
http://cer.sagepub.com

Concurrent Engineering

DOI: 10.1177/1063293X06064148
 2006; 14; 55 Concurrent Engineering

Michael Sobolewski and Raymond M. Kolonay
 Federated Grid Computing with Interactive Service-oriented Programing

http://cer.sagepub.com/cgi/content/abstract/14/1/55
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Concurrent Engineering Additional services and information for

 http://cer.sagepub.com/cgi/alerts Email Alerts:

 http://cer.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com/cgi/alerts
http://cer.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://cer.sagepub.com

CONCURRENT ENGINEERING: Research and Applications

Federated Grid Computing with Interactive Service-oriented Programing

Michael Sobolewski1,* and Raymond M. Kolonay2

1Computer Science Department, Box 43104, Texas Tech University, Lubbock, TX 79409-3104, USA
2AFRL/VASD, 2130 8th Street, Suite 1, Building 146 Room 220, Wright-Patterson AFB, OH 45433-7542, USA

Abstract: Improvements in distributed computing, and the technologies that enable them, have led to significant advancements in middleware

functionality and quality, mainly through networking and protocols. However, the distributed programing style has changed little over the years.

Most programs are still written line per line of code in languages such as C, Cþþ, and Java. These conventional programs that can provide grid

operations and grid data can be considered as common grid resources and shared by research and education communities worldwide.

However, there are no relevant programing methodologies to utilize efficiently these shared service providers as a potentially vast grid

repository, except through the manual writing of code. Realization of the potential of grid computing requires significant improvements in grid

programing methodologies. The Grid interactive service-oriented (GISO) methodology presented provides a programming environment with

development tools that permit true interactive grid programming. The GISO approach permits the different elements of programming to be

stored, reused, aggregated, and executed with concurrency and a grid-level control strategy not achievable in the conventional programming

languages.

Key Words: concurrent engineering, engineering analysis, grid programing, service-oriented computing, object-oriented computing,

service orchestration.

1. Introduction

From the beginning of networked computing, the
desire has existed to develop protocols and methods that
facilitate the ability of people and automatic processes
across different computers to share the information
and knowledge across heterogeneous systems. As
ARPANET [1,2] began through the involvement of the
NSF [3,4] to evolve into the Internet for general use, the
steady stream of ideas became a flood of techniques to
submit, control, and schedule jobs across the distributed
systems [5]. The latest in these ideas is the grid [6–8] to be
used by a wide variety of different users in a non-
hierarchical manner to provide access to powerful
aggregates of resources [9,10]. Grids, in the ideal, are
intended to be accessed for computation, data storage
and distribution, visualization and display, among other
applications without consideration for the specific
nature of the hardware and underlying operating
systems on the resources on which these jobs are carried
out [11,12].

The reality at present, however, is that grid resources
are still very difficult to access for most of the users,

and that detailed programing must be carried out by the
user through command line and script execution to
carefully tailor jobs on each end to the resources on
which they will run, or for the data structure that they
will access. This produces frustration on the part of
the user, delays in adoption of grid techniques, and a
multiplicity of specialized ‘grid-aware’ tools that are not,
in fact, aware of each other that defeat the basic purpose
of the grid.

The need for further improvements in grid computing
is clear, and requires significant further improvements
in grid programing technology. By inspection of the
afore mentioned paradigm, it is clear that incremental
improvements in the scripts and submission techniques
will not suffice. A new grid interactive service-oriented
(GISO) integrated development environment (IDE) that
is based on evolution of the concepts and lessons learned
in the FIPER project [13–21], a $21.5 million program
funded by the United States National Institute of
Standards and Technology (NIST), is presented.
It provides an environment that will permit true
interactive click-and-drag grid programing through
the manipulation of graphical elements that represent
object-oriented grid resources, thus permitting the
different elements of grid program to store, reuse,
aggregate, and execute with a level of concurrency and
grid-level control strategy not achievable in the conven-
tional programing languages.

*Author to whom correspondence should be addressed.
E-mail: sobol@cs.ttu.edu
Figures 1–13 appear in color online: http://cer.sagepub.com

Volume 14 Number 1 March 2006 55
1063-293X/06/01 0055–12 $10.00/0 DOI: 10.1177/1063293X06064148

� 2006 SAGE Publications © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

The presented GISO programing approach [15] is
characterized as follows:

Service-oriented grid programing is achieved by
applying the object-oriented concepts directly to the
grid as a repository of network objects (method and
context providers).
Service-oriented execution infrastructure enabling
dynamic federations of grid providers to execute
service-oriented programs.
Provisioning and deploying grid objects with an
autonomic behavior, enabling grid objects to be
instantiated and managed on computing resources
available through the grid using an adaptive quality
of service model.
An open, web-based environment in which existing
proprietary applications and analytical packages are
integrated through Java-based wrappers that handle
grid processes and data distributed across different
locations.

