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Abstract—Deep Learning (DL) has been widely proposed for
botnet attack detection in Internet of Things (IoT) networks.
However, the traditional Centralized DL (CDL) method cannot
be used to detect previously unknown (zero-day) botnet attack
without breaching the data privacy rights of the users. In this
paper, we propose Federated Deep Learning (FDL) method for
zero-day botnet attack detection to avoid data privacy leakage
in IoT edge devices. In this method, an optimal Deep Neural
Network (DNN) architecture is employed for network traffic
classification. A model parameter server remotely coordinates the
independent training of the DNN models in multiple IoT edge
devices, while Federated Averaging (FedAvg) algorithm is used to
aggregate local model updates. A global DNN model is produced
after a number of communication rounds between the model
parameter server and the IoT edge devices. Zero-day botnet
attack scenarios in IoT edge devices is simulated with the Bot-
IoT and N-BaIoT data sets. Experiment results show that FDL
model: (a) detects zero-day botnet attacks with high classification
performance; (b) guarantees data privacy and security; (c) has
low communication overhead (d) requires low memory space for
the storage of training data; and (e) has low network latency.
Therefore, FDL method outperformed CDL, Localized DL, and
Distributed DL methods in this application scenario.

Index Terms—Cybersecurity, botnet detection, federated learn-
ing, deep learning, deep neural network, Internet of Things.

I. INTRODUCTION

B
OTNET attack is a serious cyber security challenge facing

the Internet of Things (IoT) [1]–[3]. In our context, a

botnet is a network of compromised devices that is used to

launch cyber attack against critical infrastructures [4]. This

cyber attack may be in form of Denial of Service (DoS),

Distributed DoS (DDoS), reconnaissance, or data theft [5].
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For example, Mirai is a popular IoT botnet, which can auto-

matically scan a network for vulnerable devices (Scan attack)

as well as launch acknowledgement (ACK), synchronization

(SYN), and User Datagram Protocol (UDP) flooding attacks

[6]. Meanwhile, more than 25.4 billion IoT devices will be

connected to the Internet in 2030 [7], and IoT market is

expected to worth about 1.6 trillion US dollars by 2025 [8].

There is an increasing attention of cybercriminals to IoT due

to its fast-growing adoption in smart applications, distributed

nature, market size, and security vulnerabilities.

IoT networks generate high volume of data, and this is

expected to reach 79.4 zettabytes (ZB) by 2025 [9]. With the

advent of cloud computing, each IoT device transmits its data

to a central server on the Cloud, where different pre-processes

and analyses can be performed on the aggregated data. In

view of this, Centralized Deep Learning (CDL) method has

been extensively proposed for network-based botnet attack

detection in large IoT network traffic data with good clas-

sification performance [10]–[14]. For example, Apruzzese et

al [15] proposed a method that can prevent adversarial attacks

using Deep Reinforcement Learning (DRL). Also, Zhao et al

[16] proposed a Lightweight Dynamic Autoencoder Network

(LDAN) method for network intrusion detection in resource-

constrained devices of Wireless Sensor Network (WSN). In

previous works [10], [17]–[20], we proposed different Deep

Learning (DL) methods, which can process a large volume

of network traffic data to protect communication networks

against cyber attacks. However, modern IoT networks are

fast becoming highly scalable. Therefore, due to network

constraints, it may be difficult to offload massive distributed

IoT network traffic data to a remote central cloud server for

data processing in real-life use cases. Also, CDL method takes

longer time to train, it has high communication overhead,

and its memory space requirement for data storage is high.

Furthermore, Cloud data centers are often located far away

from where IoT devices are deployed. This causes high latency

in CDL-based botnet detection method.

Recently, strict laws such as the General Data Protection

Regulation (GDPR)1 and the Consumer Privacy Bill of Rights

(CPBR)2 were enacted to address data privacy concerns. Un-

fortunately, CDL method does not guarantee the privacy and

security of IoT devices because it involves the transmission of

network traffic features from all participating IoT devices to a

central cloud server. Specifically, the use of a third-party cloud

1https://gdpr.eu/data-privacy/
2https://www.congress.gov/bill/116th-congress/senate-bill/2968/text



server for CDL will introduce a high risk of privacy leakage in 
IoT systems because the network traffic features may contain 
sensitive information about the owners of the IoT devices [21]–

[24]. The violation of data privacy protection regulations can 
lead to a serious penalty. In the case of GDPR, the fine of 
data privacy breach could be as high as e10 million3.

Edge computing can be combined with DL to bring in-

telligence closer to where data are being generated, thereby 
addressing the issues of data privacy, high communication 
cost, large memory space requirement, short training time, 
and high latency [25]. Localized DL (LDL) and Distributed 
DL (DDL) methods achieve edge intelligence without data 
aggregation [26]. However, the classification p erformance of 
these methods is usually low in zero-day (previously unknown) 
botnet attack scenarios because a single IoT edge device 
has limited training samples. Meanwhile, in zero-day botnet 
attacks, hackers use a network of compromised computing 
devices to exploit previously unknown vulnerabilities in IoT 
systems. Detecting zero-day cyber attacks is a very difficult 
task because there is no prior knowledge of such incidence 
[27]. Therefore, an efficient i ntrusion d etection s ystem de-

signed for IoT edge network must be able to detect zero-day 
botnet attacks with high detection rate and very low false alarm 
rate.

Federated Learning (FL) is a collaborative method for 
privacy-preserving DL based on the private data in distributed 
multiple devices [28]. This method enables collaborative DL 
in distributed IoT devices without sharing private network 
traffic d ata w ith t he c entral c loud s erver. I n t his p aper, we 
propose Federated DL (FDL) method for zero-day botnet 
attack detection in IoT edge devices. Previous studies have 
shown that DNN models can process network traffic d ata to 
detect botnet attacks in IoT networks [29]–[31]. Therefore, 
Deep Neural Network (DNN) architecture is employed for 
network traffic c lassification. Lo cal DN N mo dels ar e trained 
independently in multiple IoT edge devices, while Federated 
Averaging (FedAvg) algorithm is used to aggregate local 
model updates. A global DNN model is produced after a num-

ber of communication rounds between the model parameter 
server and the IoT edge devices. The main contributions of 
this paper are as follows:

1) We propose FDL method for zero-day botnet attack

detection in IoT edge devices without any data privacy

concern;

2) DNN is designed for network traffic classification while

FedAvg algorithm is used for the aggregation of local

DNN model updates;

3) FDL method is simulated with Bot-IoT dataset, and its

classification performance in five IoT edge devices is

evaluated based on accuracy, precision, recall, and F1

score;

4) The effectiveness of FDL method is compared with

state-of-the-art DL methods i.e. CDL, LDL, and Dis-

tributed DL (DDL).

The remaining parts of this paper are organised as follows:

in Section II, we present the review of related works and the

3https://gdpr-info.eu/issues/fines-penalties/

main contributions of this paper; in Section III, we describe

the proposed method for zero-day botnet attack detection in

IoT edge devices; in Section IV, we develop and simulate DL

models; in Section V, we analyse and compare the effective-

ness of the DL models; and in Section VI, we summarise our

findings.

