
Citation: Alam, T.; Gupta, R.

Federated Learning and Its Role in

the Privacy Preservation of IoT

Devices. Future Internet 2022, 14, 246.

https://doi.org/10.3390/fi14090246

Academic Editor: Georgios

Kambourakis

Received: 27 July 2022

Accepted: 14 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

Federated Learning and Its Role in the Privacy Preservation of
IoT Devices
Tanweer Alam 1,* and Ruchi Gupta 2

1 Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia
2 Department of Computer Science, Ajay Kumar Garg Engineering College, Ghaziabad 201015, India
* Correspondence: tanweer03@iu.edu.sa

Abstract: Federated learning (FL) is a cutting-edge artificial intelligence approach. It is a decen-
tralized problem-solving technique that allows users to train using massive data. Unprocessed
information is stored in advanced technology by a secret confidentiality service, which incorporates
machine learning (ML) training while removing data connections. As researchers in the field promote
ML configurations containing a large amount of private data, systems and infrastructure must be
developed to improve the effectiveness of advanced learning systems. This study examines FL
in-depth, focusing on application and system platforms, mechanisms, real-world applications, and
process contexts. FL creates robust classifiers without requiring information disclosure, resulting in
highly secure privacy policies and access control privileges. The article begins with an overview of FL.
Then, we examine technical data in FL, enabling innovation, contracts, and software. Compared with
other review articles, our goal is to provide a more comprehensive explanation of the best procedure
systems and authentic FL software to enable scientists to create the best privacy preservation solutions
for IoT devices. We also provide an overview of similar scientific papers and a detailed analysis
of the significant difficulties encountered in recent publications. Furthermore, we investigate the
benefits and drawbacks of FL and highlight comprehensive distribution scenarios to demonstrate
how specific FL models could be implemented to achieve the desired results.

Keywords: federated learning; artificial intelligence; privacy; security; machine learning

1. Introduction

Federated learning was introduced in 2016 by Brendan McMahan [1]. Local data are
used to download and integrate the current model into the system. A single federated and
enhanced global model is then supplied to the devices because these locally trained models
are combined (i.e., weighted on average) [2].

1.1. FL Basics

FL generally enables ML to extract data from various datasets stored at different
locations. This method allows several organizations to work in partnership on model
advancement, not including distributing confidential information. Shared models have
been exposed to a much broader range of data than a single internal entity during multiple
training processes [3]. In other words, FL focuses on ML by not requiring data to be
integrated into a single location. Instead, the model is trained in multiple domains with
multiple iterations [4]. FL is a computational approach that involves training the algorithms
on shared smart devices or platforms that hold local training datasets that are not shared.
The server is responsible for managing the training procedure, which consists of the
following essential steps:

1. Implementing the training algorithm.
2. Assembling all learning results for devices.
3. Changing the global model.
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4. Notifying devices after the global model-based improvement and preparing for the
next training session.

In the meantime, devices represent digital assets on a secure server and can apply the
training model to their data [5]. When the server accesses a model, each device initiates the
training process. Then, a set of communication rules is used to send the learning results to
the server. Compared to single classification algorithms, this approach is radically different.
High-performance processes usually begin with small data samples transmitted to a data
center [6].

It is possible for several actors to develop robust learning models that do not incor-
porate the distribution of information, which allows them to address many significant
concerns, such as the security of data, the privacy of data, and access to data [7]. The local
and global models in FL are shown in Figure 1.
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1.2. Roles of FL Applications

The applications of FL have expanded to various fields, including security, telecom-
munications, the Internet of Things, and medicine. FL seeks to prepare an ML algorithm
without directly sharing data samples, such as artificial neural networks, using various
local data available in current situations. Figure 2 shows the development of FL between
2016 and 2022 (Google Trends) [8]. A common goal is to train local models in local data sam-
ples and perform a periodic exchange of bounds (such as deep neural network strengths
and perceptions) among these local nodes to produce a universal model distributed by
the whole device. The most significant difference between FL and distributed delivery is
the supposition of local databases, as the distributed learning initiative aims to simulate
IoT device performance. In contrast, FL aims to train on different databases. Although
federated learning introduces a single model on multiple servers, it is common to assume
that the local databases are evenly distributed and approximately equal in size.

Instead, the datasets are usually different, and the sizes could be extensive instructions
of implication [9]. The clients participating in federated learning may be inefficient because
they deeply trust less-efficient communications and battery-powered IoT devices than
clients participating in distributed data, where shared nodes interact with high computing
power [10]. FL works like this: The client machine installs the current model, updates it
with data from its device, and then encapsulates the improvements as a small, targeted
change. This adjustment is only when the model is transferred to the server through secured
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connections. It may easily be coupled with other device improvements to strengthen the
sharing models [11]. The user’s device maintains all training data, and no updates are
saved on the cloud. The cloud service is utilized during the learning process to schedule FL,
set different algorithms, and link all the participating nodes [12]. The service is responsible
for selecting the connections starting the preparation stage and compiling the accepted
model updates. The server can be a bottleneck as all selected nodes must submit updates to
an association [13]. IoT devices can join a distributed learning environment to find a global
model. Since model updates are exchanged between related devices without establishing a
central server, this avoids single-point failure. However, the network topology can affect
the learning process’s efficiency.
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Various applications are used on smart and IoT devices [14]. Most current FL strategies
assume local models share the same structure as the global model context. Heterogeneous
FL (HeteroFL), a modern digital learning system, has recently been developed to meet the
needs of a wide range of computer-enabled and highly connected customers. The HeteroFL
method can produce a single tendency model while training multiple local models with
a wide range of dynamic variables. Our study begins with exploring and discussing the
various ML structures before reviewing the FL. Throughout this study, the authors offer
a novel classification of FL themes and research fields based on a massive review of the
innovative enabling issues and existing previous works [15], which differs from prior
surveys in the area. A complete control system, in this sense, includes a wide variety
of demanding features, contributions, and documentation trends, such as basic program
models and projects, application domains, privacy and security, and resource management.

