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Abstract 
Federated Machine Learning (Fed ML) is a new distributed machine learning technique applied to 

collaboratively train a global model using clients’ local data without transmitting it. Nodes only send 

parameter updates (e.g., weight updates in the case of neural networks), which are fused together by the 

server to build the global model. By not divulging node data, Fed ML guarantees its confidentiality, a crucial 

aspect of network security, which enables it to be used in the context of data-sensitive Internet of Things 

(IoT) and mobile applications, such as smart geo-location and the smart grid. However, most IoT devices 

are particularly energy constrained, which raises the need to optimize the Fed ML process for efficient 

training tasks and optimized power consumption. In this paper, we conduct, to the best of our knowledge, 

the first Systematic Mapping Study (SMS) on FedML optimization techniques for energy-constrained IoT 

devices. From a total of more than 800 papers, we select 67 that satisfy our criteria and give a structured 

overview of the field using a set of carefully chosen research questions. Finally, we attempt to provide an 

analysis of the energy-constrained Fed ML state of the art and try to outline some potential 

recommendations for the research community. 
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1 Introduction 
Context. Machine learning (ML) has become an 
important and increasingly used paradigm in 

different applications. In the last decade, the IoT 
computer systems and their potential applications 
(e.g., smart cities, smart grids) have grown 
considerably, which would make them benefit 

from the capabilities of ML in such a large and 
complex context. Furthermore, widespread IoT 
adoption in industry and academia (e.g., via rapid 
prototyping platforms such as the Raspberry PI™ 
and Arduino™) raises expectations for data privacy 
preservation and efficient resource utilization in a 

wide range of critical applications. Therefore, in 

light of ML limitations for distributed systems and 
sensitive data, Federated Machine Learning (Fed 

ML) was proposed by McMahan et al. in 2016 [46] 
to address these constraints. The approach  

 
delegated model training tasks to client devices, 
which collaboratively built a global shared model 
that consolidated their respective local data 
learning while avoiding any private data from 
leaving its original device [32]. Since the seminal 

paper, Fed ML has become one of the ”hot topics” 
in ML. 
Problem. IoT and mobile devices have a major 
constraint related to energy sources, and as a 
result, the power consumption on these devices 
must be optimized for any assigned task. In 

particular, a machine learning algorithm is known 
to be a highly power-consuming multi-task 
process [17]. In a distributed ML setup, nodes must 



continually exchange data with a master node, 
which may drive up overhead costs for the system. 
FedML attempts to solve this issue by limiting the 
exchanged data to the local model’s weights [46], 

trained by nodes, instead of voluminous raw data 
exchange. At the same time, FedML still requires 
improvement to enable resolving further critical 
challenges related to IoT and mobile device 
characteristics, namely, the limited resources and 
energy constraints [54]. As a consequence, several 

Fed ML works addressing these aspects have 
increasingly been proposed by the scientific 
community in the last few years. In light of this 
evolving literature, there is a substantial need for a 
comprehensive study in order to provide a clear 
overview of energy optimization approaches and 

propose new research directions for the research 
community. 
 
 
Contribution. Several works have actually tackled 
the limitations of the original Fed ML proposal, 

entitled FedAvg, and proposed many optimization 
approaches, essentially regarding the 
communication load, data exchange, and other 
aspects, which can help to address directly or 
indirectly the limited energy constraint. The 
purpose of this paper is to conduct, to the best of 

our knowledge, the first Systematic Mapping Study 
(SMS) on Fed ML optimization for energy-
constrained devices. This SMS is tasked with i.) 
counting and categorizing relevant primary 
studies published in this topic based on five 
research questions, ii.) analyzing and discussing 

the results to provide a clear understanding of 

recent improvements for the research community, 
and iii.) assisting engineers in developing 
innovative Fed ML solutions for IoT and mobile 
devices. 

 
Contents. The remainder of this paper is 
structured as follows: First, we present related 
works and surveys in Section 2. Then we provide 
some theoretical foundations through the original 
FedAvg algorithm as well as the formulation of the 

energy optimization problem in Section 3. In 
Section 4, we present the method used to conduct 
this study, including the paper selection and 
filtering process, as well as the research questions 
(RQs). 
 

Table 1 Related works 

Year Title Type Focus 

2020 

A Systematic Literature Review 

on Federated Machine 

Learning: From A Software 

Engineering 
Perspective. [41] 

SLR 
Software 

engineering 

aspects 

2020 

A Systematic Literature Review on 

Federated 
Learning: From A Model 
Quality Perspective. [40] 

SLR Model 
quality 

2020 
Federated Learning in Mobile Edge 
Networks: A 
Comprehensive Survey.[38] 

Survey General 

2020 

Federated Learning: A Survey 

on Enabling Technologies, 
Protocols, and Applications. [1] Survey Applications 

2020 

A Review of  Privacy-preserving 

Federated Learning for   

the Internet-of-Things. [6] 
Survey Privacy 

  

In Section 5, we answer them and analyze the 
results obtained from the studied papers. We 
follow up with a discussion and some 

recommendations for research directions in 
Section 6. Section 7 exhibits some threats to the 
validity of our study. Finally, in Section 8, we 
conclude and outline some possible future works. 

2 Related works 
In this section, we present three surveys and 

two literature reviews that have been identified as 
being related to this work (see Table 1).[41] 
presented a systematic literature review on 
Federated Learning, from a software engineering 

perspective, where they covered the Federated 
Learning system in general, with a focus on the 
software development aspects and general 
challenges for real applications. [40], on the other 
hand, conducted a systematic literature review on 
Federated Learning from a model quality 

perspective, where they studied the methods for 
improving the quality of the Fed ML model and 
data. Additionally, the authors compared the 
model between federated and non-federated 
learning on the same data. Furthermore, [38] 
presented a survey on Federated Learning for 

mobile edge networks, in which they investigated 
the characteristics and limitations of good 
performance, resource allocations, communication 
costs, and data privacy concerns.Moreover, [1] 
presented a FedML survey on enabling 
technologies, protocols, and applications. They 



provided the most relevant protocols, platforms, 
and real-life use-cases of Federated Learning to 
enable data scientists to build better privacy-
preserving solutions for industries; they also 

explored the challenges and advantages of Fed ML 
for real-life applications. Finally, [5] presented a 
survey on federated learning from a privacy 
preservation angle. 