II. REVIEW OF RELATED WORKS

Network Intrusion Detection System (NIDS) is often de-

signed for specific use cases. In the literature, Federated

Learning (FL) method has been proposed for intrusion detec-

tion in Wireless Edge Network (WEN) [32], [33], IoT [21]–

[23], [34]–[39], Industrial IoT (IIoT) [24], [40]–[42], indus-

trial Cyber-Physical System (CPS) [43], Medical CPS [44],

Wireless Fidelity (Wi-Fi) network [45], large-scale distributed

Local Area Network (LAN) [46], [47], satellite-terrestrial

integrated networks [48], Cloud [49], edge computing [50],

vehicular network [26], [51], [52]. We acknowledge that FL

methods have been proposed for intrusion detection in IoT

networks [21]–[23], [34]–[39]. However, the authors did not

consider zero-day cyber-attack vulnerabilities in edge IoT

devices. In real-life scenario, the training data on each IoT

edge device is expected to have a unique statistical distribution

depending on the usage pattern [53]. Therefore, the sizes of

local training data in IoT edge devices should vary. In previous

studies, the local training data in an IoT edge device is a

representative of the overall data distribution. That is, the

local training data are balanced, independent and identically

distributed across the classes of network traffic investigated.

Different ML/DL model architectures have been proposed

for network traffic classification in FL method. Chen et al [32]

combined Gated Recurrent Unit (GRU) with Support Vector

Machine (SVM). Rahman et al [21], Al-Athba et al [36], and

Kim et al [23] used Artificial Neural Network (ANN). Li et

al [43] combined Convolutional Neural Network (CNN) with

GRU. Cetin et al [45] employed Stacked Autoencoder (SAE).

Sun et al [46], [47] and Li et al [48] adopted CNN. Qin et al

[33] proposed Binarised Neural Network (BNN). Nguyen et al

[22] proposed GRU. Hei et al [49] compared the effectiveness

of ANN, Decision Tree (DT), Random Forest (RF), and SVM.

Zhao et al [29] proposed Deep Neural Network (DNN). Chen

et al [54] proposed Deep Autoencoding Gaussian Mixture

Model (DAGMM). Li et al [50] recommended a hybrid of

CNN and Long Short-Term Memory (LSTM).

FL methods are simulated with relevant network intrusion

dataset(s) to evaluate their performance. So far, FL methods

have been simulated with WSN-DS [32], KDDCup99 [32],

[49], [54], CICIDS2017 [32], [33], NSL-KDD [21], [23],

[36], GPWST [43], AWID [45], ISCX2014 [33], UNSW-NB15

[29], [50], and private datasets [22], [46]–[48]. However, these

network intrusion datasets did not contain samples of IoT

network traffic. Also, different botnet attack scenarios were

not included in the datasets. Table I summarises the review of

related works on the application of FL methods to intrusion

detection. In this paper, we addressed the aforementioned

research gaps in the literature.



TABLE I
COMPARISON WITH RELATED WORKS

Ref. Year Model Dataset
IoT
traffic

Botnet
attacks

Zero-day
scenario

Main contribution

[32] 2020 GRU-SVM
WSN-DS,
KDDCup99,
CICIDS2017

✗ ✗ ✗

Chen et al. proposed the use of attention mechanism
in FedAvg algorithm to reduce the communication
overhead of FL in WEN while ensuring learning
convergence.

[21] 2020 ANN NSL-KDD ✗ ✗ ✗
Rahman et al. proposed FedAvg algorithm for intru-
sion detection in IoT networks.

[43] 2020 CNN-GRU GPWST ✗ ✗ ✗

Li et al. proposed the use of Paillier cryptosystem-
based secure communication protocol in FL-based
intrusion detection system to preserve the security
and the privacy of model parameters.

[45] 2019 SAE AWID ✗ ✗ ✗

Cetin et al. investigated the effectiveness of FL
approach for wireless intrusion detection in a Wi-Fi
network.

[46], [47] 2020 CNN Private ✗ ✗ ✗

Sun et al. proposed a segmented FL method for
intrusion detection in a large-scale distributed LAN
setting.

[36] 2020 ANN NSL-KDD ✗ ✗ ✗

Al-Athba et al. proposed the use of mimic learning
in FL method to prevent reverse engineering ML
attacks.

[48] 2020 CNN Private ✗ ✗ ✗

Li et al. proposed FL method for distributed network
intrusion detection in satellite-terrestrial integrated
networks.

[33] 2020 BNN
CICIDS2017,
ISCX2014

✗ ✗ ✗
Qin et al. proposed FL method for line-speed and
scalable intrusion detection at network edge

[22] 2019 GRU Private ✗ ✗ ✗
Nguyen et al. proposed FL approach for device-type-
specific anomaly detection in IoT networks.

[49] 2020
ANN, DT,
RF, SVM

KDDCup99 ✗ ✗ ✗
Hei et al. proposed a blockchained-FL method for
cloud-based intrusion detection

[23] 2020 ANN NSL-KDD ✗ ✗ ✗
Kim et al. proposed FL method for collaborative
anomaly detection in IoT networks.

[29] 2020 DNN UNSW-NB15 ✗ ✗ ✗

Zhao et al. combined FL with transfer learning to
address the problem of data scarcity in anomaly
detection.

[54] 2020 DAGMM KDDCup99 ✗ ✗ ✗
Chen et al. proposed FL method for network
anomaly detection.

[50] 2020 CNN-LSTM UNSW-NB15 ✗ ✗ ✗
Li et al. proposed FL method for APT detection in
edge computing.

Ours 2021 DNN
Bot-IoT,
N-BaIoT

✓ ✓ ✓
We propose FL method for zero-day botnet attack
detection in edge IoT devices.

III. THE PROPOSED FDL METHOD

In this section, we describe the network traffic features, the

DNN architecture, and the FDL algorithm that are proposed

for zero-day botnet attack detection in IoT edge devices.

A. Deep Neural Network

For accurate classification of network traffic in IoT edge

devices, we propose DNN architecture to obtain hierarchi-

cal representation using multiple layers of abstraction. This

DL model architecture comprised an input layer, densely-

connected hidden layers, and an output layer. The number of

neurons at the input layer, 3, is equal to the number of features

that faithfully represents a single network traffic packet in the

training data. The number of the densely-connected hidden

layers and the number of neurons in each of them are mostly

determined based on experimentation with different sets of

values to obtain the optimal DNN optimal architecture that

achieves the best classification performance. For the first

hidden layer, each of the network traffic samples in the training

data, G, is transformed into ℎ1 as:

ℎ1 = fℎ (,1G + 11), (1)

where fℎ is the activation function at the hidden layer, ,1

is the weight matrix of the first hidden layer, and 11 is

the bias vector of the first hidden layer. For any successive

hidden layer, ℎ8+1, the output of the current hidden layer, ℎ8 ,

is transformed as:

ℎ8+1 = fℎ (,8ℎ8 + 18), (2)

where ,8 is the weight matrix of the current hidden layer, and

18 is the bias vector of the current hidden layer. For each of

the hidden layers, a Rectified Linear Unit (ReLU) activation

function is used to transform the summed input because it

is easier to train and it helps to achieve good classification

performance [55]. The initial random weight matrices of the

hidden layers are set based on the He uniform initialization

method that was proposed for ReLU activation functions in

[56]. Finally, the predicted class label, H̃, is obtained by

transforming the output of the last hidden layer, ℎ 9 :

H̃ = fH (ℎ 9 ), (3)

where fH is the activation function at the output layer. The

number of neurons at the output layer, <, is equal to the

number of classes that network traffic in the IoT network can



be categorised into. A softmax activation function is used to 
normalize the output of ℎ 9 to a probability distribution over 
the predicted output classes as:

fH (ℎ)U =
4ℎU

<∑

V=1

4ℎV

, (4)

where fH (ℎ) is the softmax function, ℎU is the input hidden

vector, 4ℎU is the standard exponential function for the input

hidden vector, and 4ℎV is the standard exponential function for

the output hidden vector. Adam algorithm that was proposed

in [57] is used with categorical cross-entropy loss function for

first-order gradient-based stochastic optimization.