The authors also go through some of the most pressing issues and current research
indications [16]. The authors discuss key challenges and present research indicators for
effective FL programs. People nowadays create massive volumes of information on net-
worked machines such as mobile devices or IoT gadgets, portable health products, etc.
Artificial intelligence (AI) is already ubiquitous and essential in all relevant domains, en-
hancing our lives and recognizing the abundance of data and the scarcity of ML models.
In short, deep learning (DL) is driving today’s AI explosion. It has produced an embar-
rassment of agendas that are used by people all over the world daily. On the other hand,
despite the rapid development of DL, existing methods continue to support cloud-centric
applications. The list of abbreviations used in this study is shown in Table 1.
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Table 1. List of abbreviations.

Abbreviation Means

FL Federated Learning
IoT Internet of Things
ML Machine Learning
AI Artificial Intelligence
DL Deep Learning

CAGR Compound annual growth rate
BFSI Banking, finance, and insurance
SBN Static Batch Normalization
FC Federated cloud

HeteroFL Heterogeneous Federated Learning
SGD Stochastic gradient descent
FDBS Federated database systems
PRLC Pulling Reduction with Local Compensation

FedAvg Federated Averaging
BlockFL Blockchain-based federated learning

MEC Mobile edge computing

TCP CUBIC Transmission control protocol and Cubic Curve Binary
Increase Congestion

1.3. Importance of FL

The global knowledge market is expected to grow at a compound annual growth
rate (CAGR) of 44.1%, from $1.03 billion in 2016 to USD 8.81 billion in 2022 [17]. Growing
technological breakthroughs and data processing are the primary drivers of growth in the e-
learning industry. The banking, finance, and insurance (BFSI) sector contribute significantly
to the current ML market, with life science and healthcare showing rapid growth. Other
verticals contributing to the data include government and defense, energy resources,
telecommunications, and manufacturing. To enable more innovative applications, ML must
extract delicate parameters from data generated separately from the verticals [18]. North
America will be the largest ML market by the end of 2022, with the rest accounting for the
remaining top five markets.

The IoT market is expected to grow by 24.7 percent from its current value of USD
190 billion by 2026. The IoT market and other industries are being driven by telecom,
transportation, manufacturing, healthcare, government, retail, and BFSI. The BFSI sector
accounts for the majority of the total. The Asia Pacific region generated the most revenue
in 2018, USD 74.5 billion, and was expected to maintain its lead in the IoT market in 2019.
China has the highest share in the Asia Pacific region. Aside from the market stake for
ML and IoT, the amount of research literature published this year was higher than the
previous year. Based on the information presented above, it is predicted that opportunities
for research narratives will emerge soon as a result of ML and IoT [19].

1.4. Challenge

Recent surveys and scholars have studied FL. First, we provided an overview of
FL. Second, there are numerous solutions to major implementation issues [20]. During
the learning process, FL necessitates regular communication among devices. As a result,
switching the constraints of the ML standard requires sufficient local processing capacity,
recollection, and a high bandwidth connection. However, the equipment also prevents data
transmission, which is necessary before beginning ML in the transitional stage. However,
devices commonly used in FL, such as IoT devices or smartphones connected to Wi-Fi
networks, are restricted from communicating. Even though models cost more to transmit
data, FL methods may not be appropriate [21]. Figure 3 depicts the FL [22] model updating.
FL includes several mathematical tasks:

i. Differences between different local portions of data: Each node may have some bias
towards multiple individuals, and the size of databases may vary significantly.
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ii. Temporary heterogeneity: the database distribution for each area may vary over time.
iii. Database interaction of each node is a requirement.
iv. The database for each node may need to be overwritten by default.
v. Disappearing training data may allow attackers to go after the domain standard.
vi. Due to the lack of global training data, it is necessary to identify the undesirable

options that feed into the training, such as age and gender.
vii. Limited or complete model loss is renewed due to node failure affecting the global standard.
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FL would be the unique form of intelligence that uses limited knowledge and training
to provide learning to the device’s edge or immediately to the user. It uses a highly recent
training facility called “emergence in AI” because it was concerned with information
security. Security and privacy challenges with FL must be recognized, analyzed, and
documented before FL can become ubiquitous and widely adopted in the research field [22].
It is recommended in circumstances wherein privacy and security are essential. A clear
picture and awareness of risk considerations will allow the FL initiator/recipient to build a
secure environment while delivering research successfully. Our research aims to investigate
FL data privacy characteristics, which may aid in explaining the relationship between
collective AI models and the privacy-preserving vision [23]. The authors describe how to
begin assessing current issues in Florida and a comprehensive assessment of the privacy
protection issues that must be addressed in a comprehensive study [24]. To our knowledge,
FL is associated with fewer privacy concerns than security risks. Communication issues and
background hacking are the most specific security risks, while targeted attacks are critical
for FL’s privacy. We conclude our research with a prediction for future research. While
research is ongoing, understanding FL’s security and privacy risks are not advanced [25].
Such a study thoroughly examines FL security in terms of official definitions, achievements,
and challenges, distinguishing it from previous implementations. As a result of this work,
data scientists and cybersecurity researchers may be able to create FL solutions that will
alleviate future challenges.

