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ABSTRACT

Recent years have witnessed a rapid prolifera-
tion of smart Internet of Things (IoT) devices. IoT 
devices with intelligence require the use of effective 
machine learning paradigms. Federated learning 
can be a promising solution for enabling IoT-based 
smart applications. In this article, we present the 
primary design aspects for enabling federated 
learning at the network edge. We model the incen-
tive-based interaction between a global server and 
participating devices for federated learning via a 
Stackelberg game to motivate the participation of 
the devices in the federated learning process. We 
present several open research challenges with their 
possible solutions. Finally, we provide an outlook 
on future research. 

INTRODUCTION

Emerging Internet of Things (IoT) applications 
such as augmented reality, autonomous driving, 
surveillance, and industry 4.0 generate signifi-
cant amounts of data. The effective deployment 
of such applications is thus reliant on the use of 
advanced machine learning techniques so as to 
properly exploit the generated data. However, tra-
ditional machine learning schemes use centralized 
training data at a data center, which requires data 
transfer from a massive number of distributed IoT 
devices to a third-party location, which raises seri-
ous privacy concerns and can be inefficient in its 
use of communication resources. To overcome 
these privacy and communication concerns, it is 
important to introduce distributed, edge-deployed 
learning algorithms such as federated learning 
(FL). FL allows privacy preservation by enabling 
distributed training without raw data transfer [1].

An overview of how FL can enable IoT-based 
applications is presented in Fig. 1. To benefit from 
FL at the network edge, several challenges must be 
addressed that include resource management and 
incentive mechanism design to motivate the partici-
pation of users in the learning of a global FL model. 
Learning in IoT has been studied in [2–6]. Refer-
ences [2, 3] rely on centralized learning solutions 
that have limited scalability and privacy preserva-
tion. In [4], the authors presented the challenges of 
FL along with its existing solutions and applications 
in mobile edge network optimization. In [5], the 

authors proposed an FL framework to provide effi-
cient resource management at the network edge. 
However, [5, 6] do not discuss the important chal-
lenges pertaining to incentive design and network 
optimization under edge-based FL. In contrast, the 
overarching goal of this article is to comprehen-
sively review a resource optimization and incen-
tive mechanism for FL. In contrast to [4], which 
focuses only on high-level challenges, we present 
a new perspective related to the development of 
incentive-based FL over edge networks using game 
theory. We also identify new challenges and open 
problems, different from [4]. Our key contributions 
include:
• We present the key design aspects for imple-

menting FL in edge networks. 
• We present a Stackelberg-game-based 

approach to develop an FL incentive mech-
anism. In this game, FL users can strategically 
set the number of local iterations to maxi-
mize their utility. Meanwhile, the base station 
(BS), acting as leader, uses the best response 
strategies of the users to maximize the FL 
performance. The BS’s utility is modeled as 
a function of key performance metrics such 
as the number of global iterations and global 
accuracy level in the FL setting.

• Finally, we present some key open research 
challenges along with guidelines pertaining 
to FL in edge networks.

FEDERATED LEARNING AT THE EDGE:  

KEY DESIGN ASPECTS

RESOURCE OPTIMIZATION

Optimization of communication and computa-
tion resources is necessary to enable the main 
phases of FL local computation, communication, 
and global computation. When optimizing FL 
computational and communication resources, the 
original problem whose goal is to minimize the FL 
cost function can have a dual formulation with-
out constraints. Moreover, if the original problem 
is convex, the dual problem has the same solu-
tion. Thus, the dual problem can be decoupled 
for obtaining a distributed solution in FL. Com-
putation resources can be either those of a local 
device or of an edge server, whereas communica-
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tion resources are mainly radio resources of the 
access network. In the local computation phase, 
every selected device iteratively performs a local 
model update using its dataset. The allocation 
of local device computational resources strongly 
depends on the device energy consumption, local 
learning time, and local learning accuracy. Fur-
ther, the heterogeneity of the local dataset sizes 
significantly affects the allocation of local compu-
tational resources. Device energy consumption 
and local learning time are strongly dependent 
on CPU capability. Increasing the device CPU 
frequency can increase the energy consumption 
and decrease the learning time. Similarly, the local 
computing latency increases for a fixed frequen-
cy with an increase in local learning accuracy. 
Evidently, there is a need to study the trade-off 
between computation energy consumption, com-
putational latency, learning time, and learning 
accuracy. Moreover, the access network and core 
network resources must be allocated optimally 
during the communication phase.

