

Federated Learning for Energy Constrained IoT devices: A

systematic mapping study

Rachid EL Mokadem, Yann Ben Maissa and Zineb El Akkaoui

{elmokadem.rachid, benmaissa, elakkaoui}@inpt.ac.ma

Telecommunications Systems, Networks and Services Lab, National Institute of Posts and
Telecommunications, Rabat, 10587, Morocco.

Abstract
Federated Machine Learning (Fed ML) is a new distributed machine learning technique applied to

collaboratively train a global model using clients’ local data without transmitting it. Nodes only send

parameter updates (e.g., weight updates in the case of neural networks), which are fused together by the

server to build the global model. By not divulging node data, Fed ML guarantees its confidentiality, a crucial

aspect of network security, which enables it to be used in the context of data-sensitive Internet of Things

(IoT) and mobile applications, such as smart geo-location and the smart grid. However, most IoT devices

are particularly energy constrained, which raises the need to optimize the Fed ML process for efficient

training tasks and optimized power consumption. In this paper, we conduct, to the best of our knowledge,

the first Systematic Mapping Study (SMS) on FedML optimization techniques for energy-constrained IoT

devices. From a total of more than 800 papers, we select 67 that satisfy our criteria and give a structured

overview of the field using a set of carefully chosen research questions. Finally, we attempt to provide an

analysis of the energy-constrained Fed ML state of the art and try to outline some potential

recommendations for the research community.

Keywords: Federated Machine Learning, Energy Optimization, Internet of Things, Edge and Mobile Computing, On-device

Intelligence

1 Introduction
Context. Machine learning (ML) has become an
important and increasingly used paradigm in

different applications. In the last decade, the IoT
computer systems and their potential applications
(e.g., smart cities, smart grids) have grown
considerably, which would make them benefit

from the capabilities of ML in such a large and
complex context. Furthermore, widespread IoT
adoption in industry and academia (e.g., via rapid
prototyping platforms such as the Raspberry PI™
and Arduino™) raises expectations for data privacy
preservation and efficient resource utilization in a

wide range of critical applications. Therefore, in

light of ML limitations for distributed systems and
sensitive data, Federated Machine Learning (Fed

ML) was proposed by McMahan et al. in 2016 [46]
to address these constraints. The approach

delegated model training tasks to client devices,
which collaboratively built a global shared model
that consolidated their respective local data
learning while avoiding any private data from
leaving its original device [32]. Since the seminal

paper, Fed ML has become one of the ”hot topics”
in ML.
Problem. IoT and mobile devices have a major
constraint related to energy sources, and as a
result, the power consumption on these devices
must be optimized for any assigned task. In

particular, a machine learning algorithm is known
to be a highly power-consuming multi-task
process [17]. In a distributed ML setup, nodes must

continually exchange data with a master node,
which may drive up overhead costs for the system.
FedML attempts to solve this issue by limiting the
exchanged data to the local model’s weights [46],

trained by nodes, instead of voluminous raw data
exchange. At the same time, FedML still requires
improvement to enable resolving further critical
challenges related to IoT and mobile device
characteristics, namely, the limited resources and
energy constraints [54]. As a consequence, several

Fed ML works addressing these aspects have
increasingly been proposed by the scientific
community in the last few years. In light of this
evolving literature, there is a substantial need for a
comprehensive study in order to provide a clear
overview of energy optimization approaches and

propose new research directions for the research
community.

Contribution. Several works have actually tackled
the limitations of the original Fed ML proposal,

entitled FedAvg, and proposed many optimization
approaches, essentially regarding the
communication load, data exchange, and other
aspects, which can help to address directly or
indirectly the limited energy constraint. The
purpose of this paper is to conduct, to the best of

our knowledge, the first Systematic Mapping Study
(SMS) on Fed ML optimization for energy-
constrained devices. This SMS is tasked with i.)
counting and categorizing relevant primary
studies published in this topic based on five
research questions, ii.) analyzing and discussing

the results to provide a clear understanding of

recent improvements for the research community,
and iii.) assisting engineers in developing
innovative Fed ML solutions for IoT and mobile
devices.

Contents. The remainder of this paper is
structured as follows: First, we present related
works and surveys in Section 2. Then we provide
some theoretical foundations through the original
FedAvg algorithm as well as the formulation of the

energy optimization problem in Section 3. In
Section 4, we present the method used to conduct
this study, including the paper selection and
filtering process, as well as the research questions
(RQs).

Table 1 Related works

Year Title Type Focus

2020

A Systematic Literature Review

on Federated Machine

Learning: From A Software

Engineering
Perspective. [41]

SLR
Software

engineering

aspects

2020

A Systematic Literature Review on

Federated
Learning: From A Model
Quality Perspective. [40]

SLR Model
quality

2020
Federated Learning in Mobile Edge
Networks: A
Comprehensive Survey.[38]

Survey General

2020

Federated Learning: A Survey

on Enabling Technologies,
Protocols, and Applications. [1] Survey Applications

2020

A Review of Privacy-preserving

Federated Learning for

the Internet-of-Things. [6]
Survey Privacy

In Section 5, we answer them and analyze the
results obtained from the studied papers. We
follow up with a discussion and some

recommendations for research directions in
Section 6. Section 7 exhibits some threats to the
validity of our study. Finally, in Section 8, we
conclude and outline some possible future works.

2 Related works
In this section, we present three surveys and

two literature reviews that have been identified as
being related to this work (see Table 1).[41]
presented a systematic literature review on
Federated Learning, from a software engineering

perspective, where they covered the Federated
Learning system in general, with a focus on the
software development aspects and general
challenges for real applications. [40], on the other
hand, conducted a systematic literature review on
Federated Learning from a model quality

perspective, where they studied the methods for
improving the quality of the Fed ML model and
data. Additionally, the authors compared the
model between federated and non-federated
learning on the same data. Furthermore, [38]
presented a survey on Federated Learning for

mobile edge networks, in which they investigated
the characteristics and limitations of good
performance, resource allocations, communication
costs, and data privacy concerns.Moreover, [1]
presented a FedML survey on enabling
technologies, protocols, and applications. They

provided the most relevant protocols, platforms,
and real-life use-cases of Federated Learning to
enable data scientists to build better privacy-
preserving solutions for industries; they also

explored the challenges and advantages of Fed ML
for real-life applications. Finally, [5] presented a
survey on federated learning from a privacy
preservation angle.

Although these surveys and SLRs are excellent,
we think that our study tackles some aspects that

were not directly addressed by them. They do not
focus on the energy factor in the optimization of
federated learning, except for [38], where it is not
thoroughly tackled. We attempt to shed light on
power consumption aspects in FedML for the IoT.
As reported by Cisco in [9], IoT connections will

represent more than half (14.6 billion) of all global
connected devices and connections (28.5 billion)
by 2022, showing their increasing pervasiveness in
human lives [14]. Our personal use of smart
phones and watches, which need frequent and
sometimes bothersome recharging, is also a

practical witness to this concern. Finally, there is
also the particular case of wireless sensor
networks that can be deployed in hostile

environments with no possibility at all of energy
replenishment.

3 Background
In this section, we talk about the global Federated
Learning process, the FedAvg algorithm, the
energy consumption problem, and some other

background information.

3.1 Federated Learning

Federated Machine Learning is the process of
developing accurate models on large-scale
distributed systems made up of small devices by

combining their computation power and local data
[46].The goal is to solve a class of problems that
cannot be solved by a single central computer, such
as those involving users' personal data, real-time
computing, and on-device artificial intelligence
[32].

FedML is based on a distributed architecture that

involves several nodes performing training tasks on

their local data and exchanging their model’s

parameters with a central server. The server then

builds, from local models, a global aggregated model,

which is equivalent to a trained model on all nodes'

consolidated data. In the case of FedAvg, the global

model Wg is built as a weighted average of the local
models Wi (see equation 1).

Wg  = ∑
ni

n
Wii (1)

The optimization of the global objective function f
can be expressed as the optimization of the

average of local objective functions fi for all
participating nodes i = 1,...,ni, as given by the
equation 2 [54].

minwf(w) = minw
1

n
∑ fi(w)i (2)

where:

𝑓𝑖(𝑤) ≔
1

𝑘
∑ 𝑙(𝑤, ξ)ξ∈𝐷𝑖

 (3)

fi is defined as an average of the local loss
function l, for each node i, on its local sample
points, Di = ξi1,··· ,ξim for i ∈ [n], where Di is the local
data set of the node i, composed of m data points; ξi

and w are the model parameters.

𝑚𝑖𝑛𝑤𝑓(𝑤) ≔ 𝑚𝑖𝑛𝑤
1

𝑛𝑘
∑ 𝑙(𝑤, ξ)ξ∈𝐷 (4)

Finally, to solve equation 4, a gradient descent
method is used by each node to minimize the loss
li over its local training data Di, and eventually the

aggregated model Wg will minimize the global

objective function.

3.1.1 Federated Learning pseudo-
algorithm

Algorithm 1 shows the idea behind Federated
Averaging (FedAvg), proposed by [46] for Fed

ML .

end

 /* Run on server*/

 initialize w0;

for each round t = 1,2, ... do

m ←

max(C.K,1);

 end

 /* Run on client k*/

Function ClientUpdate(k,w): B ← (split Pk

into batches of size B); for each local
epoch i from 1 to E do

for batch b ∈ B do

w ← w − µ∇l(w,b);
end

return w to server;

end

Algorithm 1: FedAvg pseudo-algorithm

The notations employed in the algorithm are
explained underneath.

