cloud layer includes cloud services, connected to the other

two layers. Therefore, the TON IoT datasets employed

under the following nine attack families: 1) Man-In-The-

Middle (MITM) attack, 2) Password attack, 3) Cross-site

Scripting (XSS) attack, 4) Injection attack, 5) Backdoor

attack, 6) Ransomware attack, 7) Distributed Denial of

Service (DDoS) attack, 8) Denial of Service (DoS) attack,

and 9) Scanning attack. To provide wireless edge network

security in IoT networks, Chen et al. [86] proposed a

federated learning-based intrusion detection system, named

FedAGRU, which employs gated recurrent units (GRUs)

models. Specifically, the proposed FedAGRU system is

different from the existing centralized learning approaches

by providing updates to the global learning models rather

than sharing the original data directly between the central

server and edge devices. Based on three datasets, namely,

KDD CUP 99 data set, CICIDS2017 data set, and WSN-

DS wireless network data set, the results demonstrate that

FedAGRU increases the accuracy of detection by around 8%

compared to other centralized learning approaches. More-

over, the cost of communication of FedAGRU achieves 70%,

which is lower performance than other federated learning

approaches.

B. FEDERATED LEARNING-BASED MALWARE

DETECTION

There are billions of IoT devices without suitable protection

measures which have been developed and deployed in the

last few years. The susceptibility of these devices to mal-

ware has increased the requirement for effective detection

technologies to identify devices that are compromised by

malware inside the network. Taheri et al. [85] proposed

an federated learning-based system, named Fed-IIoT, for

android malware detection. To impersonate the environment

of a poisoned sample, the Fed-IIoT system employs a

generative adversarial network. The performance evaluation

on three IoT datasets (the Contagio dataset, Drebin dataset,

and Genome dataset) using different features show that the

Fed-IIoT system performs significantly better than other

local adversarial training mechanisms. To perform malware
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detection in cloud computing environments, Payne and

Kundu [91] proposed a hierarchical approach towards deep

federated defences. Their proposed approach formalized

malware detection as a graph and hypergraph learning

problem.

IV. FEDERATED LEARNING WITH BLOCKCHAIN

Blockchain is a decentralized, provenance-preserving, im-

mutable ledger technique. It provides an efficient method to

remove a central server that is prone to attacks in an un-

trusted computing environment [108], [109]. To alleviate the

security problems that involve a central server in federated

learning, the blockchain model can be integrated with the

federated learning as shown in Fig 8 [110]–[116]. Tab. 5

presents works on blockchain and federated learning-based

solutions for cyber security in IoT applications.

A. PERMISSIONED BLOCKCHAIN-BASED SOLUTIONS

The implementation of distributed multi-party data sharing

in IoT applications is challenged by several issues. Based on

permissioned blockchain, Lu et al. [104] developed a dif-

ferential private multi-party data model sharing mechanism,

which is combined with federated learning. The proposed

mechanism can reduce the threat of data leakage, which

enables data owners to have more control over the access to

stored and shared data. The simulation results on two real-

world data sets (i.e., Reuters dataset and 20 newsgroups

dataset) show that the proposed system can guarantee the

quality of shared data as well as differential privacy.

To enhance the security of federated learning, Majeed

et al. [105] developed a blockchain-based solution, named

FLchain, which can be applied in multi-access edge com-

puting. The FLchain solution uses two ideas, namely, 1)

the channels for learning multiple global models and 2)

the global model state tree. Specifically, the aggregation of

local model updates is updated and stored in the blockchain

network.

Połap et al. [102] developed a privacy-preserving feder-

ated learning scheme, which is based on blockchain technol-

ogy for securing the Internet of Medical Things. The use of

the blockchain technology here provides security to updates

of local data, which are critical for the aggregation of

federated learning, and are derived from trusted devices with

authenticity. Furthermore, the local updates can be stored

as transactions in the blockchain network. The simulation

results on the Tuberculosis Chest X-ray Image Data Sets

with a convolutional neural network as a learning classifier

show that the proposed scheme achieves an effectiveness

average of 73,7%. Based on a multi-agent system, Połap

et al. [97] developed a security architecture that combines

the implementation of blockchain technology and federated

learning for securing the Internet of Medical Things (IoMT).

The proposed architecture enables separating specific tasks

to agents units as well as sharing and protecting private data

using blockchain technology. The performance evaluation

on Skin Cancer MNIST dataset with the ratio of 70:30

between training and validating shows that the proposed

architecture achieved an accuracy of 80 % for 25 iteration.

Lugan et al. [106] introduced a scalable security architec-

ture by deriving a new paradigm of trusted coalitions with

a high degree of trustworthiness which provides privacy-

preserving of data as well as motivation for coalition partic-

ipation in the absence of a central authority. The proposed

architecture is based on permissioned blockchains, which

enable deep learning that is distributed with rising degrees

of security and privacy. Lu et al. [16] proposed a permis-

sioned blockchain empowered federated learning scheme,

using digital twins to support long-distance communication

between edge servers and end users in edge computing.

The performance evaluations on the CIFAR10 dataset show

that the learning loss of the proposed scheme is improved

through the optimization process.

Through a shared machine learning model, Doku et al.

[107] proposed a federated learning scheme, named iFLBC,

which is based on blockchain technology. The iFLBC

scheme generates a shared model based on the aggregation

of the trained models. The aggregated model is then used

by IoT users to provide edge intelligence to end users. The

Proof of Common Interest (PoCI) is used by the iFLBC

scheme as a consensus algorithm to determine relevant data.

To perform authentication and trust management of fed-

erated nodes as well as the edge training model, Rahman et

al. [101] introduced a hybrid lightweight federated learning

platform that uses smart blockchain contracts for securing

the Internet of Health Things (IoHT). Their platform is

designed to enable inference process model learning, and

the complete encryption of a dataset. Here a blockchain is

used to aggregate the updated model parameters using multi-

plicative encryption, while the additive encryption operation

is performed by each federated edge node.

Through a shared machine learning model, Doku et al.

[107] proposed a federated learning scheme, named iFLBC,

which is based on blockchain technology. The iFLBC

scheme generates a shared model based on the aggregation

of the trained models. The aggregated model is then used by

IoT users for the provision of edge intelligence to end-users.

The Proof of Common Interest (PoCI) is used by the iFLBC

scheme as a consensus algorithm to determine relevant data.

B. PERMISSIONLESS BLOCKCHAIN-BASED

SOLUTIONS

The permissionless blockchains (aka. public blockchains)

enable any person to perform operations and to join as a

validator. Li et al. [98] introduced a crowdsourcing protocol,

called CrowdSFL, which is based on federated learning and

blockchain technology. The CrowdSFL protocol uses a re-

encryption algorithm based on Elgamal to provide higher

security with less overhead. The simulation results show that

the proposed CrowdSFL protocol can resist the following

malicious behaviors: Malicious miners, Malicious workers,

and Malicious requesters. To resist poisoning attacks as

well as membership inference attacks in 5G networks, Liu
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TABLE 5: Blockchain and Federated Learning-based solutions for cyber security in IoT applications.

FL-

Blockchain

system

Year Blockchain

model

FL

technique

Consensus (L), (T), (C) (S), (Com),

(Scal)

IoT applica-

tion

(+) Pros (-) Cons

Lu et al.

[16]
2021 Permissioned Federated

averaging
Delegated
Proof
of Stake
(DPoS)

(L) Medium
(T) High
(C) Medium

(S) High
(Com) Low
(Scal) High

Digital Twin
empowered
6G Networks

+ Minimize the time cost
- Nothing-at-stake problem

Połap et al.