LEARNING ALGORITHM DESIGN

FL uses local and global computation resources 
along with communication resources. Several 
machine learning techniques, such as long short-
term memory, convolutional neural network, and 
Naive Bayes schemes can be used at each local 
device. To enable FL, numerous optimization 
schemes, such as federated averaging (FedAvg) 
and FedProx can be used to train non-convex 
FL models [7]. FedProx is a modified version of 
FedAvg that captures both statistical and system 
heterogeneity among end devices. FedAvg runs 
stochastic gradient descent (SGD) on a set of 
devices to yield local model weights. Subsequent-
ly, an averaging of the local weights is performed 
at the edge computing server located at the BS. 
FedProx has similar steps as FedAvg, but the dif-
ference lies in local device minimizing of objec-
tive function that considers the objective function 
of FedAvg with an additional proximal term. By 
doing so, FedProx limits the impact of non-inde-
pendent and identically distributed (non-i.i.d.) 
device data on the global learning model. Fed-
Avg does not guarantee theoretical convergence, 
while FedProx shows theoretical convergence.

In FedAvg and FedProx, all devices are weight-
ed equally in global FL model computation with-
out considering fairness, despite the differences 
in the device capabilities (e.g., hardware). To cap-
ture such fairness among devices, a so-called fair-
ness-enabled FedAvg algorithm was proposed [8]. 
Fairness-enabled FedAvg assigns higher weights 
to devices with poor performance by modifying 
the objective function of the typical FedAvg algo-
rithm. To introduce potential fairness and reduce 
training accuracy variance, local devices having 
a high empirical loss (local loss function) are 
emphasized by assigning higher relative weight in 
the fairness-enabled FedAvg. Meanwhile, in [9], an 
adaptive control scheme was proposed to adapt 
the global FL aggregation frequency. This adaptive 
control scheme offers a desirable trade-off between 
global model aggregation and local model update 
to minimize the loss function with resource budget 
constraint. All of the above-discussed methods are 
used for a single task global FL model. In real-world 
IoT systems, it is also of interest to use multi-task 

FL for handling multiple tasks, whose data is dis-
tributed among multiple edge nodes. A federated 
multi-task learning scheme was proposed in [10]  
by modifying the so-called communication-efficient 
distributed dual coordinate ascent (CoCoA) frame-
work. To enable a wide variety of machine learn-
ing models, CoCoA supports objectives for linear 
regularized loss minimization [11]. In CoCoA, par-
tial results from local computation are effectively 
combined using optimization problems primal-dual 
structure. In each round, CoCoA enables the use 
of any arbitrary optimization algorithm on a local 
dataset to solve a local learning problem by using 
distributed optimization for coping with system-lev-
el and statistical heterogeneity.

HARDWARE-SOFTWARE CO-DESIGN FOR  

FEDERATED LEARNING

For a fixed hardware design, one can find opti-
mal software design by searching for different 
architectures. However, this approach poses lim-
itations on the design because neural network 
design is strongly dependent on the used dataset. 
Therefore, there is a need to jointly consider both 
hardware design space and neural architecture 
search space for a more flexible design of the end 
device for FL [12]. One promising approach for 
efficient design of end devices involved in FL is 
hardware-software co-design. Several approaches 
such as high-level synthesis, co-verification-based 
embedded systems, and virtual prototyping can 
be used for hardware-software co-design of IoT 
devices. A design based on virtual prototyping 
uses computer-aided engineering, computer-au-
tomated design, and computer-aided design for 

Figure 1. An overview of FL in enabling IoT-based smart applications.
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the validation of a design before prototype imple-
mentation, whereas a high-level synthesis offers 
an automated design process by creating digital 
hardware based on the algorithmic description 
for the desired behavior. The prominent challeng-
es of high-level synthesis-based design are wired 
signal and multiplexer delays. Moreover, co-veri-
fi cation-based embedded systems enable concur-
rent testing and debugging of both software and 
hardware design; however, such designs require 
successful interactions between hardware and 
software teams.

