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Abstract: Mobile edge computing (MEC) has become an indispensable part of the era of the intelligent
manufacturing industry 4.0. In the smart city, computation-intensive tasks can be offloaded to the
MEC server or the central cloud server for execution. However, the privacy disclosure issue may
arise when the raw data is migrated to other MEC servers or the central cloud server. Since federated
learning has the characteristics of protecting the privacy and improving training performance, it is
introduced to solve the issue. In this article, we formulate the joint optimization problem of task
offloading and resource allocation to minimize the energy consumption of all Internet of Things
(IoT) devices subject to delay threshold and limited resources. A two-timescale federated deep
reinforcement learning algorithm based on Deep Deterministic Policy Gradient (DDPG) framework
(FL-DDPG) is proposed. Simulation results show that the proposed algorithm can greatly reduce the
energy consumption of all IoT devices.

Keywords: smart city; mobile edge computing; task offloading; resource allocation; DDPG; federated
learning

1. Introduction

With the full development of the fifth-generation mobile communication research,
the information and intelligence of cities have been greatly developed. More and more
smart facilities are deployed in every corner of the city, which enhance the quality of
life for citizens. In the era of IoT, smart cities power and monitor a variety of intelligent
IoT devices. Accompanied by intelligent devices, IoT applications are designed, such as
smart parking, smart traffic, and smart security. These applications can generate some
computation-intensive tasks such as camera tracking and object recognition. In the tra-
ditional central cloud network, these tasks will be offloaded to the central cloud server
for execution. However, the central cloud network faces some challenges, as follows.
(1) More users are served, which is easy to cause network congestion. (2) Since the central
cloud server is far away from users, the data transmission process consumes a lot of time.
As a main evolution technology in the 5G, MEC provides a good direction to solve these
challenges [1,2]. MEC server is deployed at the edge of the core network, which is closer to
users. The computation-intensive tasks can be offloaded to the MEC server for reducing
the delay, network congestion, and energy consumption of IoT devices [3,4].

Based on the above description, how to make a reasonable offloading decision and
resource allocation scheme subject to limited resources has become a key problem. The joint
optimization of task offloading and resource allocation is a mixed-integer nonlinear pro-
gramming problem [5,6]. Currently, scholars have some research works on task offloading
and resource allocation. The joint problem is solved by splitting it into several sub-problems,
relaxation variables, and deep reinforcement learning based on Deep Q Network (DQN)
framework [7–9]. However, the first two algorithms simplify the original problem and do
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not directly solve the joint optimization problem of task offloading and resource allocation.
With the development of deep neural network, deep reinforcement learning has a good
effect on solving environmental decision-making problems. However, the algorithm based
on DQN framework is difficult to deal with the problem of fine-grained space or contin-
uous space. Therefore, the deep reinforcement learning algorithm based on the DDPG
framework is adopted in this article. The DDPG algorithm has a good effect in dealing with
spatial continuous decision-making problems.

In order to obtain a better Quality of Experience (QoE), some research works adopted
the cooperation method between MEC servers, or the unified scheduling method on the
central cloud [10,11]. However, these collaborative and centralized processing algorithms
do not consider the privacy and security problems in the process of data migration and
processing. Therefore, many users are reluctant to upload their private raw data to other
MEC servers or the central cloud server. To tackle the problem, the federated learning
technology is proposed by Google [12]. It is a distributed machine learning framework,
which consists of one central server and a set of clients [13–15]. The main idea of federated
learning is to enable the data on clients to train their respective network models. Then,
the parameters of clients are aggregated to update the network model on the server side.
A better training model is obtained by the iteration between distribution and aggregation
without sharing the raw data. Therefore, the federated learning is introduced into the joint
optimization problem of this article to obtain a better optimization performance.

In this article, we focus on the joint optimization problem of task offloading and
resource allocation based on privacy protection in smart city. The optimization objective is
to minimize the energy consumption of all IoT devices within the delay threshold. Since
the joint optimization is a mixed-integer nonlinear programming problem, it is difficult
to solve it by the traditional programming algorithms. Therefore, based on the above
description, a two-timescale federated deep reinforcement learning algorithm based on
DDPG framework is proposed to solve the problem. The small timescale is to optimize the
offload decision and the resource allocation scheme in each MEC server by training DDPG
network. The large timescale is to aggregate the parameters of MEC servers in order to
obtain a better training performance. The contributions of this paper can be summarized
as follows:

1. We investigate the joint optimization problem of task offloading and resource alloca-
tion subject to the delay threshold and the limited resources. In the existing literature,
the joint optimization problem is generally decomposed into multiple sub-problems.
Therefore, a deep reinforcement learning algorithm based on DDPG framework is
proposed to solve the joint problem. The DDPG is the combination of DQN and Actor-
Critic (AC), which can solve the decision-making problem of continuous action space.