• C Fraction of selected clients in each round
• K Total number of clients
• m Number of randomly selected clients for each round
• St Set of clients for each round
• wt Global model parameters at round t
• Received model parameters from client k at round t
• nk Number of data points of client k
• n Total number of data points of all clients
• Pk Local data-set of client k
• B Local data-set mini batch size to use for client training
• B Set of data-set mini batches for local training
• E Number of training passes performed by each client before

sending the update to the server.
• µ Learning rate
• l Loss function
• w Local model parameters

As shown in the aforementioned algorithm, the
server initiates the model’s parameters w0, then,
for each round, it determines the number m of

participant clients to choose for training as a
fraction C of K total clients. The subset of devices St

is determined randomly, and then each client
device k receives the model’s parameters wt from

the server to perform the training on its respective

Fig. 1 Federated Learning global schema

local data set Pk. This training process performs a
split of the local data into small batches of size B,
and a number of E local epoch runs to train the

local model. Finally, all selected clients compute an
update of the parameters w, then send it back to
the server, which averages them to get the new
global model parameters wt+1. This round is
repeated as many times as determined by the
server to reach the target performance.

3.1.2 Federated Learning process

Fed ML architecture is composed of the client nodes

and the central server. The server receives the

computed updates from client devices and performs

an aggregation operation to build the global model.

It is then improved continuously, by running

additional iterations on the nodes, to train their local

models, until obtaining the desirable results.

Figure 1 globally shows the components

involved in the Fed ML architecture, as well as the

stages of the FedAvg algorithm execution. In each
round of the training, the following operations are
performed:

S t ← randomsetofmclients); (
for eachclient k ∈ S t inparallel do

w t +1 ← ClientUpdate (k,w t) ;

w t +1 ← P K
k =1

n k
n w k

t +1 ;
end

1. Definition of model’s structure, random
initiation of parameters and selection of
participating devices: the central server must
define the parameters E, C and B prior to start

of the training, and it must select a subset of
clients to participate in each round.

2. Model Update on local data: each selected
client computes an update of the global model,
by running local training iterations as many
times as defined by the central server.

3. Transmission of Local Model updates to
server: each participating device sends the
computed update of the model.

4. Aggregation of all received model updates:
the server aggregates the received updates in

such a way that builds a global model.

5. Sharing the updated global model with the

devices.

3.1.3 Heterogeneity

Very often, in real applications, the participant
nodes in the FL have uneven resources and
training data, we refer to this by system
heterogeneity and statistical heterogeneity
respectively [35].

System heterogeneity

During the collaborative training of the global
model, different nodes have different capacities
(e.g., CPU, Battery, Memory, Bandwidth). As result,
if we ignore this fact, the convergence will be very
slow, and the weak clients will exhaust their

resources before the end of the training, resulting
in bad model performance.

Statistical heterogeneity

When FedAvg was first proposed by [46], it was
based on the assumption of independent and

identically-distributed (iid) data across nodes,
which guarantees a theoretical solution for the
equation 4, regarding balanced local data-sets Di,

by using the gradient descent optimization
method. However, this assumption cannot be held
for the majority of distributed data on IoT and

users’ devices; this is a big limiting factor facing the

deployment of Fed ML in real-world scenarios [76].

In fact, the majority of works published on this
topic display good results for iid data and poor
ones for non-iid setups, which is shown by a bad

impact on the global model’s performance and the
required time and energy for the training [76]. This
substantial problem has driven several teams to
develop techniques to adapt the original federated

learning algorithm to both types of heterogeneity
[11, 34, 70].

3.2 Energy consumption formulation

The main goal of FedML optimization for energy-

constrained devices is to minimize the functional
energy consumption of the nodes while building a
good global model. In general, a wireless device's
total energy consumption ET can be divided into
three major parts: Enet, Ec, and Esys (Equation 5).

𝐸𝑇 = 𝐸𝑛𝑒𝑡 + 𝐸𝑐 + 𝐸𝑠𝑦𝑠 (5)

Enet is the energy consumed by the device for
communications with other devices or the server
for update exchanges. Ec is the energy consumed
by the device’s local processing unit and memory
to accomplish the training computations. Esys is the

energy consumed by the general system
operations of the device, which are not related to
its participation in the Federated training.

Note that Esys is generally small and negligible
compared to the total amount used in IoT [45]. In
addition, it is not specific to the problems

considered in this study, so we omit it from this
formulation.

Moreover, communications generally consume
more energy than processing, for an equivalent
amount of operations (this justifies multiple
aggregation approaches before data transmission).

Equation 6 gives the amount of energy consumed
by network communication, expressed by a set of
parameters related to our context.

𝐸𝑛𝑒𝑡 ≃ ∑ 𝑁𝑇𝑏𝑖𝑡
𝑖 𝑃𝑇

𝑅𝑇

𝑁𝑇
𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡

𝑖 𝑃𝑅

𝑅𝑅

𝑁𝑅
𝑖=1 + 𝑐 (6)

NT and NR are, respectively, the number of
transmitted and received updates by the device. PT

and PR are the transceiver power at transmission
and reception, respectively. RT and RR are bit rates

for transmission and reception, respectively.

and are the number of bits transmitted and
received, respectively, in a given update i, and c is
amount of energy consumed by irrelevant factors
such as channel noise, transmission errors, etc.

If PR = PT = P and RR = RT = R, the equation 6 can
be simplified into equation 7:

𝐸𝑛𝑒𝑡 ≃ (∑ 𝑁𝑇𝑏𝑖𝑡
𝑖𝑁𝑇

𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡
𝑖𝑁𝑅

𝑖=1)
𝑃

𝑅
+ 𝑐1 (7)

Moreover, the energy consumption by local

computations on each client device is
approximated by the equation 8.

𝐸𝑐 ≃ ∑ 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑖𝑁𝑟𝑜𝑢𝑛𝑑

𝑖=1 × 𝑃𝑐
𝑖
 (8)

Where is the consumed power per training time
unit at round i, Ttraining is the duration of

computation operation, and Nround is the number of
operations to run by a given device.

If Ttraining and Pc are equivalent for all rounds on
a given device, the equation 8 can be simplified as :

𝐸𝑐 ≃ 𝑁𝑟𝑜𝑢𝑛𝑑 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑐 (9)

In summary, the approximated total energy
consumed by each client device (Equation 5) can
be expressed by equation 10.

𝐸𝑇 ≃ 𝑁𝑟𝑜𝑢𝑛𝑑 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑐 + (∑ 𝑁𝑇𝑏𝑖𝑡
𝑖𝑁𝑇

𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡
𝑖𝑁𝑅

𝑖=1)
𝑃

𝑅
 (10)

From the above energy formulation, we can

identify a list of parameters which impact the
energy consumption of the participant client
devices in Federated Learning: the number of
exchanged updates NT and NR, the number of bits in
each exchanged update NTbit

i and NRbit
i , the

transmission power P, the transmission bit rates R,

the duration of local training Ttraining, and the
number of local training rounds Nround.

3.3 Fed ML optimization parameters

Based on the established equations in the previous

section, together with the studied selected papers,
we identify a number of energy optimization
aspects.
Accordingly, in order to minimize the total energy
in equation 9, the optimization of the local training
tasks to accelerate the model convergence should

result in decreasing the number of federation
rounds Nround. Moreover, the training time duration
Ttraining will be improved if we reduce the trained
model’s complexity, which impacts energy
efficiency. Aggregating updates with the least cost,
by reducing the size of exchanged data with the

central server (i.e., decreasing NTbit and NRbit in

equation 7), will help save battery life.
Furthermore, the frequency of model update
exchanges affects the total number of updates NT

and NR (equation 7), thus optimizing even more the

energy consumed in communications. More
optimization can also be achieved by making smart
use of the heterogeneous nodes’ computing
resources to participate in the training, in addition

to optimizing the client selection to balance the
load over the participant nodes and involve the
best ones for accelerated convergence. Finally,
decreasing the transmission power P and
maximizing the bit rates R (equation 7) also helps
to reduce the total spent energy.

This analysis will help us later to classify the
different approaches and techniques proposed in
the literature, as we will see in subsection 5.3.

Fig. 2 Our Search Process

4 Systematic Mapping Study
Process

This section describes the process followed
throughout this Systematic Mapping Study.

Additional material is available on the online
repository created for it 1.

Figure 2 illustrates the steps taken. After an
automatic search based on the defined keywords

and search string in the three common databases,
the first step consists of filtering relevant papers
based on their title. Then, we refined the selection
based on the abstract. We refined our search even
further by reading the full text.Finally, we added a
manual search step afterwards to spot any articles

that were not found the automatic way. Details
about each step of the workflow will be presented
in the upcoming paragraphs.

4.1 Papers selection

In order to obtain all relevant papers for our study,
we have queried three main databases (Google
Scholar, IEEE Explore, and ScienceDirect) by using
the search string in Listing 1, built mainly using the
following keywords: federated machine learning,
edge computing, on-device intelligence, energy,

and optimization.

Listing 1 search query

”(” Federated Machine Learning” OR ”

Federated Learning”) AND (”edge computing” OR
”on−device intelligence ”) AND (energy OR power)

AND (optimization OR optimal OR efficient OR
efficiency)”

Filtering papers. We filtered the initial search
results to keep only papers, that meet all the
following inclusion and exclusion criteria.

i. Inclusion criteria:

• Papers from 2016 to July 2021

• Papers in the English language

• Papers which propose an optimization of
Federated Learning w.r.t. energy consumption,
using techniques including communication cost,
or training time reduction

• Papers which target the IoT or mobile devices in

general

ii. Exclusion criteria:

1 https://gitlab.com/rachid-el-mokadem/fedmlsysrev

• Works on distributed machine learning with no
explicit application to federated learning on
resource-limited devices

• Similar works of the same authors

Manual searching. In order to cover the literature
as much as possible, another step was added to
look for potential papers that might have been
missed earlier: backward snowballing by looking

Table 2 Research questions

 RQ ID Question
RQ1 What is the publications tendency?

RQ2 What network architectures are proposed?

RQ3 How is the energy optimization achieved?

RQ4 How is the optimization validated?

RQ5 What are the reported optimization results ?

at cited references in the selected papers.