Although these surveys and SLRs are excellent, 
we think that our study tackles some aspects that 

were not directly addressed by them. They do not 
focus on the energy factor in the optimization of 
federated learning, except for [38], where it is not 
thoroughly tackled. We attempt to shed light on 
power consumption aspects in FedML for the IoT. 
As reported by Cisco in [9], IoT connections will 

represent more than half (14.6 billion) of all global 
connected devices and connections (28.5 billion) 
by 2022, showing their increasing pervasiveness in 
human lives [14]. Our personal use of smart 
phones and watches, which need frequent and 
sometimes bothersome recharging, is also a 

practical witness to this concern. Finally, there is 
also the particular case of wireless sensor 
networks that can be deployed in hostile 

environments with no possibility at all of energy 
replenishment. 

3 Background 
In this section, we talk about the global Federated 
Learning process, the FedAvg algorithm, the 
energy consumption problem, and some other 

background information. 

3.1 Federated Learning 

Federated Machine Learning is the process of 
developing accurate models on large-scale 
distributed systems made up of small devices by 

combining their computation power and local data 
[46].The goal is to solve a class of problems that 
cannot be solved by a single central computer, such 
as those involving users' personal data, real-time 
computing, and on-device artificial intelligence 
[32]. 

 

FedML is based on a distributed architecture that 

involves several nodes performing training tasks on 

their local data and exchanging their model’s 

parameters with a central server. The server then 

builds, from local models, a global aggregated model, 

which is equivalent to a trained model on all nodes' 

consolidated data. In the case of FedAvg, the global 

model Wg is built as a weighted average of the local 
models Wi (see equation 1). 

Wg  = ∑
ni

n
Wii    (1) 

The optimization of the global objective function f 
can be expressed as the optimization of the 

average of local objective functions fi for all 
participating nodes i = 1,...,ni, as given by the 
equation 2 [54]. 

minwf(w) = minw
1

n
∑ fi(w)i     (2) 

where: 

𝑓𝑖(𝑤) ≔
1

𝑘
∑ 𝑙(𝑤, ξ)ξ∈𝐷𝑖

 (3) 

fi is defined as an average of the local loss 
function l, for each node i, on its local sample 
points, Di = ξi1,··· ,ξim for i ∈ [n], where Di is the local 
data set of the node i, composed of m data points; ξi 

and w are the model parameters. 

𝑚𝑖𝑛𝑤𝑓(𝑤) ≔ 𝑚𝑖𝑛𝑤
1

𝑛𝑘
∑ 𝑙(𝑤, ξ)ξ∈𝐷        (4) 

Finally, to solve equation 4, a gradient descent 
method is used by each node to minimize the loss 
li over its local training data Di, and eventually the 

aggregated model Wg will minimize the global 

objective function. 

3.1.1 Federated Learning pseudo-
algorithm 

Algorithm 1 shows the idea behind Federated 
Averaging (FedAvg), proposed by [46] for Fed 

ML . 

 

 
 

 
 

 

 
 

 

 

 

 
 

 



end 

 /* Run on server*/ 

    initialize w0; 

for each round t = 1,2, ... do 

m ← 

max(C.K,1); 

     end 

 /* Run on client k*/ 

Function ClientUpdate(k,w): B ← (split Pk 

into batches of size B); for each local 
epoch i from 1 to E do 

for batch b ∈ B do 

w ← w − µ∇l(w,b); 
end 

return w to server; 

end 

 

Algorithm 1: FedAvg pseudo-algorithm 

The notations employed in the algorithm are 
explained underneath. 

• C Fraction of selected clients in each round 
• K Total number of clients 
• m Number of randomly selected clients for each round 
• St Set of clients for each round 
• wt Global model parameters at round t 
•   Received model parameters from client k at round t 
• nk Number of data points of client k 
• n Total number of data points of all clients 
• Pk Local data-set of client k 
• B Local data-set mini batch size to use for client training 
• B Set of data-set mini batches for local training 
• E Number of training passes performed by each client before 

sending the update to the server. 
• µ Learning rate 
• l Loss function 
• w Local model parameters 

As shown in the aforementioned algorithm, the 
server initiates the model’s parameters w0, then, 
for each round, it determines the number m of 

participant clients to choose for training as a 
fraction C of K total clients. The subset of devices St 

is determined randomly, and then each client 
device k receives the model’s parameters wt from 

the server to perform the training on its respective  

 

Fig. 1 Federated Learning global schema 

local data set Pk. This training process performs a 
split of the local data into small batches of size B, 
and a number of E local epoch runs to train the 

local model. Finally, all selected clients compute an 
update of the parameters w, then send it back to 
the server, which averages them to get the new 
global model parameters wt+1. This round is 
repeated as many times as determined by the 
server to reach the target performance. 

3.1.2 Federated Learning process 

Fed ML architecture is composed of the client nodes 

and the central server. The server receives the 

computed updates from client devices and performs 

an aggregation operation to build the global model. 

It is then improved continuously, by running 

additional iterations on the nodes, to train their local 

models, until obtaining the desirable results. 

 

Figure 1 globally shows the components 

involved in the Fed ML architecture, as well as the 

stages of the FedAvg algorithm execution. In each 
round of the training, the following operations are 
performed: 

S t ← randomsetofmclients); ( 
for eachclient k ∈ S t inparallel do 

w t +1 ← ClientUpdate ( k,w t ) ; 

w t +1 ← P K 
k =1 

n k 
n w k 

t +1 ; 
end 



1. Definition of model’s structure, random 
initiation of parameters and selection of 
participating devices: the central server must 
define the parameters E, C and B prior to start 

of the training, and it must select a subset of 
clients to participate in each round. 

2. Model Update on local data: each selected 
client computes an update of the global model, 
by running local training iterations as many 
times as defined by the central server. 

3. Transmission of Local Model updates to 
server: each participating device sends the 
computed update of the model. 

4. Aggregation of all received model updates: 
the server aggregates the received updates in 

such a way that builds a global model. 

5. Sharing the updated global model with the 

devices. 

3.1.3 Heterogeneity 

Very often, in real applications, the participant 
nodes in the FL have uneven resources and 
training data, we refer to this by system 
heterogeneity and statistical heterogeneity 
respectively [35]. 

System heterogeneity 

During the collaborative training of the global 
model, different nodes have different capacities 
(e.g., CPU, Battery, Memory, Bandwidth). As result, 
if we ignore this fact, the convergence will be very 
slow, and the weak clients will exhaust their 

resources before the end of the training, resulting 
in bad model performance. 

Statistical heterogeneity 

When FedAvg was first proposed by [46], it was 
based on the assumption of independent and 

identically-distributed (iid) data across nodes, 
which guarantees a theoretical solution for the 
equation 4, regarding balanced local data-sets Di, 

by using the gradient descent optimization 
method. However, this assumption cannot be held 
for the majority of distributed data on IoT and 

users’ devices; this is a big limiting factor facing the 

deployment of Fed ML in real-world scenarios [76]. 