[97]
2021 Permissioned ADAM algo-

rithm
N/A (L) Medium

(T) Low
(C) High

(S) High
(Com) Low
(Scal) High

Internet of
Medical
Things
(IoMT)

+ Parallel training of classifiers
- The consensus algorithm is
not defined

Li et al.

[98]
2020 Permissionless Federated

averaging
Proof-
of-work
(PoW)

(L) High
(T) Low
(C) High

(S) High
(Com) Low
(Scal) Low

Crowdsourcing + Privacy preserving in crowd-
sourcing
- Selfish mining is not consid-
ered

Liu et al.

[99]
2020 Permissionless Deep

learning
algorithms

N/A (L) Low
(T) High
(C) Low

(S) High
(Com) Low
(Scal) Low

5G networks + Resist poisoning attacks as
well as membership inference
attacks
- Vulnerable to Reputation-
based attacks

Wang et

al. [100]
2020 Permissionless Convolutional

networks
(CNN)

Proof-
of-work
(PoW)

(L) High
(T) Low
(C) High

(S) High
(Com) Low
(Scal) Low

Edge
computing

+ Prediction accuracy under at-
tacks
- Vulnerable to mining attacks

Rahman et

al. [101]
2020 Permissioned Deep learn-

ing applica-
tions

N/A (L) Medium
(T) Medium
(C) High

(S) Medium
(Com)
Medium
(Scal)
Medium

Internet
of Health
Things

+ Supports differential privacy
- Threat model and consensus
algorithm are not defined

Połap et al.

[102]
2020 Permissioned Convolutional

neural
network

N/A (L) Low
(T) Medium
(C) Low

(S) Medium
(Com) High
(Scal) Low

Internet of
Medical
Things

+ Removing centralized trust
- Threat model is not defined

Sharma et

al. [103]
2020 Permissionless Recursive

approach of
federated
learning

N/A (L) Medium
(T) Medium
(C) Medium

(S) High
(Com) Low
(Scal) Low

Internet
of Battle
Things

+ An accuracy rate greater than
92.7 %
- Threat model is not defined

Lu et al.

[104]
2019 Permissioned Gradient

boosting
decision tree

Proof of
training
Quality

(L) Low
(T) High
(C) Low

(S) High
(Com) High
(Scal) High

Industrial
IoT

+ Removing centralized trust
- High communication cost

Majeed et

al. [105]
2019 Permissioned Linear

regression
problem

Proof-
of-Work
(PoW)

(L) Low
(T) High
(C) Low

(S) High
(Com) High
(Scal) Low

Multi-
access edge
computing

+ Removing centralized trust
- Vulnerable to mining attacks

Lugan et

al. [106]
2019 Permissioned Convolutional

Neural
Network

Federated
Byzantine
Agreement
(FBA)

(L) High
(T) High
(C) Low

(S) High
(Com) High
(Scal) High

Medical ap-
plication

+ Safeguards data privacy
- Trust requirements

Doku et al.

[107]
2020 Permissioned Deep learn-

ing applica-
tions

Proof of
Common
Interest
(PoCI)

(L) High
(T) High
(C) High

(S) Medium
(Com)
Medium
(Scal)
Medium

Edge-
based IoT
applications

+ AI services closer to the end-
user
- Threat model are not defined

(Com) Communication, (S) Storage, (C) Computation, (T) Throughput, (Scal) Scalability, (L) Latency

et al. [99] developed a blockchain-based federated learn-

ing protocol. The proposed protocol can provide privacy-

preserving of data based on the local differential privacy

technology. The performance evaluation using two datasets,

including, MNIST dataset and CIFAR-10 dataset, show that

the proposed protocol can deter poisoning attacks.

Wang et al. [100] proposed a secure decentralized multi-

party learning scheme, named BEMA, for edge computing-

based IoT applications. Specifically, each part in the BEMA

scheme distributes their local model and during that time,

they are processing the models received from other users

about their local dataset and identify the models that require

certification. According the BEMA scheme, the parties

broadcasts the certification message to the corresponding

parties. Based on the certification message, the system

parties are not required to exchange their dataset with

any other parties. The simulation results on the MNIST

dataset show that the BEMA scheme is efficient in term of

prediction accuracy under attacks compared to the baseline

models.

Based on the features of blockchain technology and fed-

erated learning, Sharma et al. [103] proposed a distributed

computing defence scheme for securing the Internet of

Battle Things. The proposed system is composed of four

different layers: data layer, edge layer, fog layer, and cloud

layer. The performance evaluation shows that the proposed

scheme achieved an accuracy rate of more than 92.7 %.
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FIGURE 8: Federated Learning with Blockchain.

V. THREAT MODELS IN FEDERATED LEARNING

As federated learning is based on the collaborative action

of all edge devices to build a machine learning model, a

machine learning model can be faked when only a couple of

edge devices are operating incorrectly [135]. Tab. 6 presents

the vulnerabilities that can be exploited by adversaries in

federated learning-based systems for IoT networks.

A. INFORMATION LEAKAGE

The problem of information leakage from collaborative deep

learning is addressed by Hitaj et al. [118], where the authors

proposed an attack to leverage the real-time quality of the

learning operation which enables the adversary to train a

generative adversary network (GAN) to create a set of

targeted training patterns designed to be protected from the

adversary. Based on the analysis of the privacy leakage of

TernGrad [136], Dong et al. [49] proposed a secure and

robust federated learning protocol, named EaSTFLy, which

can be applied in IoT networks. The EaSTFLy protocol uses

privacy-preserving technologies, namely, Paillier homomor-

phic encryption (PHE) and Shamir’s threshold secret sharing

(TSS) in order to solve arising privacy issues. The per-

formance evaluation shows that the EaSTFLy protocol can

resist against semi-honest adversaries using two datasets,

including, MNIST and SVHN.

To train a deep neural network over a large dataset

can consume significant time and resources. One popular

approach to scaling is to fragment the training dataset, and

simultaneously train different networks on each of these

subsets and then share settings via a server of metrics. When

training, a local model retrieves settings from the server,

computes any required changes from its existing training

dataset, and then sends these changes directly back to the

server, which makes changes to the overall settings. Melis

et al. [134] founded that the leakage of unintended features

will expose collaborative learning to powerful inference

attacks.

B. POISONING ATTACK

Poisoning attacks focus on degrading the accuracy of a ma-

chine learning model by falsifying the aggregation through

the use of poisoned model updates, as shown in Fig 9.

Tan et al. [135] categorized poisoning attacks using the

sources of poisoned model updates into two types, namely,

model poisoning and data poisoning. Data poisoning is

performed by changing the training data in the damaged

edge devices, while model poisoning uses some predefined

rules to generates updates to the poisoned model. Zhao
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TABLE 6: The vulnerabilities that can be exploited by adversaries in federated learning-based systems for IoT networks.

Threat model Definition Scheme Year Proposed solutions

Adversarial attack

- Create additional training images to ensure
that more of the space is covered
- Generate adversarial attack data and attempting
to classify these generated data
- The generative adversary network (GAN) is
composed of two components, including, 1) generator
and 2) discriminator
- The adversarial machine learning has two sub-fields:
adversarial attack and adversarial defence [117]

Hitaj et al.
[118]

2017 Differential privacy at different granularity

Ibitoye et al.
[119]

2019 The study uses two deep learning
approaches, including, a typical Feed-
forward Neural Network (FNN) and a
Self-normalizing Neural Network (SNN)

Hassan et al.

[120]
2020 A robust decision boundary optimization ap-

proach
Song et al.
[121]

2020 The use of deep neural networks

Qiu et al.

