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In data-driven medical research, multi-center studies have long been preferred over single-center ones due to

a single institute sometimes not having enough data to obtain sufficient statistical power for certain hypothe-

sis testings as well as predictive and subgroup studies. The wide adoption of electronic health records (EHRs)

has made multi-institutional collaboration much more feasible. However, concerns over infrastructures, reg-

ulations, privacy, and data standardization present a challenge to data sharing across healthcare institutions.

Federated Learning (FL), which allows multiple sites to collaboratively train a global model without directly

sharing data, has become a promising paradigm to break the data isolation. In this study, we surveyed existing

works on FL applications in EHRs and evaluated the performance of current state-of-the-art FL algorithms on

two EHR machine learning tasks of significant clinical importance on a real world multi-center EHR dataset.
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1 INTRODUCTION

The broad adoption of electronic health records (EHRs) presents opportunities for collabora-

tion among hospitals. For medical research, multi-center studies have long been considered supe-

rior to single-center ones. The larger combined cohort allows for certain hypothesis testings and

subgroup analyses that are often not possible in a single-center setting due to inadequate statisti-

cal power [46, 70]. In machine learning, multi-center datasets could lead to more robust models.
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A model trained only on single-center data is prone to poor generalizability, i.e., it may only per-

form well on data from the same hospital that provided the training data but do poorly when

applied to data from others [25]. This is potentially due to differences among hospitals in medi-

cal practices, patient demographics, genotypes and phenotypes, as well as variations in software,

hardware, and protocols used for data collection. Environmental, social, political, and cultural vari-

ations may also play a part. Multi-center datasets may enable models to capture and adapt to the

heterogeneity caused by these factors and thus improve their generalizability [25, 63, 81]. In ad-

dition, simply by collecting data from several sources, studies end up with a larger dataset for

training, which reduces the expected generalization error of the model [24].

Despite the benefits, in reality, conducting machine learning on EHRs across multiple sources

faces several tough challenges. The traditional approach of centralized model training is to gather

datasets from different silos and store them in a centralized data warehouse so that machine learn-

ing models could be trained on the combined dataset. In practice, such collaborative EHR reposito-

ries have been established by healthcare organizations whowere willing to pool their data together

to conduct their research on a larger scale [49, 69]. However, these efforts facedmultiple challenges

regarding logistics, infrastructures, regulations, privacy and data standardization [12, 73, 75]. Cen-

tral data repositories increase the risk of data security and privacy compromises. Examples include

data leakage due to an increase in the number of parties with access to the data as well as subject

re-identification due to linkage across multiple data sources [21]. Moreover, EHRs are subject to a

set of rigorous regulations regarding accessing, analyzing and sharing personal health information

[3, 27, 79]. Additionally, each hospital also imposes its internal policies on the matter. Significant

efforts are required to ensure compliance with these regulations and policies. Last but not least,

the high cost to set up and maintain the infrastructure for centralized data storage presents yet

another roadblock against collaborative machine learning based on data centralization.

Given these challenges associated with centralized learning, a method that enables collaborative

model training to occur in a decentralized manner, without the need for aggregating all data in

one place, would make machine learning on EHRs across multiple centers much more feasible.

Federated Learning (FL) is an emerging paradigm that enables buildingmachine learningmodels

collaboratively using decentralized data. It was originally proposed by Google for the use case of

Gboard query suggestion [43]. The project involved developing a languagemodel over hundreds of

thousands of mobile devices for keyboard autosuggestion, predicting the most likely words that a

user would type next. Each participating device trained a separate local model using only their own

local dataset. Local models were then sent to a central coordinator where they were aggregated

into a global model to be sent back to each participant, either for inference or further training. The

main purpose of FL is to enable participants to collaborate and produce a better model than they

could on their own without compromising data privacy. It achieves this by requiring participants

to share only model parameters, not data.

Given these characteristics, FL has the potential to help facilitate collaboration on data-driven

research on EHRs across multiple institutions while preserving data privacy. However, that FL,

or horizontal FL to be specific, requires data from participating parties to be of the same format

might present a challenge. Recently there have been increasing efforts by healthcare institutions

towards data harmonization. More and more organizations are adopting a common data model,

such as i2b2 [55], PCORnet [22], and OMOP CDM [80], for their EHRs. These organizations are

thus well-positioned to employ FL to facilitate collaborations with others who utilize the same

data model [17].