INCENTIVE MECHANISM DESIGN

The design of mechanisms that incentivize users 
to participate in FL is a key challenge. Incentives 
are possible in different forms, such as user-de-
fined utility and money-based rewards. Several 
frameworks such as game theory and auction 
theory can be used in the design of FL incentives 
[13, 14]. One can design an incentive mechanism 
using game theory while considering both com-
munication and computation costs. The commu-
nication cost can be defi ned as the total number 
of rounds used for the interactions between the 
edge server and end devices, whereas the compu-
tational cost can be the number of local iterations 
required to compute the local learning model 
[4]. For synchronous aggregation, given a fixed 
number of global FL rounds between end devic-
es and edge server, the convergence rate of the 
global FL model has a proportional relationship 
with the number of local iterations. An increase 
in the number of local iterations minimizes the 
local learning model error, and thus, few global 
FL rounds are required to reach a certain global 
FL model accuracy. Therefore, for a fixed global 
FL model accuracy, an increase in computational 
cost reduces communication cost and vice versa. 
For instance, consider an incentive mechanism 
game whose players are the edge server and edge 
users. The edge server announces a reward as an 
incentive to the participating users while maxi-
mizing its benefits in terms of improving global 

FL model accuracy. Meanwhile, the edge users 
maximize their individual utilities to improve their 
benefit. One example of a user utility could be 
the improvement of local learning model accura-
cy within the allowed communication time during 
FL training. An improvement in the local learn-
ing model accuracy of the end user increases its 
incentive from the edge server and vice versa. 
This process of incentive-based sharing of model 
parameters continues until convergence to some 
global model accuracy level.

INCENTIVE-BASED 

FEDERATED LEARNING OVER EDGE NETWORKS

SYSTEM MODEL 

Consider a multi-user system comprising a BS and 
a set of user devices with non-i.i.d. and hetero-
geneous data sizes. Enabling FL over such edge 
networks involves the use of the computational 
resources at both device and cloud levels, as well 
as network communication resources. In a typi-
cal FL environment, participating user equipment 
(UE) must iterate over their local (possibly non-
i.i.d.) data to train a global model. However, UEs 
are generally reluctant to participate in FL due to 
limited computing and communication resources. 
Thus, enabling FL requires some careful design 
considerations:
• First, to motivate UEs for participation, it is 

necessary to model the economic interac-
tion between the BS and the UEs. With-
in each global iteration, the BS can offer a 
reward rate (e.g., iterations) to the UEs for 
selecting the optimal local iteration strate-
gy (i.e., CPU-frequency cycle) that can min-
imize the overall energy consumption of FL, 
with a minimal learning time.

• The set of resource-constrained UEs involved 
in FL has numerous heterogeneous param-
eters: computational capacity, training data 
size, and channel conditions. This heteroge-
neity significantly affects the local learning 

Figure 2. FL sequence diagram.
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model computation time for a certain fixed 
local model accuracy level. For a synchro-
nous FL setting, the local learning model 
accuracy will be different for different UEs 
due to both data and system heterogeneity. 
Therefore, it is necessary to tackle the chal-
lenge of heterogeneous local learning model 
accuracy for the UEs in synchronous FL.

• One approach for handling the communi-
cation-computation trade-off in FL is via an 
appropriate client selection strategy. Select-
ing the IoT devices with sufficient computing 
power and training data jointly improves FL 
model accuracy and training costs [4]. In our 
previous work [15], we jointly optimized the 
computing time and energy consumption of 
FL over wireless networks. The problem stud-
ied in [15] captures two trade-offs: UE ener-
gy consumption and FL time via variations in 
device CPU cycles per second, and compu-
tational and communication latencies for FL 
accuracy. However, here, we use a Stackel-
berg-game-based incentive mechanism to 
select a set of IoT devices willing to join the 
model training process. Then the selected 
set will collaboratively train a global model 
while minimizing the overall training costs 
(i.e., computation and communication cost).

STACKELBERG GAME SOLUTION

The BS employs an incentive mechanism for 
motivating the set of UEs to participate in global 
FL model training. However, heterogeneous UEs 
have different computational and communica-
tion costs for training, and thus, they expect differ-
ent rewards. Moreover, the BS seeks to minimize 
the learning time while maximizing the accuracy 
level of the learning model. This complex inter-
action between the BS and the UEs can be cast 
as a Stackelberg game with one leader (BS) and 
multiple followers (UEs). For the offered reward, 
the BS maximizes its utility modeled as a function 
of key FL performance metrics such as the num-
ber of communication rounds needed to reach a 
desirable global FL model accuracy level. Corre-
spondingly, the UEs will respond to the BS-offered 
reward and choose their local iteration strategy 
(i.e., select a CPU-frequency cycle for local com-
putation) to maximize their own benefits [14]. 
Evaluating the responses from the UEs, the BS 
will adjust its reward rate, and the process repeats 
until a desired accuracy level is obtained. To this 
end, the BS must design an incentive mechanism 
to influence available UEs for training the global 
model. In this framework, the sequence of inter-
actions between the BS and the UEs to reach a 
Stackelberg equilibrium is as follows:
• Initially, each UE submits its best response 

(i.e., optimal CPU-frequency) to the BS for 
the offered reward rate to maximize its local 
utility. Specifically, each UE considers the 
viability of the offered reward rate for their 
incurred computational and communication 
costs in FL.