1.5. Contributions

A summary of recent field publications is formed, such as (a) providing a breakdown
and introduction to FL implementation methods and strategies. (b) Identifying and assess-
ing security threats in FL and FL-based domains. In ML-related attacks, FL strategies are
used. (c) Identifying and evaluating privacy threats, remediation methods, and trade-offs
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in FL privacy protection strategies. (d) Disseminating information about security measures
and future indicators that will improve security and privacy when FL is implemented.

1.6. Organization of Paper

This is how the entire paper is organized. The background information on FL and the
basic working process are presented in Section 2. The Section 3 contains information from
the federated database on FL. Section 4 discusses the research methods. Similarly, Section 5
presents the roles of FL in preserving privacy. The discussion is presented in Section 6.
Section 7 summarizes the conclusion.

2. Related Works

Four years ago, a massive change occurred in the operation of Learning Machines
because of personal concerns and ideas. Table 2 shows the previous studies.

Table 2. Previous related papers.

Ref. No. Authors Year Title/Topic

[7] Lim, Wei Yang Bryan, et al. 2020 FL in mobile edge networks
[8] Chamikara, M. A. P., et al. 2021 Privacy preservation in FL
[11] Zhang, H., et al. 2020 Engineering FL systems
[13] Mothukuri, V., et al. 2021 Security and privacy in FL
[20] Zhang, C., et al. 2021 FL
[21] Li, Q., et al. 2019 FL systems
[22] Aledhari, M., et al. 2020 FL
[23] Kulkarni, V., et al. 2020 FL
[26] Li, L., et al. 2020 A Survey on FL
[27] Zhan, Y., et al. 2021 Mechanism Design for FL
[28] Li, L., et al. 2020 Applications in FL
[29] Zhu, H., et al. 2021 From FL to federated neural architecture
[30] Kolias, C., et al. 2022 Wireless intrusion detection
[31] Pham, Q. V., et al. 2022 Aerial access networks for federated learning
[32] Ghimire, B., and Rawat, D. B. 2022 Federated learning for cybersecurity
[33] Zhang, T., et al. 2022 Federated learning for the Internet of Things

2.1. Introduce the Term FL

With the first publication of federated measurements in telecommunication environ-
ments in 2016 [1], FL emerged as a relevant research topic. Reducing communication
pressure during the FL process is another crucial feature of a successful study. In 2017
and 2018, the publications highlighted the advancement of resource allocation policies,
focusing on reducing the need for communication between gossiping areas and a strong
manifestation of various privacy attacks. Other research focuses on lowering training
bandwidth through augmentation and quantization approaches, where ML models are
augmented and quantized.

Other research focuses on minimizing training bandwidth through augmentation and
quantization approaches, wherever ML models are augmented and compacted before being
assigned to other nodes [26]. So far, only the best-performing networks have been con-
sidered. Another research guideline jointly analyzes the training of different local models
with various computational problems to produce a single effective global model. Federated
learning is a modern learning system that aims to improve the learning capabilities of each
agent without revealing confidential information, patterns, or learning objectives.

2.2. Improve the Learning Capabilities

The FL is a new learning system aiming to improve each agent’s learning capabilities
without disclosing confidential information, patterns, or learning objectives. A new model
known as FL is being developed in addition to integrated systems and on-site analysis to
create a new ML application design [27]. It is a secret method that saves previously used
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processes and stores original sensitive information in gadgets. It installs localized artificial
intelligence learning to minimize information transmission to the greatest extent possible. A
combination of learned and shared models is formed on a remote database to integrate and
exchange information generated by users. This paper investigates and compares various
ML deployment structures before conducting an in-depth and comprehensive analysis.
Unlike FL, which frequently necessitates using an intermediary controller to schedule
learning and practice, FL aims to provide agents with agreements to use and learn from
one another without needing a global model. Using FL approaches ensures data security
or encryption, which is a significant advantage. There was no way to import, view, or
share position data. Accessing the database is extremely difficult because it is divided into
position sections [34]. In FL, only the ML parameters are shared.

Key cryptographic methods can also be used to increase security. These considerations
can be encoded before being shared between learning sequences, and exact computations
can be performed on encrypted data without releasing it. In addition to such safeguards,
these parameters may continue revealing information about simple data samples [35] by
running specific queries against databases. As a result, the assumption about spatial perfor-
mance is a significant concern that can be addressed by decoupling privacy from robust
integration [36,37]. Successful measurement, which has emerged as a privacy concern in
federated learning [38–40], limits the use of DL models. Static Batch Normalization (SBN)
can keep deep neural networks private. SBN normalizes batch data during the training
phase rather than monitoring active measurement. Only statistics for hidden inputs from lo-
cal data are provided after the model estimate [41,42]. Local models are appropriate for the
FL system because they do not necessitate the loading of active measures by expertise [43].
Because local models only store user data, data leaks are drastically reduced. The most
recent findings provide specific recommendations for creating successful IoT applications.

2.3. Privacy-Preserving

The protection of user privacy is an essential feature of FL. However, it differs sig-
nificantly from standard big data privacy preservation techniques such as privacy sep-
aration and K-Order confidentiality [44–46]. Federated learning primarily protects user
privacy by exchanging protected restrictions, even though unknowns cannot obtain source
data [47–49]. Both FL assurances would not jeopardize data security during the device
phase, and no GDPR or other concerns would arise. FL is divided into three types for
data delivery: horizontal FL, simple FL, and FL techniques [50–52]. Horizontal federated
transfer learning is sufficient when two user databases are more advanced but slightly
higher. Straight FL is available when the user characteristics of the two databases are
marginally higher, but the users are more experienced. When the dual databases’ user
and device feature match, the authors can use the switch to learn how to fix the lack of
data or identifiers. FL investigates distribution across multiple devices and distributed
computing [53–55].