In this study, we give a brief survey of existing applications of FL on EHR data. We then pro-

vide an overview of common FL algorithms and evaluate their performance on two EHR machine

learning tasks, in-hospital mortality prediction and acute kidney injury (AKI) prediction in the
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intensive care unit (ICU). These two tasks have significant clinical importance and have been

shown to greatly benefit from machine learning. In literature there exist various state-of-the-art

FL algorithms that achieve good results on general domain or benchmark datasets. However, there

has not been a study that evaluates how well they perform in the context of EHRs. Related to this

work, Xu et al. [83] published a survey that summarized the progress and challenges of FL as well

as gave an overview of current applications and potential opportunities of FL in healthcare. In

addition, there exist many studies that successfully applied FL to outcome prediction using EHRs

[32, 59, 66, 77]. To the best of our knowledge, ours is the first one that aims to systematically

compare the performance of several state-of-the-art FL algorithms on an EHR machine learning

task.

Among state-of-the-art FL methods, the most well-known algorithm is Federated Averaging,

also known as FedAvg [50]. FedAvg builds a shared global model by periodically averaging the

weights of the locally evolving models. Despite being the standard federated optimization method,

it suffers from slow convergence or even divergence in some situations when data distribution

differs among clients. Multiple variants of FedAvg have been shown to improve the algorithm

convergence behavior [30, 31, 38, 45, 62]. We conducted a previous pilot study investigating the

performance of FedAvg and FedProx [45], another popular FL method, on predicting in-hospital

mortality [14]. In this study, we extended our earlier work by inspecting a more comprehensive

set of FL algorithms and evaluating them on an additional task of AKI prediction.

2 EXISTING APPLICATIONS OF FEDERATED LEARNING ON ELECTRONIC

HEALTH RECORDS

Wide adoptions of EHRs among healthcare institutions have given rise to various studies on ap-

plying machine learning to biomedical research [52]. However, conducting machine learning on

EHRs is not without challenges. Among those, lack of data and poor model generalizability are

two major problems. For research projects involving rare diseases and conditions, small hospitals

may not have enough data for machine learning models to learn meaningful patterns. In addition,

as mentioned above, machine learning models trained on data obtained from a single source may

not generalize well and thus perform poorly when applied to a different context. FL is becoming a

promising approach to mitigate these shortcomings. It allows training a global model on a larger

andmore diverse set of EHRs frommultiple institutions while keeping the data locally, thereby pre-

serving privacy and enhancing the model’s external validity. Several studies have looked into the

effectiveness of solving healthcare problems in an FL setting using EHRs. They can be summarized

into two categories, predictive modeling and representation learning.

Many studies have achieved success in applying FL to predictive modeling on EHRs. Sharma

et al. [66] proposed an FL framework to predict in-hospital mortality for patients in the ICU. Re-

sults showed performance obtained by models trained in an FL setting to be on par with those

trained in a centralized manner. Vaid et al. [77] achieved an improvement in predicting 7-day mor-

tality for hospitalized COVID-19 patients by employing FL to utilize data from 5 different hospitals.

To predict preterm birth in the context of distributed EHRs, Boughorbel et al. [8] presented a fed-

erated uncertainty-aware learning algorithm (FUALA) based on FedAvg. FUALA is capable

of dynamically adjusting the aggregation model weights by taking into account each model’s un-

certainty, thus reducing the adverse effects of models with high uncertainties. Brisimi et al. [10]

proposed an iterative cluster Primal-Dual Splitting (cPDS) algorithm for solving the large-scale

soft-margin l1-regularized sparse Support Vector Machine to predict hospitalizations due to car-

diac events in FL settings. Huang el al. [33] proposed an FL algorithm called LoAdaBoost to predict

the mortality of patients admitted to the ICU based on drugs prescribed during the first 48 h of

their ICU stay. Pfohl et al. [59] comprehensively studied the efficacy of FL and differential privacy
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versus centralized training in predicting prolonged length of stay and in-hospital mortality across

thirty-one hospitals. Grama et al. [28] evaluated the performance of different robust FL aggrega-

tion methods on two disease prediction tasks, diabetes mellitus onset prediction and heart failure

prediction. Results showed that adaptive federated averaging (AFA) [54] not only performswell

but also is robust againstmalicious or faulty clients. Tan et al. [72] proposed a tree-based FLmethod

for treatment effect estimation. The method was used to study the effect of oxygen saturation on

hospital mortality among ICU patients with respiratory diseases. Tuladhar et al. [76] presented an

ensemble approach to distributed learning of machine learning models for rare disease detection.