[122]
2021 The use of saliency maps to identify the

critical features

Differential attack
Privacy threat as the possibility of an individual
entry being identified in a dataset

Yang et al.
[46]

2021 Optimized federated soft-impute algorithm

Lu et al. [53] 2020 Federated peer-to-peer vehicle learning that
uses random updating of sub-pots with no
conservators

Poisoning attack
An attacker inserts poisoned data samples
within a training data set to increase the training
classifier’s error

Cetin et al.
[94]

2019 Preventing the upload of unimportant data to
the server

Fang et al.

[123]
2020 Based on two concepts, including, Reject on

Negative Impact (RONI) and TRIM
Singh et al.

[124]
2020 Based on microaggregation and Gaussian

mixture models
Zhao et al.

[125]
2020 Generate auditing data using generative ad-

versarial networks
Taheri et al.

[85]
2020 Based two concepts, including, Federated

Generative Adversarial Network (FedGAN)
and Generative Adversarial Network (GAN)

Ma et al.
[126]

2021 Secure federated learning based on the
trimmed optimization with multiple keys

ur Rehman et
al. [25]

2021 Enable decentralization using Ethereum
blockchain and smart contract technology to
detect the poisoning attacks

Privacy Leakage
Attack

The attackers can deduce if an IoT device has been
involved in some mission from their local model
updates via differential attacks

Wang et al.
[23]

2020 The use of three technologies, namely,
blockchain, local differential privacy, and
reinforcement learning

Jamming attack The intruder’s intention is to maliciously interrupt
the victim network’s conversation by interfering or
colliding at the recipient’s side

Mowla et al.

[127]
2019 The application of dempster–Shafer theory-

based client group prioritization technique

Privacy leakage
Attack

The attackers can deduce if an IoT device has been
involved in some mission from their local model
updates via differential attacks

Wang et al.

[23]
2021 The use of three technologies, namely,

blockchain, local differential privacy, and
reinforcement learning

Byzantine attack
An attacker distributes a local malicious model
to other participants to modify the result
of the classification of the max-model predictor

Wang et al.

[100]
2020 Secure federated learning based on the

blockchain technology
Jebreel et al.

[128]
2020 The concept is the analysis of a small frac-

tion of the updates, instead of analyzing the
whole updates

Sun et al.
[45]

2021 Adaptive federated learning with digital twin

Shilling attack Shill attackers attempt to affect recommendation sys-
tems by producing many malicious profile users

iang et al.

[129]
2020 Designing four novel features from the gra-

dient matrices

Black-box attack
An adversary can access the deep learning networks’
inputs and outputs but not the internal settings

Chen et al.
[130]

2017 Ths use of zeroth order optimization

Papernot et
al. [131]

2017 To craft adversarial examples, the proposed
work use the local substitute of the target
model

Gray box attack
An adversary has partial information
about the defensive system

Apruzzese et

al. [132]
2020 Designing deep reinforcement learning ap-

proaches to protect botnet detectors from
adversarial attacks

Xu et al.

[133]
2021 An improved classifier together with an at-

tacking generator

Inference attack

Allow a malicious participant to infer membership
and properties. The attacks is conducted
by examining data to obtain illegitimate knowledge
regarding a specific topic or database

Melis et al.
[134]

2019 Learn only the features relevant to a given
task

Hao et al.

[56]
2019 Privacy-enhanced federated learning scheme

Liu et al.
[52]

2020 Federated extreme gradient boosting (XG-
Boost) scheme

Liu et al.

[99]
2020 The local differential privacy technology
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et al. [125] proposed a defense security system against

poisoning attacks using the concept of generative adversarial

networks. The proposed system removes adversaries using

auditing data that is generated by generative adversarial

networks. Based on microaggregation and Gaussian mixture

models, Singh et al. [124] designed a security system,

where the clients of the system self-identify as members

of a minority group and advertise relevant features to their

peers. Even with a low proportion of malicious edge servers,

data poisoning attacks can significantly decrease recall and

classification accuracy, as discussed by Tolpegin et al. [137].

Fang et al. [123] proposed a new idea to defend against

the local model poisoning attacks based on two concepts,

including, Reject on Negative Impact (RONI) and TRIM.

The RONI consists of evaluates the influence of every

training instance on the learned model’s error rate and

deletes the training instances that have a significant negative

influence. Ma et al. [126] proposed a secure federated

learning mechanism based on the trimmed optimization with

multiple keys, which can resist a range of poisoning attacks.

Taheri et al. [85] uses two concepts, including, Federated

Generative Adversarial Network (FedGAN) and Generative

Adversarial Network (GAN), to create an architecture based

on federated learning, named called Fed-IIoT. The proposed

Fed-IIoT architecture can resist dynamic poisoning attacks

in the server-side components.

Malicious 
Local data

Training 

Malicious
Local model (t)

Local data

Training 

Local model (t) Local data

Training 

Local model (t)

Vulnerable Global model
FL rounds

Legitimate FL Server

Aggregate

Upload Local 
model

Exchange updates

Download Global 
Model

Legitimate ClientsMalicious Client

FIGURE 9: Poisoning attack in Federated Learning.

C. JAMMING ATTACK

Adversaries can initiate a jamming attack against feder-

ated learning-based security and privacy systems where the

intruder’s intention is to maliciously interrupt the victim

network’s conversation by interfering or colliding at the

recipient’s side. Mowla et al. [127] proposed a security

architecture using federated learning for the detection of

cognitive jamming attack. Based on the Dempster–Shafer

theory-based client group prioritization technique, the de-

tection can be performed on the device while taking into

account the unbalanced sensory data characteristics of the

environment under training.

D. BYZANTINE ATTACK

An attacker distributes a local malicious model to other

participants to modify the result of the classification of the

max-model predictor. This attacker can induce errors in their

local model update process. Wang et al. [100] designed a

secure federated learning system based on blockchain tech-

nology that can defend against Byzantine attacks. Jebreel et

al. [128] designed a novel concept against Byzantine attacks

where the basic concept is the analysis of a small fraction

of the updates, instead of analyzing the whole updates. Sun

et al. [45] proposed adaptive federated learning with digital

twin, which is based on the concept of interaction records

and learning quality that rely on the use of malicious updates

to mitigate the malicious data threat.

E. ADVERSARIAL ATTACK

When an adversary is able to compromise an IoT device

without being detected, it can attempt to "poison" the sys-

tem’s training operation by falsifying packets as adversarial

samples that are designed to influence the model’s learning

in a manner that prevents the malicious activity from being

detected [138], [139]. Hitaj et al. [118] uses the differential

privacy at different granularities against generative adversar-

ial network. Song et al. [121] proposed federated defense

against adversarial attacks using deep neural networks. Qiu

et al. [122] proposed an adversarial attack against deep

learning-based network intrusion detection systems to attack

one state-of-the-art Kitsune [59]. The proposed attack uses

saliency maps to identify the critical features. Therefore,

Ibitoye et al. [119] showed the impact of adversarial samples

on an intrusion detection system based on a deep learning

approach in the environment of an IoT network. Specifically,

the study uses two deep learning approaches, including, a

typical Feed-forward Neural Network (FNN) and a Self-

normalizing Neural Network (SNN). The performance re-

sults on the BoT-IoT dataset show that an intrusion detection

system based on an FNN performs better than with SNN.

The concept of Generative Adversarial Network (GAN)

was introduced by Goodfellow et al. [140], which is used

by Hassan et al. [120] to generate adversarial attack data

and attempting to classify these generated data. The GAN

is composed of two components, including, 1) generator

and 2) discriminator. Fig 10 illustrate GAN with FL-based

IoT for cyber security [141]. To improve the reliability

of the attack/non-attack detection system for a non-noisy

as well as an adversarial setting, the authors proposed a

robust decision boundary optimization approach. To train the

downsampler, the proposed system uses a novel cooperative

training algorithm, which provides an improved delivery for

noisy examples with the real distribution. Throughout the

performance evaluation on a SCADA dataset, the results

show that the proposed system can classify with a binary

cross-entropy loss score of 0.47 and an accuracy of 95.55

%.