2. The federated learning is introduced into the deep reinforcement learning to enhance
the training performance while protecting privacy and security. In terms of privacy
and security, the federated learning only needs to upload the network parameters
without the raw data. In terms of training performance, the federated learning is a
distributed machine learning algorithm, which can obtain a better convergence.

3. Extensive numerical experiments demonstrate that our proposed algorithm has better
convergence than the centralized algorithm, and obtains better performance gain than
other comparison algorithms.

The rest of this article is organized as follows: Section 2 presents the system model,
including task model, communication model and computation model. Section 3 presents
the optimization problem and solution. Section 4 provides the simulation results and
evaluates the performance of the proposed algorithm. Section 5 concludes this article.
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2. Related Work

The concept of MEC was put forward many years ago. In 2013, the world’s first
mobile edge computing platform was established by IBM and Nokia Siemens Network [16].
In 2014, the European Telecommunications Standards Institute (ETSI) proclaimed industry
specifications for MEC, which was supported by IBM, Huawei, Intel, etc. Currently,
most of the MEC research works focus on how to fully utilize the powerful computing
and storage capacity of the MEC server to reduce delay and energy consumption of IoT
devices [17]. Some popular contents are cached on the MEC server to reduce the delay and
network backhaul load. Aung et al. [18] proposed a social-aware vehicular edge computing
architecture that solves the content delivery problem by using some of the vehicles in
the network as edge servers that can store and stream popular content to close-by end-
users. The computation-intensive applications can be offloaded to the MEC server for
execution [19]. Apostolopoulos et al. [20] proposed a joint problem of latency and energy
minimization considering the data offloading characteristics of the end nodes. In this article,
we only focus on the computing resource allocation of the MEC server.

The task offloading problem in the communication system will inevitably involve
task scheduling, the allocation of computing and transmission resources [21,22]. Therefore,
the problem can be easily regarded as a joint optimization problem of task offloading and
resource allocation, which is a mixed-integer nonlinear programming problem. There
are generally three types of algorithms to solve the problem. The first type of algorithm
is to split the joint optimization problem into multiple sub-problems [7,23]. Zhao [24]
formulated the joint optimization problem task offloading and resource allocation and
decomposes it into three sub-problems named as offloading ratio selection, transmission
power optimization, and sub-carrier and computing resource allocation. The joint optimiza-
tion problem was decomposed into two-level sub-problems and solved by the iterative
algorithm [25]. This type of algorithm is not a joint optimization algorithm for the original
problem, and the efficiency of iterative optimization for several sub-problems is not high.
The second type of algorithm is to relax the variables in the optimization problem [8].
Masoufdi [26] investigated the power minimization problem for the mobile devices by
data offloading in a multi-cell multi-user Orthogonal Frequency Division Multiple Access
(OFDMA) network. To solve the problem, it was converted to the convex form using
variable changing, Difference of Convex (DC) approximation, adding a penalty factor,
and relaxing the binary constraints. The lower bound and upper bound of the joint opti-
mization problem were considered and the semi-definite relaxation and rounding methods
were exploited to obtain the offloading decision [27]. The mixed integer nonlinear pro-
gramming problem is transformed into a nonlinear programming problem by variable
relaxation. Then, it is solved by iterative algorithm or genetic algorithm. Undoubtedly,
the type of algorithm has a lower efficiency. The third type of algorithm is to use the deep re-
inforcement learning algorithm to solve the optimization problem. Li et al. [9] investigated
the resource allocation scheme for vehicle-to-everything communications, and proposed
the optimization problem of resource blocks allocation and vehicle transmission power
allocation. A reinforcement learning based on DQN framework was designed to solve
this problem. Suh et al. [28] proposed a DQN algorithm based network slicing technique
to calculate the resource allocation policy, maximizing the long-term throughput while
satisfying the Quality of Service (QoS) requirements in the beyond 5G systems. Since it is
difficult for DQN algorithm to deal with the problem of fine-grained space or continuous
space, a deep reinforcement learning algorithm based on DDPG framework is proposed to
solve the joint optimization problem in this article.
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To improve resource utilization and algorithm performance, some research works
adopted the cooperation methods, such as Cloud-MEC, MEC-MEC, Cloud-MEC-Device.
Naouri et al. [29] proposed a three-layer task offloading framework, which consisted of
the device layer, cloudlet layer and cloud layer. A cloud-MEC collaborative computation
offloading scheme was proposed in vehicular networks [24]. Chen et al. [30] studied an
energy-efficient task offloading and resource allocation scheme for Augmented Reality (AR)
in a multi-MEC collaborative system. Monia et al. [31] investigated the joint task assignment
and power control problems for Device-to-Device (D2D) offloading communications with
energy harvesting. A layered optimization method is proposed to solve this problem by de-
coupling the energy efficiency maximization problem into power allocation and offloading
assignment. However, these collaborative and centralized processing algorithms do not
consider the privacy and security problems in the process of data migration and processing.
As a result, many users are reluctant to upload their private raw data to other MEC servers
or the central cloud server. To solve this problem, federated learning is introduced in this
article, which not only protects privacy but also improves the performance of the model.