Distributed ML includes the impact of distributed publishing models, distributed data,
and allocated ML. Examples of supplied ML include the effects of distributed broadcasting
models that deliver distribution data and distributed device distribution functions [56].
The factor server in ML provided is one of the fast training methods for ML models. It
manages data across multiple distributed nodes and allocates resources via a dependable
key server to achieve the best training results. In contrast to distributed ML, each task node
in FL owns its own data and participates in model training.

In addition, key cryptographic methods can be used to increase security. These con-
siderations can be encoded before being shared between learning sequences, and exact
computations can be performed on encrypted data without releasing it. In addition to
such safeguards, these parameters may continue revealing information about simple data
samples [35] by running specific queries against databases. As a result, the assumption
about spatial performance is a significant concern that can be addressed by decoupling
privacy from robust integration [36,37]. Successful measurement, which has emerged as a



Future Internet 2022, 14, 246 8 of 22

source of privacy concern in federated learning [38–40], limits the use of DL models. Static
Batch Normalization can be used to keep deep neural networks private (SBN). SBN normal-
izes batch data during the training phase rather than monitoring active measurement. Only
statistics for hidden inputs from local data are provided after the model estimate [41,42].
Local models are appropriate for the FL system because they do not necessitate the loading
of active measures by expertise [43]. Because local models only store user data, data leaks
are drastically reduced. The most recent findings provide specific recommendations for
creating successful IoT applications.

2.4. FL Developments

The advancement of FL is not well-known in culture as a modern privacy-preserving
paradigm. The following examples show how federated learning works. We suppose that
many different companies collaborate to learn standards. Additionally, it is almost impossi-
ble to collect the data of all parties without the consent of the users [28,57]. Alternatively, a
company should use its data to train an ML model framework. It assumes that all groups
create a working model, but due to their companies’ minimal and incomplete data, it is
hard to train a suitable ML [58,59]. The goal of FL is to find solutions to these problems. The
FL ensures that no details about their business location are revealed. Boundaries are shared
between clients and server encryption to create a global model based on the non-violation
of privacy [60].

Since its inception in 2016, FL has constantly been evolving [61–64]. This section also
considers the following open policies (asynchrony, security, and privacy) in addition to the
fundamentals (as described above). In the event of a dangerous attack on dispersed devices,
FL can lead to data leakage while it helps protect sensitive data [29,65,66]. For example, such
a leak could be caused by stochastic gradient descent (SGD) in the application process. This
makes it challenging to protect privacy and safety in Florida. For algorithm performance,
IoT infrastructure’s rapid growth in network traffic has become a major technical concern.
FL’s ability to link a variety of devices needs the use of efficient algorithms to identify
running applications [67,68]. For example, the Federated Averaging (FedAvg) algorithm is
used for local computation and update computation and privacy separation algorithms to
minimize time overhead. The FL-related algorithms still need to be optimized when dealing
with big data due to limited computing power. For the application of technology [69–72], FL
greatly influences smart city applications. It covers almost every aspect, especially finance,
medical care, transportation, etc. With FL, models can be trained on data corresponding to
different levels [73,74]. FL will train models that cannot be federated directly by hospitals,
such as smart healthcare.

On the other hand, FL uses input-sensitive data without compromising privacy or
conquering the data key. The correctness of a model could be significantly enhanced by
combining big data [75,76]. IoT devices will become more intelligent through the successful
use of FL. Table 3 shows the year-wise contribution to the research of FL.

Table 3. Year-wise contribution to the research of federated learning.

Year Ref Contribution

2016 [1] Introduce the term FL

2016 [77] To enhance the functioning of the global model and
decrease communications load.

2017 [48,78] Studies of attacks on privacy.
2018 [67,72,76,79,80] Development of resource allocation strategies
2019 [5,71,81] Proof of FL in Blockchain
2019 [14,37] Improving privacy using FL
2019 [25,44] Resource allocation strategies

2019 [39,43,50,57] Applied Federated Learning in wireless communications
on mobile edge

2019 [47,49,51] Applied Federated Learning on-device personalization
2019 [59,62,82] Applied Federated Learning for data privacy in big data
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Table 3. Cont.

Year Ref Contribution

2020 [3] VerifyNet for secure and verifiable FL
2020 [4,18,56,83] Privacy-preserving Blockchain-based FL
2020 [19,84] FL in 5G mobile network
2020 [24] FL in Resource Optimizations
2020 [36,61] FL implementation in healthcare
2020 [54] Human mobility Prediction using FL
2020 [63] FedCoin payment system
2020 [85–87] Applied FL on IoT devices
2020 [88] FL in smart city sensing
2021 [2] FL in traffic flow prediction
2021 [8] FL-based distributed machine learning
2021 [38] FL for 6G
2021 [58] MHAT: FL-based model aggregation training scheme

The gradual expansion of FL has opened new opportunities for people from all aspects
of life. This paper addresses the use of FL in smart cities, including communications,
healthcare, and the Internet of Things [85,89,90]. Smart cities are expected to grow presently
due to the use of FL. A more naturalistic environment that enriches everyone will be created
by FL participating in all aspects of life.

2.5. FL Development Issues

Several FL deployment issues negatively impact IoT growth, including computational
performance, heterogeneity, security, and resource integration [82]. For this reason, the
authors have created a list of possible solutions to these problems. Below is the list:

Distribution of FL

Wireless resource restrictions and acoustic data can impact FL integration and local
model training. By combining the available communication resources, the authors can
create a gradient-based sparsity scheme [91]. The authors tend to the dataset and select
devices with sufficient power for model training.

Surprising FL Collection

Statistical variability is already present in many machine datasets. It has a significant
impact on FL convergence performance [81]. The authors can select the preceding machines
in a dataset that satisfies a certain level of reliability.