Recently, Rosenberg et al. [142] proposed a taxonomy

for the adversarial attacks in cyber security based on the

following seven distinct attack characteristics:

• Attack’s output: It indicates two types of attacks that

aim to modify a feature’s values, including, feature
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FIGURE 10: Generative Adversarial Network (GAN) with FL-based IoT for Cyber Security.

vector attack and end-to-end attack.

• Perturbed features: This characteristic of the attack

consists of the features being added or modified.

• Attacker’s goals: This characteristic of the attack con-

sists of performing incorrectly the security goals such

as authentication, confidentiality, privacy, integrity, and

availability...etc.

• Attack’s targeting: It indicates three types, including,

label indiscriminate attack, label-targeted attack, and

feature-targeted attack.

• Attacker’s training set access: It indicates the type of

the adversary’s access to the training set used by the

classifier.

• Attacker’s knowledge: This characteristic of the attack

is based on the amount of knowledge of the attacker

regarding the classifier.

• Targeted phase: It indicates two phases, including,

training phase attack and inference phase attack.

F. PRIVACY LEAKAGE ATTACK

In a distributed learning approach, the parameters of an

updated local model on IoT devices can keep disclosing

some information regarding data that has been employed

during training. Furthermore, the attackers can deduce if an

IoT device has been involved in some mission from their

local model updates via differential attacks. As each task

has specified detection positions, the privacy of the location

of the IoT devices involved can be leaked. To resist against

such privacy leakage attack, Wang et al. [23] proposed a

framework that uses three technologies, namely, blockchain,

local differential privacy, and reinforcement learning. Fig

11 illustrates a privacy leakage attack in federated learning

where a malicious actor compromises the aggregation server

and leaks the data of participating entities.
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FIGURE 11: Privacy leakage Attack in Federated Learning

G. SHILLING ATTACK

Shill attackers attempt to affect recommendation systems

by producing many malicious profile users and rating target

items with extreme ratings to increase or decrease their

popularity. Jiang et al. [129] proposed a new idea about

designing four features from the gradient matrices in order

to detect shilling attackers. Specifically, the proposed idea

train a semi-supervised Bayes classifier. The performance

evaluation on two real-world datasets, namely, MovieLens

and Netflix, demonstrates that the proposed idea can not

only identify shilling hackers but also improve the perfor-

mance of recommendations significantly.

H. INFERENCE ATTACK

An inference attack is a technique of data mining that is

conducted by examining data to obtain illegitimate knowl-
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edge regarding a specific topic or database. Hao et al. [56]

proposed a privacy-enhanced federated learning scheme that

can ensure the privacy of training data during and after the

training process as well as resist model inversion attacks

and membership inference attacks. Liu et al. [52] proposed

a federated extreme gradient boosting scheme that is based

on differential privacy and homomorphism of the Paillier

cryptosystem against the inference attack. Liu et al. [99]

proposed secure federated learning for detection poisoning

and membership inference attacks using the local differential

privacy technology.

I. OTHER ATTACKS

There are other offensive strategies that can be used to attack

ML models, such as white/black-box attacks, or even gray-

box attacks. The black-box attacks only provide the ability

to query the network’s output or even have no network

knowledge, while white-box attacks suppose that the attack

target is available [117]. Gray box attacks train a generative

model to produce adversarial examples and assume only

access to the target model in the training phase [132], [133].

These three methods are generally categorized as adversarial

attacking methods.

VI. EXPERIMENTATION

We train three deep federated learning-based IDS models for

cyber attack detection in IoT, namely Deep Neural Network

(DNN)-based IDS model, Convolutional Neural Network

(CNN)-based IDS model and Recurrent Neural Network

(RNN)-based IDS model. Then, we compare the results with

the classic/centralized versions of machine learning (non-

federated learning).

A. EXPERIMENTAL SETUP

We performed our experiments on Google Colaboratory

using well-known libraries, including NumPy, Pandas, Ten-

sorFlow, and Keras. There are different open-source fed-

erated learning frameworks that can be used for simulat-

ing and experimenting the federated learning algorithms,

including, 1) Federated Learning and Differential Privacy

(FL&DP) framework (developed by Sherpa.AI), 2) PySyft

(developed by OpenMined), 3) Paddle Federated Learning

(PFL) (developed by Baidu), 4) Federated AI Technology

Enabler (FATE) (developed by Webank’s AI department),

and 5) TensorFlow Federated (TFF) (developed by Google

Inc). We chose the Sherpa.AI framework for its advantages

compared to other frameworks [143]. The source code for

the experimental evaluation of this article is available upon

request 1.

1) Federated Learning Process

In Fig 12 we illustrate the learning process applied in our

deep federated learning based-IDS model. Alg. 1 shows a

pseudo-algorithm for the steps taken to train the various

1https://github.com/Ferrag/FLCYBERSECURITYIOT
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Algorithm 1: Federated Averaging

1 Server ( , �, '):

2 F1 ← �4=4A82">34; ()

3 for C = 1, .., ' do

4 (C ← Subset(max(� ·  , 1), ”A0=3><”)

5 Parallel.for : ∈ (C do

6 F:
C+1
← �;84=C (FC , :)

7 end

8 FC+1 ←
∑
 

:=1

=:

=
F:
C+1

9 end

1 Client (F, :):

33 B ← Split(P, �)

55 for i = 1,..,� do

6 for 1 ∈ B do

7 F ← F − [∇ 5 (F, 1)

8 end

9 end

10 Send F to Server

client sets, which is adapted from [7]. At the beginning, a

� fraction of  clients is picked by the aggregation server to

join the FL workflow, and carry out computations for ' fed-

erated learning rounds. The aggregation server produces a

random generic model having a random set of initial weights

F. Next, each client : retrieves the generic model from the

VOLUME 4, 2016 21



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3118642, IEEE Access

M. A. Ferrag et al.: Federated Deep Learning for Cyber Security

aggregation server. Every client re-train the generic model

with its private data locally and calculate a new local set

of weights F:
C+1

for the freshly generated local model. The

clients share the updated model. Then, the server aggregates

the parameters of all clients (
∑
 

:=1

=:

=
F:
C+1

). After that, the

aggregation server sends the updated global model to the

clients, where each client applies the updated parameters,

to improve the global model. These steps are repeated until

the model is converged.

B. DATASETS DESCRIPTION AND PRE-PROCESSING

Datasets are mandatory for training and evaluating IDSs in

IoT networks. The selection of the appropriate datasets for

a specific task is also of great importance. The datasets that

can be used in the performance evaluation of FL approaches

for IoT networks are reviewed in Tab. 7. There are three

datasets, namely, MNIST [144], Fed. EMNIST [145], and

CIFAR-10 [149] that can be used as real object classification

tasks for evaluating adaptive FL for Industrial IoT. There-

fore, these datasets are not suitable for evaluating federated

learning-based IoT intrusion detection systems. Security

researchers use cyber security datasets such as NSL-KDD

[150] and CICIDS 2017-2018 [151] for the performance

evaluation of federated learning-based intrusion detection

systems [157]. These two datasets does not contain IoT and

IIoT traffic. In addition, NSL-KDD [150] is obsolete in the

age of IoT networks (i.e., Fog, Edge, Cloud, Virtualization,

6G...etc.). For evaluating FL-based cyber security solutions

in IoT networks, the security research community uses the

following three datasets: TON_IoT [147], Bot-IoT [152],

and MQTTset [154]. They are chosen specifically because

they are build from heterogeneous data sources as well as

collected from IoT and IIoT sensor telemetry datasets.