Thereby, additional papers were added for a total

of 67 papers. In the remainder of this study, we

will refer to selected papers by identifiers,

attributed according to the chronological order of

the publication: P1, P2, up to P67. The list of all

papers, along with their classification, is depicted

in Table 5 in Appendix A.

4.2 Research questions

In order to analyze the literature and compare the
proposed techniques in a systematic way, we

define a set of research questions that will guide
our analysis (Table 2). RQ1 indicates the timeline
and sources of the papers; RQ2 presents the

network topology considered by each paper; RQ3
examines the FedML energy optimization aspects

that are addressed by each paper; RQ4 presents

the experimentation setups used to validate the
approaches; and RQ5 measures the optimization
improvements of the experiments.

Fig. 3 Fed ML papers publication trend over time

5 Questions answering
In this section, we present the results analysis from
the study of the selected papers, arranged as
answers to the research questions defined in
subsection 4.2.

5.1 RQ1 - What is the publications
tendency

Answering this research question will account for
providing the number of publications evolution,

their distribution over the publishing venues, and
the nature of papers, as well as their influence on
the field of FedML.

The graph in Figure 3 shows the papers
publication trend over time. The growing number

of papers over the last 3 years is clear, with 33
papers in only 2020. Given that the first paper from
[32] was published in 2016, we can clearly see the

Fig. 4 Paper types distribution

big interest this subject is receiving from several
research teams around the world.

 The majority of papers, as shown in

Figure 4, were published in journals (≈36%) and
conferences(≈34%). This shows the growing
maturity of this subject and the engaged efforts by
the scientific community. We also have 20 out of 67
(≈29%) papers published as pre-prints on the

ArXiv database, including 10 in 2020. This could be
justified by the fact that the subject is evolving
quickly, with fast feedbacks. We have also included
the non-peer reviewed papers of Konecny´, Jakub

et al. [32, 33], since they are considered the most
impactful in the subject, with 747 and 1733
citations, respectively. The same team is behind
the seminal work on the FedML proposal [46].

Furthermore, we consider the number of
citations for each paper, shown in Figure 5, to

measure their influence on the subject. It is obvious
that older papers tend to get more citations than
new ones. However, it does provide an
approximate idea of the paper’s scientific interest
for the community. From the graph, we notice
some spikes on a couple papers. For older papers

such as P1 through P8, this is somehow reasonable.
However, in the case of P15 ([57]) with 345
citations, P19 ([8]) with 110 citations and P35
([54]) with 145 citations, this definitely shows the
high impact of those papers. More details on the
techniques used by them in subsection 5.3

5.2 RQ2 - What network
architectures are proposed

Fig. 5 Number of citations per paper

In this question we consider the proposed network
architectures of the studied papers. This is
important to us, because the network topology has

an impact on the communication cost, and
therefore the energy consumption.

The architectures are as follows.

• Centralized: based on a central server to ensure
the communication and model’s parameters
exchange, between the participating devices.

This option is energy consuming, due to long

range communication between the devices and
the server, which requires higher transmission
power P (equation 7). It also suffers from a single
point of failure.

• Decentralized: based on node to node
communication without the need for a central
server. In this setup, the devices can save lot of
energy, by opting for short range

communication between the nodes only [15].

• Hybrid: this architecture is based on at least
three layers of devices, where intermediate ones
are placed between the central server and the
end devices.

Fig. 6 Number of papers by Network topology

The hybrid architecture is based on adding edge
servers between the main server and the end
devices. These intermediate devices can play
several roles, such as managing direct clients under
their control, which allows the offloading of the
central server and lowers the waiting time for
aggregating multiple received updates. In some
cases, this edge server can also be used to offload
the end devices from local update computing, by
periodically querying the training data from the
selected clients, doing the updates with a much
higher computing capacity and communicating
with the server, on behalf of the end nodes. As a
result, this architecture can allow a high energy
optimization on the devices, although posing some
threats to data privacy, especially when these edge
servers are not trustworthy, and the data is very
sensitive.

Figure 6 shows that the majority of papers (59
out of 67) are based on a centralized setup, while 2
papers have a fully decentralized one, and 6
propose a hybrid architecture. The predominance
of the centralized scheme can be explained by the

influence of the architecture in the original paper

[46], which comes from Google. Moreover, the fully
decentralized scheme faces some algorithmic and
practical challenges to aggregate the models
without a central device [30].

5.3 RQ3 - How is the energy
optimization achieved

Fig. 7 Federated Learning optimization techniques (recap)

In this question, we analyze the techniques used by

the papers, to optimize the Fed ML. Our study

focuses on the power consumption reduction, so as
seen in subsection 3.2, all studied optimization
aspects are linked with the energy through
equation 10. We classified these techniques into
the following categories: (1) convergence

acceleration (2) data exchange optimization and
(3) client resource management. Figure 7 recaps
the different techniques. Table 3 presents the
optimization aspects addressed by each studied
paper.

5.3.1 convergence acceleration

In federated machine learning, the training tasks
are performed by the client nodes to build a global

 model under the orchestration of the central
server, during as many rounds as needed to reach
a good performance. In order to save the battery
life of the client devices, the total time to reach

global model convergence can be reduced with
several approaches.

Local training acceleration

Many works have used different optimizations to
accelerate the local training, such as adaptive
learning rate [42], and Adam optimization method
[47].

Equation 11 is used in the original version of
Federated Learning. w are the model weights, b is

the model bias, ∇ is the gradient of the loss function
l and µ is the learning rate.

In this version, the server defines a learning
rate parameter at the beginning, used to compute
the gradient descent steps in local training.
Opposed to that are the aforementioned methods,

which determine the best steps to take in order to
quickly achieve the convergence of the global
model.

𝑤 ← 𝑤 − 𝜇∇𝑙(𝑤, 𝑏) (11)

The benefit of these techniques is to decrease the

number of rounds Nround (equation 9) required for
the model convergence, and thus reduce the
energy consumption for the participant devices.

Accordingly, [47] proposed CE-FedAvg, which
improved how the nodes compute their local

updates by using the Adam method, known for its
improved learning rate, instead of SGD (used in the
original FedAvg algorithm). The weights’ update
method of the proposed algorithm, executed by
each client, is shown in equation 12.

 wk,mk,vk ← AdamSGD(wk,mk,vk) (12)

Where wk are the model weights, mk is Adam’s

first moment, and vk is Adam’s second moment.
These parameters are used to compute the Adam
steps by averaging them over all received updates
or gradients and sending them back to the clients

in the next round of the training.

Feature augmentation is a technique used in
machine learning to improve training performance
in an unbalanced class distribution ([75]).
Similarly, in the context of Federated Learning,
FedFusion is an algorithm presented by [72] to

accelerate the global model’s training by using a

technique named Feature Fusion, which is based
on using a combination of the global model’s
feature space with the local model’s feature space
to train the local model. The global model is used
as a feature extractor, and then multiple types of

feature fusions are employed to efficiently
aggregate all of them. Additionally, [71] presented
a two-Stream model learning with Maximum Mean
Discrepancy (MMD), where the nodes training is

performed on two models, in parallel, both
initialized with the global model parameters, but
one of them (global model) is kept unchanged
during the training. An MMD loss is computed
between the output of the two models, which is
used to optimize the local one. This technique is

often employed with learning transfer and
knowledge distillation in standard machine
learning, and its adoption for Federated Learning
helps to accelerate the training and reduce the
communication cost. In essence, it consists in
constraining the local model training by the global

model parameters, to avoid that local models over-
fit their local data, thereby building a good global
model in lesser training rounds Nround. [4] used an
adaptive dropout schema to decrease the
convergence time by reducing the local model’s
complexity and number of trainable parameters. In

practice, each round a random sub-net wc of the
global model is sent to each participant client c,
then an activation score map M is used to track the
indexes A of the best sub-models to be reused in
the next rounds.
Model pruning

Model pruning is another technique widely used in
deep learning, which accelerates the training, by
reducing the number of model parameters, based

on training data. The reduction simplifies the
model, thereby decreasing the computation time

(Ttraining in equation 9), local training energy
consumption Ec, while keeping a good model
performance. [29] implemented an algorithm
named PruneFL where the pruning is performed
initially by a selected client on its local data. Then
the resulting smaller model is iteratively adapted

by the server in each round w.r.t. to the training
efficiency, by involving all clients updates, to
reconfigure it, through removing or adding back
some parameters. In order to allow the
reversibility of parameters adding and deleting,
the authors used a mask with zeros and ones for

removed and kept weights respectively. Similarly,
[69] proposed a structured model pruning
combined with weights quantization and selective
update, to accelerate the training and reduce the
computation cost on the devices. In particular, the

authors used an l1 − norm based pruning of the
model weights with a variable ratio from 0 to 90%.

Optimized averaging

While original Federated Learning works by
gathering the local model updates, and simply
averaging them, several papers proposed to use
advanced averaging methods, allowing a fast
training convergence. Accordingly, [23] proposed
Federated Momentum (FedMom), a technique

with biased gradients that uses the momentum
method to update the global model, according to
equations 13 and 14:

𝑣𝑡+1 = 𝑤𝑡 − η ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

(𝑤𝑡 − 𝑤𝑡+1
𝑘) (13)

𝑤𝑡+1 = 𝑣𝑡+1 + β(𝑣𝑡+1 − 𝑣𝑡) (14)

Where vt is the average of the previous round’s

updates and beta β (often equal to 0.9) is the
parameter used to compute the moving average of
the updates, through time. On the other hand, [39]
used a hierarchical architecture by introducing L
edge servers between the central server and client
nodes. Each edge server has a subset s of clients

from which it aggregates the updates before
forwarding them to the main server. According to
the authors, this method reduces training time and
decreases node energy consumption.