B. Federated Deep Learning

FDL method is proposed to detect zero-day botnet attacks in

IoT edge devices based on Algorithm 1. The FDL framework

comprised of a model parameter server and  edge IoT

devices. The model parameter server coordinates the training

of DNN models in the edge IoT devices. It determines the

number of training iterations/epochs (�), the batch size of

training data (�), and the number of communication rounds

('). In this method,  DNN models are trained separately

with local training data that are privately held in  edge IoT

devices. After each training of � epochs, all the edge IoT

devices send their local model updates to the model parameter

server for aggregation using FedAvg algorithm [28]. Model

aggregation is performed by model parameter server in '

communication rounds.

Algorithm 1: FDL algorithm

Input: ', � , # , �,  

Initialization: , = ,0

Output: ,A
1 function localUpdate(,, :):

2 for 4 = 1 to � do

3 for 1 = 1 to #
�

do

4 ,:,1 = ,:,1−1 − WΔ! (1,,: )

5 end

6 end

7 return ,:

8 end function

9 for A = 1 to ' do

10 for : = 1 to  do

11 ,A ,: = localUpdate(,A−1, :)

12 end

13 ,A =

 ∑

:=1

=:
#
,A ,:

14 end

IV. MODEL DEVELOPMENT AND EXPERIMENTS

In this section, we simulate the CDL, LDL, DDL, and FDL

methods with the Bot-IoT and N-BaIoT data sets. Experi-

ments were performed to determine the effectiveness of these

methods for zero-day botnet attack detection in five IoT edge

devices, as shown in Fig. 1.

Fig. 1. FDL architecture for zero-day botnet attack detection in IoT edge
devices.

A. Bot-IoT Data Set

Bot-IoT data set [5] is publicly and freely available for cyber

security research. It contains benign IoT network traffic and

four botnet attack scenarios including DoS, DDoS, reconnais-

sance, and data theft. The testbed that generated the benign

IoT network traffic data comprised a weather station, a smart

fridge, motion-activated lights, a remote-controlled garage

door, and a smart thermostat. Koroniotis et al. [5] proposed a

method for network packet capturing and feature extraction.

In this method, network packets were captured using Tshark4

while network traffic features were extracted using Argus5.

Also, new features were generated based on transaction flows

of network connections over a sliding window of 100. Previous

study [10] confirmed that this method of feature extraction is

effective for multi-class network traffic classification. Forty-

three features were extracted from a network packet to de-

scribe the behaviour of a network traffic sample. The list and

description of these features are available in [5]. This data

set has 477 benign IoT network traffic samples and 3,668,045

botnet attack samples.

In this study, we identified and removed six redundant

features from the dataset, namely: pkSeqID, flgs, proto, state,

saddr, and daddr. Specifically, pkSeqID is the sequence iden-

tification number assigned to the network packet; flgs, proto,

and state are duplication of flgs_number, proto_number, and

state_number, respectively; while saddr is the source Internet

Protocol (IP) address and daddr is the destination IP address.

Therefore, we used only 37 features to represent a network

traffic sample in this paper. For effective training of a neural

network model, the values of these features were scaled to

numbers between 0 and 1 using min-max normalisation given

by:

x=>A< =
x − x<8=

x<0G − x<8=
, (5)

4https://www.wireshark.org/docs/man-pages/tshark.html
5https://openargus.org/



where x is a network traffic f eature v ector; w hile x <8= and 
x<0G are the minimum and maximum values of x respectively.

B. N-BaIoT Data Set

N-BaIoT data set [6] is also publicly and freely available

for cyber security research. The IoT testbed that generated this

data set comprised two doorbells, a thermostat, a baby monitor,

four security cameras, and a webcam. These commercial IoT

devices were infected with Mirai and BASHLITE botnets, and

115 statistical features that represent the behaviour snapshots

of the network traffic were extracted from the network pack-

ets over several temporal windows. The details of the data

collection and the feature extraction can be found in [6]. This

data set contains benign IoT network traffic and IoT botnet

scenarios including ACK, Scan, SYN, and UDPP flooding

attacks. In this study, we used 363,979 benign IoT network

traffic samples and 1,483,658 IoT botnet attack samples. The

network traffic features were normalized based on Eq. (5) to

eliminate any form of bias in favour of a particular feature.

C. Zero-Day Botnet Attack Detection in IoT Edge Devices

In this subsection, we model zero-day botnet attack scenar-

ios in five IoT edge devices using the Bot-IoT and N-BaIoT

data sets.

IoT devices have low computational resources and a limited

memory space for data storage. Therefore, the private network

traffic data generated by IoT devices within the same network

are stored in an IoT edge device for ease of processing. In this

study, we have five different IoT edge devices, namely ED1,

ED2, ED3, ED4, and ED5.

TABLE II
DISTRIBUTION OF TRAINING DATA IN BOT-IOT DATA SET

Class ED1 ED2 ED3 ED4 ED5

DDoS 0 337162 337163 337163 337163
DoS 288752 288752 288752 0 288752
Normal 84 84 84 84 0
Reconn 15979 0 15979 15979 15979
Theft 13 14 0 14 14

Total 304828 626012 641978 353240 641908

TABLE III
DISTRIBUTION OF TESTING DATA IN BOT-IOT DATA SET

Class ED1 ED2 ED3 ED4 ED5

DDoS 115413 115382 115459 115570 115406
DoS 99090 99303 99193 99016 99354
Normal 31 26 34 32 26
Reconn 5572 5398 5420 5490 5318
Theft 5 2 5 3 7

Total 220111 220111 220111 220111 220111

Tables II and III show the distribution of training data and

testing data, respectively among the IoT edge devices using

the Bot-IoT data set. One class of network traffic was not

included in each of the IoT edge devices to determine the

ability of the FDL model to detect zero-day botnet attacks

without any data privacy concern. Specifically, no sample of

DDoS attack, reconnaissance attack, theft attack, DoS attack,

and normal traffic was included in ED1, ED2, ED3, ED4,

and ED5, respectively. In order to depict real-life scenario,

sample distribution in the training data was unbalanced and

non-identically distributed across the five classes and across

the five IoT edge devices. The generalization performance of

the FDL model was evaluated with a unique set of testing data

in each of the IoT edge devices as shown in Table III.