In this approach, inference is done by ensembling predictions provided by local models instead of

aggregating their weights to produce a single global model. Xue et al. [85] introduced a federated

reinforcement learning system that employs Double Deep Q-Network (DDQN) to provide sup-

ports for personalized clinical decisions. The system utilizes data from smart devices at the edge

as well as electronic medical records (EMRs).

FL has also been applied to representation learning in the context of EHRs. Liu et al. [47] pro-

posed a two-stage federated natural language processing (NLP) method for phenotyping and

patient representation learning. The first stage constructs a representation of patient data using

medical notes from multiple hospitals without sharing the notes. The learned presentation is not

constrained to any specific medical task. The second stage builds a machine learning model for

a specific phenotyping task based on relevant features extracted from representations learned in

the first stage. Lee et al. [44] and Xu et al. [84] presented two federated patient hashing frame-

works for patient similarity learning. The model learns context-specific hash codes to represent

patients across multiple hospitals. The learned hash codes are then used to calculate similarities

among patients. Ultimately, the model can match patients with high similarity among multiple

hospitals. Lu et al. [48] proposed an efficient decentralized FL approach to extract latent features

from patient data. Kim et al. [41] proposed a tensor factorization method that generates meaning-

ful clinical concepts (phenotypes) from a large volume of EHRs. Vepakomma et al. [78] introduced

three configurations of a distributed deep learning method called Split Learning [29], which differs

from conventional FL in that it does not require participants to share the weights of the entire lo-

cally trained model. This leads to improved data privacy and security. Huang et al. [32] proposed a

method called community-based federated learning (CBFL), which clusters the distributed pa-

tient data into clinically meaningful groups that share similar characteristics, such as drug features

and diagnoses, while simultaneously training one model for each group. The method achieved

good results on predicting mortality and length of stay.

3 EVALUATION OF CURRENTWELL-KNOWN FL ALGORITHMS ON EHRS

This section provides an overview of common FL algorithms that have been shown to work well

outside of healthcare domain. Their performance was then evaluated on two machine learning

tasks in the ICU, in-hospital mortality prediction and AKI prediction, using a dataset containing

EHRs from multiple ICUs.

3.1 Overview of Common FL Algorithms

In general, FL involves each individual participants training local models on their local dataset

alone and then exchangingmodel parameters, e.g., the weights and or gradients, at some frequency.

There is no exchange of data among different participants. The local model parameters are then

aggregated to generate a global model. Aggregation can be conducted with or without the coordi-

nation of a central party. Different FL algorithms vary in how the aggregation steps or the local

update steps are performed. Among those, FedAvg [50], is the most well-known. FedAvg aims to
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optimize the following objective:

min
w

(
F (w) =

K∑
k=1

pkFk (w)
)
, (1)

where N is the number of participants and pk is the weight of participant k and
∑

N

i=k
pk = 1. pk is

usually proportional to the size of each participant dataset. Fk (·) is the local objective function.
At each communication round t , a global model with weights wt is sent to all K participants.

Each participant k performs local training for E epochs, producing a new local model with weights

wk

t+1. Each participant then sends their newly learned local model weights to a central server where

they are aggregated to obtain a new global model with updated weightswt+1 equal to the weighted

average of all local models:

wt+1 =

K∑
k=1

pkw
k

t+1. (2)

FedAvg performs well in the case of homogeneity, where all local datasets are identically and

independently distributed (IID). In the presence of statistical heterogeneity where data are not

identically and independently distributed (non-IID) across participants, the global model might

perform poorly or not even converge. A number of different approaches have been proposed

to counter this problem and improve the convergence rate and performance of FL for non-IID

datasets.