In fact, the majority of works published on this 
topic display good results for iid data and poor 
ones for non-iid setups, which is shown by a bad 

impact on the global model’s performance and the 
required time and energy for the training [76]. This 
substantial problem has driven several teams to 
develop techniques to adapt the original federated 

learning algorithm to both types of heterogeneity 
[11, 34, 70]. 

3.2 Energy consumption formulation 

The main goal of FedML optimization for energy-

constrained devices is to minimize the functional 
energy consumption of the nodes while building a 
good global model. In general, a wireless device's 
total energy consumption ET can be divided into 
three major parts: Enet, Ec, and Esys (Equation 5). 

𝐸𝑇 = 𝐸𝑛𝑒𝑡 + 𝐸𝑐 + 𝐸𝑠𝑦𝑠 (5) 

Enet is the energy consumed by the device for 
communications with other devices or the server 
for update exchanges. Ec is the energy consumed 
by the device’s local processing unit and memory 
to accomplish the training computations. Esys is the 

energy consumed by the general system 
operations of the device, which are not related to 
its participation in the Federated training. 

Note that Esys is generally small and negligible 
compared to the total amount used in IoT [45]. In 
addition, it is not specific to the problems 

considered in this study, so we omit it from this 
formulation. 

Moreover, communications generally consume 
more energy than processing, for an equivalent 
amount of operations (this justifies multiple 
aggregation approaches before data transmission). 

Equation 6 gives the amount of energy consumed 
by network communication, expressed by a set of 
parameters related to our context. 

𝐸𝑛𝑒𝑡  ≃  ∑ 𝑁𝑇𝑏𝑖𝑡
𝑖 𝑃𝑇

𝑅𝑇

𝑁𝑇
𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡

𝑖 𝑃𝑅

𝑅𝑅

𝑁𝑅
𝑖=1 + 𝑐 (6) 

 

NT and NR are, respectively, the number of 
transmitted and received updates by the device. PT 

and PR are the transceiver power at transmission 
and reception, respectively. RT and RR are bit rates 

for transmission and reception, respectively.  

and  are the number of bits transmitted and 
received, respectively, in a given update i, and c is 
amount of energy consumed by irrelevant factors 
such as channel noise, transmission errors, etc. 

If PR = PT = P and RR = RT = R, the equation 6 can 
be simplified into equation 7: 



𝐸𝑛𝑒𝑡  ≃  (∑ 𝑁𝑇𝑏𝑖𝑡
𝑖𝑁𝑇

𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡
𝑖𝑁𝑅

𝑖=1 )
𝑃

𝑅
+ 𝑐1  (7) 

 

Moreover, the energy consumption by local 

computations on each client device is 
approximated by the equation 8. 

𝐸𝑐  ≃  ∑ 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑖𝑁𝑟𝑜𝑢𝑛𝑑

𝑖=1 × 𝑃𝑐
𝑖
 (8) 

Where  is the consumed power per training time 
unit at round i, Ttraining is the duration of 

computation operation, and Nround is the number of 
operations to run by a given device. 

If Ttraining and Pc are equivalent for all rounds on 
a given device, the equation 8 can be simplified as : 

𝐸𝑐  ≃  𝑁𝑟𝑜𝑢𝑛𝑑 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑐  (9) 

In summary, the approximated total energy 
consumed by each client device (Equation 5) can 
be expressed by equation 10. 

𝐸𝑇 ≃ 𝑁𝑟𝑜𝑢𝑛𝑑 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑐 + (∑ 𝑁𝑇𝑏𝑖𝑡
𝑖𝑁𝑇

𝑖=1 + ∑ 𝑁𝑅𝑏𝑖𝑡
𝑖𝑁𝑅

𝑖=1 )
𝑃

𝑅
    (10) 

 

From the above energy formulation, we can 

identify a list of parameters which impact the 
energy consumption of the participant client 
devices in Federated Learning: the number of 
exchanged updates NT and NR, the number of bits in 
each exchanged update NTbit

i and NRbit
i , the 

transmission power P, the transmission bit rates R, 

the duration of local training Ttraining, and the 
number of local training rounds Nround. 

3.3 Fed ML optimization parameters 

Based on the established equations in the previous 

section, together with the studied selected papers, 
we identify a number of energy optimization 
aspects. 
Accordingly, in order to minimize the total energy 
in equation 9, the optimization of the local training 
tasks to accelerate the model convergence should 

result in decreasing the number of federation 
rounds Nround. Moreover, the training time duration 
Ttraining will be improved if we reduce the trained 
model’s complexity, which impacts energy 
efficiency. Aggregating updates with the least cost, 
by reducing the size of exchanged data with the 

central server (i.e., decreasing NTbit and NRbit in 

equation 7), will help save battery life. 
Furthermore, the frequency of model update 
exchanges affects the total number of updates NT 

and NR (equation 7), thus optimizing even more the 

energy consumed in communications. More 
optimization can also be achieved by making smart 
use of the heterogeneous nodes’ computing 
resources to participate in the training, in addition 

to optimizing the client selection to balance the 
load over the participant nodes and involve the 
best ones for accelerated convergence. Finally, 
decreasing the transmission power P and 
maximizing the bit rates R (equation 7) also helps 
to reduce the total spent energy. 

This analysis will help us later to classify the 
different approaches and techniques proposed in 
the literature, as we will see in subsection 5.3. 

 

Fig. 2 Our Search Process 

4 Systematic Mapping Study 
Process 

This section describes the process followed 
throughout this Systematic Mapping Study. 



Additional material is available on the online 
repository created for it 1. 

Figure 2 illustrates the steps taken. After an 
automatic search based on the defined keywords 

and search string in the three common databases, 
the first step consists of filtering relevant papers 
based on their title. Then, we refined the selection 
based on the abstract. We refined our search even 
further by reading the full text.Finally, we added a 
manual search step afterwards to spot any articles 

that were not found the automatic way. Details 
about each step of the workflow will be presented 
in the upcoming paragraphs. 

4.1 Papers selection 

In order to obtain all relevant papers for our study, 
we have queried three main databases (Google 
Scholar, IEEE Explore, and ScienceDirect) by using 
the search string in Listing 1, built mainly using the 
following keywords: federated machine learning, 
edge computing, on-device intelligence, energy, 

and optimization. 