• Next, the BS evaluates these responses, 
updates the global model, and broadcasts its 
offered reward rate to the UEs to maximize 
its own utility function. The utility of the BS is 
modeled as a strictly concave function of key 
FL performance metrics such as the number 

of global iterations required to reach global 
accuracy for a given local relative accuracy.

• Given the optimal offered reward, the UEs 
will correspondingly tune their strategy and 
update response that solves their individual 
utility maximization problem. This iterative 
process continues in each round of interac-
tion between the BS and UEs.

In summary, we follow the best response algo-
rithm to achieve the Stackelberg equilibrium. For 
this, with the first-order condition, we first find 
a unique Nash equilibrium at the lower-level 
problem (among UEs), and then use a backward 
induction method to solve the upper-level BS 
problem.

PERFORMANCE EVALUATION

We now evaluate the performance of our incen-
tive-based FL model by examining the contribu-
tions of each FL-participating UE. We investigate 
the impact of communication channel conditions 
and local computational characteristics on the 
accuracy of the global FL model. We evaluate the 
impact of the offered reward in terms of commu-
nication cost vs. local relative accuracy to char-
acterize the system performance in FL. For FL, 
we adopt a classification task using multinomi-
al logistic regression and distribute the MNIST 
dataset among participating UEs [1]. For feder-
ated optimization, we use the modified CoCoA 
framework [10]. The distributed federated opti-
mization scheme of [10] allows us to tackle both 
system-level and statistical heterogeneity efficient-
ly. We consider five participating UEs having dif-
ferent channel conditions and an equal local data 
size. At each UE, we define the mean square error 
of the learning problem (i.e., the local relative 
accuracy metric). For the UEs utility, we choose 
a concave function of the local relative accuracy 
and the BS-offered reward.

In Fig. 3a, the impact of the offered reward 
rate on the relative accuracy for five UEs is shown. 
The accuracy improves when the relative accuracy 
value (x-axis) is smaller. Intuitively, an increase in 
the offered reward rate will motivate UEs to iterate 
more within one global iteration, resulting in better 
accuracy. The heterogeneous UE responses is the 
result of individual computational limitations, local 
data size, and communication channel conditions. 
The impact of the communication channel condi-
tions on local relative accuracy for a randomly cho-
sen UE with defined computational characteristics 
and local data size is illustrated in Fig. 3b. For clar-
ity, we use a normalized communication time to 
quantify the adversity of channel conditions. Here, 
a unit value for the normalized communication 
time signifies poor channel conditions. As the com-
munication time increases, the UEs perform more 
local iterations to avoid expensive communication 
costs. Figure 3c presents the relationship between 
the offered reward rate and the local relative accu-
racy at the UEs. The offered reward rate reveals the 
optimal response of the UEs that maximizes their 
own utilities for given channel conditions. Here, 
we have consistency in the normalized BS utility 
function for various response behaviors of the UEs 
to the offered reward rate. Thus, it is crucial to 
have an appropriate incentive design to align the 
responses of the participating UEs for improving 
the FL performance.
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OPEN RESEARCH CHALLENGES

RESOURCE OPTIMIZATION FOR  

BLOCKCHAIN-BASED FEDERATED LEARNING

An attacker might attack the centralized FL serv-
er in order to alter global model parameters. In 
addition, a malicious user might alter FL param-
eters during communication. To cope with such 
security and robustness issues, blockchain-based 
FL (BFL) can be used. BFL does not require central 
coordination in the learning of the global model, 
which yields enhanced robust operation. In BFL, 
all users send their local model parameters to 
their associated miners, which are responsible for 
sharing local model updates through a distribut-
ed ledger. Finally, local model updates of all the 
devices involved in learning are sent back by min-
ers to their associated devices for the local mod-
els aggregation. Although BFL provides benefits 
of security and robustness, it faces a significant 
challenge of computational and communica-
tion resource optimization to reach a consensus 
among all miners. Static miners can be implement-
ed at the BS, whereas wireless mobile miners can 
be implemented using drones. However, drone-
based mobile miners pose more serious resource 
allocation challenges than static miners at the BS. 