3. System Model

In this article, a system model for the smart city in a mobile edge network is established,
which consists of three layers: IoT device, MEC server and Central Cloud, as shown in
Figure 1. The central cloud is an auxiliary role, which helps the MEC server obtain a better
decision-making mechanism by aggregating the neural network parameters of each edge
server. The MEC server has a powerful computing capacity, which can quickly process
the tasks offloaded by IoT devices. The IoT devices can generate some tasks with strict
computing requirements. Since the IoT devices have limited computing resources and
limited energy, the computing tasks need to be offloaded to the MEC server for processing.
In consideration of security and privacy issues, IoT devices can only offload their tasks to
the trusted MEC server, not to the central cloud server. We denote the central cloud, the set
of MEC servers and the set of IoT devices (the set of applications) by Γ, k ∈ {1, 2, . . . , K} and
n ∈ {1, 2, . . . , N}, respectively. We believe that IoT devices are special devices, and each IoT
device corresponds to an application. We assume that each IoT device only requests one
task at the same time and the network state is constant during task processing. The specific
workflow of the system is as follows. First, IoT devices generate the tasks and send the
relevant information to the MEC server through the base stations at the same time. Second,
a decision on offloading and resource allocation is made according to the collected task
information and network status. Finally, these tasks are executed according to the offloading
decision and resource allocation schemes.

3.1. Task Model

In the smart city scenario, there are a large number of different types of applications
(such as smart security, smart traffic, smart parking, smart lamp and so on). These applica-
tions have lower real-time requirements than AR applications. Therefore, we set the delay
threshold of these applications to the same, which is denoted by T. To describe the para-
metric context of each application task, we define a tuple representation as φn = (ωn, ϕn).
Specifically, ωn and ϕn denote the data size (bit) and the computing workload (CPU cycles)
of the task generated by IoT device n, respectively. The relationship between ωn and ϕn is
expressed as ϕn = ηn •ωn, where ηn denotes the computing workload per bit. In this article,
the offloading decision is denoted by αn ∈ {0, 1}. If αn = 0, the application task requested
by IoT device n will not be offloaded to the edge server and will be processed on the IoT
device n. If αn = 1, the application task requested by IoT device n will be offloaded to the
MEC server. The import notations used in the rest of this article are summarized in Table 1.
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Table 1. Parameter descriptions.

Notation Definition

Γ Central cloud

k Index of MEC server

n Index of IoT device

ωn Data size of IoT device n

ϕn Total computing workload of IoT device n

ηn Computing workload of IoT device n per bit

αn Offloading decision of IoT device n

Bn Number of sub-bandwidth allocated to IoT device n

B System bandwidth

D Number of sub-bands

hn Uplink channel gain between the base station and IoT device n

pn Transmission power of IoT device n

fn Computing resources allocated by the MEC server to IoT device n

T Delay threshold of all IoT device

Figure 1. System Model.