Listing 1 search query 

”(” Federated Machine Learning” OR ” 

Federated Learning”) AND (”edge computing” OR 
”on−device intelligence ”) AND ( energy OR power) 

AND ( optimization OR optimal OR efficient OR 
efficiency )” 

Filtering papers. We filtered the initial search 
results to keep only papers, that meet all the 
following inclusion and exclusion criteria. 

i. Inclusion criteria: 

• Papers from 2016 to July 2021 

• Papers in the English language 

• Papers which propose an optimization of 
Federated Learning w.r.t. energy consumption, 
using techniques including communication cost, 
or training time reduction 

• Papers which target the IoT or mobile devices in 

general  

ii. Exclusion criteria: 

 
1 https://gitlab.com/rachid-el-mokadem/fedmlsysrev 

• Works on distributed machine learning with no 
explicit application to federated learning on 
resource-limited devices 

• Similar works of the same authors 

Manual searching. In order to cover the literature 
as much as possible, another step was added to 
look for potential papers that might have been 
missed earlier: backward snowballing by looking 

Table 2 Research questions 

 RQ ID Question 
RQ1 What is the publications tendency? 

RQ2 What network architectures are proposed? 

RQ3 How is the energy optimization achieved? 

RQ4 How is the optimization validated? 

RQ5 What are the reported optimization results ? 

 

at cited references in the selected papers. 

Thereby, additional papers were added for a total 

of 67 papers. In the remainder of this study, we 

will refer to selected papers by identifiers, 

attributed according to the chronological order of 

the publication: P1, P2, up to P67. The list of all 

papers, along with their classification, is depicted 

in Table 5 in Appendix A. 

4.2 Research questions 

In order to analyze the literature and compare the 
proposed techniques in a systematic way, we 

define a set of research questions that will guide 
our analysis (Table 2). RQ1 indicates the timeline 
and sources of the papers; RQ2 presents the 

network topology considered by each paper; RQ3 
examines the FedML energy optimization aspects 

that are addressed by each paper; RQ4 presents 

the experimentation setups used to validate the 
approaches; and RQ5 measures the optimization 
improvements of the experiments. 

 

 

 



Fig. 3 Fed ML papers publication trend over time  

5 Questions answering 
In this section, we present the results analysis from 
the study of the selected papers, arranged as 
answers to the research questions defined in 
subsection 4.2. 

5.1 RQ1 - What is the publications 
tendency 

Answering this research question will account for 
providing the number of publications evolution, 

their distribution over the publishing venues, and 
the nature of papers, as well as their influence on 
the field of FedML. 

The graph in Figure 3 shows the papers 
publication trend over time. The growing number 

of papers over the last 3 years is clear, with 33 
papers in only 2020. Given that the first paper from 
[32] was published in 2016, we can clearly see the 

 

Fig. 4 Paper types distribution 

big interest this subject is receiving from several 
research teams around the world. 

 The majority of papers, as shown in 

Figure 4, were published in journals (≈36%) and 
conferences(≈34%). This shows the growing 
maturity of this subject and the engaged efforts by 
the scientific community. We also have 20 out of 67 
(≈29%) papers published as pre-prints on the 

ArXiv database, including 10 in 2020. This could be 
justified by the fact that the subject is evolving 
quickly, with fast feedbacks. We have also included 
the non-peer reviewed papers of Konecny´, Jakub 

et al. [32, 33], since they are considered the most 
impactful in the subject, with 747 and 1733 
citations, respectively. The same team is behind 
the seminal work on the FedML proposal [46]. 

Furthermore, we consider the number of 
citations for each paper, shown in Figure 5, to 

measure their influence on the subject. It is obvious 
that older papers tend to get more citations than 
new ones. However, it does provide an 
approximate idea of the paper’s scientific interest 
for the community. From the graph, we notice 
some spikes on a couple papers. For older papers 

such as P1 through P8, this is somehow reasonable. 
However, in the case of P15 ([57]) with 345 
citations, P19 ([8]) with 110 citations and P35 
([54]) with 145 citations, this definitely shows the 
high impact of those papers. More details on the 
techniques used by them in subsection 5.3 

5.2 RQ2 - What network 
architectures are proposed 

Fig. 5 Number of citations per paper 

In this question we consider the proposed network 
architectures of the studied papers. This is 
important to us, because the network topology has 

an impact on the communication cost, and 
therefore the energy consumption. 

The architectures are as follows. 

• Centralized: based on a central server to ensure 
the communication and model’s parameters 
exchange, between the participating devices. 

This option is energy consuming, due to long 

range communication between the devices and 
the server, which requires higher transmission 
power P (equation 7). It also suffers from a single 
point of failure. 



• Decentralized: based on node to node 
communication without the need for a central 
server. In this setup, the devices can save lot of 
energy, by opting for short range 

communication between the nodes only [15]. 

• Hybrid: this architecture is based on at least 
three layers of devices, where intermediate ones 
are placed between the central server and the 
end devices. 

Fig. 6 Number of papers by Network topology  

The hybrid architecture is based on adding edge 
servers between the main server and the end 
devices. These intermediate devices can play 
several roles, such as managing direct clients under 
their control, which allows the offloading of the 
central server and lowers the waiting time for 
aggregating multiple received updates. In some 
cases, this edge server can also be used to offload 
the end devices from local update computing, by 
periodically querying the training data from the 
selected clients, doing the updates with a much 
higher computing capacity and communicating 
with the server, on behalf of the end nodes. As a 
result, this architecture can allow a high energy 
optimization on the devices, although posing some 
threats to data privacy, especially when these edge 
servers are not trustworthy, and the data is very 
sensitive.  

Figure 6 shows that the majority of papers (59 
out of 67) are based on a centralized setup, while 2 
papers have a fully decentralized one, and 6 
propose a hybrid architecture. The predominance 
of the centralized scheme can be explained by the 

influence of the architecture in the original paper 

[46], which comes from Google. Moreover, the fully 
decentralized scheme faces some algorithmic and 
practical challenges to aggregate the models 
without a central device [30]. 

5.3 RQ3 - How is the energy 
optimization achieved 

Fig. 7 Federated Learning optimization techniques (recap) 

 

In this question, we analyze the techniques used by 

the papers, to optimize the Fed ML. Our study 

focuses on the power consumption reduction, so as 
seen in subsection 3.2, all studied optimization 
aspects are linked with the energy through 
equation 10. We classified these techniques into 
the following categories: (1) convergence 

acceleration (2) data exchange optimization and 
(3) client resource management. Figure 7 recaps 
the different techniques. Table 3 presents the 
optimization aspects addressed by each studied 
paper. 