FL security

During training, inappropriate memory devices may be present. The incorrect learning
model parameters affect the device’s accuracy. The authors could use blockchain [92] to
verify the upkeep of storage devices. FL mobile users are disrupted when uplinks become
congested and consume uplink communication resources. The authors may devise a plan
to distribute resources using the game principle. We can integrate those resources more
efficiently if authors link all storage devices that assist one block.

2.6. FL Applications

While specific performers require training models on more significant datasets, al-
though they could not allow the data, they may use federated learning [86]. The technology
still requires good communication among local servers and low computing energy for
every point.

Self-driving vehicles

Autonomous vehicles use ML skills such as computer vision to detect obstructions and
ML to alter the environment’s pace to avoid dangerous situations (e.g., road explosion). The
typical cloud technique may be a safety issue due to the enormous number of self-driving
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vehicles and the need for them to respond quickly to real-world events [84,93]. Security
concerns may arise due to the considerable number of self-driving cars and the need to
react swiftly to real-world situations. As a result of its ability to reduce data transfer, FL
can aid in accelerating learning progress.

Medicine: a digital existence

FL aims to explain information management and confidentiality challenges by training
distributed algorithms without sharing data. The modern method of combining data comes
at the cost of sensitive concerns such as patient privacy and data security throughout many
organizations. The capability to prepare ML models at scale in many health settings, not
transmitting sensitive technical information, is a solution. The Future of Digital Health by
FL was published in Nature Digital Medicine in 2020, and the writers discuss how organized
learning can result from the potential of digital healthiness.

Protecting the sensitive data

ML methods are widely utilized in Industry 4.0 to increase the productivity of man-
ufacturing processes while maintaining high security. On the other hand, protecting the
sensitive data of industrial and manufacturing companies is essential. Since the learning
algorithms do not reveal sensitive data, they can solve these challenges.

3. From Federated Database to FL

Federated computing has become an attractive research area in computer science
under various distributed situations. Until the mid-1990s, numerous federated database
system (FDBS) studies were conducted. FDBS is a non-profit data collection organization
that provides similar services. The three key elements of FDBS, as shown in the previous
research, are independence, diversity, and distribution.

3.1. Independence

The data collection system (DBS) that participates in FDBS is autonomous and is
controlled separately and independently. Without FDBS, groups can still manage the
data [77].

3.2. Differentiation

The FDBSs’ data management systems may differ from one another. Differences can be
observed in data formats, languages, program requirements, and communication capacities.
FDBS data distribution may vary from one DBS to the next due to several DBSs before
the FDBS’s construction. Horizontally classified data can be placed on various DBSs or
duplicated across several DBSs.

3.3. Federated Cloud Computing

With the advent of cloud computing, many studies on federated cloud computing have
been conducted recently, provisioning and managing many external and internal computing
services through a Federated Cloud (FC). The concept of a cloud partnership provides
additional cost savings through partial outsourcing to low-cost regions. The two primary
components of integrated clouds are resource migration and resource offloading. Moving
resources from one cloud provider to another is the initial step. Migration permits the
movement of resources. Second, deconstructionism enables the domain-specific application
of identical service capabilities. For instance, data can be categorized and processed across
many providers.

3.4. Multi-Resource Scheduling

Information can be classified and processed across multiple providers using the same
computational concept [79,94]. Overall, multi-resource scheduling is critical to developing
an integrated cloud system. FL and standard assembly systems have some similarities and
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differences. First and foremost, the concept of an association is still sustainable. The stan-
dard and fundamental concept is the collaboration of numerous independent groups [95].
Therefore, group heterogeneity and independence can be utilized in FL. Secondly, several
critical elements in the strategy of allocated techniques remain. For example, the way
data are shared between groups can have an impact on system performance. Integrated
systems, on the other hand, focus on various collaborations and constraints. FLs are more
concerned with the secure settlement between multiple parties, while FDBSs is concerned
with distributed data management and FCs with resource management. FLs present new
challenges, such as developing a distributed training algorithm and protecting data while
considering privacy constraints.

4. Methods

In FL, automated variations can alter the ineffectiveness of the entire training process.
Four types of variations can be used to resolve the heterogeneousness problem of the
approach: concurrent, transmission devices detection, the attack detection mechanism, and
model diversity, which have all been discussed.

4.1. Asynchronous Communication

Around specific information, the base is two universal policies for parallelization
based on the algorithm: similar and parallel connections [87,96]. However, since the
synchronizing mechanism is easily broken in the face of many devices, good communication
is essential when learning federated tasks. It uses a limited amount of information to
discover parallel and asynchronous processes that could assist resolve the training device
flexibility challenge.

4.2. Device Sensing

Not all machines are needed to undergo the entire training phase in FL. The machine is
such chosen that the user can participate in one part of the event on one device and another
part of the event on another device. Device sensing takes the opportunity to participate
in training [83]. Machines play a role in interdisciplinary training to address the problem
of resources. The selection increases the number of clients in the training process while
improving model outcomes. Kang and colleagues created a marketing strategy focused on
contract instruction to entice powerful local devices to enhance learning accuracy through a
more effective learning process. The paper [97] introduced the FL model, which randomly
selects user gradients to upload to the server for global training of a model. In another
paper [98], the authors proposed the privacy-preserving FL in fog computing to achieve
continuous contact. Pulling reduction with local compensation (PRLC) focuses on FL. The
basic concept behind PRLC is that only one iteration can be performed at a time. The
key idea behind PRLC is that only a subset of devices participates in the model updates
in each iteration, with non-participating devices being modified locally using the PRLC
approach to close the difference through the global standard. Ultimately, the PRLC method
has better scaling and has the same interconnection rate as the non-compressed method in
the presence of high congestion and inconsistencies.