FedProx [45] and SCAFFOLD [38] aim to improve the convergence rate in FedAvg by correcting

client drift, a phenomenon where client heterogeneity causes a drift in the local updates in each

round of local training, resulting in slow convergence. FedProx introduces a proximal term that

restricts the local updates to be closer to the latest global update. Instead of optimizing Fk (·), each
participant now optimizes the local objective:

hk (w,w
t ) = Fk (w) +

μ

2

�
�
�
w −wt�

�
�

2
. (3)

SCAFFOLD works by measuring the amount of drift caused by each client in each round and

then adjusts their local update accordingly. How much a client drifts is measured by the difference

in the direction of the global update versus the direction of the client local update.

Instead of controlling local training, several FL algorithms tackle the slow convergence prob-

lem by experimenting with server optimization. The global model update step specified in

Equation (2) can be rewritten as

w = w − Δw, (4)

where Δw =
∑

K

k=1 pkΔwk and Δwk is the weight updates from client k ,

Δwk = w
t+1
k
−wt . (5)

w = w − Δw has the same form as a gradient-based optimization step where Δw acts as a pseudo-

gradient. Reddi et al. [62] formalized this as a server optimization step that optimizes the model

from a global perspective, in addition to the client optimization step 5 that aims to optimize the

model from a local perspective. Their proposed FL algorithms FedAdagrad, FedAdam, and FedYogi

employ adaptive server optimization by applying adaptive optimization methods Adagrad, Adam,

and Yogi in the server optimization step. FedAvgM [30, 31] is another algorithm that uses adaptive

server optimization, by adding momentum to the server optimization step , computingw = w −v
where v = βv + Δw .
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3.2 Experiments

We evaluated the performance of well-known FL algorithms, FedAvg, FedProx, FedAvgM, FedAda-

grad, FedAdam, and FedYogi, on two common and clinically crucial machine learning tasks in

the ICU, in-hospital mortality prediction and AKI prediction. Their results were compared against

those obtained from local learning, centralized learning and two non-FL methods that also enable

collaborative model training without data sharing, namely, IIL and cyclic institutional incre-

mental learning (CIIL) [11, 67, 68]. In IIL, each party trains the model on their local dataset then

passes the model to the next one until all parties have trained the model. CIIL repeats the same

process over multiple rounds, but fixes the number of training epochs carried out by each party at

each round. The data for both tasks come from the eICU dataset [60], which collected EHRs from

more than 200 hospitals and over 139,000 patients across the United States admitted to the ICU

in 2014 and 2015. The dataset contains a wide range of data, including demographics, medication,

diagnoses, procedures, timestamped vital signs, and lab test results.

For each task, several hospitals in the eICU database were selected as participants. The extracted

data were split into a train, validation, and test set for each of the hospitals, each taking up 80%,

10%, and 10% of the whole population, respectively. In the local training setting, a separate model

was trained for each hospital using only their own local data. The training was done over a number

of epochs, and for each hospital, the model that gave the best performance on the validation set in

terms of Area under the ROC Curve (AUC-ROC) became the final model for evaluation.

In the centralized setting, the train, validation, and test sets from all participating hospitals were

concatenated to produce a single train, validation, and test set. A single model was then trained

on the combined training set. Like in the local setting, training was conducted for several epochs

and the best model was picked based on the AUC-ROC score on the combined validation set.

In the IIL and CIIL settings, since there was no global aggregated validation set due to no data

sharing among participants, the model produced by the last party that conducted the training was

selected as the final model.

In the FL setting, training was done over several communication rounds. Similar to the IIL and

CIIL settings, since the central server that coordinated the training and carried out the global

model aggregation process did not have access to a global validation set, the final model was the

one obtained after all the communication rounds had finished.

Performance among the methods was compared based on global test scores. The metrics used

are AUC-ROC and Area under the Precision-Recall Curve (AUC-PR). Delong’s method [15]

and logit method [9] were employed to compute 95% confidence intervals for AUC-ROC and AUC-

PR, respectively.

3.2.1 In-hospital Mortality Prediction. In this experiment, we investigated the performance of

FL algorithms on predicting a patient’s in-hospital mortality based on data collected during the

first 24 h of their ICU stay. This is a crucial task in clinical setting. When a patient is admitted

to the ICU, predicting their mortality, either at the end of the ICU stay, hospital stay, or within

a fixed period, e.g., 28 days, one month, or three months, provides a proxy for the severity of

their condition and helps healthcare providers plan treatment pathways and allocate resources

more effectively. There exist several works on successfully applying machine learning to predict

in-hospital mortality [6, 61, 82].