 

5.3.1 convergence acceleration 

In federated machine learning, the training tasks 
are performed by the client nodes to build a global 

 model under the orchestration of the central 
server, during as many rounds as needed to reach 
a good performance. In order to save the battery 
life of the client devices, the total time to reach  



global model convergence can be reduced with 
several approaches. 

Local training acceleration 

Many works have used different optimizations to 
accelerate the local training, such as adaptive 
learning rate [42], and Adam optimization method 
[47]. 

Equation 11 is used in the original version of 
Federated Learning. w are the model weights, b is 

the model bias, ∇ is the gradient of the loss function 
l and µ is the learning rate. 

In this version, the server defines a learning 
rate parameter at the beginning, used to compute 
the gradient descent steps in local training. 
Opposed to that are the aforementioned methods, 

which determine the best steps to take in order to 
quickly achieve the convergence of the global 
model. 

𝑤 ← 𝑤 − 𝜇∇𝑙(𝑤, 𝑏)   (11) 

  
The benefit of these techniques is to decrease the 

number of rounds Nround (equation 9) required for 
the model convergence, and thus reduce the 
energy consumption for the participant devices. 

Accordingly, [47] proposed CE-FedAvg, which 
improved how the nodes compute their local 

updates by using the Adam method, known for its 
improved learning rate, instead of SGD (used in the 
original FedAvg algorithm). The weights’ update 
method of the proposed algorithm, executed by 
each client, is shown in equation 12. 

 wk,mk,vk ← AdamSGD(wk,mk,vk) (12) 

Where wk are the model weights, mk is Adam’s 

first moment, and vk is Adam’s second moment. 
These parameters are used to compute the Adam 
steps by averaging them over all received updates 
or gradients and sending them back to the clients 

in the next round of the training. 

Feature augmentation is a technique used in 
machine learning to improve training performance 
in an unbalanced class distribution ([75]). 
Similarly, in the context of Federated Learning, 
FedFusion is an algorithm presented by [72] to 

accelerate the global model’s training by using a 

technique named Feature Fusion, which is based 
on using a combination of the global model’s 
feature space with the local model’s feature space 
to train the local model. The global model is used 
as a feature extractor, and then multiple types of 

feature fusions are employed to efficiently 
aggregate all of them. Additionally, [71] presented 
a two-Stream model learning with Maximum Mean 
Discrepancy (MMD), where the nodes training is 

performed on two models, in parallel, both 
initialized with the global model parameters, but 
one of them (global model) is kept unchanged 
during the training. An MMD loss is computed 
between the output of the two models, which is 
used to optimize the local one. This technique is 

often employed with learning transfer and 
knowledge distillation in standard machine 
learning, and its adoption for Federated Learning 
helps to accelerate the training and reduce the 
communication cost. In essence, it consists in 
constraining the local model training by the global 

model parameters, to avoid that local models over-
fit their local data, thereby building a good global 
model in lesser training rounds Nround. [4] used an 
adaptive dropout schema to decrease the 
convergence time by reducing the local model’s 
complexity and number of trainable parameters. In 

practice, each round a random sub-net wc of the 
global model is sent to each participant client c, 
then an activation score map M is used to track the 
indexes A of the best sub-models to be reused in 
the next rounds. 
Model pruning 

Model pruning is another technique widely used in 
deep learning, which accelerates the training, by 
reducing the number of model parameters, based 

on training data. The reduction simplifies the 
model, thereby decreasing the computation time 

(Ttraining in equation 9), local training energy 
consumption Ec, while keeping a good model 
performance. [29] implemented an algorithm 
named PruneFL where the pruning is performed 
initially by a selected client on its local data. Then 
the resulting smaller model is iteratively adapted 

by the server in each round w.r.t. to the training 
efficiency, by involving all clients updates, to 
reconfigure it, through removing or adding back 
some parameters. In order to allow the 
reversibility of parameters adding and deleting, 
the authors used a mask with zeros and ones for 

removed and kept weights respectively. Similarly, 
[69] proposed a structured model pruning 
combined with weights quantization and selective 
update, to accelerate the training and reduce the 
computation cost on the devices. In particular, the 



authors used an l1 − norm based pruning of the 
model weights with a variable ratio from 0 to 90%. 

Optimized averaging 

While original Federated Learning works by 
gathering the local model updates, and simply 
averaging them, several papers proposed to use 
advanced averaging methods, allowing a fast 
training convergence. Accordingly, [23] proposed 
Federated Momentum (FedMom), a technique 

with biased gradients that uses the momentum 
method to update the global model, according to  
equations 13 and 14: 

𝑣𝑡+1 = 𝑤𝑡 − η ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

(𝑤𝑡 − 𝑤𝑡+1
𝑘 )    (13) 

   

𝑤𝑡+1 = 𝑣𝑡+1 + β(𝑣𝑡+1 − 𝑣𝑡)   (14) 

  

Where vt is the average of the previous round’s 

updates and beta β (often equal to 0.9) is the 
parameter used to compute the moving average of 
the updates, through time. On the other hand, [39] 
used a hierarchical architecture by introducing L 
edge servers between the central server and client 
nodes. Each edge server has a subset s of clients 

from which it aggregates the updates before 
forwarding them to the main server. According to 
the authors, this method reduces training time and 
decreases node energy consumption. 

5.3.2 Data exchange optimization 

The global model is built by gathering and 
aggregating the updates from the participant 
nodes at the central server. The frequency of 
exchanging the computed updates and their data 
sizes are optimized by several works in order to 

achieve communication-efficient federated 
learning, which drastically saves the battery life of 
the participant nodes without compromising the 
global model’s performance. In FedAvg, the 
aggregation of the local models is achieved 
according to the following equation 15: 

𝑤𝑡+1 ← ∑
𝑛𝑘

𝑛
𝑤𝑘

𝑡+1

𝐾

𝑘

 (15) 

Where wk are the learned weights at each node, 
nk are the number of data points at each node, and 

n the total number of data points for all K 
participant clients. 

Updates compression 

A stated limitation of FedAvg [46] is that the 
participant clients must upload the full computed 
updates at each round of the training, which has an 
impact on the power consumption of these devices. 
The proposed optimization methods allow the 
reduction of the data exchanged between the 

nodes and the server while preserving the quality 
of the global model. 

In addition to ordinary data compression 
algorithms used to encode the final updates with 
lower amounts of bits, such as Huffman encoding 
used by [7, 43], data size reduction is achieved by 

several other methods, such as update 
quantization, sparsification, and sketching. The goal 
of all these techniques is to reduce the amount of 
bits per round NTbit, sent through the wireless 
interface, which subsequently decreases 
significantly the energy usage for exchanging 

model’s updates (equation 7). 