4.3. Fault Tolerance Process

A fault-tolerant approach, especially in a file-distributed environment, can prevent
the system from failing in an unstable network environment [78]. While various devices
work collectively, the system breakdown can involve other machines. FL is currently a
hot research topic. The authors also need to consider system acceptance in an interactive
learning environment. To comply with machine resource constraints, ref. [88] focused on
an applied learning approach and created a monitor system to evaluate the most exemplary
exchange among local renewal and global integration of factors. By reducing the interaction,
ref. [99] improved the corresponding speed features of the random gradient distribution
algorithm. Other studies that do not include direct computer involvement do not affect
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the efficacy of federated learning in multi-task achievement [80]. Figure 4 shows the
device-to-device (D2D) communication without data exchanges in FL [100].
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Another way to deal with computer failures is to use computational code to implement
a redundancy algorithm. Incorrect mobile device data can lead to cheating in organizational
learning. Article [101] proposes an FL program that focuses on natural employee selection
and can efficiently avoid mischievous assaults and disruptions.

4.4. Model Heterogeneity

An incomparable system solves the device heterogeneity problem very well in a
memory-sharing system. Although distributed systems have benefited from asynchronous
improvements, the issue of device communication delays increases device heterogeneity [102].
The need for real-time communication in a co-learning process is the first option for
resolving system discrepancies in a non-compliant communication system.

5. Roles of FL in Privacy-Preserving

As information is stored on multiple platforms and communities become more aware
of privacy issues, the standard circular training method for artificial intelligence (AI) models
faces significant challenges. FL has emerged as a promising effect in this new reality [103].
FL’s current protocol design emphasizes the vulnerability that attackers can exploit inside
and outside the organization to ensure confidentiality. As a result, educating FL users about
the privacy implications of the FL process layout is critical. There is currently little research
on this topic. The current section fills an essential void in the FL process.

5.1. Threat Model and Attacks

A comprehensive overview of this exciting topic is provided through a brief overview
of the concept of FL and the unique taxonomy encompassing the threat models and the
two primary attacks on FL, including (1) dangerous attacks and (2) false attacks. The
authors describe the potential for future research in powerful privacy protection and high-
light the various attacks’ assumptions, significant challenges, and fundamental ideas. FL
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provides a conditional training model that does not require information communication
and encourages members to enter and exit the organization’s restrictions. Current research,
however, indicates that FL may not provide adequate privacy guarantees, as communica-
tion of standard informs during the training process may reveal confidential information
and even receive deep leaks, either from a third party or a critical service [104,105].

Nonetheless, a small percentage of slopes can display data about local devices. In just
a few repetitions, the nefarious assailant could completely steal training information from
gradients. The FL protocol can be (1) a potentially malicious service that detects separate
updates over time, disrupting the training procedure and controller participants’ views
across global boundaries, or (2) any participant who can identify the land parameter and
control its loading [106,107]. Malicious participants can modify their inputs or overload
the backend of a global standard. These attacks pose a severe threat to FL because, in
an intermediate understanding, only the server can infringe on the participants’ privacy.
In contrast, in FL, any participant, even if not coerced, can invade the other participants’
privacy in the approach. As a result, understanding the terms used in this attack is critical.
FL testing focuses on the larger aspect of the process that allows FL to function [108]. This
paper addresses the recent increase in warnings to settlement FL to address the research
community’s critical gap in public understanding. The authors of FL programs primarily
focus on two types of insider threats: (1) a toxic hazard: this addresses the recent rise in
threats compromising FL in the research community to close this critical gap in public
understanding [109]. (2) Unfounded attacks on the contributor’s secret progress to FL
attacks threat models [110,111].

Insider and outsider attacks are both possible. Internal attacks are possible during the
transmission of data from the server FL to the system’s participants. Spying attacks on the
interaction network between contributors, the FL service, and the consumers of the last FL
model are external attacks when used as a capability. Internal attacks are frequently more
powerful than external attacks because they amplify the opponent’s strength. These can be
one of three varieties.

5.2. Single Attack

The unintended contributor attempts to defeat the paradigm by confidently splitting a
set of selected inputs.

Dangerous Byzantine Invasion
Byzantine participants act arbitrarily, causing their results to have the same dissemina-

tion as the relevant model notifies, making them complicated to obtain.
Sybil Attack
To launch an effective attack on FL, adversaries can imitate multiple participant ac-

counts or select previously delayed members. They attempt to investigate the unique
circumstances of other participants while remaining trusting in the FL protocol. Only feder-
ated observers or intermediate gradients are considered active adversaries, not training
data or angles from other authorized participants. The active or malicious opponent learns
the independent instances of trusted contributors in dangerous situations and differs from
the FL procedure by unnecessarily adapting, replaying, or editing communications.

5.3. Attacks during Training Phase

Attacks during the training stage aim to understand, control, or distort the model
of FL. Through the training stage, an attacker may use information-infecting attacks to
negotiate the reliability of the training data gathering or toxic pattern attacks to negotiate
the honesty of the training method. The attacker could also initiate attacks or a combination
of threats to all participants. An escape/exploration attack is a type of attack that targets the
monitoring phase. It generally causes no disruption to the target model but may produce
negative results or gather information about the model’s properties. The usefulness of such
an attack is defined by the adversary’s knowledge of the model [112]. White-box attacks
(e.g., with full access to the model FL) and black-box attacks (e.g., without access to the
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model FL) are two types of attacks in the inference phase (e.g., only being able to query the
model FL). The move-to-model in FL is damaged from similar attacks as in a typical ML
environment where the targeted model is used as maintenance. It also makes the model
available to any malicious client. As a result, FL must make extra efforts to protect itself
from white-box attacks.