3.2. Communication Model

In this article, we consider the system with the OFDMA as the multiple access tech-
nology, in which the system bandwidth B is divided into D equal orthogonal sub-bands.
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In view of the OFDMA mechanism, interference is ignored due to the exclusive subcarrier
allocation [25,32–34]. Therefore, we do not consider interference from other IoT devices in
this article. A sub-band can only be allocated to one IoT device, but an IoT device can be
allocated multiple sub-bands. Since the amount of data that needs to be returned to the IoT
device after processing is very small, the time consumption in process of downlink trans-
mission is not considered. Let Bn denotes the number of sub-bandwidths allocated to IoT
device n. pn denotes the transmission power of IoT device n. hn denotes the uplink channel
gain between the base station and IoT device n corresponding to a white Gaussian noise
channel, which incorporates distance based path loss model and independent Rayleigh
fading. Then, the uplink transmission rate rup

n can be calculated by

rup
n = Bn

B
D

log2(1 +
pnhn

δ2 ) (1)

where δ2 denotes the noise power. Therefore, the transmission time tup
n and the energy

consumption eup
n of uplink transmission can be calculated by

tup
n =

ωn

rup
n

(2)

eup
n = tup

n • pn (3)

3.3. Computation Model

In this article, the task generated by IoT device can be offload to the MEC server in
order to reduce the energy consumption of the IoT device when the network is in good
state. If the network state is bad, the task can only be executed on the IoT device. Next, two
situations are described in detail, respectively.

3.3.1. Processing at MEC Server

Let fn denotes the computing resources allocated by the MEC server to the task
generated by IoT device n. Then, the execution time tMEC

n can be calculated by

tMEC
n =

ϕn

fn
(4)

3.3.2. Processing at IoT Device

According to the optimization objective, if the task is processed on the IoT device,
the energy consumption is the smallest when the delay is equal to the delay threshold.
Therefore, the processing time tIoT

n and the energy consumption eIoT
n can be calculated by

tIoT
n = T (5)

eIoT
n = κ • (

ϕn

T
)2 • ϕn (6)

where κ is the energy coefficient, which depends on the chip architecture [35–37]. In this
article, according to the work in [38], we set κ = 10−25.

4. Two-Timescale Joint Optimization of Task Offloading and Resource Allocation

In this section, the joint optimization of task offloading and resource allocation is
formulated, and it is considered as Markov Decision Process (MDP). A deep reinforcement
learning algorithm based on DDPG framework is proposed to solve this problem. In order
to protect user privacy and improve the training performance of the deep neural network,
Federated learning is introduced into the training model. A two-timescale federated
reinforcement learning algorithm is proposed. The small timescale is to train the scheme
of task offloading and resource allocation on each MEC server. The large timescale is to
aggregate the trained model parameters on the central cloud server. The two-timescale are
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executed alternately to obtain better training performance. In this article, since the central
cloud server and MEC servers are connected by the wired network, the time consumption
caused by parameters upload is not considered. The detail of problem formulation and
solution are described as follows.

4.1. Problem Formulation

According to the above computation and communication models, the total time
consumption and the energy consumption can be calculated by

tn = αn • (t
up
n + tMEC

n ) + (1− αn) • tIoT
n (7)

en = αn • eup
n + (1− αn) • eIoT

n (8)

The mathematical model with the objective of minimizing the energy consumption of
all IoT devices subject to the latency requirement and the limited resources, is as follows:

min
Bn , fn ,αn

N
∑

n=1
en

s.t.
(c1) tn ≤ T

(c2)
N
∑

n=1
Bn ≤ B

(c3)
N
∑

n=1
fn ≤ FMEC

(c4) αn ∈ {0, 1}

(9)

where FMEC denotes the total computing resources of the MEC server. For the constraints,
constraint (c1) indicates that the execution time of the IoT device n cannot exceed the delay
threshold to ensure the QoE. We believe that as long as the processing time of the IoT task
is within the delay threshold, a satisfactory user experience can be obtained. For example,
in the community access control system, if the delay threshold of the face recognition system
is 0.1 s, the user experience can be satisfied as long as the face recognition is completed
within 0.1 s. Since users have the same QoE for completing face recognition within 0.1 s
and 0.01 s, there is no need to pursue a lower processing time, which is meaningless in real
scenes. Constraint (c2) indicates that the number of allocated sub-bandwidth cannot exceed
the total bandwidth of base station. Constraint (c3) indicates that the computing resources
allocated to all IoT devices by the MEC server cannot exceed the total computing resources
of the MEC server. Constraint (c4) indicates that the task of IoT device is either processed
on the MEC server or the IoT device n. If αn = 0, the task of IoT device will be processed
on the IoT device. If αn = 1, the task of IoT device will be offloaded to the MEC server.