The quantization of machine learning models is 
based on using low float-point precision to 
represent the model’s weights in order to reduce 
the bit size ([2]). [68]proposed a method called 
Federated Trained Ternary Quantization (FTTQ), 

which reduces both upstream and downstream 
traffic. It implements a layer-wise weight 
quantization with an adjustable threshold during 
the training, which has the additional benefit of 
reducing the training tasks’ energy budget. 

Similarly, [27, 43, 47, 54] used quantization for 
data size reduction, in most cases mixed with other 
techniques. Furthermore, [27, 44] proposed an 
adaptive schema for updating quantization to 
achieve communication-efficient training. 

Additionally, the sparsification of the global and 

local models is used to compress the exchanged 
data by eliminating the gradient values of the 
computed update that are below a given threshold 
and replacing them with zeros. This operation 
results in a sparse model update that can be 
encoded with a small number of bits in order to 

optimize the communication cost and energy 
budget. Accordingly, [57] proposed Sparse Ternary 
Compression (STC), a new compression 
framework created especially for the requirements 
of Federated Learning on resource-limited devices. 
STC extends the existing compression methods (in 



particular top-k sparsification [60]) to support 
downstream compression; additionally, the 
authors combined sparsification with quantization 
and Golomb encoding to achieve better 

optimization results. [20] developed an adaptive 
gradient sparsification based on bidirectional top-
k gradient sparsification to reduce communication 
costs in both directions between the server and the 
nodes. The sparsification’s parameter k is 
determined by the server as a trade-off between 

communication and global model accuracy. 
Moreover, [62] used a gradient sparsification with 
gradient correction, in order to accumulate the 
insignificant eliminated gradients and add them 
lately to speed up the convergence of the model 
training. 

Other techniques used to this end are gradient 
sketching  [33, 55] and subsampling. The first one 
is based on compressing the update with a data 
structure named Count Sketch [61]. The second 
one [33] involves clients, sending only a smaller 
update derived from the computed one, by 

randomly sampling their values. The server then 
averages all received sub-sampled updates to get 
an estimate of the global model parameters. 
Additionally, [52] used dual-side low-rank 
compression to reduce the size of the models in 
both directions between the server and the nodes. 

Finally, [36] used a layer-based parameter 
selection in order to transfer only the important 
parameters of each model’s layer. 

Updates frequency 

In the original Fed ML algorithm, clients send 

updates at each iteration of model training, which 
induces high communication costs and energy 
consumption as the number of updates exchanged 
with the server NT and NR increases. In order to 
perform, under a given resource budget, [65] 

proposed a control algorithm that determines the 
best trade-off between local update and global 
parameter aggregation. It learns the data 
distribution, and system characteristics along the 
distributed training, then determines dynamically 
the frequency of global model aggregation, with 

respect to the resource constraints. Alternatively, 

[8] presented a different method, which is based 
on the model’s layer-wise frequency. It means that 
important layers’ parameters are more frequently 
exchanged than less important ones. The reason is 
that the first layers of a deep model tend to learn 

general features for different data sets, while the 
deeper layers learn more particular ones. 
Consequently, each node separates its model into 
shallow layers’ weights wg and deep layers’ 

weights ws, which are exchanged with the server 
separately and asynchronously, under the control 
of the server. It determines, for each client, the type 
of weights to consider, and performs a temporally 
weighted aggregation to give more importance to 
the newest received models. [64] proposed 

another method where the clients pull the global 
model less frequently from the server (to reduce 
down-link energy consumption) and compensate 
the gap with local updates. 

Logits exchange 

Some works have chosen not to exchange the 
updates with the server: only the outputs of the 
trained local models, called logits, are sent to the 
server which reduces drastically the 
communication cost of the federation by many 
orders of magnitude [58]; nevertheless, all clients 

and the server must have shared public data 
samples to compute and share their outputs. 

In order to build a global model out of this 
reduced data, the authors of [24, 26, 50, 58] used a 
learning transfer technique called knowledge 
distillation [59], where multiple teacher models 

(local models) transfer their learning to a single 
student model (the global model) [21]; In all cases, 
the distillation task is performed by the server, 
except for [24] where the sent logits are averaged 
by the server and sent back to the clients to 
perform the distillation themselves. In that case, 

the communication cost is reduced in both 
directions as the server does not send the whole 
model to the nodes. 

5.3.3 Clients resource management 

Many approaches allow client devices to 
participate in model training, with optimal energy. 
Client resources generally refer to CPU time, 
memory and wireless bandwidth, which are often 
related to energy consumption. Two of the most 
used approaches for client resource management 

affect (1) client participation and (2) transmission 

settings. 



Clients selection 

In the original FedML, participants were selected 

randomly, each round, from the available nodes. 
Subsequent analysis showed that this approach 

yields poor model convergence and causes node 
resources to be wasted ([49]). Accordingly, many 
works have addressed this aspect, by adaptive and 
optimal client selection, based on their available 
resources and data in each round. [49] presented 
FedCS, a Federated Learning algorithm with 

optimized client selection, where the server starts 
by selecting a random set of clients, then performs 
a more informed selection using client resources 
and the time taken to compute the updates. 
Furthermore, [3] presented a Reinforcement 
Learning scheme at the server, based on energy 

units en, number of CPU cycles cn, and the amount 
of data points used for training by each client, per-
round. 

A server reward is then computed from these 
values to help it find the best policies and actions 

for efficient training with optimal resource usage. 
In the same vein, [53] proposed a multicriteria 
client selection model, named FedMCCS, that is 
based on a discriminative selection of client 
devices based on CPU, Energy, Memory and Time. 
The server tracks these values along the training 

by an auxiliary data exchange of 
requests/responses with the nodes. A linear 
regression model is trained on these attributes to 
predict whether a client has enough resources to 
participate in training tasks. Moreover, [67] 
proposed the selection of clients based on their 

participation history, which impacts the global 
model’s performance. Additionally, [56] proposed 
a data imbalance aware selection of the 
participants in each round, such that all data 
categories must be covered at least once. This is 

achieved by requesting a bit-mask η containing C 
bits corresponding to the available data categories 
from each node. The server then sorts these bit 
masks in a decreasing order of the number of sets 
and minimizes the required number of clients to 
get all categories covered by the averaged updates. 