5.4. FL Structure for Effective Interaction and Privacy Safety

Some authors [113] have presented a revolutionary FL architecture for efficient com-
munication and privacy protection that increases IoT performance. Transmission control
protocol and cubic curve binary increase congestion have improved the Wi-Fi network’s
data delivery variations. Finally, a good training model was found. Building a federated
cloud video computing framework for IoT based on DL meets the needs of app users. At
the same time, metrics are used to reduce uplink communication and network bandwidth
costs. FL also enables shared reading of speculative models by computational devices.

5.5. Blockchain FL

The advancement of blockchain technology has brought forth a recent trend for IoT
development. The formation of blockchain-based FL (BlockFL) effectively erases the revival
of the local learning model. That manages a compatible strategy and presents data analysis
to determine the optimal performance. Some researchers have created blockchain-approved
features for secure data sharing in industrial IoT [114]. By using a shared data model, this
process effectively protects the privacy of the data. It has excellent accuracy, effectiveness,
and security compared to an accurate database. The current approach of FL relies on the
reliable assumptions of the client to identify more secure computers of organizations that
are vulnerable to malicious client attacks. Consistency and devolution blockchains are
the foundations of the framework. They use specific local model updates and trusted
data sources.

5.6. Learning at the Edge with Federated Computing

A high-performance application has resulted from the association of FL with edge
computing. Edge and cloud computing can meet the demand for cloud capacity and
facilities at the network’s edge. In this context, FL has observed the introduction of a
4G/5G edge computing platform for vehicles [115]. This model results from a federated
investigation of real-world datasets from significant electric vehicle (EV) manufacturers.
Customization for the driver, asynchronous performance, and safety protection are all
benefits of this strategy.

Moreover, using Smart IoT in custom-made FL will minimize the adverse effects of
heterogeneity in many ways. At the same time, the FL-based frameworks should efficiently
utilize the limited bandwidth. At the same time, the authors need to integrate DL methods
with FL frames and mobile device programs. This will make mobile edge computing more
efficient. In distributed training, the existing FL startup mode accepts processing points to
coordinate a local training prototype. This result is in the formation of FL, which depends
on the most focused types and the maximum bandwidth of the server.

However, participants transmit user information immediately to the cloud, posing
a risk of privacy violations. Consequently, like decentralized training, federated training
requires participants and servers to work together to train a single machine learning
algorithm. Every participant has exchanged local measurements with the central service
that gathers all distributions and provides the outcomes to every other participant to
accelerate the model’s optimization. In the end, the service where every user would have
the best service specifications is used. Compared to centrally controlled training, federated
training eliminates the chance of privacy issues becoming violated.

FL focuses on the problem of supervised machine learning, mapping input data Ui
to output labels Vi. The input-output (Ui, Vi) pair size is (n, n + 1). For the loss function
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fi(L), which assesses how well a model predicts an ith sample using model L, FL tries to
optimize using the following objective function.

Min f (L), where

f (L) = 1
n

n
∑

i=1
f (Ui, Vi, L)

f (L) = 1
n fi(L)

It is necessary to alter the objective function because the training data are scattered
over several remote clients, much like in FL. It is known as |Pk| when a client k receives a
partition from the whole dataset P. nk = |Pk| data samples are held by each of the K clients
participating in the FL.

f (L) =
k

∑
i=1

nk
n

Pk(L)

where

Pk(L) =
1

nk

k

∑
i=1

fi(L)

In Fl, there are two distinct phases of existence. There are epochs at the local and
global levels. As opposed to how often the training algorithm is executed in a client’s
dataset, the number of times a whole federated round is completed is known as a global
epoch. The server sends all clients a baseline model (abbreviated as w) to begin training.
Each client’s model is updated using their local data and it is trained for local epochs. As a
result, L, a client model, will receive and communicate modifications to the server. Based
on the sample size, the server computes the weighted average of client updates for the
next training cycle. Globally federated Fed Averaging will have completed one round.
Because it would be costly to communicate each client’s gradient update for each round of
training, local epoch training is used to reduce communication costs on the client’s side.
As a decentralized machine learning solution, FL is often referred to as a decentralized
training system.

On the other hand, network power distribution between nodes is very similar to that
of the data center. The author of [116] proposes that the bandwidth between sites can
increase the communication speed. It starts by sharing gossip and network bandwidth
information. Second, it makes the most of the available bandwidth between the nodes and
the workers by utilizing it to its maximum potential. It increases by mixing speed and
decreasing the number of communication cycles. Currently, the standard implementation of
system FL uses a centralized parameter server to organize a broad network of participating
devices. Devices will train local models using the datasets that they have collected. The
sync server’s locations can update at determined intervals [117]. Any changes made to
the model are replicated across all other nodes inside the system. However, this approach
has high additional costs because of its substantial bandwidth. As a result, a technique for
synchronizing levels on all levels was utilized [118]. They began by partitioning the model
into groups where each group had the same number of model parameters that did not
interact. Second, they organize the departments, some of which are structured according
to the classifications of the IoT devices. Third, they split into big groups, increasing their
bandwidth capacity. Sharing communication costs reduces the cost and increases the
assembly speed.

In the manuscript of [119], the authors proposed a comprehensive consolidation
learning strategy and FL frameworks for mobile edge systems. This can potentially pro-
mote mobile edge computing (MEC). The In-Edge AI framework has been signed in this
process. It will utilize the exchange of learning boundaries between a resource and an
edge node. Finally, it achieves the optimal optimization performance and raises the input
level. The fact that offloading requires wireless data transmission is the key to solving this
problem [120,121]. The edges are assigned communication aids and computer equipment
based on the full use of the communication and federated computer-integration program.
This also allows it to hover and cache MEC program archives simultaneously. In addition,
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training organizations that operate throughout a geographically extensive range have used
FL as a foundation for their operations. The results of this process are summarized in the
following steps. (1) The amount of data that can be utilized is restricted. (2) It conforms
to the network’s mobile and cellular communication conditions. (3) It facilitates the con-
nection of a wide range of user devices to a natural mobile network. (4) It guarantees the
safety of private data.