5.3.2 Data exchange optimization

The global model is built by gathering and
aggregating the updates from the participant
nodes at the central server. The frequency of
exchanging the computed updates and their data
sizes are optimized by several works in order to

achieve communication-efficient federated
learning, which drastically saves the battery life of
the participant nodes without compromising the
global model’s performance. In FedAvg, the
aggregation of the local models is achieved
according to the following equation 15:

𝑤𝑡+1 ← ∑
𝑛𝑘

𝑛
𝑤𝑘

𝑡+1

𝐾

𝑘

 (15)

Where wk are the learned weights at each node,
nk are the number of data points at each node, and

n the total number of data points for all K
participant clients.

Updates compression

A stated limitation of FedAvg [46] is that the
participant clients must upload the full computed
updates at each round of the training, which has an
impact on the power consumption of these devices.
The proposed optimization methods allow the
reduction of the data exchanged between the

nodes and the server while preserving the quality
of the global model.

In addition to ordinary data compression
algorithms used to encode the final updates with
lower amounts of bits, such as Huffman encoding
used by [7, 43], data size reduction is achieved by

several other methods, such as update
quantization, sparsification, and sketching. The goal
of all these techniques is to reduce the amount of
bits per round NTbit, sent through the wireless
interface, which subsequently decreases
significantly the energy usage for exchanging

model’s updates (equation 7).

The quantization of machine learning models is
based on using low float-point precision to
represent the model’s weights in order to reduce
the bit size ([2]). [68]proposed a method called
Federated Trained Ternary Quantization (FTTQ),

which reduces both upstream and downstream
traffic. It implements a layer-wise weight
quantization with an adjustable threshold during
the training, which has the additional benefit of
reducing the training tasks’ energy budget.

Similarly, [27, 43, 47, 54] used quantization for
data size reduction, in most cases mixed with other
techniques. Furthermore, [27, 44] proposed an
adaptive schema for updating quantization to
achieve communication-efficient training.

Additionally, the sparsification of the global and

local models is used to compress the exchanged
data by eliminating the gradient values of the
computed update that are below a given threshold
and replacing them with zeros. This operation
results in a sparse model update that can be
encoded with a small number of bits in order to

optimize the communication cost and energy
budget. Accordingly, [57] proposed Sparse Ternary
Compression (STC), a new compression
framework created especially for the requirements
of Federated Learning on resource-limited devices.
STC extends the existing compression methods (in

particular top-k sparsification [60]) to support
downstream compression; additionally, the
authors combined sparsification with quantization
and Golomb encoding to achieve better

optimization results. [20] developed an adaptive
gradient sparsification based on bidirectional top-
k gradient sparsification to reduce communication
costs in both directions between the server and the
nodes. The sparsification’s parameter k is
determined by the server as a trade-off between

communication and global model accuracy.
Moreover, [62] used a gradient sparsification with
gradient correction, in order to accumulate the
insignificant eliminated gradients and add them
lately to speed up the convergence of the model
training.

Other techniques used to this end are gradient
sketching [33, 55] and subsampling. The first one
is based on compressing the update with a data
structure named Count Sketch [61]. The second
one [33] involves clients, sending only a smaller
update derived from the computed one, by

randomly sampling their values. The server then
averages all received sub-sampled updates to get
an estimate of the global model parameters.
Additionally, [52] used dual-side low-rank
compression to reduce the size of the models in
both directions between the server and the nodes.

Finally, [36] used a layer-based parameter
selection in order to transfer only the important
parameters of each model’s layer.

Updates frequency

In the original Fed ML algorithm, clients send

updates at each iteration of model training, which
induces high communication costs and energy
consumption as the number of updates exchanged
with the server NT and NR increases. In order to
perform, under a given resource budget, [65]

proposed a control algorithm that determines the
best trade-off between local update and global
parameter aggregation. It learns the data
distribution, and system characteristics along the
distributed training, then determines dynamically
the frequency of global model aggregation, with

respect to the resource constraints. Alternatively,

[8] presented a different method, which is based
on the model’s layer-wise frequency. It means that
important layers’ parameters are more frequently
exchanged than less important ones. The reason is
that the first layers of a deep model tend to learn

general features for different data sets, while the
deeper layers learn more particular ones.
Consequently, each node separates its model into
shallow layers’ weights wg and deep layers’

weights ws, which are exchanged with the server
separately and asynchronously, under the control
of the server. It determines, for each client, the type
of weights to consider, and performs a temporally
weighted aggregation to give more importance to
the newest received models. [64] proposed

another method where the clients pull the global
model less frequently from the server (to reduce
down-link energy consumption) and compensate
the gap with local updates.

Logits exchange

Some works have chosen not to exchange the
updates with the server: only the outputs of the
trained local models, called logits, are sent to the
server which reduces drastically the
communication cost of the federation by many
orders of magnitude [58]; nevertheless, all clients

and the server must have shared public data
samples to compute and share their outputs.

In order to build a global model out of this
reduced data, the authors of [24, 26, 50, 58] used a
learning transfer technique called knowledge
distillation [59], where multiple teacher models

(local models) transfer their learning to a single
student model (the global model) [21]; In all cases,
the distillation task is performed by the server,
except for [24] where the sent logits are averaged
by the server and sent back to the clients to
perform the distillation themselves. In that case,

the communication cost is reduced in both
directions as the server does not send the whole
model to the nodes.

5.3.3 Clients resource management

Many approaches allow client devices to
participate in model training, with optimal energy.
Client resources generally refer to CPU time,
memory and wireless bandwidth, which are often
related to energy consumption. Two of the most
used approaches for client resource management

affect (1) client participation and (2) transmission

settings.

Clients selection

In the original FedML, participants were selected

randomly, each round, from the available nodes.
Subsequent analysis showed that this approach

yields poor model convergence and causes node
resources to be wasted ([49]). Accordingly, many
works have addressed this aspect, by adaptive and
optimal client selection, based on their available
resources and data in each round. [49] presented
FedCS, a Federated Learning algorithm with

optimized client selection, where the server starts
by selecting a random set of clients, then performs
a more informed selection using client resources
and the time taken to compute the updates.
Furthermore, [3] presented a Reinforcement
Learning scheme at the server, based on energy

units en, number of CPU cycles cn, and the amount
of data points used for training by each client, per-
round.

A server reward is then computed from these
values to help it find the best policies and actions

for efficient training with optimal resource usage.
In the same vein, [53] proposed a multicriteria
client selection model, named FedMCCS, that is
based on a discriminative selection of client
devices based on CPU, Energy, Memory and Time.
The server tracks these values along the training

by an auxiliary data exchange of
requests/responses with the nodes. A linear
regression model is trained on these attributes to
predict whether a client has enough resources to
participate in training tasks. Moreover, [67]
proposed the selection of clients based on their

participation history, which impacts the global
model’s performance. Additionally, [56] proposed
a data imbalance aware selection of the
participants in each round, such that all data
categories must be covered at least once. This is

achieved by requesting a bit-mask η containing C
bits corresponding to the available data categories
from each node. The server then sorts these bit
masks in a decreasing order of the number of sets
and minimizes the required number of clients to
get all categories covered by the averaged updates.

Hybrid scheme

Other papers have proposed a hybrid scheme,
based on the architectures presented in our second
research question, to optimize the resources of the
client devices. [12] developed a self balancing

system based on mediator edge servers, gathering
near uniform data distribution subsets of clients,
and aggregating the trained models, before
sending them to the central server to build a global

one; Similarly, [39] achieved energy consumption
reduction by balancing the exchange of parameters
with L edge servers with respect to the training
time and communication budget where each edge
server incorporates a small number of clients [66]
used a hierarchical aggregation of the model

updates to overcome the communication overload
between the nodes and the server. Moreover, [25]
and [74] proposed a cloud-edge-client scheme
wherein the clients offload a part or all the training
tasks to the edge servers, which get portions of the
clients’ data for the training. This approach has

some flaws w.r.t. communication overhead and
privacy concerns for clients’ data, but it may be
relevant in some application-specific scenarios.

Transmission settings

Wireless transmission has a high energy cost for

mobile and IoT devices in general. As we saw in
equation 7, it is related to the transmission power
P and the bit rate R of the network interface. Many
papers have tackled the optimization of wireless
transmission and bandwidth settings. [48]
presented a technique for transmission power and

rate optimization for energy-efficient
communication between the nodes and the central
server. They consider minimizing total energy
consumption as a joint optimization problem over
bit rate, transmission power, and CPU frequency
for local updates. On the other hand, [28] proposed

a fully decentralized communication between the
nodes, based on a Segmented Gossip protocol. In
this communication scheme, the workers segment
their updates into small fragments that are
separately shared with a subset of the participants,

who then relay them progressively to other
workers until all of them get everything. The peer
workers with faster bandwidth are chosen to pull
updates from. Moreover, [63] presented an
energy-aware worker scheduling algorithm: a
node monitors its energy consumption at each

round and, by comparing it with an adjustable

threshold, decides whether to participate in the
next training round or not. Subsequently, each
worker partitions its update into M segments,
which are transmitted separately on M sub-
channels with adjusted transmission power.

Adaptive local models

Recently, [73] and [11] proposed to adapt the local
models to the nodes’ capabilities and data, in
opposition to the state-of-the-art FedAvg

algorithm, where all clients get the same model
architecture. In both works, an adapted model is
derived for each client as a sub-net of the global
model, with a smaller number of layers and
parameters. Then, different averaging methods are
used to aggregate the updates. These new methods

are heterogeneity and data imbalance aware and
allow an adaptive saving of energy used for
training and communications.

From Figure 8, we see that the data exchange
optimization category has the highest number of
papers (32), followed by client resource

management with 25 papers, and finally
convergence acceleration (10 papers). Figure 9
shows in more detail the optimization techniques
used by each

Fig. 8 Papers count per optimization category

Fig. 9 Papers count per optimization technique

paper. It was not surprising that Updates
Compression and Clients selection represented
most of the papers because the original FedAvg
algorithm had a substantial limitation on these

aspects. Additionally, this will have the highest
impact on devices’ energy preservation, knowing
that wireless communications use the biggest part
of the operational energy. The other techniques

are shared between the rest of the papers, with a
small advantage for Local training acceleration.