The presented approach addresses a number of gaps
which exist in the grid technology. The technology
gaps and approach to solve these gaps are articulated in
Table 1.

2. GISO Conceptual Framework

Building on the object-oriented paradigm, the service-
oriented paradigm, in which the objects are distributed,
or more precisely they are network objects and play
some predefined roles, is adopted in this work. A service
provider is an object that accepts messages from service
requestors to execute an item of work – a task. The task
object is a service request – a kind of elementary grid
instruction executed by a service provider. A service
jobber is a specialized service provider that executes a
job – a compound request in terms of tasks and other
jobs. The job object is a service-oriented program that is
dynamically bound to all relevant and currently avail-
able service providers on the grid. This collection of grid
providers dynamically identified by a jobber is called
as a job federation. This federation is also called as a job

space. While this sounds similar to the object-oriented
paradigm, it is not. In the object-oriented paradigm the
object space is a program itself; here the job space is the
execution environment for the job itself and the job is
a service-oriented program. This is a paradigm shift. In
the former case the object space is a virtual computer,
but in the latter case the job space is the virtual network.
This virtual network or grid federation is the jobs’
execution environment and the job object is a service-
oriented program. In other words, one can apply the
object-oriented concepts directly to the grid in the
service-oriented manner.

The GISO framework is built on the top of the
FIPER Technology middleware. The GISO environ-
ment provides the means to create interactive service-
oriented programs and execute them without writing
a line of source code. Jobs and tasks are created using
web-based user interfaces. Also, via web-based inter-
faces the user can execute and monitor the execution
of jobs or tasks [21]. The jobs and tasks are persisted
for later reuse. This feature allows the user to quickly
create new applications or programs on the fly in terms
of existing tasks and jobs.

The GISO/FIPER supports three centricities and
deploys three neutralities. GISO’s three centricities are
network centricity, service centricity, and web centricity.
A GISO federation is composed of various service
providers any of these can come and go, and the system
can respond to changes in its environment in a reliable
way (network centricity). Services in GISO can discover
lookup services and join the grid or lookup for relevant
services in order to cooperate in a grid federation
(service centricity). Users can request to use multiple
services and check the status of their submissions in
different locations through an HTTP portal with thin
web clients (web centricity). The three neutralities that
the GISO deploys are location neutrality, protocol
neutrality, and implementation neutrality. With location
neutrality, services need not be collocated; lookup
services are discovered and used to find a particular
service, which simplifies management of the entire grid
environment. With protocol neutrality, the way in which
clients communicate with a service provider is not
important. Clients are not aware of what protocols

Table 1. Technology gaps vs the GISO approach.

Technology gap GISO Solution

1. Protocol-based grid middleware is difficult to use Develop object-oriented middleware components
2. Current grid middleware is transaction, data, and host centric Provide autonomic, dynamic, QoS, network centric middleware

components
3. No grid-oriented programing methodologies to utilize grid
resources and middleware services

Provide point-and-click interactive grid programing

4. Moving executable code and data over grid to compute
resources is inefficient

Provide reusable method and data services as service-to-service
grid providers

5. Access to grid resources is not user friendly GISO easy-to-use web-based end-user-agents
6. No grid high-level programing and development tools Develop interactive grid-programing and development tools

56 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

are used or where the implementations reside. With
implementation neutrality, the clients who use the GISO
services do not need to know what languages are used
or how a service is implemented.

In all, GISO development tools provide (Figure 1)
accessibility through web-centric architecture; self-
manageability using federated grids, scalability via
network centricity, and adaptability with the power of
mobile code inserted for execution through service
providers.

3. GISO Execution Environment

The peer-to-peer (P2P) service-oriented framework
presented here targets the multiparty grid transactions.
A collection of all registered service providers (active
and inactive) is called a service grid. A nested transac-
tion is composed of a federation of providers that come
together for completing a transaction. A transaction
consists of a set of tasks with specific precedence
relationships. The service providers do not have
mutual associations prior to the transaction. They
come together (federate) for a specific transaction.
Each provider in the federation performs its services
according to a job’s control strategy that defines a
transaction. Once the transaction is complete the
federation dissolves and the providers disperse and
seek other transactions to join. Different combinations
of providers may come together for any given type of
transaction at different times. The following character-
istics define such transactions that are supported by the
GISO execution environment:

1. Multiple tasks/jobs need to be executed in order to
complete the transaction;

2. Service providers are interchangeable (i.e., any
provider that implements the same interface for a
service can be selected to perform the service);

3. Same service provider can perform multiple tasks
in the transaction;

4. Tasks in a transaction (federation) need to share data
and resources with each other; and

5. A nested transaction is coordinated by a service
broker – jobber – with a set of depended sub-jobs
of the top-level job.