Data. The same data extraction process in References [14, 37] was employed. For each hospital

in the entire eICU dataset, we extracted a cohort of patients age 16 and above in their first ICU

stay who had their in-hospital mortality status recorded. Patients without an APACHE IVa score

were excluded. This criterion serves as a proxy for identifying patients with insufficient data or

those who were only in the database for administration purpose. Twenty hospitals with the largest
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cohorts were then selected as participants in the study. The combined cohort contains 87,003 ICU

stays.

For each patient, data within 24 h from ICU admission were extracted. The set of features in-

cludes

• demographic information: gender, age, and ethnicity,

• the first and last results of the following laboratory tests: PaO2, PaCO2, PaO2/FiO2 ra-

tio, pH, base excess, Albumin, the significant band of arterial blood gas, HCO3, Bilirubin,

Blood Urea Nitrogen (BUN), Calcium, Creatinine, Glucose, Hematocrit, Hemoglobin, in-

ternational normalized ratio (INR), Lactate, Platelet, Potassium, Sodium, white blood cell

count,

• the first and last as well as the minimum and maximummeasurements of the following vital

signs: heart rate, systolic blood pressure, mean blood pressure, respiratory rate, temperature

(Celcius), SpO2, Glasgow Coma Scale (GCS),

• total urine output,

• whether the hospital admission was for an elective surgery.

A total of 82 covariates were obtained.

Methods. A neural network consisting of two fully connected hidden layers with ReLU activa-

tion function and L2 normalization was used. The first hidden layer contains 100 nodes and the

second 50. In the local and centralized settings, the model was trained for 90 epochs. In FL settings,

the training took place over 30 communication rounds, with each hospital training the model lo-

cally for ten epochs each round.

3.2.2 AKI Prediction. The purpose of this experiment was to evaluate the performance of FL

algorithms on predicting the risk of a patient developing AKI within the next hour based on data

collected during the previous 7 h. AKI is a sudden onset of renal damage or kidney failure that

happens within a few hours or a few days and occurs in at least 5% of hospitalized patients [16].

AKI can affect other organs such as lungs, heart, and brain. It significantly increases hospitalization

cost as well asmortality risk [13]. A timely detection of AKI could prevent patients from developing

chronic kidney disease [39, 71]. There have been several studies that show strong performance of

machine learning models in predicting AKI [26, 53, 58].

Data. We followed the same data extraction process in Reference [16]. The RIFLE criteria [7]

were used to define AKI. Specifically, a patient at time t will be labeled as suffering from AKI

if their urine output is less than 0.5 ml/kg/h for t >= 6. The cohort exclusion criteria include

(1) patients who were under 16 years old or stayed in the ICU for less than 12 h and (2) patients

whose data for the selected variables were not recorded at least once during their ICU stay. A total

of 10,967 patients in 168 hospitals remained after the filtering. The top 75% hospitals with the most

number of patients were selected to participate in the study. The final cohort contains 28 hospitals

with a total of 6,641 patients.

For each patient, we extracted data in 7-h sliding windows. The full set of covariates includes

• demographic information: age and gender,

• the minimum and maximum values as well as the range (the difference between the maxi-

mum and minimum values) of the following vital signs: heart rate, respiratory rate, mean

blood pressure,

• the minimum and maximum values as well as the range of the following lab measurements:

SpO2/SaO2, pH, Potassium, Calcium, Glucose, Sodium, HCO3, Hemoglobin, white blood cell

count, Platelet count, Urea Nitrogen, Creatinine, GCS,
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Table 1. Global Test Performance on the In-hospital

Mortality Prediction Task

Method AUC-ROC (95% CI) AUC-PR (95% CI)

Local 0.833 (0.808–0.859) 0.472 (0.373–0.480)

Centralized 0.918 (0.907–0.929) 0.668 (0.633–0.701)

IIL 0.877 (0.857–0.897) 0.505 (0.451–0.559)

CIIL 0.828 (0.803–0.852) 0.426 (0.373–0.480)