CONTEXT-AWARE FEDERATED LEARNING

How does one enable more specialized FL 
according to users’ contextual information? Con-
text awareness is the ability of a device/system to 
sense, understand, and adapt to its surrounding 
environment. To enable intelligent context-aware 
applications, FL is a viable solution. For instance, 
consider keyboard search suggestion in smart-
phones in which the use of FL is a promising 
solution. In this type of design, we must consider 
context awareness for enhanced performance. A 
unique globally shared FL model must be used 
separately for regions with different languages to 
enable more effective operation. Therefore, the 
location of the global model must be considered 
near that region (i.e., micro data center) rather 
than a central cloud.

MOBILITY-AWARE FEDERATED LEARNING

How does one enable seamless communication 
of smart mobile devices with an edge server 
during the learning phase of a global FL model? 
Seamless connectivity of the devices with a cen-

tralized server during the training phase must be 
maintained. Mobility of devices must be consid-
ered during the device selection phase of FL pro-
tocol. Deep-learning-based mobility prediction 
schemes can be used to ensure the connectivity 
of devices during FL training.

CONCLUSIONS AND  

FUTURE RECOMMENDATIONS

In this article, we have presented the key design 
aspects, incentive mechanism, and open research 
challenges for enabling FL in edge networks. We 
have identified four key design aspects: resource 
optimization, incentive mechanism, learning 
algorithm design, and hardware-software co-de-
sign-based end devices for FL at the network 
edge. We have shown that game-theoretic incen-
tive mechanisms can be used to effectively model 
interaction between devices and edge server for 
FL. This work can potentially make FL amenable 
for implementation in diverse 5G-enabled smart 
IoT applications such as intelligent transportation 
systems, Industry 4.0, and digital health care. 
Finally, we present several recommendations for 
future research:
• Generally, FL involves training of a global FL 

model via an exchange of learning model 
updates between a centralized server and 
geographically distributed devices. Howev-
er, wireless devices will have heterogeneous 
energy and processing power (CPU cycles 
per second) capabilities. Some of the devic-
es might have noisy local datasets. There-
fore, there is a need for novel FL protocols 
that will provide criteria for the selection of a 
set of local devices having sufficient resourc-
es. The selection criteria of the devices must 
include long-lasting backup power, sufficient 
memory, accurate data, and higher process-
ing power.

• A set of densely populated devices involved 
in FL might not be able to have real-time 
access to the edge server located at the BS 
due to a lack of communication resources. 
To cope with this challenge, one can devel-
op new FL protocols based on socially aware 
device-to-device (D2D) communication. 
Socially aware D2D communication has an 
advantage of reusing the occupied band-
width by other users while protecting them 
by keeping the interference level below the 

Figure 3. Impact of: a) offered reward rate on client’s (UEs) iteration strategy for corresponding relative local accuracy; b) communica-
tion time with relative accuracy; c) offered reward rate, normalized BS utility vs. local relative accuracy.
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maximum allowed limit. Initially, multiple 
clusters based on social relationships and the 
distance between devices should be creat-
ed. Then a cluster head is selected for every 
cluster based on its highest social relation-
ship with other devices. Within every cluster, 
a sub-global FL model is trained iteratively by 
exchanging the model parameters between 
the cluster head and its associated devices. 
Then the sub-global FL model parameters 
from all cluster heads are sent to the BS for 
global model aggregation. Finally, the global 
FL parameters are sent back to cluster heads, 
which in turn disseminate them to their asso-
ciated cluster devices. 

• Exchange of learning model updates via 
blockchain offers enhanced security. Howev-
er, reaching consensus via traditional consen-
sus algorithms among blockchain nodes can 
add more latency to the learning time. There-
fore, it is recommended to design novel con-
sensus algorithms with low latency.
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We have shown that 

game-theoretic incen-

tive mechanisms can 

be used to effectively 

model interaction 

between devices and 

edge server for FL. This 

work can potentially 

make FL amenable 

for implementation in 

diverse 5G-enabled 

smart IoT applications 

such as intelligent 

transportation systems, 

Industry 4.0, and digital 

health care.
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