The GISO/FIPER middleware is service-based in
which a service is defined as an independent self-
sustaining entity performing a specific task or job.
Each service is defined by a public interface. The service
grid is dynamic in which new services can enter the grid
and existing services can leave the network at any
instance. Services advertise themselves and can be found
and selected based on the type (interface) and other
attributes that they exhibit.

The GISO environment defines all decentralized
distributed components in the system to be equal.
These components might be devices, repositories,
processes, or objects on the network. In this environ-
ment, peers are network objects of the same type. Each
peer implements well defined, top-level public and
common interfaces and may implement multiple
custom interfaces that are published when the peer
joins the environment. All methods of the custom
interfaces have the same format: an input and an
output parameter of any provider method is just a
service context – the generic data structure for GISO
programing [22].

By its interface (type) and optional attributes (e.g.,
provider name), the network object can be dynamically
found on the network without a host name and port
required. The custom interfaces and their implementa-
tions might change, as they are specific to particular
service providers. Thus peers should not expose their
specific interface explicitly at the infrastructure level.
The common, top-level peer interface is called servicer.
All peers implement this interface and their equality is
defined as being service providers or servicers. A service
is an act of requesting a service (Exertion) operation
from a service provider as explained in Figure 2.
The exertion describes a distributed activity in object-
oriented terms.

In the GISO environment two types of basic exertions
are defined: tasks and jobs. A task is the atomic exertion
that is defined by its context model (data), and by its

If accepted

then

exertion.exert()

else

forward to a relevant

service provider

Service
provider

Service
requestor

service(exertion)

ServiceInterface1 , ServiceInterfacei…,

signature1 , signaturek…,
Impl1

operation1 , operationl…,

Figure 2. Service requestor and service provider relationship.

Domain servicesDomain services

GISO programmingGISO programming

andand

Development toolsDevelopment tools

(GISO IDE)(GISO IDE)

GISO programsGISO programs

Generic GISO agentGeneric GISO agent

Grid services (FIPER middleware)Grid services (FIPER middleware)

Figure 1. GISO layered architecture.

Federated Computing with GISO Programing 57

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

method. An exertion method defines a service provider
(grid object) to be bound to at runtime. This network
object provides the business logic to be applied to the
exertion context model (data). The computing frame-
work based on the concepts: context model, method,
and exertion are called the CME framework.
A method is primarily defined by a provider type

(interface) and selector (operation name) in the pro-
vider’s interface. Optionally, additional attributes might
be associated with the method, for example a provider’s
name or provider’s identifier. The information included
in the exertion method allows the GISO program to
bind dynamically (at runtime) the exertion to the
network object and process the exertion’s context by
one of its custom operations, which is defined by its
published interface. This type of service provider is
called a method provider. Another type of service
provider is a context provider that provides shared
data to the grid via the observer-observable paradigm.
Thus, both context and method providers represent
data and compute grid and operations respectively to
be used in GISO programs.
Service providers are equal since they define a

common top-level interface, but the interface might be
implemented differently by different groups of network
objects. Rather than the currently prevalent client/server
model, in which all communication passes through and
is controlled by a central server (e.g., web, FTP, mail,
and application servers), in service-to-service (S2S), the
communication goes directly from one grid’s object to
another grid’s object. Because accessing these decentral-
ized object nodes means operating in an environment
of unstable connectivity and unpredictable IP addresses,
P2P nodes operate outside the domain name system
(DNS) and have significant or total autonomy from
central servers.

Sun’s JiniTM Network Connection Technology [23,24]
is used to implement the functionality specified above.
The discovery and lookup protocols that JiniTM defines
allow for a dynamic federation of services to be created.

A simplified UML-diagram showing the service-
oriented framework of GISO is illustrated in Figure 3.
The core of the framework consists of the four
middleware services: jobber (job coordination broker),
cataloger (service catalog), spacer (exertion shared space
– [25]), and provisioner (Rio provisioning service – [26]).
The jobber coordinates exertion execution within the
GISO job. It interprets the job control context supplied
by the end-user-client or any of the service providers and
coordinates the exertion execution accordingly to a
defined control strategy.