Hybrid scheme 

Other papers have proposed a hybrid scheme, 
based on the architectures presented in our second 
research question, to optimize the resources of the 
client devices. [12] developed a self balancing 

system based on mediator edge servers, gathering 
near uniform data distribution subsets of clients, 
and aggregating the trained models, before 
sending them to the central server to build a global 

one; Similarly, [39] achieved energy consumption 
reduction by balancing the exchange of parameters 
with L edge servers with respect to the training 
time and communication budget where each edge 
server incorporates a small number of clients [66] 
used a hierarchical aggregation of the model 

updates to overcome the communication overload 
between the nodes and the server. Moreover, [25] 
and [74] proposed a cloud-edge-client scheme 
wherein the clients offload a part or all the training 
tasks to the edge servers, which get portions of the 
clients’ data for the training. This approach has 

some flaws w.r.t. communication overhead and 
privacy concerns for clients’ data, but it may be 
relevant in some application-specific scenarios. 

Transmission settings 

Wireless transmission has a high energy cost for 

mobile and IoT devices in general. As we saw in 
equation 7, it is related to the transmission power 
P and the bit rate R of the network interface. Many 
papers have tackled the optimization of wireless 
transmission and bandwidth settings. [48] 
presented a technique for transmission power and 

rate optimization for energy-efficient 
communication between the nodes and the central 
server. They consider minimizing total energy 
consumption as a joint optimization problem over 
bit rate, transmission power, and CPU frequency 
for local updates. On the other hand, [28] proposed 

a fully decentralized communication between the 
nodes, based on a Segmented Gossip protocol. In 
this communication scheme, the workers segment 
their updates into small fragments that are 
separately shared with a subset of the participants, 

who then relay them progressively to other 
workers until all of them get everything. The peer 
workers with faster bandwidth are chosen to pull 
updates from. Moreover, [63] presented an 
energy-aware worker scheduling algorithm: a 
node monitors its energy consumption at each 

round and, by comparing it with an adjustable 

threshold, decides whether to participate in the 
next training round or not. Subsequently, each 
worker partitions its update into M segments, 
which are transmitted separately on M sub-
channels with adjusted transmission power. 



Adaptive local models 

Recently, [73] and [11] proposed to adapt the local 
models to the nodes’ capabilities and data, in 
opposition to the state-of-the-art FedAvg 

algorithm, where all clients get the same model 
architecture. In both works, an adapted model is 
derived for each client as a sub-net of the global 
model, with a smaller number of layers and 
parameters. Then, different averaging methods are 
used to aggregate the updates. These new methods 

are heterogeneity and data imbalance aware and 
allow an adaptive saving of energy used for 
training and communications. 

From Figure 8, we see that the data exchange 
optimization category has the highest number of 
papers (32), followed by client resource 

management with 25 papers, and finally 
convergence acceleration (10 papers). Figure 9 
shows in more detail the optimization techniques 
used by each 

 

Fig. 8 Papers count per optimization category 

 

Fig. 9 Papers count per optimization technique 

paper. It was not surprising that Updates 
Compression and Clients selection represented 
most of the papers because the original FedAvg 
algorithm had a substantial limitation on these 

aspects. Additionally, this will have the highest 
impact on devices’ energy preservation, knowing 
that wireless communications use the biggest part 
of the operational energy. The other techniques 

are shared between the rest of the papers, with a 
small advantage for Local training acceleration. 

5.4 RQ4 - How is the optimization 
validated 

This Research Question is about the 
experimentation setup (models, data sets, and 
testing platforms) used by different papers to 
validate their proposed works. 

The classification data in Table 4 shows that the 
majority of papers considered only neural 

networks (specifically convolutional ones) with 
MNIST and CIFAR10 data sets for the experimental 
part of their research. While this seems to restrict 
validation, it can be explained by the ease of getting 
these famous data sets and implementing NNs on 
top of popular machine learning frameworks such 

as PyTorch and Tensorflow. Some papers have 
implemented additional validations on other ML 
models such as Linear Regression, Logistic 
Regression, and Support Vector Machines. 
However, there is a substantial shortage of 
validation results for non-neural network models, 

which may exhibit lower complexity and therefore 
lower resource consumption. 

As for the experimentation platforms, different 
papers considered different numbers of 
participating nodes, from 2 up to 50000. The 
majority of papers (52 out of 57) have used 

emulated nodes on multi-GPU computers, while 
only five papers (P7, P14, P17, P34, P58) have 
performed experiments on real devices such as the 
Raspberry Pi™and smartphones. Emulated devices 

can give an insight into validation, but it is 
important to have further results on real ones, in 

real life scenarios, especially regarding wireless 
communications, energy constraints, and 
computing power. The democratization of rapid 
prototyping platforms in the industry and 
academia (e.g., Arduino™, Raspberry Pi™ & 

ESP31™) is another motivation for that. 



5.5 RQ5 - What are the reported 
optimization results 

 

Fig. 10 Communication cost improvements (per paper) 

 

In this question, we list and compare the 

optimization results obtained in the surveyed 
papers. The numerical results are classified into 

three categories: (1) Communication Cost, (2) 
Convergence Time, (3) Energy Consumption. Each 
paper quantified its optimization improvement 

compared to the standard FedAvg [46] algorithm, 

and the numerical results w.r.t. each category are 
listed in the graphs. From Figure 10, we see a very 
wide range of improvement values related to 
global communication cost reduction, which goes 
from 2x up to 320x. In Figure 12, we see 
convergence time improvements going from 3% 

up to 98%. As for the energy consumption, Figure 

11 reports a range of improvement from 14% to 
99%. 

 

  Fig. 11 Energy consumption improvements (per paper) 

 

 

Fig. 12 Convergence time improvements (per paper) 

The convergence time and communication cost 

optimization results are very encouraging, which is 
consistent with the important interest of the 
community in these two aspects (Figure 8). 

Although they directly impact the energy 
consumption, note, that during our readings, 
relatively few papers (8 out of 67) have evaluated 

Table 3 Papers list by optimization techniques 

Category Optimization technique Papers 

Data exchange optimization 

Updates compression 
Updates frequency 

P2 P15 P17 P19 P23 P45 P24 P26 P27 P35 P37 P39 P40 
P42 P64 P52 
P1 P7 P8 P20 P56 

 Logits exchange P4 P10 P46 P49 

Client resource management 
Clients selection 
Hybrid scheme 

P3 P5 P18 P25 P28 P31 P32 P38 P44 P47 P48 
P16 P29 P34 P36 P51 

 Transmission settings P67 P22 P30 P57 

 Adaptive models P54 P55 

Convergence acceleration 
Local training acceleration 
Model pruning 

P6 P11 P12 P13 P33 P63 
P14 P58 

 Optimized model averaging P21 

 



the optimization’s benefit directly on the energy 
consumption, which is crucial to our study. 