6. Discussion

Traditional ML employs an intermediate approach to training design, necessitating the
integration of training samples with a single machine or data center. Large AI companies
such as Google, Facebook, and Amazon have amassed massive amounts of data and stored
them in a database where machine learning models are trained. This single training method,
however, is private, especially for phone users. This is because cell phones can contain
sensitive data for their owners. Users of mobile phones must sell their privacy to be trained
or to obtain the best model with a training method. Compared to a single training method,
integrated learning is a low-level training method that allows mobile phones worldwide to
learn an ML model while retaining all private data, including potentially confidential data,
within the machine. A well-trained intelligence algorithm may be able to assist mobile
devices while also revealing critical privacy information on the cloud. However, because
deep learning is rapidly expanding, existing techniques enable a cloud-centric formulation
in which information is recorded and interpreted. It provides an accurate assessment of FL
discussions and research fields, as well as the FL paradigm’s efforts and contributions to
current research and industry trends [122].

Furthermore, researchers provide in-depth reviews and thorough fundamental analy-
sis, including the model’s technical characteristics and the entire FL system. In addition, the
authors discuss the challenges and open jobs of interest. Furthermore, they investigate the
challenges and potentially fruitful directions that future development could take, resulting
in new generations of FL technology. The authors’ recommendations for the study are
organized to consider both the projected FL domain and the overarching themes of system
model and design, installation domains, privacy and security, and resource management.
This analysis will be useful for academics who are starting or continuing research on
machine learning solutions in medical IoT, advanced analytics, networking, automation,
power systems, modelling, information retrieval, or information security [30–33].

Existing methods for protecting privacy face new challenges in a federated environ-
ment. Aside from providing complete privacy assurances, they are also critical in devel-
oping computationally affordable, communication-efficient, and drop-tolerant systems
without significantly sacrificing accuracy. The central server can see the accurate aggre-
gated results for each round even though it cannot see any local updates. This assurance is
provided by the lossless SMC approach, which preserves original accuracy while ensuring
the highest level of privacy. However, the resulting system increases communication costs
significantly. As an added benefit, differential privacy can be combined with model com-
pression techniques to reduce communication while increasing privacy. In this section, for
example, the authors highlight additional challenges related to federation-related issues
such as production and benchmarking and a few intriguing research paths (expensive
communication, systems heterogeneity, statistical heterogeneity, and privacy concerns).

1. Non-traditional communication methods: The authors are unsure how much com-
munication federated learning will necessitate. It is well known that machine learning
optimization approaches lack precision; this error can promote generalization. In massive
or statistically diverse networks, the behavior of one-shot or divide-and-conquer communi-
cation methods is identified, just as in traditional data center environments. Unlike in the
federated setting, however, no theoretical analysis or scaled evaluation of one-shot/few-
shot heuristics has yet been completed.

2. The authors used a variety of strategies, including local updates and model com-
pression, to reduce the amount of communication in federated training. Creating a realistic
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federated learning system requires thoroughly examining the trade-offs between accuracy
and communication in each tactic. While using the same communication resources as other
strategies, the most effective methods will improve, achieving higher accuracy than any
different strategy while employing the same range of communication/accuracy profiles.
Similar in-depth experiments focusing on efficient neural network inference are required to
adequately evaluate communication reduction options for federated learning.

3. Heterogeneity detection: Metrics such as local dissimilarity can be used to measure
statistical heterogeneity. The following are open questions arising from the significance of
these measures. Are there simple diagnostics for determining the degree of heterogeneity
in federated networks? Is it possible to develop diagnostics for measuring system hetero-
geneity? Can the convergence of federated optimization methods be improved by using
current or new definitions of heterogeneity?

4. Expanding responsibilities: Remember that the techniques described thus far
were designed with supervised learning, assuming that all federated network data have
associated labels. Most of the data generated by realistic federated networks may not be
labelled. Furthermore, as shown in (1), fitting a model to the data may not be the most
difficult part of the job; instead, conducting some exploratory data analysis, calculating
aggregate statistics, or implementing reinforcement learning may be. A wide range of
issues, including scalability, heterogeneity, and privacy, are likely to be addressed in
federated networks.

5. The use of FL in manufacturing raises several practical issues. When devices exhibit
different behaviors at different times, the fundamental model for data creation changes
over time.

6. While federated learning is still a relatively new field in the context of benchmarking,
the authors must influence its development and ensure that it is based on real-world set-
tings, assumptions, and datasets. Building on existing implementations and benchmarking
tools to replicate empirical results and disseminate new approaches to FL is difficult.

7. Conclusions

As a result, FL is a new approach to cross-platform privacy security, which has been
introduced. FL is used by many researchers and enterprises with privacy and security at the
fore. FL can integrate the models of various user groups and update the federated model
without revealing the original data when a lack of data hinders users from training suitable
models. When users cannot read sufficient data labels, however, FL offers a secure mode
of sharing and sends prototypes to distinct roles to address the problem of inadequate
information classifications. This article begins with a general description of FL, continues
with a discussion of the functional conditions of FL, and then concludes with a review of
current issues and possible research challenges for FL. FL would be able to offer shared
and federated security services for a wide range of applications, thereby assisting in the
ongoing development of artificial intelligence.
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