There are two different ways in which the jobber can
submit requests to the service providers. For an explicit
access to the service provider the jobber can either use
discovery to find a lookup service or use a service
catalog (used by CatalogExertionDispatcher) for select-
ing a service from dynamically formed peer groups.
A cataloger is a service-grid cache that periodically polls
all relevant lookup services and maintains a cache of all
the provider proxies that are registered with the lookup
services for a particular peer group. The jobber can
either discover lookup services (service registries) each
time it needs to use a service or can find a cataloger that
in turn performs continuous service discovery for the
jobber. Weather the jobber finds an available service
using a lookup registry or catalog, a proxy for the
service is downloaded on to the jobber which invokes
the service. Alternately, the jobber submits the service
request implicitly into an exertion space that is a shared
GISO exertion repository for executing asynchronously
grid services. The exertion spaces provider, called the
spacer (used by SpaceExertionDispatcher), holds the

Uses

Requestor
runner

Cataloger

CatalogerImpl

JobberImpl Disapatcher
factory

Exertion
DispatcherFactory

Creates

Service
ExertionDispatcher

Catalog
ExertionDispatcher

ExertionDispatcher

Space
ExertionDispatcher

Jobber

Servicer Requestor

Custom
requestor

Provider
accessor

Spacer

Submits

job

Drops exertion into

Service
provider

Custom
provider

Lookup
service

Creates

Uses

Service
proxy

UsesService
joiner

Uses

Invokes

Pickups

exertion

from

Figure 3. Job execution of GISO programs.

58 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

request and waits for a relevant service provider to
acquire the request from the exertion space. This is
essential so that the job does not have to abort due to
non-availability of a service.

Central to the execution of the GISO/FIPER job is
the Exertion Dispatcher that can dispatch exertions
either by the lookup service, the cataloger, or the spacer.
A factory pattern is used whereby the right dispatcher
is called based on the number of exertions, control
strategy (sequential or parallel), and a service access type
(lockup service, cataloger, or spacer) all defined in the
job control context. The framework supports autonomic
provisioning whereby, the jobber can create or activate
services on demand using a provisioning provider
(provisioner). Also the GISO environment defines a
common service provider interface and a set of utilities to
create, startup, and register service providers as service
peers. A service joiner is used for the static bootstrapping
service providers and also for maintaining leases on
registered proxies with the Jini lookup services.

The GISO programing environment consists of basic
GISO/FIPER middleware providers: Jobber, Spacer,
Cataloger, Provisioner, and Persister (as depicted in
the GISO functional architecture in Figure 4). The
Persister is a data store service that allows users to store
and retrieve GISO data (service contexts) and programs
(tasks and jobs). As described in Section 4, GISO user
agents extensively use Persister functionality.

Domain specific providers used by GISO programs
(jobs) can be developed using GISO development tools
(Figure 2). All layers depend on the FIPER CME
framework. Web clients and stand-alone requestors
submit jobs to be executed by GISO/FIPER middleware
services (infrastructure providers) in concert with the
domain specific providers that complement the GISO
programing.

4. GISO Programing and Development Tools

As previously stated the P2P service-oriented frame-
work presented targets multiparty grid transactions.
When performing a nested transaction, be it either
a banking transaction or an engineering analysis, there

are three basic components that can be identified. They
are; the process or series of steps that must be executed
to complete the transaction, a specification of the
action to be taken in each step of the process, and
the information/data associated with each step in the
process (both input and output). Within GISO/FIPER
the program objects that represent the components
of a nested transaction are FiperExertions (FiperJob
and FiperTask), FiperMethod, and FiperContext. The
basic work unit within the GISO/FIPER programing
environment is an exertion. Each exertion contains
a FiperMethod and a FiperContext object. The
FiperMethod specifies what action that is to be taken
in a given step in the process. The FiperContext contains
all the data the FiperMethod operates on or generates.
The FiperContext also holds attributes for the data
much like MIME types that identify the application(s)
the data is associated with, its format (text, binary etc.),
and other user defined modifiers. A FiperJob
defines the process. It consists of one or more exertions,
the execution strategy for the process (sequential,
parallel, looping, and conditionals), and the mapping/
relationship of data between exertions. The hierarchy
of these classes is shown in Figure 5. It is worth
noting that recursion of FiperJobs is supported. That
is any of the FiperTasks within a FiperJob can be
a FiperJob itself.

The relationship between the GISO/FIPER program
objects and the general description of a nested transac-
tion is as follows; a FiperJob represents the process, the
FiperMethod represents the action, and a FiperContext
represents the data/information. The FiperTask acts as
a container holding the FiperMethod and FiperContext
creating the basic unit of work that is passed between
various service providers.

FiperJob

Exertion

FiperMethod

FiperContext

Exertion

FiperMethod

FiperContext

FiperMethod

ControlConext

. . .

Figure 5. Program object hierarchy.