TABLE IV
DISTRIBUTION OF TRAINING DATA IN N-BAIOT DATA SET

Class ED1 ED2 ED3 ED4 ED5

Normal 0 9224 122682 43648 68979
ACK 71529 0 63632 42486 40590
Scan 75239 30258 0 67706 67813
SYN 85900 81834 82895 0 43438
UDPP 57436 61020 56500 39479 0

Total 290104 182336 325709 193319 220820

TABLE V
DISTRIBUTION OF TESTING DATA IN N-BAIOT DATA SET

Class ED1 ED2 ED3 ED4 ED5

Normal 14877 3893 52419 18693 29564
ACK 30557 33907 27361 18193 17211
Scan 32359 12895 31058 29055 29266
SYN 36621 35013 35577 19778 18647
UDPP 24781 26422 24261 16856 16085

Total 139195 112130 170676 102575 110773

Tables IV and V show the distribution of training data and

testing data, respectively among the IoT edge devices using

the N-BaIoT data set. One class of network traffic was not

included in each of the IoT edge devices to determine the

ability of the FDL model to detect zero-day botnet attacks

without any data privacy concern. Specifically, no sample of

normal traffic, ACK attack, Scan attack, SYN attack, and

UDPP attack was included in ED1, ED2, ED3, ED4, and

ED5, respectively. The generalization performance of the FDL

model was evaluated with a unique set of testing data in each

of the IoT edge devices as shown in Table V.

D. Experiments

First, sixteen DNN models were trained and tested with

the Bot-IoT and N-BaIoT data sets to determine the opti-

mal neural network architecture for efficient network traffic

classification. Then, CDL, LDL, DDL, and FDL models were

developed for zero-day botnet attack detection in five IoT edge

devices. We used TensorFlow6 and Keras7 frameworks for

the DNN local models in the CDL, LDL, DDL, and FDL

methods, while IBM8 framework was used for FL in the FDL

method. The models were trained using the Spyder9 Integrated

Development Environment (IDE) running on Ubuntu 16.04

LTS workstation with the following specifications: Random

Access Memory (32 GB), Processor (Intel Core i7-9700K

CPU @ 3.60GHz × 8), and 64-bit Operating System (OS).

The deployment of the FDL model in IoT edge devices was

6https://www.tensorflow.org/
7https://keras.io/
8https://ibmfl.mybluemix.net/
9https://www.spyder-ide.org/



simulated using five L inux t erminals. F inally, t he classifica-

tion performance of the models was evaluated based on the 
accuracy, precision, recall, and F1 score.

The architecture of a DNN model comprises the input layer, 
the hidden layers, and the output layer. Each of these layers 
is made up of neurons. For the input layer, the number of 
neurons is the same as the number of network traffic features 
in the training data. In this study, there were 37 and 115 
network traffic features in the Bot-IoT and N-BaIoT data sets, 
respectively. Therefore, the number of input layer neurons was 
set to 37 and 115 when the DNN models were trained with 
the Bot-IoT and N-BaIoT data sets, respectively. The numbers 
of the hidden layers and their hidden neurons are usually 
determined by experimentation. So, we varied the number of 
the hidden layers between 1 and 4, while the number of the 
hidden neurons in each layer was varied between 25 and 100 at 
an interval of 25. For the output layer, the number of neurons 
is the same of the number of classes of network traffic in 
the training data. There are five c lasses o f n etwork t raffic in 
each of the Bot-IoT and N-BaIoT data sets. Therefore, the 
number of output layer neurons was set to 5. The DNN models 
were trained with a moderate batch size (i.e., 128) and a small 
number of epochs (i.e., 5) to minimize the time spent during 
the training process as well as to avoid model over-fitting.

For the CDL method, each of the IoT edge devices (ED1-

ED5) transmitted its training data to a central server for 
aggregation. Therefore, the CDL model was trained with an 
aggregated data in the cloud. A copy of the CDL model 
was sent back to all the IoT edge devices for network traffic 
classification on the testing data. For the LDL method, model 
training was performed with the local training data in the edge 
IoT devices. Therefore, a unique LDL model was developed 
for each of the IoT edge devices. The DDL method is similar 
to LDL method. Unlike the LDL method, the parameters of 
the local models in the DDL method were sent to a model 
parameter server for aggregation. The communication between 
the model parameter server and the five IoT edge devices was 
established using the Flask10 web framework. A global DDL 
model was developed and a copy of this model was transmitted 
to all the IoT edge devices for network traffic classification 
on their testing data. The FDL method is similar to the DDL 
method. However, in the FDL method, the model parameter 
server receives further updates from the local models in the 
IoT edge devices to improve the classification performance of 
the global FDL model.

The classification p erformance o f t he C DL, L DL, DDL, 
and FDL models was evaluated with the testing data in the 
IoT edge devices based on accuracy, precision, recall, and F1 
score:

�22DA02H =
)% + )#

)% + �% + )# + �#
, (6)

%A428B8>= =
)%

)% + �%
, (7)

'420;; =
)%

)% + �#
, (8)

10https://palletsprojects.com/p/flask/

�1 =
2 × )%

(2 × )%) + �% + �#
, (9)

where True Positive (TP) is the number of network traffic

samples in the positive class that are correctly classified as

positive; False Positive (FP) is the number of network traffic

samples in the negative class that are misclassified as positive;

True Negative (TN) is the number of network traffic samples in

the negative class that are correctly classified as negative; and

False Negative (FN) is the number of network traffic samples

in the negative class that are misclassified as positive.

V. RESULTS AND DISCUSSION

In this section, we analyze and compare the effectiveness of

the FDL model with that of the CDL, LDL, and DDL models

based on their: (a) classification performance; (b) training

time; (c) data privacy preservation; (d) communication cost;

(e) memory space requirement; and (e) network latency.

A. Optimal Architecture for DNN Model

In this subsection, we evaluate the performance of sixteen

CDL models to determine the optimal neural network archi-

tecture for botnet attack detection in IoT edge devices.

TABLE VI
RECALL (%) OF CDL MODEL FOR DIFFERENT DNN ARCHITECTURES

BASED ON BOT-IOT DATA SET

Hidden neurons ED1 ED2 ED3 ED4 ED5 Avg.

25 57.99 57.97 57.97 39.99 47.78 52.34
50 61.83 61.18 61.53 47.11 56.33 57.60
75 71.03 70.41 72.87 58.06 69.47 68.37
100 73.77 72.46 73.02 64.05 76.66 71.99
100, 25 74.34 73.05 74.78 56.04 69.55 69.55
100, 50 75.01 71.79 74.81 55.90 69.38 69.38
100, 75 75.73 75.10 74.90 56.93 70.67 70.67
100, 100 75.69 74.39 74.84 56.73 70.41 70.41
100, 100, 25 75.95 74.67 76.88 57.63 71.28 71.28
100, 100, 50 75.36 75.37 75.17 57.22 70.78 70.78
100, 100, 75 75.35 75.35 75.74 57.36 70.95 70.95
100, 100, 100 80.00 89.99 81.93 63.73 78.91 78.91
100, 100, 100, 25 85.31 90.00 81.94 65.31 80.64 80.64
100, 100, 100, 50 83.28 92.63 89.33 67.31 83.13 83.14
100, 100, 100, 75 86.60 92.58 93.71 96.27 96.93 93.22
100, 100, 100, 100 95.34 93.32 98.81 99.21 98.50 97.04

Tables VI and VII show that the DNN model with four

hidden layers and 100 hidden neurons per layer gave the best

overall classification performance. The DNN model was able

to perform well because the increase in the numbers of the

hidden layers and the neurons per hidden layer helped the

model to produce a more accurate hierarchical representation

of the network traffic features using additional parameters.