5.4 RQ4 - How is the optimization
validated

This Research Question is about the
experimentation setup (models, data sets, and
testing platforms) used by different papers to
validate their proposed works.

The classification data in Table 4 shows that the
majority of papers considered only neural

networks (specifically convolutional ones) with
MNIST and CIFAR10 data sets for the experimental
part of their research. While this seems to restrict
validation, it can be explained by the ease of getting
these famous data sets and implementing NNs on
top of popular machine learning frameworks such

as PyTorch and Tensorflow. Some papers have
implemented additional validations on other ML
models such as Linear Regression, Logistic
Regression, and Support Vector Machines.
However, there is a substantial shortage of
validation results for non-neural network models,

which may exhibit lower complexity and therefore
lower resource consumption.

As for the experimentation platforms, different
papers considered different numbers of
participating nodes, from 2 up to 50000. The
majority of papers (52 out of 57) have used

emulated nodes on multi-GPU computers, while
only five papers (P7, P14, P17, P34, P58) have
performed experiments on real devices such as the
Raspberry Pi™and smartphones. Emulated devices

can give an insight into validation, but it is
important to have further results on real ones, in

real life scenarios, especially regarding wireless
communications, energy constraints, and
computing power. The democratization of rapid
prototyping platforms in the industry and
academia (e.g., Arduino™, Raspberry Pi™ &

ESP31™) is another motivation for that.

5.5 RQ5 - What are the reported
optimization results

Fig. 10 Communication cost improvements (per paper)

In this question, we list and compare the

optimization results obtained in the surveyed
papers. The numerical results are classified into

three categories: (1) Communication Cost, (2)
Convergence Time, (3) Energy Consumption. Each
paper quantified its optimization improvement

compared to the standard FedAvg [46] algorithm,

and the numerical results w.r.t. each category are
listed in the graphs. From Figure 10, we see a very
wide range of improvement values related to
global communication cost reduction, which goes
from 2x up to 320x. In Figure 12, we see
convergence time improvements going from 3%

up to 98%. As for the energy consumption, Figure

11 reports a range of improvement from 14% to
99%.

 Fig. 11 Energy consumption improvements (per paper)

Fig. 12 Convergence time improvements (per paper)

The convergence time and communication cost

optimization results are very encouraging, which is
consistent with the important interest of the
community in these two aspects (Figure 8).

Although they directly impact the energy
consumption, note, that during our readings,
relatively few papers (8 out of 67) have evaluated

Table 3 Papers list by optimization techniques

Category Optimization technique Papers

Data exchange optimization

Updates compression
Updates frequency

P2 P15 P17 P19 P23 P45 P24 P26 P27 P35 P37 P39 P40
P42 P64 P52
P1 P7 P8 P20 P56

 Logits exchange P4 P10 P46 P49

Client resource management
Clients selection
Hybrid scheme

P3 P5 P18 P25 P28 P31 P32 P38 P44 P47 P48
P16 P29 P34 P36 P51

 Transmission settings P67 P22 P30 P57

 Adaptive models P54 P55

Convergence acceleration
Local training acceleration
Model pruning

P6 P11 P12 P13 P33 P63
P14 P58

 Optimized model averaging P21

the optimization’s benefit directly on the energy
consumption, which is crucial to our study.

6 Discussion
In this section we discuss the Systematic Mapping
Study results, in the light of the previous analysis,
guided by the RQs in Section 5. For each Research
Issue (RI) presented, we provide (1) some
remarkable limitations related to Energy

constrained Fed ML, and (2) some improvement

directions and recommendations for the research
community.

6.1 RI1: Fully-decentralized scheme

In a centralized scheme based Fed ML, client nodes

exchange data during the training with a central

server, which is generally located in the cloud.
Consequently, the nodes have to use long-range
wireless communication to reach the server, which
implies high power consumption [15]. To

overcome this, we must take advantage of the
short-range communication between the nodes,
which is by far less power-intensive, to exchange
the updates using peer-to-peer communications.

The proposed approaches to implementing a
fully decentralized FedML induce an overload on

the resource-limited devices, caused by the
additional operations performed by the nodes to
compensate for the role of the central server. In
[28], the nodes have to also play the role of the
aggregating server, and [13] proposed a technique
where all nodes compute and exchange their

updates in a chain-like scheme (using some sort of
multi-hop

Table 4 Papers validation setups
Paper ML model Dataset Number of nodes

P1 RNN Blog posts dataset 1000
P2 CNN - RNN CIFAR10 - public post reddit 100 - 1024
P3 CNN CIFAR10 FashionMNIST 1000
P4 CNN MNIST 10
P5 RNN - 3
P6 CNN : AlexNet CIFAR10 - MNIST 2 – 100
P7 CNN CIFAR10 - MNIST 5 (RaspberryPi) – 500
P8 - - 50
P9 CNN - LSTM MNIST 30
P10 ANN MNIST 25
P11 CNN MNIST - CIFAR10 -
P12 CNN MNIST - CIFAR10 -
P13 CNN CIFAR10 20
P14 CNN: VGG11 - LeNet FeMNIST 5 - 10 (RaspberryPi)

P15 CNN: VGG11 - LSTM - Logistic
Regression

CIFAR10 - KWS dataset - FashionM-
NIST - MNIST 100

P16 CNN EMNIST - CIFAR10 - CINIC10 500
P17 CNN MNIST CIFAR10 10 - 40 (RaspberryPi)
P18 Linear model Random integer data 20
P19 CNN RNN MNIST HAR 20
P20 ANN MNIST 15
P21 Logistic Reg - CNN (ResNet18) CIFAR10 20
P22 CNN CIFAR10 - MNIST - SVHN 20
P23 CNN FEMNIST 50

P25 Regression model - CNN - SVM Boston Housing dataset - MNIST - KDD
Cup’99 dataset 5 - 100 - 500

P26 SNN MNIST-DVS dataset 2

P27 CNN (LeNet-5 – CifarNet –
DenseNet-121) MNIST - CIFAR10 - ImageNet 64

P28 CNN MNIST 50
P29 CNN MNIST - CIFAR10 50
P30 ANN MNIST 50
P31 CNN - 80
P32 CNN Fashion/MNIST - CIFAR10 100
P33 CNN MNIST 3
P35 Linear Regression - CNN MNIST - CIFAR10 50

P36 CNN MNIST 500 Clients/10 Edge server
P37 CNN - Linear Regression MINST - California Housing dataset 10

P39
CNN (AlexNet) - Transformer
(GPT2-small) CIFAR10 - PersonaChat 10000 to 50000

P40 CNN - Logistic Reg CIFAR10 - FashionMNIST -
ment140

Senti-
100

P41 CNN CiFar10 - MINST 10

P42 CNN MNIST CIFAR10 1 to 64

P43 CNN (ResNet) CiFar10 - CiFar100 16

P44 ANN MNIST - FEMNIST 100

P46 CNN MNIST - CIFAR10 10 to 20

P47 CNN FeMNIST - CiFar10 - CiFar100 100

P49 CNN - LSTM MNIST - IMDb NA

P50 CNN (ResNet) CIFAR10 10

P52 CNN MNIST - EMNIST 20

P53 ANN - CNN EMNIST 50 - 1000

P55 CNN (ResNet) - Transformer MNIST - CIFAR10 - WikiText-2 100

P56 CNN MNIST 30

P57 CNN MNIST - CIFAR10 and SVHN 20

P58 CNN MNIST - CIFAR10 3 (Core i5 PCs)

P59 CNN MNIST 10-18

P60 CNN CiFar10 - FEMNIST - IMDB 10

P61 CNN CiFar10 10

P63 CNN FEMNIST - Shakespare - Sentiment140 -
P64 CNN MNIST – Cifar10 12
P65 CNN CiFar10 - FashionMNIST 8
P66 CNN MNIST - FashionMNIST - CIFAR10 -
P67 CNN - LSTM FEMNIST - Shakespeare dataset -

communications). The limitation of the first
technique is the overhead tasks for the nodes to
play the server role, where the second one forces
the nodes to run all the time of the training: in both
cases, more energy and resources are required at

the node level

The hybrid scheme seems to overcome some of
these problems since it has a cloud-based central
server that is only used to manage the client
participation and selection, with very limited data
querying from the nodes, while keeping model

aggregation between the client devices. At the

same time, in order to advocate the
fullydecentralized scheme, there is a need for a
new theoretical framework that supports complete
decentralized model aggregation with convenient
energy and resource consumption.

6.2 RI2: Large models reduction

Some Fed ML models with large sizes and a big

number of trainable parameters (e.g., Deep Neural
Networks) require a computationally expensive

training [17] for energy constrained IoT devices.

If we consider Fed ML as a bootstrap

aggregation [22] of the global model over different

distributed nodes’ data sets, we could reduce the
local model’s size and complexity to make the

training tasks easier for the devices. We could still
build a high-performance global model by
aggregating (e.g., by majority voting) the
distributed models repeatedly.

Another possible solution lies in the Lottery
winning ticket hypothesis, elaborated by Frankle

and Carbin [16], which states that a dense neural
network contains a sparse sub network, that can be
trained to equivalent performance of the initial
network. By applying this technique in the context
of Federated Learning, the global model can be
drastically reduced in size and complexity, to

accelerate the training, and reduce the
computation load over the nodes. The target
sparse model could be obtained from the global
model by Adaptive Iterative Pruning (AIP) [19] or
Neural Architecture Search (NAS) [51], performed
adaptively by the server based on model

performance and available client resources.