CME layerCME layerFile storeFile store

Web CME user agentsWeb CME user agents

RequestorRequestor

J2EE, Jini, Rio, GAppJ2EE, Jini, Rio, GApp

FIPER core
Exertion Dispatchers, Generic Provider,

Proxy, Bean, ProviderAccessor

Infrastructure service providers
Jobber, Cataloger, Spacer, Persister, Notifier, Provisioner

Infrastructure service providers
Jobber, Cataloger, Spacer, Persister, Notifier, Provisioner

Persistence
layer

Static
bootstrapping

ExtraportalExtraportalIntraportalIntraportalService uIsService uIs

Utilities and templatesUtilities and templates

Figure 4. The GISO functional architecture.

Federated Computing with GISO Programing 59

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

As an example of a nested transaction in the GISO/
FIPER Environment consider the following engineering
application, the mechanical analysis of a gas turbine
component. The component, a turbine blade is shown
in Figure 6. The process of performing a mechanical
analysis consists of the following actions; generate solid
geometry, discretize the geometry into a finite element
model (FEM), apply boundary conditions to FEM,
apply materials to FEM, and solve the FEM for
structural stresses. The necessary input data for
each action and the resulting output data are shown in
Figure 7. Also depicted in Figure 7 are the associations
between the three components of a nested transaction
and the GISO/FIPER program objects.
To create the necessary program objects

(FiperContext, FiperMethod, FiperTask, and

Solve FEM for mech.
stresses

Mech. solution
strategy

Turbine blade
FEM stresses

FEM with BCs &
materials

Materials model

FEM with BCs

Boundary condition
(BC) model

Turbine blade FEM

Mesh strategy

Solid shank & airfoil

Seed geometry
shank parameters

Apply materials
to FEM

Apply BC
to FEM

Mesh solid geom.
into FEM

Generate solid
geom. model

in

out

in

out

out

out

in

in

Actions Data

Process turbine blade analysis

in

Figure 7. Process for the mechanical analysis of a turbine blade.

Airfoil

Platform

Shank

Dovetail

Figure 6. Turbine blade geometry.

60 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

FiperJob) for a nested transaction in the FIPER
environment a collection of web browser user agents
has been developed. It is not necessary to use these user
agents for the development and execution of a FiperJob.
Any standalone application can perform programmati-
cally the same steps to create the necessary objects
and act as a service requestor to submit the FiperJob
for execution. The following sections illustrate the
usage of the web user agents to create and execute
the necessary FIPER program objects to perform the
mechanical analysis of the turbine blade. Figure 8
shows the Fiper launcher page once logged into the
Fiper environment. It can be seen that there are
separate selections for the previously described program
objects, FiperContext, FiperTask, and FiperJob. The
FiperMethod object is created within the FiperTask
menu selection.

4.1 Context Editor

The Context Editor allows the end-user to specify the
data or references to the data along with the attributes
associated with the data. When creating a new context
the end-user is presented with the dialog that requires
the following fields. The Name and Description fields
are user defined; the Domain and Subdomain are
selected from a drop down menu. The Access field is

a company internal access classification and the Export
Control box indicates if the data is export controlled.
The ACL button produces an Access Control List
(ACL) dialogue that allows the end-user to assign read,
write, and execute permissions on this program object
based on userid or role. Once the end-user completes the
New Context Dialogue and selects OK the Context
Editor then appears. Figure 9 shows the Context
Editor along with the context for the first action or
task in the Turbine Mechanical Analysis Job represented
in Figure 7.

Figure 9 also illustrates that the FiperContext is
a tree structure with Context Nodes and Data Nodes.
The Data Nodes are further identified as either input
‘>’ or output ‘<’. The Editor allows the end-user the
ability to create, edit, or delete Context Nodes and Data
Nodes in the FiperContext.

4.2 FiperTask Editor

From the Fiper launcher in Figure 8 the end-user
selects Task, New, and completes the New Task Dialog
to gain access to the Task Editor shown.

Recalling that the FiperTask is the fundamental
building block or work unit in the GISO/FIPER
Environment which contains the action and data for
a nested transaction (Figure 7), the Methods field

}
FiFipeperCrConontetextxt

FIPERTaFIPERTasksk

FIPERJobFIPERJob

Figure 8. FIPER launcher and new Context dialog.

Federated Computing with GISO Programing 61

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

represents the action and the Context field represents the
data. To view/edit more detail on theses fields the end
user selects ‘Update Content’ which produces an Editor
(Figure 10). Figure 10 shows the definition of
the FiperMethod and the Context that is used for the
selected task, Generate Solid Shank. The fields
Interface, Command, Provider, and Method Type

define the Method. The Interface and the Provider
are used as the attributes to locate a service within
the environment with the current implementation.
The context for this task is the CAD Model Context
presented in Figure 9. Once all the actions/FiperTasks
have been defined for a given process/FiperJob the
FiperJob itself can then be constructed.