4.2. Small Timescale Policy Based on Deep Reinforcement Learning

In this subsection, the joint optimization problem is modeled as MDP, and a deep
reinforcement learning based on DDPG framework is proposed to solve it. The common
model of reinforcement learning is the standard MDP. Therefore, several elements of MDP
are introduced in detail below.

4.2.1. State Space

State is the description of the environment, which will change after an action is
generated by the agent. In this article, the MEC server is modeled as an agent to optimize
the energy consumption of all IoT devices. Let st = (s1

t , s2
t , . . . , sU

t ) denotes the state of
MDP at time t. The state includes four parts: (1) the task size, the computing workload,
the channel state of all IoT devices; (2) the computing resources of the MEC server; (3) the
bandwidth of the base station; (4) the resource allocation scheme at the current time.
The value range of all data in the state is [0, 1].
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4.2.2. Action Space

Action is the description of agent behavior, which is the result of the optimization
scheme. Let at = (a1

t , a2
t , . . . , aL

t ) denotes the action of MDP at time t, which includes the
change of computing and communication resources. The action space corresponds to Part
4 of the state space one by one. The value range of all data in the action is [−1, 1].

4.2.3. Reward

After the agent takes an action, reward is the feedback of environment to agent. Let
rt denotes the reward of MDP at time t. The objective of this article is to minimize the
energy consumption of all IoT devices subject to the system resources and delay threshold.
Therefore, the reward is set to two progressive steps. The first step is to ensure the system
resources constraints, as follows:

r = χ1 •
U
∑

u=1

(
(su − 1) • ε(su − 1)− su • ε(−su)

)
+χ2 •

( N
∑

n=1
Bn − B

)
• ε
( N

∑
n=1

Bn − B
)

+χ3 •
( N

∑
n=1

fn − FMEC) • ε
( N

∑
n=1

fn − FMEC)+ b1

(10)

The second step is to minimize the energy consumption of all IoT devices, as follows:

r = χ4 • exp
(
−

N

∑
n=1

en/N
)

(11)

where χ1, χ2, χ3, χ4, b1 are constants. The purpose is to make rewards develop in a good
direction. Specifically, the reward setting algorithm is illustrated in Algorithm 1.

Algorithm 1: Reward calculation algorithm
Input: new state st+1 ← environment(st, at)
Output: rt
Initialize the reward rt = 0
if c2, c3 of (9) then

for each IoT n = 1, 2, ..., N do
Calculate en (αn = 0) according to Equation (8)
Calulate tn (αn = 1) according to Equation (7)
if tn (αn = 1)≤ T then

Calculate en (αn = 1) according to Equation (8)
if en (αn = 0) > en (αn = 1) then

en = en(αn = 1)
else

en = en(αn = 0)

else
en = en(αn = 0)

Calculate the reward for energy consumption of all IoT devices according to
Equation (11)

else
Calculate the reward of resources constraint according to Equation (10)

4.2.4. DDPG-Based Solution

The DDPG algorithm is a paradigm of the reinforcement learning method, which is
the combination of AC and DQN. The specific network structure is shown in Figure 2. The
training process of the network is carried out according to the numbers in the Figure 2.
The input of the actor network is the state, and the output is the determined action value.
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The input of the critic network is the state and the action, the output is the Q value. The actor
network consists of the evaluation network µ with parameter θµ and the target network µ′

with parameter θµ′ . The critic network consists of the evaluation network Q with parameter
θQ and the target network Q′ with parameter θQ′ . Since the experience replay method is
adopted, the data (st, at, s′t, rt) are stored in the replay buffer according to the format of
(s, a, s′, r). The parameters of critic network are updated by minimizing the loss,

Loss =
1
X

X

∑
j=1

(
yj −Q(sj, aj|θQ)

)2 (12)

yj = rj + γ • Q′
(
s′j, µ′(s′j|θµ′)|θQ′) (13)

where X denotes the size of mini batch data, and γ denotes the discount factor. The actor
network is updated according to the feedback of the critic network as follows:

∇θ J ≈
1
X

X
∑

j=1

(
∇aQ(sj, aj|θQ)|aj=µ(sj)

• ∇θµ µ(sj|θµ)
) (14)

DDPG framework has the characteristics of centralized training and decentralized
execution. After the training is completed, the state is input into the actor network to obtain
the offloading decision and resource allocation scheme.