FedAvg 0.901 (0.882–0.921) 0.638 (0.584–0.688)

FedProx 0.895 (0.877–0.914) 0.577 (0.523–0.630)

FedAvgM 0.906 (0.888–0.925) 0.645 (0.591–0.695)

FedAdam 0.890 (0.870–0.911) 0.578 (0.524–0.631)

FedAdagrad 0.893 (0.873–0.913) 0.596 (0.543–0.649)

FedYogi 0.895 (0.875–0.915) 0.594 (0.539–0.646)

Table 2. Global Test Performance on the AKI Prediction Task

Method AUC-ROC (95% CI) AUC-PR (95% CI)

Local 0.709 (0.697–0.722) 0.748 (0.734–0.761)

Centralized 0.735 (0.724–0.747) 0.783 (0.770–0.796)

IIL 0.664 (0.652–0.677) 0.723 (0.709–0.737)

CIIL 0.712 (0.70–0.724) 0.764 (0.750–0.777)

FedAvg 0.724 (0.712–0.736) 0.770 (0.757–0.783)

FedProx 0.691 (0.679–0.703) 0.740 (0.726–0.754)

FedAvgM 0.725 (0.713–0.736) 0.775 (0.762–0.788)

FedAdam 0.716 (0.704–0.728) 0.760 (0.746–0.773)

FedAdagrad 0.720 (0.708–0.732) 0.767 (0.753–0.780)

FedYogi 0.732 (0.720–0.743) 0.773 (0.760–0.786)

• interventions: use of vasoactive medications, use of sedative medications, and use of me-

chanical ventilation.

• total urine output.

A total of 22 covariates were obtained.

Methods. Similar to the previous task, a fully connected neural network consisting of two hidden

layers with ReLU activation function and L2 normalization was used. However, here each of the

two hidden layers contains 512 nodes instead of 100 and 50. In the local and centralized settings,

the model was trained for 30 epochs. In FL settings, training took place over four communication

rounds. Each hospital trained a local model for 10 local epochs during the first round and 5 local

epochs during each subsequent round.

3.3 Results and Discussion

Global test performance in terms of AUC-ROC and AUC-PR obtained with each method is shown

in Table 1 for in-hospital mortality prediction and Table 2 for AKI prediction. Comparison of ROC

curves obtained with FL methods versus centralized and local training is visualized in Figures 1

and 2. Similarly, Figures 3 and 4 in Appendix A show comparison of ROC curves obtained with FL
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Fig. 1. Comparison of ROC curves obtainedwith Local, Centralized, and FLmethods for in-hospitalmortality

prediction.

methods compared to those obtained with CIIL and IIL. In both tasks, all FL methods outperform

local training in either metric with the exception of FedProx in predicting AKI. In particular, for

mortality prediction, all FLmethods perform significantly better than local training. In comparison

with IIL and CIIL, formortality prediction, all FLmethods achieve better results. For AKI prediction,

the same is true for most FL methods. Only exceptions are FedProx, which obtains worse AUC-

ROC and AUC-PR than both IIL and CIIL, and FedAdam, whose AUC-PR is slightly lower than

that of CIIL. Overall, for both tasks, FL methods enjoy improvement over IIL and CIIL. This is

unsurprising given that IIL is known to suffer from catastrophic forgetting [23, 42, 68] while it

is non-trivial to obtain optimal results with CIIL due to its instability [68]. Results obtained by

FL are also comparable to centralized learning, with the best FL method in each task achieving

AUC-ROC within 0.01 of the global AUC-ROC for centralized learning in terms of point estimates.

FedAvg and FedAvgM perform consistently well and are among the top three FL methods with the

highest global AUC-ROCs and AUC-PRs in either task, only behind FedYogi in AKI prediction. In

both cases, FedAvgM obtained slightly better results than FedAvg. However, FedProx achieved the

lowest scores in both mortality and AKI prediction.
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Fig. 2. Comparison of ROC curves obtained with Local, Centralized, and FL methods for AKI prediction.