FiperMethodFiperMethod definitiondefinition

Context Context

fofor

tasktask

Task nameTask name

Figure 10. FiperTask, FiperMethod, and FiperContext Editor.

Context nameContext name DomainDomain SubdomainSubdomain

Context nodeContext node

Data nodeData node

Figure 9. FiperContext Editor.

62 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

4.3 FiperJob Editor

Figure 11 illustrates the creation of the FiperJob
represented in Figure 7. It contains all the tasks;
Generate Solid Shank, Mesh Shank, Apply Boundary
Conditions, Apply Materials, and Perform Stress
Analysis.

The Job Editor lists all FiperTasks associated with the
job along with the FiperTask’s Name and FiperMethod
Attribute information (Provider Name and requested
provider’s type – interface). The Task and Job
Editor features allow the end user to add additional
FiperTasks or FiperJobs by either browsing the existing
program objects or creating new objects on the fly.
The Job Editor features also enable the specification
of the Control Context and the JobContext. The
ControlContext specifies the flow and method of
execution of the FiperJob. The final step before a
FiperJob can be executed, is to define the flow of data
between tasks in the job. This is done using the
JobContext dialog, which can be invoked from the Job
Editor features on the Job Editor Dialog in Figure 11.

The FiperJob Context dialog for the Turbine Analysis
Job is shown in Figure 12. Here the Job is shown with
each task and the context for each task in a hierarchical
tree structure. The data flow from one task to the other
is defined by dragging one Fiper DataNode onto
another Fiper DataNode. In Figure 12 this has occurred
by dragging the AutoShank Output Solid Shank Node
contained in Task [0] onto the Solid Shank unnamed
Fiper DataNode in Task [1].

Once the data flow has been defined in the
JobContext the FiperJob is now ready for execution.
To submit the job to the Fiper Environment the Run
Job button is selected in the Job Editor (Figure 10).
A typical engineering analysis or design job could take
anywhere from a few hours up to several days or even
weeks. With jobs running this long it is critical that the
end-user have access to the status of the job and control
over the job as it executes. This is the function of the Job
Monitor.

4.4 FiperJob Monitor

The most critical capability that GISO/FIPER
programing needs from an end-users perspective is
the ability to interact with the process/FiperJob once it
has been submitted to the environment. Using a GISO
IDE requires a cultural change within the end-user
community. Today’s state of practice is that typical
designers and analysts execute single standalone appli-
cations either on their desktop or submit the runs to a
major shared resource (MSR) computing environment.
In either case the end-user is executing applications
individually and if a failure occurs they know at least
within which application the failure occurred. Also,
when running locally or in a MSR the end-user usually
has some or all control over the running application
and can closely monitor the progress of the execution
by monitoring log files and or output files from the
application. In the GISO IDE the end-user is now
combining many applications to perform a nested

Domain Domain SubdomainSubdomain Job nameJob name

JobJob

tasks tasks

Job ediJob editoror

features features

CrCreate te a n new Jew Job

and a add to Jobdd to Job

CrCreate te a n new Tew Taskask

and a add to Jobdd to Job

{

Task editTask editor

features features

Browowse & add job to job se & add job to job Browse & add task to job Browse & add task to job

Figure 11. FiperJob Editor.

Federated Computing with GISO Programing 63

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

transaction and submitting the execution of the nested
transaction to the network, which could easily take days
or weeks to complete. In the GISO IDE the end-user
may have no idea where the execution is taking place
and worse will have no feedback as to the state of
progress of the process. In the GISO IDE the end-user
surrenders all control to the environment, a precarious
proposition for a designer who is accustomed to having
complete control of the applications they are running.
With these facts in mind a few essential functionalities
are identified for GISO programing that are necessary
for the end-user to accept such a working environment.
The end-user must be able to monitor the progress
of the process and obtain intermediate results from
a given task. The end-user must be able to control
the process once it is submitted to the environment
by stopping, suspending, or terminating the process.
For a suspended GISO program the end-user must be
able to edit not only the data within the process but
also the process itself by adding or deleting tasks. After
any edits to the data or process the end-user must
be able to resume the process from any task within the
process not necessarily the task, the process was
suspended at. If the process fails the end-user must
obtain meaningful information that specifies where the
failure occurred and what action needs to be taken to

correct the problem. This last requirement puts a
significant burden on the service provider developers
to properly trap exceptions and translate them into
meaningful information for the end-user.