Figure 2. Convergence property of different algorithm.

4.2.5. Computational Complexity Analysis

Floating Point Operations (FLOPs) can be used to measure the computational com-
plexity of the algorithm or model. The proposed algorithm is a reinforcement learning
algorithm based on DDPG framework. The DDPG framework consists of an actor network
and a critic network. In this article, the actor network is composed of three full connection
layers, and the critic network is composed of four full connection layers. The FLOPs of
a full connection layer is 2× I × Q, where I denotes the number of input neurons and
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Q denotes the number of output neurons. Therefore, the FLOPs of the actor network is
∑3

m=1 2× Im ×Qm, and the FLOPs of the critic network is ∑4
m=1 2× Im ×Qm. Since DDPG

has the characteristics of centralized training and decentralized execution, whether the
proposed framework can be implemented in a real time manner depends on the execution
time of the actor network. For example, for a single core computer (2 GHz), its computing
capacity is about 2 billion FLOPs per second, which is more than enough to be used to
process the computation of the actor network according to network settings in this article.
The specific network parameters are set in Section 5.1. Therefore, the proposed framework
can be implemented in a real time manner.

4.3. Large Timescale Policy Based on Federated Learning

In this subsection, for the purpose of protecting privacy and security, users are reluctant
to send their data the central cloud server. However, in the process of neural network
training, more data will generally bring better training performance. For the above two
reasons, Federated Learning algorithm is introduced into reinforcement learning. Federated
learning is essentially a distributed machine learning technology. Its goal is to realize joint
modeling and improve the performance of Artificial Intelligence (AI) model on the basis
of ensuring data privacy, security and legal compliance. Since different blocks of smart
city have the characteristic of the same application types and different users, the horizontal
federated learning is adopted in this article.

In horizontal federated learning, it can be regarded as a distributed training model
based on samples, which distributes all data to different machines. Each machine down-
loads the model from the central server to train the model with local data, and then the
training parameters are returned to the central server for aggregation. In this process, each
machine is the same and complete model, which can work independently. The aggregation
mode of network parameters is given by

Θ =
1

∑k∈K Dk

K

∑
i=k

DkΘk (15)

where Dk denotes the number of training samples on the k-th MEC server, Θk and Θ denote
the parameter sets of the k-th MEC server and the central cloud, respectively. Specifically,
the two-timescale training process is summarized in Algorithm 2.

Algorithm 2: Training process
Randomly initialize critic network Q and actor network µ
Initialize target network Q′ and µ′

Initialize replay buffer φ
for episode t = 0, 1, . . . do

for MEC k = 0, 1, . . . , K do
Initialize state s
Select action at = µ(s) +N , N is an exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in Φ
Sample a random mini batch of X transition (sX , aX , s′X , rX) from Φ
Update critic network according to (12) and (13)
Update actor network using the sampled policy gradient (14)
Update the target networks:
θ′ = τθ + (1− τ)θ′

if episode t == taggregation then
Upload the parameters to the central cloud server according to (15)
Download the parameters from the central cloud server to each MEC server
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5. Performance Evaluation
5.1. Parameter Setting

In this section, we evaluate the performance of our proposed algorithm for smart
city. The experimental platform adopts DELL PowerEdge (DELL-R940XA, 4*GOLD-5117,
RTX2080Ti). The simulation software is Pycharm (Professional Edition). The corresponding
environment configuration is Python3.7.6, CUDA 11.4, Pytorch 1.5.0. The actor network
is composed of three full connection layers (40 × 500, 500 × 128, 128 × 20), and the critic
network is composed of four full connection layers (60 × 1024, 1024 × 512, 512 × 300,
300 × 1). Its activation function is RELU, and the output layer of actor network is tanh
function to constraint the output value. Specifically, the simulation parameters of the
system are presented in Table 2. The compared algorithms are as follows.

• Random Offload:the offloading scheme of each IoT device is determined randomly.
If the task of IoT device is offloaded to the MEC server, the computing and communi-
cation resources are allocated according to the proportion of data size and computing
workload, respectively. If the task is executed on the IoT device, the computing
resource is allocated according to the delay threshold.

• Greedy: the task of the IoT device with good channel status is offloaded to the MEC
server sequentially. Each IoT device occupies the least resources to ensure that more
tasks can be offloaded to the MEC server subject to the delay threshold.