The model achieved an average recall of 97.04% and 97.88%

when it was simulated with Bot-IoT and N-BaIoT data sets,

respectively. This implies that nearly all of the network traffic

samples in each of the five IoT edge devices were correctly

classified. Therefore, this particular DNN architecture is suit-

able for efficient botnet attack detection in IoT networks.

Subsequently, we used this optimal DNN model architecture

to develop CDL, LDL, DDL, and FDL models.



TABLE VII
AVERAGE RECALL (%) OF CDL MODEL FOR DIFFERENT DNN

ARCHITECTURES BASED ON N-BAIOT DATA SET

Hidden neurons ED1 ED2 ED3 ED4 ED5 Avg.

25 93.01 94.62 99.92 88.67 90.03 93.25
50 93.03 94.77 99.99 90.57 91.06 93.88
75 98.11 94.86 99.97 90.71 91.86 95.10
100 93.25 93.91 99.99 92.16 96.30 95.12
100, 25 93.03 94.53 99.99 95.25 92.59 95.08
100, 50 95.93 94.82 99.99 95.04 97.67 96.69
100, 75 99.97 94.87 99.99 94.62 96.28 97.15
100, 100 94.62 94.89 99.99 94.39 94.23 95.62
100, 100, 25 99.96 94.89 99.99 95.61 97.53 97.60
100, 100, 50 99.98 94.86 99.99 97.03 99.60 98.29
100, 100, 75 95.25 91.84 99.99 96.88 99.91 96.77
100, 100, 100 99.98 94.66 99.99 95.65 98.22 97.70
100, 100, 100, 25 95.34 94.92 99.99 93.45 97.58 96.26
100, 100, 100, 50 99.96 94.91 100.00 94.50 97.95 97.46
100, 100, 100, 75 99.96 94.90 99.99 96.12 97.69 97.73
100, 100, 100, 100 99.94 94.80 99.99 96.35 98.32 97.88

TABLE VIII
CLASSIFICATION PERFORMANCE OF CDL MODEL BASED ON BOT-IOT

DATA SET

Metric (%) DDoS DoS Normal Recon. Theft

ED1

Accuracy 99.96 99.96 100.00 100.00 100.00
Precision 99.98 99.95 100.00 99.95 100.00
Recall 99.95 99.97 96.77 100.00 80.00
F1 score 99.97 99.96 98.36 99.97 88.89

ED2

Accuracy 99.97 99.97 100.00 100.00 100.00
Precision 99.98 99.95 100.00 99.98 100.00
Recall 99.96 99.98 100.00 100.00 66.67
F1 score 99.97 99.96 100.00 99.99 80.00

ED3

Accuracy 99.97 99.97 100.00 100.00 100.00
Precision 99.98 99.95 96.97 99.96 100.00
Recall 99.96 99.97 94.12 99.98 100.00
F1 score 99.97 99.96 95.52 99.97 100.00

ED4

Accuracy 99.96 99.96 100.00 100.00 100.00
Precision 99.97 99.95 100.00 99.98 100.00
Recall 99.95 99.97 96.15 100.00 100.00
F1 score 99.96 99.96 98.04 99.99 100.00

ED5

Accuracy 99.97 99.97 100.00 100.00 100.00
Precision 99.98 99.95 96.15 99.96 100.00
Recall 99.96 99.98 92.59 99.98 100.00
F1 score 99.97 99.97 94.34 99.97 100.00

B. Classification Performance of CDL Model

In this subsection, we evaluate the class-wise classification

performance of the CDL in the five IoT edge devices.

Table VIII shows that the CDL model achieved an excellent

performance in detecting DDoS, DoS, and reconnaissance

attacks when it was trained and tested with Bot-IoT data set.

Although the CDL model also achieved a high accuracy for

the Normal and Theft classes, its precision, recall, and the

F1 score were relatively low in some cases. Table II shows

that the number of samples in each of the Normal and Theft

classes is far less than the number of samples in each of

the DDoS, DoS, and reconnaissance classes. Therefore, the

class imbalance adversely affected the ability of CDL model

to correctly classify the samples in the minority classes. In

other words, class imbalance in the training data reduced the

rates of precision, recall, and F1 score of the CDL model in

the Normal and Theft classes. For instance, in ED1, the recall

and F1 score of CDL model for the Theft class were 80% and

88.89%, respectively. Also, in ED2, the recall of CDL model

for the Theft class was 66.67% and its F1 score was 80%.

Furthermore, in ED5, the precision, recall, and F1 score of

CDL model for the Normal class were 96.15%, 92.59%, and

94.34%, respectively.

Table IX shows the class-wise performance of the CDL

model in the five edge devices when it was trained and tested

with the N-BaIoT data set. The CDL model achieved an

excellent classification performance in ED1, ED3, and ED5

with accuracy, precision, recall, and F1 score of more than

95%. On the other hand, the CDL model had a relatively lower

classification performance in ED2 and ED4. Specifically, some

of the ACK attack samples in ED2 were misclassified as UDPP

attack, while some of the SYN attack samples in ED4 were

misclassified as Scan attack.

TABLE IX
CLASSIFICATION PERFORMANCE OF CDL MODEL BASED ON N-BAIOT

DATA SET

Metric (%) Normal ACK Scan SYN UDPP

ED1

Accuracy 99.98 99.97 99.99 100.00 99.96
Precision 99.99 100.00 99.98 99.99 99.75
Recall 99.85 99.86 99.98 99.99 100.00
F1 score 99.92 99.93 99.98 99.99 99.88

ED2

Accuracy 99.99 92.16 99.99 100.00 92.16
Precision 99.90 100.00 99.98 100.00 75.03
Recall 99.95 74.07 99.97 100.00 100.00
F1 score 99.92 85.10 99.98 100.00 85.73

ED3

Accuracy 99.99 100.00 100.00 100.00 100.00
Precision 99.98 99.98 100.00 100.00 100.00
Recall 100.00 100.00 99.99 99.99 99.98
F1 score 99.99 99.99 100.00 99.99 99.99

ED4

Accuracy 99.99 99.99 96.50 96.50 99.99
Precision 99.94 99.99 89.02 100.00 99.93
Recall 100.00 99.92 99.99 81.86 99.99
F1 score 99.97 99.96 94.19 90.03 99.96

ED5

Accuracy 99.99 99.30 99.34 99.34 99.30
Precision 99.97 100.00 97.59 100.00 95.43
Recall 99.99 95.53 99.98 96.11 99.99
F1 score 99.98 97.71 98.77 98.01 97.66

C. Classification Performance of LDL Model

In this subsection, we evaluate the class-wise classification

performance of the LDL model in the five IoT edge devices.