In the GISO/FIPER Environment the monitoring/
client process interaction is done using the Job Monitor.
Figure 13 shows the Turbine Analysis Job running in
the Job Monitor. The Job Monitor can be viewed as an
‘Interactive debugger for program objects or services
on the network’. The Job Monitor shows the progress of
the process (green complete, green/yellow running, red
failed, yellow suspended). It also displays intermediate
information from a task (by viewing the job context)
if the provider returns such information. The client is
also able to stop, suspend, step, and resume a running
job. In addition, for a given suspended or completed job,
the client has access to a drop down menu that allows
full edit capability of the data in the job or the job/
process itself. Data can be changed, tasks can be edited/
added/deleted, and the job resumed from any task.

5. Conclusions

In the GISO approach, object-oriented concepts are
applied to the network and grid-oriented programs.

Task[1]Task[1]

DragDrag andand Drorop p shshows s that this

input wilt will cl comeme fro from tas task0, ,

AutAutoShShankank OuOutptput Nout Node

Job Job

Task Task [0][0]

Context[0] Context[0]

Context [1] Context [1]

Figure 12. Fiper JobContext dialog.

64 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

A job is a service-oriented program executed in a
federated service-oriented environment across multiple
virtual organizations. Jobs are created using friendly,
interactive web-based graphical interfaces. JiniTM

Connection Technology from Sun Microsystems enables
federated, platform independent, real world grids.
It allows one to create GISO programs that process
a whole aircraft engine as a virtual object-oriented
product control structure that can be manipulated by
multidisciplinary teams as network-centric, active,
evolving product. New shared programs and engineering
applications can be assembled as needed on the fly by
integrating new capabilities into existing workflows,
systems, devices, and applications. The presented web-
centric GISO IDE reduces the costs of solving business
problems as well as establishing and maintaining
online business relationships. Services are provided
by shared low cost, easy to develop service providers
and are integrated into the core business of an
enterprise. An experimental version of presented
approach was successfully deployed at the General
Electric Global Research Center and at General
Electric’s Aircraft Engines. At the research center
approximately 10 developers were working within in
the environment creating and running jobs. These jobs
ranged from two tasks up to approximately 20 tasks
with run times varying from minuets to days. The
services were distributed across a half a dozen comput-
ing platforms. At the Aircraft Engine site approximately
six design engineers were using the environment.
Jobs for these applications contained on average six
tasks and run times were on the order of minutes and
hours. It was found that the ability to monitor the
jobs and return usable exception information when

jobs failed was critical to the successful transition of
the technology.

References

1. Hafner, K. and Lyon, M. (1996). Where Wizards Stay Up
Late (a history of Internet development), Simon and
Schuster: New York, NY.

2. Postel, J., Sunshine, C. and Cohen, D. (1981). The
ARPA Internet Protocol Computer Networks, Chapter 5,
pp. 261–271.

3. Postel, J. and Reynolds, J. (1987). Request for Comments
Reference Guide (RFC1000). Internet Engineering Task
Force.

4. Lynch, D.L. and Rose, M.T. (1992) Internet System
Handbook, Reading MA: Addison-Wesley.

5. Lee, J. (ed.) (1992). Time-Sharing and Interactive
Computing at MIT, IEEE Annals of the History of
Computing, 14(1).

6. Foster, I. and Kesselman, C. (eds) (1999). The Grid:
Blueprint for a New Computing Infrastructure, San
Francisco, CA: Morgan Kaufmann Publishers.

7. Foster, I., Kesselman, C. and Tuecke, S. (2001). The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations, International J. Supercomputer
Applications, 15(3).

8. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham,
S., Kesselman, C., Maguire, T., Sandholm, T., Snelling, D.
and Vanderbilt, P. (2003). Open Grid Service
Infrastructure (OGSI). Technical Report, Global Grid
Forum (OGF), Version 1.0, June 2003. Available from
http://www.ggf.org/documents/GWD-R/GFD-R.015.pdf

9. Foster, I. and Kesselman, C. (2002). The Physiology of the
Grid: An Open Grid Services Architecture for Distributed
Systems Integration, Open Grid Service Infrastructure
WG, Global Grid Forum, June 22, 2002.

FulFull job edijob edit capabilt capability

Job eJob executionecution

controlcontrols

Figure 13. FiperJob monitor.

Federated Computing with GISO Programing 65

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

10. Grimshaw, A.S. and Wulf, W.A. (1997). The Legion
Vision of a Worldwide Virtual Computer, Communications
of the ACM, 40(1): 39–45.

11. Smarr, L. (1997). Computational Infrastructure:
Toward the 21st Century, Special Issue on Plans for
a National Technology Grid, Communications of the
ACM 40, 11.

12. National Research Council. (1993). National Collab-
oratories: Applying Information Technology for Scientific
Research, Washington DC: National Academy Press.

13. Goel, S. and Sobolewski, M. (2003). Trust and Security in
Enterprise Grid Computing Environment, In: Proceedings
of the IASTED Intl. Conference on Communication,
Network, and Information Security, New York, NY,
Dec 10–12.

14. Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M.
and Burton, S. (2002). Network-Centric MAO
Environment, The Society for Modeling and Simulation
International, 2002 Western Multiconference, San
Antonio, Texas.

15. Kolonay, R. and Sobolewski, M. (2004). Grid Interactive
Service-oriented Programming Environment, Concurrent
Engineering: The Worldwide Engineering Grid, Tsinghua
Press and Springer Verlag, ISBN 7-302-08802-0,
pp. 97–102.

16. Lapinski, M. and Sobolewski, M. (2003). Managing
Notifications in a Federated S2S Environment,
International Journal of Concurrent Engineering: Research
& Applications, 11: 17–25.

17. Röhl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M.
and Kao, K. (2000). A Federated Intelligent Product
Environment, AIAA-2000-4902, 8th AIAA /USAF/
NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Long Beach, CA, September 6–8.

18. Sobolewski, M. (2002a). FIPER: The Federated S2S
Environment, JavaOne, Sun’s 2002 Worldwide Java
Developer Conference, (http://servlet.java.sun.com/
javaone/sf2002/conf/sessions/display-2420.en.jsp)

19. Sobolewski, M. (2002b). Federated P2P Services in CE
Environments, Advances in Concurrent Engineering,
A.A. Balkema Publishers, 2002, ISBN 90 5809 502 9,
pp. 13–22.

20. Sobolewski, M., Soorianarayanan, S. and Malladi-
Venkata, R.K. (2003). Service-oriented File Sharing,
In: Proceedings of the IASTED Intl. Conference on
Communications, Internet, and Information Technology,
Scottsdale, AZ, Nov 17–19, pp. 633–639.

21. Soorianarayanan, S. and Sobolewski, M. 2004,
Monitoring Federated Services in CE, Concurrent
Engineering: The Worldwide Engineering Grid,
Tsinghua Press and Springer Verlag, pp. 89–95, ISBN
7-302-08802-0.

22. Zhao, S. and Sobolewski, M. (2001). Context Model
Sharing in the FIPER Environment, In: Proc. of the 8th
Intl. Conference on Concurrent Engineering: Research and
Applications, Anaheim, CA.

23. Edwards, W.K. (2000). Core Jini, 2nd edn, Prentice Hall,
ISBN: 0-13-089408.

24. Jini Architecture Specification. Available at URL: http://
www.sun.com/jini/specs/jini1_1.pdf

25. Freeman, E., Hopfer, S. and Arnold, K. (1999).
JavaspaceTM Principles, Patterns, and Practice, Addison-
Wesley, ISBN: 0-201-30955-6.

26. Project Rio, http://rio.jini.org/

Michael Sobolewski

Dr. M. Sobolewski joined, as
a Professor, the Computer
Science Department, Texas
Tech University in September
2002. While at GE Global
Research Center he was a chief
architect of the FIPER project.

Prior to coming to the U.S.,
during his 18-year career with
the Polish Academy of
Sciences, Warsaw, Poland, he

was the head of the Picture Recognition and Processing
Department, the head of the Expert Systems
Laboratory, and was doing research in the area of
knowledge representation, knowledge-based systems,
pattern recognition, image processing, neural networks,
and graphical interfaces. He has served as visiting
professor, lecturer and consultant in Sweden, Finland,
Italy, Switzerland, Germany, Hungary, Czechoslovakia,
Poland, Russia, and the USA.

Dr. Ray Kolonay

Dr. Ray Kolonay is currently
the Assistant to the Chief
Scientist in the Air Vehicles
Directorate, Air Force
Research Laboratory at
Wright-Patterson Air Force
Base Ohio.

He has over twenty years
experience in the development,
use, and support of mechanical
analysis and automated design
tools and methods. Recent
research interests have been in

the development of large scale distributed engineering
analysis and design computing environments. While at
the General Electric Global Research Center he was the
team leader of the Federated Intelligent Product
EnviRonment (FIPER) project – a 21.5 million dollar
NIST Advanced Technology Program that focused on
the development of a Network-Centric e-Engineering
environment enabling global access and communication
between engineering data and applications for mechan-
ical analysis and design. His career has been focused on
developing methods for the automated Multi-
Disciplinary Analysis and Optimization (MDA/MDO)
of flight vehicle structures ranging from complete
airframes to turbine blade components. His areas of
technical expertise include structures, structural
dynamics, linear/nonlinear aeroelasticity, engineering
sensitivity analysis, optimization, and distributed engi-
neering computing environments.

66 M. SOBOLEWSKI ET AL.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by on March 8, 2008 http://cer.sagepub.comDownloaded from

http://cer.sagepub.com