FL-based tasks require the data distribution to be Non-

Independent and Identically Distributed (Non-IID) and un-

balanced, which reflects the properties of the real-world

scenario. However, due to the lack of FL-specific datasets,

any pre-existing public dataset with engineered partitions

can be used to mimic data federations, as employed in our

experiment. Based on the datasets review presented in Tab.

7, we selected and used three real traffic IoT-based datasets,

namely: BoT-IoT dataset, MQTTset dataset, and TON_IoT

dataset. Tab. 8 provides a list of flow types and sample

counts for each dataset. Description and pre-processing of

each dataset is as follows:

1) BoT-IoT Dataset

The BoT-IoT dataset was produced at the Cyber Range

Lab at UNSW Canberra as a result of building a real-life

network environment integrating a mix of normal and botnet

traffic [152], [158]–[162]. All 69.3 GB captured PCAP files

with over 72 million records. The dataset is available in

a variety of file formats, including PCAP, generated argus

files, as well as CSV files. We used the CSV files for our

experimental evaluations. The dataset includes various types

of cyber attacks including:

• DDoS & DoS attacks: The purpose of these attacks

is to make services inaccessible to legitimate users by

using a group of compromised bot-nets. Both DDoS,

DoS for TCP and UDP attacks were carried out using

the Hping3 tool.

• Reconnaissance: or probing attacks, which is a type of

malicious behavior that collects user data by scanning

remote systems. The dataset contains two types of

such attacks, namely: port scanning using Hping3,

and operating system fingerprinting using Nmap and

Xprobe2 tools.

• Theft: The objective of these cyber attacks is to

compromise sensitive data. The dataset contains two

types of such attacks, namely Keylogging and Data

theft attacks, both of which are carried out using the

Metasploit framework.

After dropping missing values, we also dropped the

’pkSeqID’, ’saddr’, ’sport’, and ’daddr’ features in order

to prevent overfitting, we encoded the ’proto’ feature’ with

one-hot encoding. Then, we normalized other numerical

features with the Z-Score normalization strategy as follows:

I =
G − `

f
(1)

where, G denote the value of the feature, ` denote the mean,

and f denote the standard deviation.

2) MQTTset Dataset

introduced by Vaccari et al. [154] to address the lack of

support for specific protocols that IoT environments are

currently using. It consists of Message Queue Telemetry

Transport (MQTT) protocol-based traffic between various

IoT devices to imitate a smart IoT environment. It comprises

real-world attacks tailored to target the IoT environment,

including:

• DoS: This attack was conducted using the MQTT-

malaria tool

• Brute Force: The approach to this type of attack is to

try to recover the user credentials used by MQTT using

the MQTTSA tool.

• Malformed data: this type of attack is designed to

trigger several malformed packets and send them to the

broker, attempting to raise exceptions on the selected

service.

• SlowITe: the Slow DoS against IoT Environments at-

tack is a new DoS approach that targets the MQTT

protocol, which generates a huge number of connec-

tions to the MQTT broker.

• MQTT Publish Flood: This approach seeks to overload

the system by using a unique connection rather than

instantiating multiple connections using the IoT-Flock

tool.

3) TON_IoT Dataset

This dataset is introduced by the IoT Lab of the UNSW

Canberra Cyber, the School of Engineering and Informa-
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TABLE 7: Datasets that can be used in the performance evaluation of FL approaches for IoT networks.

Dataset Description Studies Fields (+) Pros | (-) Cons

MNIST [144]

Constructed from the NIST
Special Databases 1 and 3,
featuring binary images of
handwritten numbers and

characters. The dataset includes
huge handwritten data which are

commonly used for training
diverse Ai-based image

processing systems.

Sun et
al. [45]

IIoT
cyber

security

+ Can be used as real object classification tasks for
evaluating adaptive FL for Industrial IoT.

+ It’s adapted to simulate federated learning tasks on
digit classification in an IoT environment.

+ Evaluate privacy-enhanced federated learning for
IIoT.

- The dataset is not appropriate for the evaluation of
Blockchain empowered federated deep learning

approaches for IoT and IIoT networks.

Wang et
al. [23]

Internet
of Drones
security

Hao et

al. [56]
Industrial

AI

Kong et
al. [22]

Mobile
Crowd
Sensing

Fed. EMNIST [145] Constructed by partitioning the
Extended MNIST data according

to the author of the data.

Caldas
et al.

[146]

Evaluation
frame-
work

+ Can be used as a benchmark for federated settings.
- It is not suitable for evaluating IoT security research

since there are no attacks in the dataset.

TON_IoT [147] Built from heterogeneous data
sources gathered from IoT and
IIoT sensor telemetry datasets.

Moustafa
et al.

[148]

Edge-
based AI
security

+ Determine the efficiency of federated learning-based
IoT intrusion detection systems.

- It’s not adapted to simulate federated learning tasks
on digit classification in an IoT environment.

Fed. TON_IoT [96] Constructed from ToN_IoT with
the involvement of federated data
sources collected from IoT ser-
vice telemetry datasets.

Moustafa
et al.

[96]

AI-Based
Security

+ Suitable for evaluating federated learning-based
cyber security solutions.

- The main limitation of this dataset is that it does not
include digit classification for simulate federated
learning tasks compared to Fed. EMNIST [145].

CIFAR-10 [149]
Contains 60,000 color images
divided into 10 classes, with
each class having 6K images.
There are 50K training images

and 10K test images.

Liu et

al. [99]

Blockchain-
based FL
protocol

+ Extensive use by the research community due to
ease of use and support for a variety of ML and FL

based frameworks.
- It is not suitable for evaluating federated

learning-based IoT intrusion detection systems.
Lu et al.

[16]

Edge
Network

Optimiza-
tion

NSL-KDD [150]
Proposed to address some of the

issues related to the KDD’99
dataset [150]. It includes several
categories of attacks, including
probing, DoS and user to root.

Rahman
et al.

[89]

FL-based
IoT cyber
security

+ Suitable for evaluating FL-based cyber security
solutions.

- Does not contain IoT and IIoT traffic. In addition, it
is obsolete in the age of IoT networks (i.e., Fog, Edge,

Cloud, Virtualization, 6G...etc.).

Al-
Marri et

al. [87]

FL-based
IDS

CICIDS 2017-2018 [151]
Consists of labeled real network

traffic, including complete
packet payloads. Used for
evaluating IDSs with an

emphasis on network-based
anomaly detectors.

Cetin et

al. [94]
FL-based

IDS
+ Determine the efficiency of federated learning-based

intrusion detection systems.
+ Suitable for evaluating federated learning-based

cyber security solutions.
- It’s not adapted to simulate federated learning tasks

in an IoT environment.

Chen et
al. [86]

Wireless
Edge

Networks
Security

Bot-IoT [152]

Was achieved by engineering a
real-world network setting in the

Cyber Range Lab at UNSW
Canberra. It consists of real

network traffic for a mixture of
normal traffic and botnet traffic.

Ibitoye
et al.

[119]

IoT-based
IDSs

security

+ The dataset is supplied in different formats (pcap,
csv), and have been partitioned, by attack category and

subcategory, which further facilitates FL-based
assessments.

+ A lightweight version of the dataset (5% of the
original) is also provided to facilitate the learning and

testing process.
- The main limitation of this dataset is that it does not

include the different types of IoT applications.

Huong
et al.

[84]

FL-based
IDS IoT

Popoola
et al.

[153]

Zero-Day
Botnet

IoT
Detection

MQTTset [154] Consists of network traffic of
MQTT protocol, for a combina-
tion of normal traffic and attack
traffic.

Vaccari
et al.

[154]

IoT-based
Protocol
Security

+ Due to the lack of IoT protocol-specific datasets, this
dataset helps researchers evaluate their FL-based IDSs
in the context of IoT protocol security.
- Only applicable to MQTT-based protocols.