Table X shows that the LDL model could not detect zero-

day botnet attacks when it was trained and tested with the Bot-

IoT data set. In ED1, the LDL model achieved an excellent

performance in detecting benign network traffic as well as

DoS and reconnaissance attacks. However, all the samples

in the DDoS and Theft classes were incorrectly classified

as DoS attacks. This is partly because there was no DDoS

attack sample in the training data of ED1. Also, the number

of samples in the Theft class was relatively low, compared to

the number of samples in each of the DoS and Reconnais-

sance classes. In ED2, the LDL model achieved an excellent

performance in detecting benign network traffic as well as

DDoS and DoS attacks. However, all the samples in the

Reconnaissance class and some of the samples in Theft class

were incorrectly classified as benign network traffic. This is

partly because there was no reconnaissance attack sample in

the training data of ED2. Also, the number of samples in the

Theft class was relatively low, compared to the number of



samples in each of the DDoS and DoS classes. In ED3, the 
LDL model achieved an excellent performance in detecting 
DDoS, DoS, and reconnaissance attacks. However, all the 
samples in the Theft class were incorrectly classified as benign 
network traffic. This is partly because there was no Theft 
attack sample in the training data of ED3. Also, the number of 
samples in the Normal class was relatively low, compared to 
the number of samples in each of the DDoS, DoS, and 
reconnaissance classes. In ED4, the LDL model achieved an 
excellent performance in detecting benign network traffic as 
well as DDoS, reconnaissance, and theft attacks. However, 
each of the samples in the DoS class was incorrectly classified 
as either DDoS or Theft attack. This happened because there 
was no DoS attack sample in the training data of ED4. In ED5, 
the LDL model achieved an excellent performance in detecting 
DDoS, DoS, reconnaissance, and theft attacks. However, each 
of the samples in the Normal class was incorrectly classified 
as either DDoS, DoS, Reconnaissance, or Theft attack. This 
happened because there was no benign network traffic sample 
in the training data of ED5.

TABLE X
CLASSIFICATION PERFORMANCE OF LDL MODELS BASED ON BOT-IOT

DATA SET

Metric (%) DDoS DoS Normal Recon. Theft

ED1

Accuracy 47.57 47.56 100.00 100.00 100.00
Precision 0.00 46.19 100.00 99.98 0.00
Recall 0.00 100.00 100.00 99.98 0.00
F1 score 0.00 63.19 100.00 99.98 0.00

ED2

Accuracy 99.57 98.13 99.66 97.60 100.00
Precision 99.38 96.04 3.75 0.00 100.00
Recall 99.80 99.98 93.55 0.00 66.67
F1 score 99.59 97.97 7.20 0.00 80.00

ED3

Accuracy 99.86 99.86 100.00 100.00 100.00
Precision 99.78 99.95 100.00 99.89 0.00
Recall 99.96 99.75 82.35 100.00 0.00
F1 score 99.87 99.85 90.32 99.95 0.00

ED4

Accuracy 55.05 55.00 100.00 100.00 99.95
Precision 53.89 0.00 96.30 99.98 5.69
Recall 100.00 0.00 100.00 99.98 100.00
F1 score 70.04 0.00 98.11 99.98 10.77

ED5

Accuracy 99.85 99.85 99.99 99.99 100.00
Precision 99.82 99.86 0.00 99.48 100.00
Recall 99.88 99.79 0.00 99.98 100.00
F1 score 99.85 99.83 0.00 99.73 100.00

Table XI shows that the LDL model could not detect zero-

day botnet attacks when it was trained and tested with the N-

BaIoT data set. In ED1, the LDL model achieved an excellent

performance in detecting ACK, Scan, SYN, and UDPP attacks.

However, all the samples in the Normal class were misclas-

sified as Scan attack because there was no benign sample in

the training data of ED1. In ED2, the LDL model achieved

achieved an excellent performance in detecting benign network

traffic as well as Scan and SYN attacks. However, all the

samples in the ACK class were misclassified as UDPP attack.

This happened because there was no ACK attack sample in

the training data of ED2. In ED3, the LDL model achieved an

excellent performance in detecting benign network traffic as

well as ACK and UDPP attacks. However, all the samples in

Scan class were misclassified as SYN attack. This happened

because there was no Scan attack sample in the training

data of ED3. In ED4, the LDL model achieved an excellent

TABLE XI
CLASSIFICATION PERFORMANCE OF LDL MODELS BASED ON N-BAIOT

DATA SET

Metric (%) Normal ACK Scan SYN UDPP

ED1

Accuracy 89.31 98.55 89.34 99.99 98.52
Precision 0.00 99.99 68.56 99.99 92.33
Recall 0.00 93.40 100.00 99.97 100.00
F1 score 0.00 96.58 81.35 99.98 96.01

ED2

Accuracy 99.99 69.76 100.00 100.00 69.76
Precision 99.85 0.00 99.98 100.00 43.80
Recall 99.92 0.00 99.99 99.99 100.00
F1 score 99.88 0.00 99.98 99.99 60.91

ED3

Accuracy 97.23 100.00 81.80 84.57 100.00
Precision 91.73 99.99 0.00 57.46 100.00
Recall 100.00 100.00 0.00 99.99 99.98
F1 score 95.69 99.99 0.00 72.98 99.99

ED4

Accuracy 99.99 99.99 80.72 80.72 99.99
Precision 99.94 100.00 59.50 0.00 99.96
Recall 100.00 99.95 99.99 0.00 99.99
F1 score 99.97 99.98 74.61 0.00 99.98

ED5

Accuracy 99.99 85.48 100.00 100.00 85.48
Precision 99.96 51.69 100.00 100.00 0.00
Recall 100.00 99.99 99.98 99.99 0.00
F1 score 99.98 68.15 99.99 99.99 0.00

performance in detecting benign network traffic as well as the

ACK and UDPP attacks. However, all of the samples in the

SYN class were misclassified as Scan attack. This happened

because there was no SYN attack sample in the training data of

ED4. In ED5, the LDL model achieved achieved an excellent

performance in detecting benign network traffic as well as

Scan and SYN attacks. However, all of the samples in the

UDPP class were misclassified as ACK attack. This happened

because there was no UDPP attack sample in the training data

of ED5.

D. Classification Performance of DDL Model

In this subsection, we evaluate the class-wise classification

performance of the DDL model in the five IoT edge devices.

Table XII shows that the DDL model could only detect

DDoS attacks efficiently when it was trained and tested with

the Bot-IoT data set. The DDL model achieved a high recall of

more than 98% in detecting DDoS attacks. However, benign

network traffic as well as DoS, reconnaissance, and theft

attacks were largely misclassified. The recall of the DDL

model was 32.28±0.08% for the DoS class, 69.96±5.29% for

the Normal class, and 0.29 ± 0.04% for the Reconnaissance

class. A recall of 0% for the Theft class implies that none of

the samples in this attack category was correctly classified.

Table XIII shows that the DDL model could not detect all

the categories of botnet attacks in the five IoT edge devices

efficiently when it was trained and tested with N-BaIoT data

set. The DDL model achieved an excellent performance in

detecting benign network traffic as well as ACK and SYN

attacks with a recall of 99.87 ± 0.19%, 92.99 ± 6.64%, and

96.82 ± 4.41%, respectively. However, the DDL model had

a relatively low recall of 43.09% for the Scan class in ED1,

52.66% for the UDPP class in ED4, and 53.27% for the UDPP

class in ED5. Also, the DDL model largely misclassified the

UDPP attack samples in ED1, ED2, and ED3.