6.3 RI3: Energy-aware data
compression

Many papers proposed different techniques to

reduce the amount of data to be sent or received
from the server [33, 54, 57]. The compression
techniques used are: sketching, sparsification,
quantization, and data encoding. They have helped
to drastically reduce the communication costs for
the client devices. However, they add overhead

tasks to the nodes, resulting in memory and CPU
usage to compress, encode, and decode the
transmitted data.

Many works [37, 37] have revealed the benefit
of error-controlled lossy compression schemes on
the compression rate and computation efficiency.

We recommend studying an equivalent technique
adapted to Federated Learning’s update
compression in order to further reduce the
communication energy cost.

6.4 RI4: Heterogeneity aware
optimization

Nodes heterogeneity is a crucial issue for

Federated Learning in real world applications [35].
As a result, this topic has drawn the attention of the
research community through several works [49,
70], which proposed different methods based on
discriminative participant nodes selection. They
only choose the devices that have both the

required resources and data for the training. While
this seems to solve the heterogeneity issue, it may
impact the model performance and convergence
time, by eliminating some devices with either one
of those.

In this case, it would be more profitable to

manage the devices in a way that takes advantage
of their data and computation capabilities
separately. Some nodes may participate with their
data, others with their computing capacity, and the
rest with both. To achieve this flexibility, some
devices may exchange raw data, extracted features,

or data labels. To preserve data privacy (one of the
Fed ML rationales) during these communications,

we may use a lightweight encryption technique
(e.g., based on elliptic curves) for node-node
communication or an homomorphic encryption
scheme [18] for untrustworthy node-to-node

relationships.

We could also suggest an approach to managing
heterogeneity that would be based on the
separation of client nodes into two groups. The
first one would contain powerful, resourceful

devices dedicated to training tasks, and the other

one would contain poor nodes for validation only
on their own data. The validation score may be
used as feedback to adaptively adjust model
aggregation parameters.

6.5 RI5: Results validation

The majority of studied papers have validated their
approach using emulated nodes on powerful
computers. Moreover, a substantial focus was

given to image recognition tasks using

Convolutional Neural Networks (CNNs) and
common data sets such as MNIST and CIFAR10.
The choice of image data for validation can be

explained by its sensitivity and significant size,
resulting in elevated communication costs thereby
justifying Fed ML usage. However, in IoT and also

on mobile devices, there are other types of

potential applications with different forms of data
and learning tasks (e.g., environmental quantities
such as temperature or humidity).

In order to validate the proposed techniques
and achieved results in a transparent and
replicable way, we underline the importance of

conducting an advanced testbed under real-world
conditions with real IoT or mobile devices and
diverse learning tasks. Moreover, we recommend
to build a standardized benchmark for Federated
Learning performance analysis, in order to allow
researchers from all over the world to validate

their works with real diverse data and real-life
scenarios.

6.6 RI6: Federated inference

The majority of the literature on collaborative

machine learning concentrated on the training
phase.Although the inference task is less expensive
in terms of energy and resources, we may need to
consider it in the FedML context with energy-
constrained IoT devices to collaboratively

compute predictions or classify events. This would

also be beneficial in the case of audio and video
processing, which involve large amounts of data
and models. Moreover, the importance of this topic
is apparent in the case where the correlation
between multiple nodes is required to classify or
predict a value.

In this way, we recommend working on a
collaborative inference framework for FedML that
allows the nodes to support each other to balance
the prediction or classification load instead of
relying on the server for this task. Again,

appropriate encryption mechanisms have to be
used to guarantee data privacy.

7 Threats to validity
Any survey or systematic mapping study

(including ours) is likely to have some common

limitations [10], related to literature coverage and
biases in processing the studied items. In order to

reduce these threats as much as possible, we tried
to follow a well-defined process [31]. It started
with a thorough search of relevant papers in
different databases, leveraging search term

synonyms to get as many valid results as possible.

We manually filtered the papers in multiple stages:
using the title and the keywords, then reading the
abstract, and finally studying the full text. We have
repeated this process at least two times: at the
beginning, and after a couple of months.

However, since we worked with the resources
available at the time, there may be issues related to
search string choice, the data collection process,
research question choice, and time span.

Regarding the search string choice, although
we used clear keywords, there may be some

missed opportunities due to bad keyword
indexation. We have done a manual snowballing
from the earlier validated papers, which helped us
spot some missed articles by the automatic search
process. However, this might not be always
enough.

Regarding the data collection process, each
article was reviewed (title, abstract, and full text)
by a single researcher, which might cause some
errors. This problem was partially solved by

discussions between us.

In relation to the choice of research questions,
despite our extensive discussions to be as
comprehensive and clear as possible, there could
be some aspects that were not covered.

Regarding the time span, we covered the period

starting from the seminal paper's publication in
2016 until July 2021. Some interesting papers may
have been published after.

Finally, we hope to have more resources in the

future to address the previous eventual
shortcomings as well as others that our fellow
researchers will kindly point out.

8 Conclusions and future works
Summary. In this paper, we presented the first
Systematic Mapping Study, to the best of our
knowledge, on Fed ML for Energy Constrained IoT

devices. Through a reproducible Research Process,
we selected 67 papers related to the topic since the
publication of the founding paper by [46] and tried
to compensate for eventual biases by snowballing

and manual searches.

The results analysis was structured around 5
Research Questions related to publications overall
tendency, Fed ML network architecture, and energy

optimization schemes (reported results and
validation). It appears that updates compression

and clients selection have had the highest focus in
the literature and yield interesting results in terms
of decreasing the communication cost (up to 320x),
convergence time (up to 98%) ; and energy
consumption (up to 99%).

From our analysis, we identified 6 Research

Issues with associated recommendations: fully
decentralized schemes, large model reduction,
energy-aware data compression, heterogeneity
exploitation, real-world results validation, and
federated inference. Recommendations include
methods, such as, global model size reduction and

efficient data compression schemes, to help reduce
the communication and computation costs for the
nodes. To efficiently address the system
heterogeneity, we pointed towards an adaptive
and flexible management of the resource-limited

devices and involved them in the training. Finally,
we underline the need for a standard benchmark,
dedicated to a transparent and rigorous validation
of the results, with real world conditions and real
test-beds.
Future works. We plan to conduct a Systematic

Literature Review (SLR) on the specific topic of
fully decentralized Fed ML, which appears to be

very interesting. Indeed, it eliminates the single
point of failure and presents difficult challenges
related to aggregating updates without any focal
point. An SLR is dedicated to going in depth

regarding a specific question, as opposed to an
SMS, which broadly structures the field. Therefore,
it is, in our opinion, the logical extension of our
work.

References
[1] M. Aledhari, R. Razzak, R. M. Parizi, and F.

Saeed. Federated learning: A survey on

enabling technologies, protocols, and
applications. IEEE Access, 8:140699–140725,
2020.

[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M.
Vojnovic. Qsgd: Communication-efficient sgd
via gradient quantization and encoding.
Advances in Neural Information Processing
Systems, 30:1709–1720, 2017.

[3] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and
L.-C. Wang. Efficient training management for
mobile crowd-machine learning: A deep
reinforcement learning approach. IEEE
Wireless Communications Letters, 8 (5):1345–
1348, 2019.

[4] N. Bouacida, J.Hou, H. Zang, and X. Liu.
Adaptive federated dropout: Improving
communication efficiency and generalization
for federated learning. arXiv preprint
arXiv:2011.04050, 2020.

[5] C. Briggs, Z. Fan, and P. Andr´as. A review of
privacy-preserving federated learning for the
internet-of-things. arXiv: Learning, 2020.

[6] C. Briggs, Z. Fan, and P. Andras. A review of
privacy-preserving federated learning for the

internet-of-things. arXiv e-prints, pages arXiv–
2004, 2020.

[7] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H.
Rangwala. Fedat: A communicationefficient
federated learning method with

asynchronous tiers under non-iid data. arXiv
preprint arXiv:2010.05958, 2020.

[8] Y. Chen, X. Sun, and Y. Jin.

Communication-efficient federated deep
learning with layerwise asynchronous model

update and temporally weighted aggregation.
IEEE transactions on neural networks and
learning systems, 31(10):4229–4238, 2019.

[9] V. Cisco. Cisco visual networking index:
Forecast and trends, 2017–2022. White Paper,

1:1, 2018.

[10] F. Q. Da Silva, M. Suassuna, A. C. C. Fran¸ca, A.
M. Grubb, T. B. Gouveia, C. V. Monteiro, and I.

E. dos Santos. Replication of empirical studies
in software engineering research: a
systematic mapping study. Empirical Software
Engineering, 19(3):501–557, 2014.

[11] E. Diao, J. Ding, and V. Tarokh. Heterofl:
Computation and communication efficient
federated learning for heterogeneous clients.
arXiv preprint arXiv:2010.01264, 2020.

[12] M. Duan, D. Liu, X. Chen, Y. Tan, J. Ren, L. Qiao,
and L. Liang. Astraea: Selfbalancing federated
learning for improving classification accuracy
of mobile deep learning applications. In 2019
IEEE 37th International Conference on
Computer Design (ICCD), pages 246–254.

IEEE, 2019.

[13] A. Elgabli, J. Park, A. S. Bedi, C. B. Issaid, M.
Bennis, and V. Aggarwal. Qgadmm: Quantized
group admm for communication efficient
decentralized machine learning. IEEE

Transactions on Communications, 2020.

[14] G. Fettweis and E. Zimmermann. Ict energy
consumption-trends and challenges. In
Proceedings of the 11th international
symposium on wireless personal multimedia

communications, volume 2, page 6. Citeseer,
2008.

[15] X. Foukas, K. Kontovasilis, and M. K. Marina.
Short-range cooperation of mobile devices for
energy-efficient vertical handovers. Wireless

Communications and Mobile Computing, 2018,
2018.

[16] J. Frankle and M. Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635,

2018.