N-BaIoT [155]
Generated by using the traffic

generated by nine heterogenous
commercial IoT devices, either

infected with botnet and
malware attacks, or clean.

Reya et

al. [156]

FL-based
IoT

Malware
Detection

+ Incorporate malicious traffic from two of the most
popular IoT-based malwares: Mirai and BASHLITE.
+ Proper combination with FL-based IoT IDS due to

the distributed nature of botnets.
- The threat model is limited to botnets and malware

attacks.

Popoola
et al.

[153]

Zero-Day
Botnet

IoT
Detection
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TABLE 8: Datasets description for experimental evaluation.

Dataset Flow Type Count Training Testing

Benign 477 370 107
DDoS +1.9" 154131 38530

Bot-IoT DoS +1.6" 132014 33011
Reconnaissance 91082 72919 18163

Theft 79 65 14

Benign 165463 115824 49639
DoS 130233 91156 39077

Brute Force 14501 10150 4351
MQTTset Malformed 10924 7646 3278

SlowITe 9202 6441 2761
Flood 613 429 184

Benign 35000 28000 7000
Password 5000 4000 1000

TON_IoT Backdoor 5000 4000 1000
Injection 5000 4000 1000

XSS 577 461 116
Scanning 529 423 106

tion technology (SEIT), UNSW Canberra at the Australian

Defence Force Academy (ADFA) [148] for the collection

and analysis of mixed data sources from IoT and Industrial

IoT (IIoT). The benchmark was conducted using several

virtual machines that included multiple operating systems to

address the cross-layer connectivity between the three tiers:

IIoT, Cloud, and Edge/Fog systems. Parallel processing was

used to assemble the datasets to gather diverse benign and

attack traffic, for IoT telemetry data service. It includes

different attacking techniques, such as:

• Password Cracking: This type of attack is intended to

allow the attacker to overcome authentication schemes

in order to compromise the IIoT devices. It was con-

ducted using CeWL and Hydra toolkits.

• Backdoor: With this kind of attack, it is possible for

attackers to obtain non-authorized remote access to

IIoT devices affected by a backdoor malware. The

framework used for these attacks is the Metasploitable3

framework.

• Injection: With this attack, the adversary aims to inject

malicious data into the IIoT applications.

• XSS: the adversary frequently tries to run malicious

commands in IIoT applications through a web server.

• Scanning: scanning tools, such as Nmap and Nessus

tools, allow the attacker to perform scanning attacks

against the IoT/IIoT devices and MQTT broker in a

public network.

To prevent overfitting, we dropped the ’date’ and ’saddr’

features. Then, we used the Z-Score normalization strategy

for numerical features.

C. USE CASES AND PERFORMANCE METRICS

For the purpose of evaluating our experiment, we employed

two use cases, namely:

• Centralized learning approach: The data is located at

a single location with three well-known deep learning

classifiers, i.e., DNN, CNN, and RNN.

• Federated learning approach: The data is located

across different clients, and an aggregation server is
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FIGURE 13: Centralized model performance.

used to aggregate the models of the clients. We used

also the same classifiers as in the previous approach.

We used three sets of client distributions:  =5,  =10,

and  =15, with two data distribution methods: 1) in-

dependent and identically distributed (IID) and 2) non-

independent and identically distributed (Non-IID), over 50

federated learning rounds. Tab. 9 shows the different pa-

rameters used in the three deep learning models for the

centralized and federated learning approaches.

When conducting intrusion detection performance analy-

sis, the most common metrics used are:

• True Positive (TP): is used to determine the number of

attack patterns that are properly classified as attacks.

• False Positive (FP): is used to determine the number of

normal patterns that are wrongly classified as attacks.

• True Negative (TN): is used to determine the number of

normal patterns that are proportion classified as normal.

• False Negative (FN): is used to determine the number

of attack patterns that are wrongly classified as normal.

• Accuracy: is used to determine the proportion of correct

classifications to the total number of entries, which is

given by :

)% + )#

)% + )# + �% + �#
(2)

• Precision: denotes the proportion of correct intrusion

classes to the total amount of predicted intrusion re-

sults, which can be given by :

)%

)% + �%
(3)

• Recall: denotes the proportion of proper attack classifi-

cations relative to the overall count of all samples that

ought to have been identified as attacks, it is given by

:
)%

)% + �#
(4)
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TABLE 9: Settings for deep learning classifiers.

Classifier Parameter Value Motivation

DNN
Hidden nodes 25-60 The balance between neurons with the appropriate

number of hidden layers leads to a better efficiency.Hidden layers 2

CNN

Convolutional layers 2 Conv1D Convolution layers, filters, and pooling layers apart
from the neurons, significantly reduce the number of
trainable parameters as compared to fully connected

networks. By using several such processes, it is
possible to train the model for the most complex

objectives.

Filters 18-26
Kernel size 3

Pooling layers 1 Global Average Pooling 1D

Hidden nodes 39-60
Hidden layers 2

RNN
Hidden nodes 22-60 The model can handle inputs of any given length, as

the model size doesn’t increase with the input size.Hidden LSTM layers 2

*

Batch size 1000
For each model, the activation function is ReLu, the
output layer is SoftMax since there is a multi-class

classification, the loss function is
categorical_crossentropy, and the optimization process
is Adam. To prevent overfitting, we used two methods:
dropout and !2 regularization. In order to ensure that
each device gains knowledge before sharing it with its

peers, we used one FL global epoch and 50 local
epochs.

Local epochs 1
Global epochs 50

Dropout 0.1
Learning rate 0.01-0.5
Regularization !2

Loss function categorical_crossentropy

Activation function ReLu

Classification function SoftMax

Optimizer Adam

TABLE 10: The evaluation results of centralized learning approaches.

Precision Recall �1-Score

Dataset Class DNN CNN RNN DNN CNN RNN DNN CNN RNN

Benign 100% 100% 100% 100% 100% 100% 100% 100% 100%
DDoS 97% 95% 97% 94% 97% 95% 96% 96% 96%

Bot-IoT DoS 94% 97% 95% 96% 93% 97% 95% 95% 96%
Reconnaissance 96% 97% 99% 99% 99% 99% 97% 98% 99%

Theft 00% 00% 100% 00% 00% 36% 00% 00% 53%

Benign 92% 91% 91% 94% 94% 94% 93% 93% 93%
DoS 91% 90% 90% 89% 89% 89% 90% 90% 90%

Brute Force 69% 69% 66% 84% 86% 86% 76% 76% 75%
MQTTset Malformed 80% 86% 80% 39% 30% 20% 52% 45% 32%

SlowITe 98% 97% 100% 100% 96% 93% 99% 96% 96%
Flood 82% 89% 100% 35% 48% 03% 61% 50% 05%

Benign 100% 100% 100% 100% 100% 100% 100% 100% 100%
Injection 100% 100% 100% 100% 100% 100% 100% 100% 100%
Backdoor 100% 100% 100% 100% 100% 100% 100% 100% 100%

TON_IoT Password 97% 90% 100% 100% 100% 100% 98% 95% 100%
XSS 100% 00% 100% 72% 00% 100% 83% 00% 100%

Scanning 100% 100% 100% 100% 100% 100% 100% 100% 100%

• �1-Score: reports the Harmonic Mean between Preci-

sion and Recall, which is given by:

2 ·
%A428B8>= · '420;;

%A428B8>= + '420;;
(5)

D. EXPERIMENTAL RESULTS

The outcomes achieved from both experimental use cases

are as follows:

1) Centralized Learning Models

Fig 13 presents the accuracy of deep learning techniques

(DNN, CNN, and RNN) in multiclass classification for

the three datasets (Bot-IoT, MQTTset, and TON_IoT). The

highest accuracy for the Bot-IoT dataset was obtained

using the RNN classifier which achieved 96.76%, while the

lowest accuracy was obtained using the DNN classifier with

95.76%. For the MQTTset dataset, the highest accuracy

was obtained using the DNN classifier which achieved

90.06%, while the lowest accuracy was obtained using the

RNN classifier with 89.29%. The highest accuracy for the

TON_IoT dataset was obtained using the RNN classifier

which achieved 99.98%, while the lowest accuracy was

obtained using the CNN classifier with 98.87%.