• DQN: DQN is a combination of Q-learning and deep neural network, which is used to
deal with the discrete state and action problem. To solve the problem in this article,
the continuous state space and action space need to be discretized [9,28].

• DDPG: DDPG is the basic algorithm of this article. It is a continuous reinforcement
learning algorithm, which is composed of DQN and AC.

• FL-DDPG: FL-DDPG is an algorithm proposed in this article. Federated learning is
introduced into reinforcement learning to solve the problem of resource allocation and
offloading decision. Since FL-DDPG has the distributed characteristic, it can improve
training performance while ensuring privacy and security.

5.2. Convergence Analysis

In this subsection, the convergence performance of FL-DDPG and DDPG is shown
in Figure 3. In this article, the Adam optimizer is adopted to train the FL-DDPG and
DDPG networks. In the training process of FL-DDPG, it needs about 240,000 training
episodes (3 h) to achieve a better convergence performance. From Figure 3, we observe
that the convergence performance of FL-DDPG is better than that of DDPG. Since FL-
DDPG aggregates the parameters of three MEC servers, it is easy to jump out of the
local optimal solution. DQN algorithm discretizes the resources, and decides where each
resource block should be allocated. Therefore, DQN algorithm has no resource allocation
constraints (the allocated resources will never exceed the total resources), and directly
pursues the minimization of energy consumption. The value range of the reward of DQN
algorithm is 0 < r < 1. Since DQN algorithm is a coarse-grained resource allocation
scheme, the convergence performance of DDPG is better than that of DQN. Figure 4
shows the training performance of different aggregation intervals in FL-DDPG algorithm.
From Figure 4, it is observed that the training performance is the best when the aggregation
interval is 30,000. When the aggregation interval is less or greater than 30,000, the training
performance is not good. The reason for this is that there is not enough time to explore
new environment when the aggregation interval is smaller. When the aggregation interval
is larger, over-fitting is caused by too long exploration time. Therefore, the aggregation
interval of 30,000 is adopted to train the network parameters in this article.
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Table 2. Parameter descriptions.

Parameter Value

Number of IoT devices 30

Number of base stations 3

Number of MEC servers 3

Uplink/Downlink system Bandwidth 10 MHz

Transmission powers of user terminal 1 W

Noise power −100 dB

Size of task [5, 90] Kb

Computing workload density [200, 700] CPU cycles/bit

Path loss model PL = 127 + 30log(dis)

Computing resources of local device [2, 2.5] GHz

Computing resources of MEC server 15 GHz

Delay threshold of IoT task 100 ms

episode 240,000

Mini batch 100

Buffer size 20,000

Critic network learning rate 0.001

Actor network learning rate 0.0001

Optimizer Adam

Figure 3. Convergence property of different algorithm.
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Figure 4. Performance evaluation on aggregation interval.

5.3. Performance Comparison

In this subsection, the performance evaluation of different algorithms is shown in
Figures 5–7. Figure 5 shows the reward of different algorithms in terms of the system
bandwidth. As the system bandwidth increases, more and more IoT tasks can be offloaded
to the MEC server. Therefore, the energy consumption of IoT devices is reduced and the
reward is increased in Figure 5. We can observe that the reward of FL-DDPG is higher
than that of other algorithms. The reason can be obtained by analyzing each algorithm
in detail, which is as follows. The DDPG algorithm only adopts one network model to
train the decision-making scheme, which is easy to fall into local solution. Compared with
DDPG and FL-DDPG, the DQN algorithm discretizes resources, which is a coarse-grained
resource allocation scheme. Since DDPG algorithm is a fine-grained resource allocation
scheme, the performance of DDPG algorithm is better than DQN algorithm. The GREEDY
algorithm offloads the tasks generated by IoT devices with good network status to the
MEC server. The algorithm only optimizes the communication resources, does not jointly
optimize the communication resources and computing resources. The RANDOM algorithm
is to randomly offload the tasks generated by IoT devices to the MEC server for execution.
Further, we can observe that there is a little performance difference between DDPG and
FL-DDPG algorithms when the system bandwidth is 5, 9, 10, 11 and 12. The reward of
FL-DDPG is 1.3%, 1.1% and 1% higher than that of DDPG when the system bandwidth is 5,
9 and 10, respectively. The reason is that when the system bandwidth is very small, most
of the tasks generated by IoT devices cannot be offloaded to the MEC server and can only
be processed on the IoT devices. Since processing tasks on IoT devices do not involve the
allocation of MEC computing resources and communication resources, the decision-making
environment is simplified. Moreover, the energy consumption caused by a large number
of IoT devices processing will drown out the energy consumption of transmission caused
by offloading. When the system bandwidth is larger, most of the tasks generated by IoT
devices can be offloaded to the MEC server. The reason for this is the same as above.
Therefore, when the resources are in extreme situations, the exploration environment
of reinforcement learning becomes relatively simple, resulting in a little performance
difference between DDPG and FL-DDPG. In actual equipment deployment, these two
extreme situations are generally not selected in terms of the cost and the quality of service.
There is a large performance difference between DDPG and FL-DDPG algorithms when the
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system bandwidth is 6 and 7. The reward of FL-DDPG is 12% and 10% higher than that of
DDPG when the system bandwidth is 6 and 7, respectively. When the system bandwidth
is moderate, the decision-making environment becomes complex. The more complex the
decision-making environment is, the greater the probability of DDPG algorithm falling
into the local optimal solution is. Since the FL-DDPG algorithm aggregates the training
parameters of three network models, it is easy to jump out of the local optimal solution.