Results strongly favor FL as a viable strategy for facilitating collaboration among organizations

in clinical research. Even though performance does not vary much among the different FL meth-

ods in our experiments, it is observed that simple FL algorithms, namely, FedAvg and FedAvgM,

perform slightly better than FedProx, FedAdam and FedAdagrad. It has been shown that FedProx

works well in the presence of heavy data heterogeneity [45]. In our dataset, all hospitals are located

in the United States and therefore expected to experience consistencies in clinical practices and

patient demographics. Furthermore, they all participated in the Philips eICU program, which guar-

antees a certain degree of data standardization. Thus, the differences in data distribution among

them are not significant enough to benefit from FedProx. Plus, the total number of participants

is relatively small compared to FL in an IoT setting with a large number of participating devices

where FedProx usually shines [45]. Data homogeneity might also contribute to the lack of per-

formance gain in FedAdam and FedAdagrad compared to FedAvg. In addition, both the tasks of

predicting mortality and predicting AKI, similar to most machine learning tasks on tabular EHR

data, only require the use of feed forward fully connected neural networks with a small num-

ber of layers, which might not see considerable performance gain through the use of Adam and

Adagrad.
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4 CONCLUSION

This study gave a brief survey on applications of FL on EHR data and then evaluated the perfor-

mance of multiple common FL algorithms on two typical EHR machine learning tasks, in-hospital

mortality prediction and AKI prediction. FL shows notable improvement compared to local train-

ing and performs close to centralized learning. This is promising for organizations that seek to

collaborate with others in data-driven clinical research using EHRs. FL could help them build bet-

ter machine learning models than individually using only their own local data while preserving

data privacy without compromising on model performance.

Our results also suggest that simple FL algorithms FedAvg and FedAvgM work particularly well

for machine learning tasks on tabular EHR compared to more complex methods such as FedProx,

FedAdam and FedAdagrad. Data homogeneity due to the fact that all local datasets in our ex-

periments come from hospitals located in the U.S. and thus share certain characteristics might

contribute to this finding. This is one limitation in our study that we aim to overcome in future

works. We plan to expand the pool of participants in our experiments to include datasets from

ICUs in Europe [34, 74], Australia, and New Zealand [70] and investigate how FL performs on

more heterogeneous EHR data as a future research direction.

In addition, we plan to validate our results on more recent data. We are currently working

with public hospitals in Singapore to establish a federated data network whose participants adopt

the OMOP Common Data Model [65, 80] for their EHRs. Once the network is set up, we would

replicate our study on this more up to date dataset and also expand it to covermore tasks other than

mortality and AKI prediction to improve the generalizability of our findings. Another direction

would be to evaluate the performance of different FL methods on other data modals in healthcare

such as time series, digital signals [2] and medical imaging [35, 36, 56], those that require more

complex model architectures.

It is important to note that even though FL aims to preserve data privacy by sharing model pa-

rameters instead of data during training, it by itself does not mitigate all data privacy and security

concerns. Studies showed that it is possible to make inference about the raw data by examin-

ing model parameter updates [5]. There exists methods that add extra security measures on top

of FL to counter this [1, 4, 5, 40], namely, Differential Privacy (DF) [18–20], Homomorphic

Encryption (HE) [64] and Secure Multi-Party Computation (SMC) [51, 86]. They enhance

FL data security and privacy at the cost of communication efficiency and model performance.

In particular, by adding noise to client training data, DF offers improvement in data privacy but

also results in a decrease in model accuracy. HE ensures that only encrypted model parameters

are exchanged. This provides data protection but also imposes a penalty on model performance

[57]. SMC preserves knowledge of client inputs but is computationally intensive and requires

extensive communication among parties. Further research is needed to understand the privacy-

accuracy trade-offs of combining these methods with different FL algorithms in the context

of EHR.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 5, Article 72. Publication date: June 2022.



72:12 T. K. Dang et al.

APPENDIX

A COMPARISON OF ROC CURVES OBTAINED BY FL METHODS VERSUS

IIL AND CIIL

Figures 3 and 4 show comparison of ROC curves obtained with IIL, CIIL, and FL methods for in-

hospital mortality prediction and AKI prediction, respectively.

Fig. 3. Comparison of ROC curves obtained with IIL, CIIL, and FL methods for in-hospital mortality

prediction.
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Fig. 4. Comparison of ROC curves obtained with IIL, CIIL, and FL methods for AKI prediction.
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