Tab. 10 provides the obtained centralized model results

of deep learning techniques in terms of Precision, Recall,

and �1-score under multi-class classification, which reports

the performance of the different models against the different

benign and attack classes in the three datasets.

Fig 14 presents the Receiver Operating Characteristic

(ROC) curves for five classes in the BoT-IoT dataset,

namely: class DDoS, class DoS, class Benign, class Re-

connaissance, and class Theft. All values are between 0.99

and 1.00. Fig 15 presents the ROC curves for five classes in

the MQTTset dataset, namely: class Bruteforce, class DoS,

class Flood, class Benign, and class Slowite. All values are

between 0.94 and 0.98. Fig 16 presents the ROC curves

for five classes in the TON_IoT dataset, namely: class

Backdoor, class Injection, class Benign, class Password, and

class Scanning.
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(a) DNN (b) CNN (c) RNN

FIGURE 14: The Receiver Operating Characteristic (ROC) curves for BoT-IoT dataset. (class 0: DDoS, class 1: DoS, class

2: Benign, class 3: Reconnaissance, class 4: Theft)

(a) DNN (b) CNN (c) RNN

FIGURE 15: The Receiver Operating Characteristic (ROC) curves for MQTTset datasets. (class 0: Bruteforce, class 1: DoS,

class 2: Flood, class 3: Benign, class 4: Slowite, class 5: Malformed)

2) Federated Learning Models

In this experimental setup rather than locating all data in

one location and conducting the learning from there, a

federated deep learning approach is used, where the data

never leaves the client side along with the shared knowledge

that goes back and forth between the aggregation server and

the participating clients.

Fig 17 report the validation accuracy for each global

model against the centralized model across all datasets

and all classifiers. Fig 17 (a) plots the validation accuracy

achieved by the federated deep learning classifiers (DNN,

CNN, RNN) with both the IID and Non-IID data distribution

strategies for the Bot-IoT dataset. For the IID data distri-

bution strategy, the federated deep learning global models

were able to approximate the performance of the centralized

learning models. For the non-IDI data distribution strategy,

the global models struggled a bit to perform the same as

in IID, which is quite normal since the data samples were

randomly distributed for all clients, however after 50 FL

runs, the overall performance was pretty good. Fig 17 (b)

and Fig 17 (c) illustrate the validation accuracy obtained

by the federated deep learning classifiers with the IID and

Non-IID data distribution strategies for the MQTTset and

TON_IoT datasets, respectively. Similar to the first data set,

the same observations apply to these two experiments.

Tab. 11 present a detailed side-by-side comparison of

all accuracies obtained by all global models and the high-

est/lowest accuracy of the best/worst clients couple in every

set, across the first and the 50
Cℎ round of federated deep

learning. The first observation is that in the IID data distribu-

tion strategy, the Best, Worst, and Global models are closely

related to each other consistently across all settings and

datasets, even though the clients are trained from different

class samples. The reason being that all clients can learn

from all classes. The second observation is that at the 50
Cℎ

rounds of federated deep learning, the performance of all

global models managed to approach the performance of the

centralized model.
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(a) DNN (b) CNN (c) RNN

FIGURE 16: The Receiver Operating Characteristic (ROC) curves for TON_IOT dataset. (class 0: Backdoor, class 1: Injection,

class 2: Benign, class 3: Password, class 4: Scanning, class 5: XSS)

TABLE 11: The evaluation results of federated deep learning approaches.

1
BC round 50

Cℎ round

IID Non IID IID Non IID

Dataset Classifier Clients B W G B W G B W G B W G

 = 5 48.12% 45.71% 48.04% 54.17% 42.89% 42.89% 92.80% 92.24% 92.49% 91.76% 61.29% 91.98%

DNN  = 10 42.89% 42.89% 42.89% 56.59% 20.22% 56.12% 92.20% 91.83% 92.03% 90.99% 56.18% 91.28%

 = 15 51.33% 48.80% 50.21% 60.31% 20.32% 54.37% 91.55% 90.92% 91.39% 87.65% 63.48% 88.03%

 = 5 63.22% 62.21% 62.69% 64.23% 36.75% 42.89% 94.75% 94.36% 94.61% 93.19% 48.13% 89.91%

Bot-IoT CNN  = 10 47.42% 45.83% 46.34% 42.89% 20.22% 40.17% 94.08% 93.70% 94.06% 89.88% 48.54% 86.34%

 = 15 53.74% 42.89% 44.54% 64.85% 01.00% 41.61% 93.89% 93.08% 93.74% 90.59% 52.98% 90.35%

 = 5 47.81% 47.51% 47.68% 60.90% 42.89% 42.92% 95.38% 95.29% 95.47% 92.96% 65.64% 88.56%

RNN  = 10 44.10% 42.92% 43.44% 51.06% 40.08% 43.48% 94.51% 94.39% 94.50% 89.58% 63.96% 88.67%

 = 15 47.24% 42.92% 44.70% 44.74% 20.24% 45.76% 92.59% 91.74% 92.24% 85.92% 64.68% 86.28%

 = 5 76.02% 69.36% 71.68% 71.87% 38.75% 66.17% 85.71% 80.23% 84.81% 83.03% 41.36% 85.68%

DNN  = 10 77.85% 68.65% 77.91% 77.60% 04.20% 71.64% 82.86% 82.27% 82.60% 78.30% 25.99% 77.88%

 = 15 77.98% 71.57% 75.01% 68.35% 20.46% 61.37% 83.94% 80.58% 83.68% 78.42% 45.06% 78.03%

 = 5 77.89% 71.79% 77.87% 73.52% 39.35% 66.09% 88.01% 83.09% 88.06% 86.08% 39.41% 86.45%

MQTTset CNN  = 10 76.23% 67.19% 72.60% 63.55% 17.54% 42.25% 84.91% 84.00% 84.40% 80.91% 46.11% 81.16%

 = 15 60.67% 57.01% 60.05% 68.81% 04.13% 51.59% 79.01% 78.63% 78.68% 78.01% 57.48% 77.80%

 = 5 64.56% 63.65% 64.36% 76.11% 49.99% 74.10% 88.47% 87.45% 88.23% 86.04% 83.91% 86.16%

RNN  = 10 75.33% 73.33% 74.34% 77.24% 03.96% 71.13% 83.81% 81.60% 82.73% 84.59% 42.46% 80.73%

 = 15 71.51% 66.47% 67.69% 70.98% 03.69% 39.01% 85.23% 83.24% 84.69% 83.82% 44.56% 70.47%

 = 5 67.15% 67.11% 67.15% 68.47% 09.78% 68.47% 97.96% 96.64% 97.95% 68.47% 68.47% 68.47%

DNN  = 10 67.11% 67.11% 67.11% 68.47% 09.78% 68.47% 98.03% 94.48% 97.95% 75.39% 74.88% 74.93%

 = 15 58.72% 58.72% 58.72% 68.47% 09.78% 68.47% 96.59% 86.74% 97.16% 68.47% 68.47% 68.47%

 = 5 68.47% 68.47% 68.47% 68.47% 68.47% 68.47% 98.86% 98.86% 98.86% 96.46% 70.65% 95.82%