TABLE XII
CLASSIFICATION PERFORMANCE OF DDL MODEL BASED ON BOT-IOT

DATA SET

Metric (%) DDoS DoS Normal Reconn. Theft

ED1

Accuracy 66.83 68.76 99.64 97.48 100.00
Precision 61.44 94.78 2.72 100.00 0.00
Recall 98.71 32.38 70.97 0.31 0.00
F1 score 75.73 48.27 5.24 0.61 0.00

ED2

Accuracy 66.84 68.68 99.67 97.60 100.00
Precision 61.52 94.70 2.95 100.00 0.00
Recall 98.69 32.17 70.97 0.23 0.00
F1 score 75.79 48.03 5.66 0.45 0.00

ED3

Accuracy 66.86 68.78 99.64 97.49 100.00
Precision 61.50 94.74 2.76 100.00 0.00
Recall 98.70 32.31 64.71 0.31 0.00
F1 score 75.78 48.18 5.30 0.61 0.00

ED4

Accuracy 66.87 68.74 99.66 97.56 100.00
Precision 61.50 94.89 2.27 100.00 0.00
Recall 98.74 32.29 65.38 0.32 0.00
F1 score 75.79 48.18 4.39 0.63 0.00

ED5

Accuracy 66.85 68.70 99.67 97.58 100.00
Precision 61.51 94.67 2.83 100.00 0.00
Recall 98.67 32.26 77.78 0.26 0.00
F1 score 75.78 48.12 5.46 0.52 0.00

TABLE XIII
CLASSIFICATION PERFORMANCE OF DDL MODEL BASED ON N-BAIOT

DATA SET

Metric (%) Normal ACK Scan SYN UDPP

ED1

Accuracy 86.77 82.20 86.77 99.99 82.19
Precision 44.68 55.22 100.00 99.97 27.27
Recall 99.93 100.00 43.09 99.99 0.01
F1 score 61.75 71.15 60.23 99.98 0.02

ED2

Accuracy 95.34 77.74 96.92 99.89 76.44
Precision 42.67 57.63 100.00 100.00 100.00
Recall 100.00 99.72 73.19 99.65 0.01
F1 score 59.82 73.04 84.52 99.83 0.02

ED3

Accuracy 93.04 89.47 96.58 94.74 85.79
Precision 81.76 62.67 100.00 79.86 61.70
Recall 99.54 84.86 81.21 99.99 0.12
F1 score 89.78 72.10 89.63 88.80 0.24

ED4

Accuracy 96.70 91.77 99.24 98.11 90.98
Precision 84.71 71.01 98.24 99.89 87.47
Recall 99.92 90.54 99.08 90.29 52.66
F1 score 91.69 79.59 98.66 94.85 65.74

ED5

Accuracy 96.53 93.46 99.64 99.01 92.04
Precision 88.51 73.79 99.80 99.93 86.84
Recall 99.96 89.84 98.85 94.19 53.27
F1 score 93.89 81.03 99.32 96.97 66.03

E. Classification Performance of FDL Model

In this subsection, we evaluate the classification perfor-

mance of the FDL model for different number of commu-

nication rounds in the five IoT edge devices.

Figs. 2-6 show that the accuracy, precision, recall, and F1

score of the FDL model increased significantly as the number

of communication rounds increased from 1 to 5 when it was

trained with the Bot-IoT data set. At the end of the fifth

communication round, the FDL model achieved an accuracy

of 99.79 ± 0.01%, a precision of 99.51 ± 0.38%, a recall of

96.27 ± 2.45%, and a F1 score of 97.68 ± 1.52%. Table XV

shows that the FDL model achieved an excellent performance

in detecting benign network traffic as well as DoS, DDoS,

reconnaissance, and theft attacks in the five IoT edge devices.

Further local model updates from the IoT edge devices beyond

the sixth communication round did not lead to any significant

classification performance gain.
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Fig. 2. Classification performance of FDL model in ED1 based on Bot-IoT
data set.
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Fig. 3. Classification performance of FDL model in ED2 based on Bot-IoT
data set.
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Fig. 4. Classification performance of FDL model in ED3 based on Bot-IoT
data set.

Figs. 7-11 show that the accuracy, precision, recall, and F1

score of the FDL model increased significantly as the number

of communication rounds increased from 1 to 6 when it was

trained with the N-BaIoT data set. At the end of the sixth

communication round, the FDL model achieved an accuracy
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Fig. 5. Classification performance of FDL model in ED4 based on Bot-IoT
data set.
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Fig. 6. Classification performance of FDL model in ED5 based on Bot-IoT
data set.
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Fig. 7. Classification performance of FDL model in ED1 based on N-BaIoT
data set.

of 99.00 ± 0.60%, a precision of 96.87 ± 1.86%, a recall of

97.24 ± 1.59%, and a F1 score of 96.88 ± 1.67%. Table XIV

shows that the FDL model achieved an excellent performance

in detecting benign network traffic as well as ACK, Scan,

SYN, and UDPP attacks in the five IoT edge devices. Further

local model updates from the IoT edge devices beyond the

sixth communication round did not improve the classification
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Fig. 8. Classification performance of FDL model in ED2 based on N-BaIoT
data set.
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Fig. 9. Classification performance of FDL model in ED3 based on N-BaIoT
data set.
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Fig. 10. Classification performance of FDL model in ED4 based on N-BaIoT
data set.

performance of the FDL model.

F. Comparison of the FDL Method with the State-of-the-art

Methods

In this subsection, we compare the effectiveness of the FDL

model with that of the CDL, LDL, and DDL models in the

five IoT edge devices.
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Fig. 11. Classification performance of FDL model in ED5 based on N-BaIoT
data set.

TABLE XIV
CLASSIFICATION PERFORMANCE OF FDL MODEL BASED ON BOT-IOT

DATA SET

Metric (%) DDoS DoS Normal Recon. Theft

ED1

Accuracy 99.81 99.81 100.00 100.00 100.00
Precision 99.97 99.61 93.10 99.89 100.00
Recall 99.67 99.97 87.10 99.96 80.00
F1 score 99.82 99.79 90.00 99.93 88.89

ED2

Accuracy 99.82 99.82 100.00 100.00 100.00
Precision 99.97 99.64 90.63 99.94 100.00
Recall 99.69 99.97 93.55 99.94 66.67
F1 score 99.83 99.80 92.06 99.94 80.00

ED3

Accuracy 99.83 99.83 100.00 100.00 100.00
Precision 99.97 99.66 96.67 99.91 100.00
Recall 99.71 99.97 85.29 99.98 100.00
F1 score 99.84 99.81 90.63 99.95 100.00

ED4

Accuracy 99.83 99.83 100.00 100.00 100.00
Precision 99.99 99.63 96.00 99.96 100.00
Recall 99.68 99.98 92.31 99.98 100.00
F1 score 99.84 99.81 94.12 99.97 100.00

ED5

Accuracy 99.83 99.83 100.00 100.00 100.00
Precision 99.98 99.65 95.83 99.93 100.00
Recall 99.70 99.98 85.19 99.98 100.00
F1 score 99.84 99.81 90.20 99.95 100.00