[17] E. Garc´ıa-Mart´ın, C. F. Rodrigues, G. Riley,
and H. Grahn. Estimation of energy
consumption in machine learning. Journal of
Parallel and Distributed Computing, 134:75–

88, 2019.

[18] C. Gentry et al. A fully homomorphic encryption
scheme, volume 20. Stanford university
Stanford, 2009.

[19] Y. Gordienko, Y. Kochura, V. Taran, N.
Gordienko, A. Bugaiov, and S. Stirenko.
Adaptive iterative pruning for accelerating
deep neural networks. In 2019 XIth
International Scientific and Practical
Conference on Electronics and Information

Technologies (ELIT), pages 173–178. IEEE,
2019.

[20] P. Han, S. Wang, and K. K. Leung. Adaptive
gradient sparsification for efficient federated
learning: An online learning approach. arXiv

preprint arXiv:2001.04756, 2020.

[21] G. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[22] T. Hothorn and B. Lausen. Double-bagging:
combining classifiers by bootstrap
aggregation. Pattern Recognition,
36(6):1303–1309, 2003.

[23] Z. Huo, Q. Yang, B. Gu, L. C. Huang, et al. Faster

on-device training using new federated
momentum algorithm. arXiv preprint
arXiv:2002.02090, 2020.

[24] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and
K. Yamamoto. Distillation-based semi-

supervised federated learning for
communication-efficient collaborative
training with non-iid private data. arXiv
preprint arXiv:2008.06180, 2020.

[25] J. Jeon, S. Park, M. Choi, J. Kim, Y.-B. Kwon, and

S. Cho. Optimal user selection for high-
performance and stabilized energyefficient

federated learning platforms. Electronics,
9(9):1359, 2020.

[26] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and

S.-L. Kim. Communication-efficient ondevice
machine learning: Federated distillation and
augmentation under non-iid private data.
arXiv preprint arXiv:1811.11479, 2018.

[27] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y.
C. Eldar. Adaptive quantization of model
updates for communication-efficient
federated learning. In ICASSP 2021-2021 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 3110–
3114. IEEE, 2021.

[28] J. Jiang, L. Hu, C. Hu, J. Liu, and Z. Wang.
Bacombo—bandwidth-aware decentralized

federated learning. Electronics, 9(3):440,
2020.

[29] Y. Jiang, S. Wang, B. J. Ko, W.-H. Lee, and L.
Tassiulas. Model pruning enables efficient
federated learning on edge devices. arXiv

preprint arXiv:1909.12326, 2019.

[30] P. Kairouz, H. B. McMahan, B. Avent,

A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al.
Advances and open problems in federated

learning. arXiv preprint arXiv:1912.04977,
2019.

[31] B. Kitchenham and S. Charters. Guidelines for
performing systematic literature reviews in
software engineering. 2007.

[32] J. Koneˇcny`, H. B. McMahan, D. Ramage, and P.
Richt´arik. Federated optimization:
Distributed machine learning for on-device
intelligence. arXiv preprint arXiv:1610.02527,
2016.

[33] J. Koneˇcny`, H. B. McMahan, F. X. Yu, P.
Richt´arik, A. T. Suresh, and D. Bacon.
Federated learning: Strategies for improving
communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[34] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han.
To talk or to work: Flexible communication
compression for energy efficient federated
learning over heterogeneous mobile edge
devices. arXiv preprint arXiv:2012.11804,

2020.

[35] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith.
Federated learning: Challenges, methods, and

future directions. IEEE Signal Processing
Magazine, 37(3):50–60, 2020.

[36] Z. Lian, W. Wang, and C. Su. Cofel:

Communication-efficient and optimized
federated learning with local differential
privacy. In ICC 2021-IEEE International
Conference on Communications, pages 1–6.
IEEE, 2021.

[37] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen,
and F. Cappello. Error-controlled lossy
compression optimized for high compression
ratios of scientific datasets. In 2018 IEEE
International Conference on Big Data (Big
Data), pages 438–447. IEEE, 2018.

[38] W. Y. B. Lim, N. C. Luong, D. T. Hoang,
Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C.
Miao. Federated learning in mobile edge
networks: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 22(3):

2031–2063, 2020.

[39] L. Liu, J. Zhang, S. Song, and K. B.

Letaief. Client-edge-cloud hierarchical
federated learning. In ICC 2020-2020 IEEE
International Conference on Communications

(ICC), pages 1–6. IEEE, 2020.

[40] Y. Liu, L. Zhang, N. Ge, and G. hao Li. A
systematic literature review on federated
learning: From a model quality perspective.
ArXiv, abs/2012.01973, 2020.

[41] S. K. Lo, Q. Lu, C. Wang, H. Paik, and L. Zhu. A
systematic literature review on federated
machine learning: From a software
engineering perspective. arXiv preprint
arXiv:2007.11354, 2020.

[42] Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y.
Xue. Adaptive batch size for federated
learning in resource-constrained edge
computing. IEEE Transactions on Mobile
Computing, 2021.

[43] A. Malekijoo, M. J. Fadaeieslam, H. Malekijou,
M. Homayounfar, F. Alizadeh-Shabdiz, and R.
Rawassizadeh. Fedzip: A compression

framework for communication-efficient
federated learning. arXiv preprint
arXiv:2102.01593, 2021.

[44] Y. Mao, Z. Zhao, G. Yan, Y. Liu, T. Lan, L. Song,
and W. Ding. Communication efficient
federated learning with adaptive
quantization. arXiv preprint arXiv:2104.06023,
2021.

[45] B. Martinez, M. Monton, I. Vilajosana, and J. D.
Prades. The power of models: Modeling
power consumption for iot devices. IEEE
Sensors Journal, 15(10):5777–5789, 2015.

[46] H. B. McMahan, E. Moore, D. Ramage, and B. A.

y Arcas. Federated learning of deep networks
using model averaging. arXiv preprint
arXiv:1602.05629, 2016.

[47] J. Mills, J. Hu, and G. Min.
Communicationefficient federated learning

for wireless edge intelligence in iot. IEEE
Internet of Things Journal, 7(7):5986–5994,
2019.

[48] X. Mo and J. Xu. Energy-efficient federated
edge learning with joint communication and

computation design. arXiv preprint
arXiv:2003.00199, 2020.

[49] T. Nishio and R. Yonetani. Client selection for
federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019

IEEE International Conference on
Communications (ICC), pages 1–7. IEEE, 2019.

[50] J. Park, S. Wang, A. Elgabli, S. Oh, E. Jeong, H.
Cha, H. Kim, S.-L. Kim, and M. Bennis. Distilling
on-device intelligence at the network edge.

arXiv preprint arXiv:1908.05895, 2019.

[51] H. Pham, M. Guan, B. Zoph, Q. Le, and
J. Dean. Efficient neural architecture search
via parameters sharing. In International
Conference on Machine Learning, pages 4095–

4104. PMLR, 2018.

[52] Z. Qiao, X. Yu, J. Zhang, and K. B. Letaief.
Communication-efficient federated learning

with dual-side low-rank compression. arXiv
preprint arXiv:2104.12416, 2021.

[53] S. A. Rahman, H. Tout, A. Mourad, and

C. Talhi. Fedmccs: Multi criteria client selec-
tion model for optimal iot federated learning.

IEEE Internet of Things Journal, 2020.

[54] A. Reisizadeh, A. Mokhtari, H. Hassani, A.

Jadbabaie, and R. Pedarsani. Fedpaq: A
communication-efficient federated learning
method with periodic averaging and
quantization. In International Conference on
Artificial Intelligence and Statistics, pages
2021–2031. PMLR, 2020.

[55] D. Rothchild, A. Panda, E. Ullah, N. Ivkin,
I. Stoica, V. Braverman, J. Gonzalez, and R.
Arora. Fetchsgd: Communication-efficient

federated learning with sketching. In
International Conference on Machine Learning,

pages 8253–8265. PMLR, 2020.

[56] D. Sarkar, S. Rai, and A. Narang. Catfedavg:
Optimising communication-efficiency and
classification accuracy in federated learning.
arXiv preprint arXiv:2011.07229, 2020.

[57] F. Sattler, S. Wiedemann, K.-R. Mu¨ller, and W.
Samek. Robust and communicationefficient
federated learning from non-iid data. IEEE
transactions on neural networks and learning
systems, 31(9):3400–3413, 2019.

[58] F. Sattler, A. Marban, R. Rischke, and W.
Samek. Communication-efficient federated
distillation. arXiv preprint arXiv:2012.00632,
2020.

[59] H. Seo, J. Park, S. Oh, M. Bennis, and S.-L. Kim.

Federated knowledge distillation. arXiv
preprint arXiv:2011.02367, 2020.

[60] S. Shi, X. Chu, K. C. Cheung, and S. See.
Understanding top-k sparsification in
distributed deep learning. arXiv preprint

arXiv:1911.08772, 2019.

[61] W. Siblini, F. Meyer, and P. Kuntz. A count-
sketch to reduce memory consumption when
training a model with gradient descent. In
2019 International Joint Conference on Neural

Networks (IJCNN), pages 1–8. IEEE, 2019.

[62] H. Sun, S. Li, F. R. Yu, Q. Qi, J. Wang, and J. Liao.
Toward communication-efficient federated
learning in the internet of things with

edge computing. IEEE Internet of Things

Journal, 7(11):11053–11067, 2020.

[63] Y. Sun, S. Zhou, and D. Gu¨ndu¨z. Energyaware
analog aggregation for federated learning
with redundant data. In ICC 2020-2020 IEEE
International Conference on Communications

(ICC), pages 1–7. IEEE, 2020.

[64] H. Wang, Z. Qu, S. Guo, X. Gao, R. Li, and B. Ye.
Intermittent pulling with local compensation
for communication-efficient distributed
learning. IEEE Transactions on Emerging

Topics in Computing, 2020.

[65] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C.
Makaya, T. He, and K. Chan. Adaptive
federated learning in resource constrained
edge computing systems. IEEE Journal on

Selected Areas in Communications, 37(6):
1205–1221, 2019.