TON_IoT CNN  = 10 68.47% 68.47% 68.47% 68.47% 08.45% 49.96% 98.62% 97.77% 97.86% 80.13% 78.26% 79.63%

 = 15 69.50% 68.63% 68.90% 68.47% 10.13% 68.47% 96.83% 93.05% 96.10% 80.63% 78.26% 80.57%

 = 5 68.47% 68.47% 68.47% 68.47% 09.78% 68.47% 98.86% 98.86% 98.86% 82.08% 78.26% 76.72%

RNN  = 10 68.47% 68.47% 68.47% 68.47% 03.53% 68.47% 92.90% 88.04% 90.70% 78.26% 78.26% 78.26%

 = 15 68.47% 68.47% 68.47% 68.47% 09.78% 68.47% 84.85% 79.90% 83.35% 78.26% 78.26% 78.26%
(B): Best client accuracy; (W): Worst client accuracy; (G): Global model accuracy;

In the Non-IID case, at the first FL round, the Best, Worst,

and Global models are nowhere near one another, and this

is quite expected since not all clients were trained from all

classes. A good example is a Bot-IoT dataset, with the CNN

classifier, where K=15, the worst accuracy of the client was

01.00%, but with 50
4 of federated deep learning rounds,

this same client has an accuracy of 52.98% and the global

model achieved 90.35%. This means that this client was

able to benefit from the federated learning approach even

though it has very limited knowledge of the attack classes

in its local private data.

3) Comparison

The centralized intrusion detection approaches are capable

of detecting intrusions with high accuracy. However, there

are problems with these practices. First, and most impor-

tantly, privacy issues, since it requires data to be collected

at a single entity, thus making it easier for an attacker to

target a single location for all data, if that single entity is

compromised, all sensitive data will be breached. Second,

given the huge flow of data coming from the end devices to

that single entity, latency, and processing is major concerns

that must be addressed.

Federated learning-based intrusion detection systems, on

the other hand, significantly decrease the previous issues

with decent detection accuracy, and in many cases, it
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FIGURE 17: Learning Performances

approached the performance of a centralized approach as

we showed with our federated deep learning models. Fur-

thermore, by taking into account that the field of federated

learning is in its developmental stage, we expect that in

the future, federated learning will replace centralized and

traditional learning approaches in many machine learning-

based domains, especially in areas where data privacy is a

real concern.

VII. IMPORTANCE OF THE STUDY AND OPEN

CHALLENGES

Federated learning is an emerging research area that is still

in its developmental stage. Although it has a lot of poten-

tial in different IoT-based application areas, the practical

implementation of federated learning presents several open

challenges, as discussed below.

A. IMPORTANCE OF THE STUDY

28 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3118642, IEEE Access

M. A. Ferrag et al.: Federated Deep Learning for Cyber Security

1) IoT Applications:

The study shows that the federated deep learning-based

security and privacy systems can be applied for several types

of IoT applications, including, Industrial Internet of Things,

Edge Computing, Internet of Drones, Internet of Healthcare

Things, Cloud Computing, 5G-enabled IoT, Internet of

Vehicles, Mobile Crowdsensing, etc.

2) Intrusion and malware detection:

The study presents the importance of using federated deep

learning by intrusion detection systems and malware detec-

tion systems as a decentralized machine learning approach

for detecting cyber security attacks in IoT networks.

3) When Federated Learning Meets Blockchain:

The study shows that blockchain technology can be inte-

grated with federated deep learning for cyber security in

IoT networks. This combination reduces the threat of data

leakage and enables data owners to have more control over

the access to stored and shared data.

4) Vulnerabilities of Federated Deep Learning:

The study presents the importance of defending against

the vulnerabilities that can be exploited by adversaries in

federated deep learning-based systems for IoT networks.

These adversaries can use cyber security attacks such as

adversarial attacks or poisoning attacks to degrading the

accuracy of a machine learning model or deduce if an IoT

device has been involved in some mission from their local

model updates.

5) Federated Deep Learning versus Classical Machine

Learning:

The primary motivation for conducting this study was to

investigate the effectiveness of federated deep learning ver-

sus conventional machine learning for cybersecurity in IoT

networks. Based on the performance evaluation under three

new real IoT traffic datasets, namely, the Bot-IoT dataset,

the MQTTset dataset, and the TON_IoT dataset, the study

demonstrates that federated deep learning approaches (i.e.,

CNN, RNN, and DNN) outperform the classic/centralized

versions of machine learning (non-federated learning) in

assuring the privacy of IoT device data and provide the

higher accuracy in detecting attacks.

B. OPEN CHALLENGES AND CONSIDERATIONS

1) Security and Privacy Challenges:

Federated learning promises to protect the privacy of local

user data, however, recent studies have shown that the

involvement of specific participants can still be revealed

by analyzing the global model [163]. Although some tech-

niques have been used to overcome this problem, includ-

ing differential privacy [164], these approaches degrade

model performance or require additional conditions that are

not suitable for IoT networks, especially high computing

power [165]. Therefore, efficiently implemented federated

approaches that provide high performance and preserve pri-

vacy without additional computational overhead are strongly

required for IoT networks and applications.

2) IoT Network Settings Challenges:

The robustness of the federated deep learning system should

be considered since users and aggregators are required to

exchange parameters over the IoT network. In addition,

communication channels and computational power are con-

strained in terms of capacity, as well as the presence of

various network issues such as bandwidth, interference,

and noise [165]. Hence, client access and limited network

reliability are significant research challenges in developing

a federated deep learning system for cyber security in IoT

applications.

3) Data-related Challenges:

The issue of identifying and eliminating bias of all kinds

(cognitive, sampling, reporting, and confirmation) in the data

generation process is a serious concern for ML research

in general. However, it is more complicated in FL due to

the fact that data is distributed over multiple parties. For

example, if IoT devices have varying data sizes, the FL-

based system may give more importance to the contributions

of the populations. In addition, If the global model update

depends on the latency of the IoT network, then networks

with slower devices or networks may be under-represented

[166]. The most important question that may arise is how

to develop a new FL-based strategy that can resist the

vulnerabilities (Poisoning attack, Jamming attack, Adver-

sarial attack, ...etc.) while considering the practicability of

deploying the solution, particularly in the context of low-

resource IoT devices.

4) FL Platforms Challenges:

Many IoT-based applications can benefit from FL due to

the amazing performance of collaborative learning in the

appropriate domains. Although there are various emerging

frameworks for FL in general, designing a specific IoT

framework based on FL is still an important research

topic that needs to take into account the underlying IoT

infrastructure.

VIII. CONCLUSIONS

In this article, we conducted a comparative study with an

experimental analysis of federated deep learning approaches

for cybersecurity in IoT applications. Specifically, we an-

alyzed the federated learning-based security and privacy

systems for several types of IoT applications, including,

Industrial IoT, Edge Computing, Internet of Drones, Internet

of Healthcare Things, Internet of Vehicles, etc. Then, we

reviewed the federated learning systems with blockchain and

malware/intrusion detection systems for IoT applications.

We reviewed the vulnerabilities that can be exploited by

adversaries in the federated learning-based security and

VOLUME 4, 2016 29



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3118642, IEEE Access

M. A. Ferrag et al.: Federated Deep Learning for Cyber Security

privacy systems. We provided an experimental analysis of

federated deep learning with three deep learning approaches,

namely, RNN, CNN, and DNN. For each deep learning

model, we studied the performance of centralized and fed-

erated learning under three IoT traffic datasets, namely, the

Bot-IoT dataset, the MQTTset dataset, and the TON_IoT

dataset. The results demonstrate that federated deep learning

approaches can outperform the classic/centralized versions

of machine learning (non-federated learning) in assuring the

privacy of IoT device data and provides the highest accuracy

in detecting attacks.
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