Figure 5. Performance evaluation on reward.

Figure 6. Performance evaluation on energy consumption.
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Figure 7. Performance evaluation on reward when the delay threshold is different.

Figure 6 shows the mean energy consumption of different algorithms in terms of
the system bandwidth. From Figure 6, it is observed that the mean energy consumption
of FL-DDPG algorithm is less than other algorithms. In the setting of reward, there is a
negative exponential relationship between energy consumption and reward. Therefore,
Figures 6 and 5 are one-to-one correspondence.

Figure 7 shows the reward of different algorithms in terms of the delay threshold.
In this article, since these tasks generated by IoT devices are not very strict on the response
time, the delay threshold is set to the same. From Figure 7, it is observed that the reward
increases when the delay threshold increases. The reason is that when the delay threshold
increases, more tasks can be offloaded to the MEC server and completed within the delay
threshold. Therefore, the energy consumption of IoT devices is reduced and the reward
is increased. Figure 8 shows the delay of different algorithms in the same environment
configuration. The delay of five algorithms is less than the delay threshold (0.1 s).

5.4. Analysis of Offload Location

Figures 9 and 10 show the offloading location of FL-DDPG when the system bandwidth
is 5 MHz and 10 MHz. In this experiment, the X-axis denotes the number of episodes, the Y-
axis denotes the IoT device index, and the Z-axis denotes the offloading location. The value
range of the offloading location is 0, 1. Value 0 indicates that the task is processed on the IoT
device, value 1 indicates that the task is offloaded to the MEC server. From Figures 9 and 10,
it is observed that the number of red points is less when the system bandwidth is 10 MHz.
Figures 9 and 10 indicate that more tasks are offloaded to the MEC server when the system
bandwidth increases. From Figure 9, we can observe that all tasks of IoT device 6 are not
offloaded to the MEC server when the system bandwidth is 5 MHz. The reason is that the
task of IoT device 6 has the characteristics of large amounts of data and low computing
workload. If the task of IoT devices 6 is offloaded to the MEC server, it will consume a lot
of bandwidth and a small amount of the MEC computing resources. Obviously, in the case
of limited resources, it is unreasonable to offload the task to the MEC server. Therefore, all
tasks of IoT device 6 are processed on the IoT device.
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Figure 8. Delay of different algorithms.

Figure 9. System bandwidth B = 5 MHz.
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Figure 10. System bandwidth B = 10 MHz.

6. Conclusions

In this article, a joint optimization problem of task offloading and resource allocation
based on privacy protection for smart city is formulated to minimize the energy consump-
tion of all IoT devices. First, the deep reinforcement learning algorithm based on DDPG
framework is proposed to solve the mixed-integer nonlinear programming problem. Then,
in order to protect user privacy and improve training performance, the federated learning
is introduced into the DDPG framework. To this end, the two-timescale FL-DDPG algo-
rithm is proposed to optimize the above problem. Specifically, the small timescale is to
train the DDPG network and the large timescale is to aggregate the parameters of DDPG
network. In this way, the privacy of users is not only protected, but also the performance
of the algorithm is improved. We provide numerical simulation results in terms of the
convergence property, reward, and energy consumption, which shows that our proposed
algorithm has better performance.
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