[66] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y.
Zhao. Resource-efficient federated learning
with hierarchical aggregation in edge

computing. In IEEE INFOCOM 2021-IEEE
Conference on Computer Communications,
pages 1–10. IEEE, 2021.

[67] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S.
A. Jarvis. Safa: a semi-asynchronous protocol

for fast federated learning with low overhead.
IEEE Transactions on Computers, 2020.

[68] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng.
Ternary compression for
communicationefficient federated learning.

IEEE Transactions on Neural Networks and

Learning Systems, 2020.

[69] W. Xu, W. Fang, Y. Ding, M. Zou, and

N. Xiong. Accelerating federated learning for
iot in big data analytics with pruning,
quantization and selective updating. IEEE

Access, 9:38457–38466, 2021.

[70] C. Yang, Q. Wang, M. Xu, S. Wang, K. Bian, and
X. Liu. Heterogeneity-aware federated
learning. arXiv preprint arXiv:2006.06983,
2020.

[71] X. Yao, C. Huang, and L. Sun. Two-stream
federated learning: Reduce the
communication costs. In 2018 IEEE Visual
Communications and Image Processing (VCIP),
pages 1–4. IEEE, 2018.

[72] X. Yao, T. Huang, C. Wu, R. Zhang, and L. Sun.
Towards faster and better federated learning:
A feature fusion approach. In 2019 IEEE
International Conference on Image Processing
(ICIP), pages 175–179. IEEE, 2019.

[73] R. Yu and P. Li. Toward resource-efficient
federated learning in mobile edge computing.
IEEE Network, 35(1):148–155, 2021.

[74] C. W. Zaw, S. R. Pandey, K. Kim, and

C. S. Hong. Energy-aware resource manage-
ment for federated learning in multi-access
edge computing systems. IEEE Access, 9:
34938–34950, 2021.

[75] Y. Zhang, B. Sun, Y. Xiao, R. Xiao, and Y. Wei.

Feature augmentation for imbalanced
classification with conditional mixture wgans.

Signal Processing: Image Communication, 75:
89–99, 2019.

[76] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V.

Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018.

A. Appendix
This appendix lists all papers included in our study,

tagged from P1 to P67 (chronological order).

Table 5 Papers list

Id Paper title Optimization technique

P1 Federated Optimization:Distributed Machine Learning for On-Device Intelligence Data exchange optimization

P2 Federated Learning: Strategies For Improving Communication Efficiency Data exchange optimization

P3
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

Clients resource Management

P4
Communication-Efficient On-Device Machine Learning: Federated Distillation and
Augmentation under Non-IID Private Data Data exchange optimization

P5
Efficient Training Management for Mobile Crowd-Machine Learning: A Deep
Reinforcement Learning Approach Clients resource Management

P6 Two-Stream Federated Learning: Reduce the Communication Costs Convergence acceleration

P7 Adaptive Federated Learning in Resource Constrained Edge Computing Systems Data exchange optimization

P8
Federated Learning over Wireless Networks: Optimization Model Design and Analysis

Data exchange optimization

P9 CMFL: Mitigating Communication Overhead for Federated Learning Data exchange optimization

P10 Distilling On-Device Intelligence at the Network Edge Data exchange optimization

P11
Federated Learning with Additional Mechanisms on-Clients to Reduce Communication Costs

Convergence acceleration

P12 Towards Faster and Better Federated Learning: A Feature Fusion Approach Convergence acceleration

P13
On-Device Federated Learning via Second-Order Optimization with Over-the-Air Computation

Convergence acceleration

P14 Model Pruning Enables Efficient Federated Learning on Edge Devices Convergence acceleration

P15 Robust and Communication-Efficient Federated Learning from Non-IID Data Data exchange optimization

P16
Astraea: Self-balancing Federated Learning for Improving Classification Accuracy of Mobile Deep
Learning Applications Clients resource Management

P17 Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT Data exchange optimization

P18 Performance Optimization of Federated Learning over Wireless Networks Clients resource Management

P19
Communication-Efficient Federated Deep Learning With Layerwise Asynchronous
Model Update and Temporally Weighted Aggregation Data exchange optimization

P20
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning

Data exchange optimization

P21 Faster On-Device Training Using New Federated Momentum Algorithm Convergence acceleration

P22 BACombo—Bandwidth-Aware Decentralized Federated Learning Clients resource Management

P23 Ternary Compression for Communication-Efficient Federated Learning Data exchange optimization

P24
Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning

Data exchange optimization

P25
SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead

Clients resource Management

P26
Federated Neuromorphic Learning of Spiking Neural Networks for Low-Power Edge
Intelligence Data exchange optimization

P27
Towards Communication-Efficient Federated Learning in the Internet of Things with Edge

Computing Data exchange optimization

P28 Energy-Efficient Radio Resource Allocation for Federated Edge Learning Clients resource Management

P29 Client-Edge-Cloud Hierarchical Federated Learning Clients resource Management

P30 Energy-Aware Analog Aggregation for Federated Learning with Redundant Data Clients resource Management

P31 Convergence Time Minimization of Federated Learning over Wireless Networks Clients resource Management

P32 Optimizing Federated Learning on Non-IID Data with Reinforcement Learning Clients resource Management

P33 Accelerating Federated Learning via Momentum Gradient Descent Convergence acceleration

P34
Optimal User Selection for High-Performance and Stabilized Energy-Efficient Federated Learning

Platforms Clients resource Management

P35
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and
Quantization Data exchange optimization

P36
Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing
Systems Clients resource Management

P37
Q-GADMM: Quantized Group Admm For Communication Efficient Decentralized Machine

Learning Data exchange optimization

P38
FedMCCS: Multi Criteria Client Selection Model for Optimal IoT Federated Learning

Clients resource Management

P39 FetchSGD: Communication-Efficient Federated Learning with Sketching Data exchange optimization

P40
FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under
Non-IID Data Data exchange optimization

P41 Lazily Aggregated Quantized Gradient Innovation for Communication-Efficient Federated

Learning
Data exchange optimization

P42
Toward Communication-Efficient Federated Learning in the Internet of Things With Edge
Computing Data exchange optimization

P43 Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge Clients resource Management

P44
CatFedAvg: Optimizing Communication-efficiency and Classification Accuracy in Federated

Learning Clients resource Management

P45
Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach

Data exchange optimization

P46 Communication-Efficient Federated Distillation Data exchange optimization

P47
A Trust and Energy-Aware Double Deep Reinforcement Learning Scheduling
Strategy for Federated Learning on IoT Devices Clients resource Management

P48
Device Scheduling for Energy-Efficient Federated Learning over Wireless Network
Based on TDMA Mode Clients resource Management

P49
 Distillation-Based Semi-Supervised Federated Learning for Communication-
Efficient Collaborative Training with Non-IID Private Data Data exchange optimization

P50 Time-Correlated Sparsification for Communication-Efficient Federated Learning Data exchange optimization

P51
Energy-Aware Resource Management for Federated Learning in Multi-Access Edge Computing

Systems Clients resource Management

P52
FEDZIP: A Compression Framework for Communication-Efficient Federated Learning

Data exchange optimization

P53 FedProf: Optimizing Federated Learning with Dynamic Data Profiling Clients resource Management
P54 Toward Resource-Efficient Federated Learning in Mobile Edge Computing Clients resource Management

P55
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous
Clients Clients resource Management

P56
Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and

Power Transfer Data exchange optimization

P57
Gradient Statistics Aware Power Control for Over-the-Air Federated Learning in Fading Channels

Clients resource Management

P58
Accelerating Federated Learning for IoT in BigData Analytics With Pruning,
Quantization andSelective Updating Convergence acceleration

P59 Communication Efficient Federated Learning with Adaptive Quantization Data exchange optimization

P60
Adaptive Batch Size for Federated Learning in Resource-Constrained Edge Computing

Convergence acceleration

P61
Communication-Efficient Federated Learning with Dual-Side Low-Rank Compression

Data exchange optimization

P62
Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing

Clients resource Management

P63
Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for
Federated Learning Convergence acceleration

P64
To Talk or to Work: Flexible Communication Compression for Energy Efficient
Federated Learning over Heterogeneous Mobile Edge Devices Data exchange optimization

P65
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning

Data exchange optimization

P66
COFEL: Communication-Efficient and Optimized Federated Learning with Local Differential
Privacy Data exchange optimization

P67
Energy-Efficient Federated Edge Learning with Joint Communication and Computation Design

Clients resource Management

	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Federated Learning
	3.1.1 Federated Learning pseudo-algorithm
	3.1.2 Federated Learning process
	3.1.3 Heterogeneity
	System heterogeneity
	Statistical heterogeneity

	3.2 Energy consumption formulation
	3.3 Fed ML optimization parameters

	4 Systematic Mapping Study Process
	4.1 Papers selection
	4.2 Research questions

	5 Questions answering
	5.1 RQ1 - What is the publications tendency
	5.2 RQ2 - What network architectures are proposed
	5.3 RQ3 - How is the energy optimization achieved
	5.3.1 convergence acceleration
	Local training acceleration
	Model pruning
	Optimized averaging

	5.3.2 Data exchange optimization
	Updates compression
	Updates frequency
	Logits exchange

	5.3.3 Clients resource management
	Clients selection
	Hybrid scheme
	Transmission settings
	Adaptive local models

	5.4 RQ4 - How is the optimization validated
	5.5 RQ5 - What are the reported optimization results

	6 Discussion
	6.1 RI1: Fully-decentralized scheme
	6.2 RI2: Large models reduction
	6.3 RI3: Energy-aware data compression
	6.4 RI4: Heterogeneity aware optimization
	6.5 RI5: Results validation
	6.6 RI6: Federated inference

	7 Threats to validity
	8 Conclusions and future works
	References
	A. Appendix