Tables XVI and XVII show that the CDL and FDL models

achieved better classification performance than the LDL and

DDL models when they were trained and tested with the

Bot-IoT and N-BaIoT data set, respectively. The CDL model

achieved an excellent classification performance because it

was trained with a large and diverse data which covered all the

benign network traffic patterns and all the categories of botnet

attacks that were generated and transmitted from the five edge

IoT devices to a central cloud server. However, this method

will leak the privacy of the IoT edge devices. Also, the CDL

method requires long training time (as shown in Figs. 12 and

13), high communication overhead, and large memory space

for data storage (as shown in Figs. 14 and 15). On the other

hand, in LDL, DDL, and FDL, the network traffic features

of the IoT edge devices were not shared with a third-party

central cloud server to preserve the data privacy of users. LDL

and DDL models required a shorter training time and a lower

memory space for data storage, and they incurred lower com-

munication overhead. However, the classification performance

of the LDL and DDL models is relatively low, compared to

TABLE XV
CLASSIFICATION PERFORMANCE OF FDL MODEL BASED ON N-BAIOT

DATA SET

Metric (%) Normal ACK Scan SYN UDPP

ED1

Accuracy 99.98 96.69 99.99 99.99 96.68
Precision 99.81 86.91 100.00 99.97 100.00
Recall 99.99 100.00 99.95 99.99 81.35
F1 score 99.90 93.00 99.98 99.98 89.72

ED2

Accuracy 99.06 99.06 99.08 99.99 99.06
Precision 78.71 99.34 100.00 100.00 96.93
Recall 100.00 97.54 91.99 99.98 99.14
F1 score 88.09 98.43 95.83 99.99 98.02

ED3

Accuracy 99.98 99.86 100.00 100.00 99.86
Precision 99.94 99.98 100.00 99.99 99.08
Recall 100.00 99.12 99.99 99.99 99.96
F1 score 99.97 99.55 99.99 99.99 99.52

ED4

Accuracy 99.32 97.99 99.07 99.07 98.05
Precision 96.39 98.88 98.29 97.69 91.59
Recall 100.00 89.67 98.42 97.46 97.04
F1 score 98.16 94.05 98.36 97.58 94.24

ED5

Accuracy 99.68 97.91 98.31 98.31 98.06
Precision 98.82 99.88 99.86 91.05 88.67
Recall 99.99 86.62 93.73 99.79 99.36
F1 score 99.40 92.78 96.70 95.22 93.71

the CDL and FDL models. In other words, these models have

low detection rate and high false alarm rate. The LDL models

had a lower classification performance because each of them

was trained with insufficient private network traffic and fewer

botnet attack scenarios in a single IoT edge device. The DDL

model achieved a lower classification performance because

the communication of local model updates from the IoT edge

devices to a central parameter server was limited to a single

round. Therefore, the LDL and DDL models are not suitable

for zero-day botnet attack detection in IoT edge devices.

TABLE XVI
CLASSIFICATION PERFORMANCE OF CDL, LDL, AND FDL MODELS

BASED ON BOT-IOT DATA SET

Metric (%) CDL LDL DDL FDL

ED1

Accuracy 99.98 79.03 86.54 99.92
Precision 99.97 49.24 51.79 98.52
Recall 95.34 60.00 40.47 93.34
F1 score 97.43 52.64 25.97 95.69

ED2

Accuracy 99.99 98.99 86.56 99.93
Precision 99.98 59.83 51.83 98.04
Recall 93.32 72.00 40.41 91.96
F1 score 95.98 56.95 25.99 94.33

ED3

Accuracy 99.99 99.94 86.55 99.93
Precision 99.37 79.92 51.80 99.24
Recall 98.81 76.41 39.20 96.99
F1 score 99.09 78.00 25.98 98.04

ED4

Accuracy 99.98 82.00 86.57 99.93
Precision 99.98 51.17 51.73 99.12
Recall 99.22 80.00 39.34 98.39
F1 score 99.59 55.78 25.80 98.75

ED5

Accuracy 99.99 99.93 86.56 99.93
Precision 99.21 79.83 51.80 99.08
Recall 98.50 79.93 41.79 96.97
F1 score 98.85 79.88 25.98 97.96

The summary of our findings in this paper is presented in

Table XVIII. FDL method detects zero-day botnet attacks with

high classification performance; it guarantees data privacy and

security; it has low communication overhead; it requires low

memory space for the data storage; and it has low latency.

The FDL model achieved a better classification performance



TABLE XVII
CLASSIFICATION PERFORMANCE OF CDL, LDL, AND FDL MODELS

BASED ON N-BAIOT DATA SET

Metric (%) CDL LDL DDL FDL

ED1

Accuracy 99.98 95.14 87.58 98.67
Precision 99.94 72.17 65.43 97.34
Recall 99.94 78.67 68.60 96.26
F1 score 99.94 74.78 58.63 96.51

ED2

Accuracy 96.86 87.90 89.27 99.25
Precision 94.98 68.72 80.06 95.00
Recall 94.80 79.98 74.52 97.73
F1 score 94.15 72.16 63.45 96.07

ED3

Accuracy 100.00 92.72 91.92 99.94
Precision 99.99 69.83 77.20 99.80
Recall 99.99 79.99 73.14 99.81
F1 score 99.99 73.73 68.11 99.80

ED4

Accuracy 98.59 92.28 95.36 98.70
Precision 97.78 71.88 88.26 96.57
Recall 96.35 79.99 86.50 96.57
F1 score 96.82 74.91 86.11 96.48

ED5

Accuracy 99.46 94.19 96.14 98.45
Precision 98.60 70.33 89.77 95.66
Recall 98.32 79.99 87.22 95.90
F1 score 98.43 73.62 87.45 95.56
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Fig. 12. Training time of CDL, LDL, DDL, and FDL models based on Bot-
IoT data set.
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Fig. 13. Training time of CDL, LDL, DDL, and FDL models based on N-
BaIoT data set.

than the LDL and DDL models because the central parameter

server receives multiple local model updates from all the IoT
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Fig. 14. Memory space required for data storage based on Bot-IoT data set.
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Fig. 15. Memory space required for data storage based on N-BaIoT data set.

TABLE XVIII
SUMMARY OF RESEARCH FINDINGS

CDL LDL DDL FDL

Data aggregation ✓ ✗ ✗ ✗

Model parameter aggregation ✗ ✗ ✓ ✓

Classification performance high low low high
Training time long short short long
Data privacy ✗ ✓ ✓ ✓

Communication overhead high low low low
Memory requirement high low low low
Latency high low low low

edge devices. The only trade-off in FDL method is the time

required to train its model. Therefore, FDL method is efficient

for zero-day botnet attack detection in IoT edge devices.

VI. CONCLUSION

In this paper, we proposed FDL method for zero-day

attack detection in IoT edge devices. The FDL model was

developed with the Bot-IoT and N-BaIoT data sets, and its

effectiveness was compared with the CDL, LDL, and DDL

models. The CDL model involves data aggregation, and it

achieved high classification performance. However, it did not

preserve the privacy and security of network traffic data in IoT

edge devices. Also, the CDL model had high communication

overhead, large memory space requirement for data storage,



high network latency, and it took long time to train the 
model. Although the LDL and DDL models overcame the 
limitations of the CDL model, their classification performance 
was very low. Interestingly, the FDL model outperformed the 
CDL, LDL, and DDL models, except for the long training 
time. In the future, we plan to optimise the FL algorithm 
such that the FDL model will converge with fewer number 
of communication rounds. This will significantly r educe the 
training time of the FDL model. Hence, the FDL method 
is most efficient f or z ero-day b otnet a ttack d etection i n the 
IoT edge devices. In the future, we hope to further explore 
how advanced FL algorithms can improve the classification 
performance of attack detection models.
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