6 Discussion 
In this section we discuss the Systematic Mapping 
Study results, in the light of the previous analysis, 
guided by the RQs in Section 5. For each Research 
Issue (RI) presented, we provide (1) some 
remarkable limitations related to Energy 

constrained Fed ML, and (2) some improvement 

directions and recommendations for the research 
community. 

6.1 RI1: Fully-decentralized scheme 

In a centralized scheme based Fed ML, client nodes 

exchange data during the training with a central 

server, which is generally located in the cloud. 
Consequently, the nodes have to use long-range 
wireless communication to reach the server, which 
implies high power consumption [15]. To 

overcome this, we must take advantage of the 
short-range communication between the nodes, 
which is by far less power-intensive, to exchange 
the updates using peer-to-peer communications. 

The proposed approaches to implementing a 
fully decentralized FedML induce an overload on 

the resource-limited devices, caused by the 
additional operations performed by the nodes to 
compensate for the role of the central server. In 
[28], the nodes have to also play the role of the 
aggregating server, and [13] proposed a technique 
where all nodes compute and exchange their 

updates in a chain-like scheme (using some sort of 
multi-hop 

Table 4 Papers validation setups 
Paper ML model Dataset Number of nodes 

    

P1 RNN Blog posts dataset 1000 
P2 CNN - RNN CIFAR10 - public post reddit 100 - 1024 
P3 CNN CIFAR10 FashionMNIST 1000 
P4 CNN MNIST 10 
P5 RNN - 3 
P6 CNN : AlexNet CIFAR10 - MNIST 2 – 100 
P7 CNN CIFAR10 - MNIST 5 (RaspberryPi) – 500 
P8 - - 50 
P9 CNN - LSTM MNIST 30 
P10 ANN MNIST 25 
P11 CNN MNIST - CIFAR10 - 
P12 CNN MNIST - CIFAR10 - 
P13 CNN CIFAR10 20 
P14 CNN: VGG11 - LeNet FeMNIST 5 - 10 (RaspberryPi) 

P15 CNN: VGG11 - LSTM - Logistic 
Regression 

CIFAR10 - KWS dataset - FashionM- 
NIST - MNIST 100 

P16 CNN EMNIST - CIFAR10 - CINIC10 500 
P17 CNN MNIST CIFAR10 10 - 40 (RaspberryPi) 
P18 Linear model Random integer data 20 
P19 CNN RNN MNIST HAR 20 
P20 ANN MNIST 15 
P21 Logistic Reg - CNN (ResNet18) CIFAR10 20 
P22 CNN CIFAR10 - MNIST - SVHN 20 
P23 CNN FEMNIST 50 

P25 Regression model - CNN - SVM Boston Housing dataset - MNIST - KDD 
Cup’99 dataset 5 - 100 - 500 

P26 SNN MNIST-DVS dataset 2 

P27 CNN (LeNet-5 – CifarNet – 
DenseNet-121) MNIST - CIFAR10 - ImageNet 64 

P28 CNN MNIST 50 
P29 CNN MNIST - CIFAR10 50 
P30 ANN MNIST 50 
P31 CNN - 80 
P32 CNN Fashion/MNIST - CIFAR10 100 
P33 CNN MNIST 3 
P35 Linear Regression - CNN MNIST - CIFAR10 50 



P36 CNN MNIST 500 Clients/10 Edge server 
P37 CNN - Linear Regression MINST - California Housing dataset 10 

P39 
CNN (AlexNet) - Transformer 
(GPT2-small) CIFAR10 - PersonaChat  10000 to 50000 

P40 CNN - Logistic Reg CIFAR10 - FashionMNIST - 
ment140 

Senti- 
100 

P41 CNN CiFar10 - MINST  10 

P42 CNN MNIST CIFAR10  1 to 64 

P43 CNN (ResNet) CiFar10 - CiFar100  16 

P44 ANN MNIST - FEMNIST  100 

P46 CNN MNIST - CIFAR10  10 to 20 

P47 CNN FeMNIST - CiFar10 - CiFar100  100 

P49 CNN - LSTM MNIST - IMDb  NA 

P50 CNN (ResNet) CIFAR10  10 

P52 CNN MNIST - EMNIST  20 

P53 ANN - CNN EMNIST  50 - 1000 

P55 CNN (ResNet) - Transformer MNIST - CIFAR10 - WikiText-2  100 

P56 CNN MNIST  30 

P57 CNN MNIST - CIFAR10 and SVHN  20 

P58 CNN MNIST - CIFAR10  3 (Core i5 PCs) 

P59 CNN MNIST  10-18 

P60 CNN CiFar10 - FEMNIST - IMDB  10 

P61 CNN CiFar10  10 

P63 CNN FEMNIST - Shakespare - Sentiment140 - 
P64 CNN MNIST – Cifar10 12 
P65 CNN CiFar10 - FashionMNIST 8 
P66 CNN MNIST - FashionMNIST - CIFAR10 - 
P67 CNN - LSTM FEMNIST - Shakespeare dataset - 

communications). The limitation of the first 
technique is the overhead tasks for the nodes to 
play the server role, where the second one forces 
the nodes to run all the time of the training: in both 
cases, more energy and resources are required at 

the node level 

The hybrid scheme seems to overcome some of 
these problems since it has a cloud-based central 
server that is only used to manage the client 
participation and selection, with very limited data 
querying from the nodes, while keeping model 

aggregation between the client devices. At the 

same time, in order to advocate the 
fullydecentralized scheme, there is a need for a 
new theoretical framework that supports complete 
decentralized model aggregation with convenient 
energy and resource consumption. 

6.2 RI2: Large models reduction 

Some Fed ML models with large sizes and a big 

number of trainable parameters (e.g., Deep Neural 
Networks) require a computationally expensive 

training [17] for energy constrained IoT devices. 



If we consider Fed ML as a bootstrap 

aggregation [22] of the global model over different 

distributed nodes’ data sets, we could reduce the 
local model’s size and complexity to make the 

training tasks easier for the devices. We could still 
build a high-performance global model by 
aggregating (e.g., by majority voting) the 
distributed models repeatedly. 

Another possible solution lies in the Lottery 
winning ticket hypothesis, elaborated by Frankle 

and Carbin [16], which states that a dense neural 
network contains a sparse sub network, that can be 
trained to equivalent performance of the initial 
network. By applying this technique in the context 
of Federated Learning, the global model can be 
drastically reduced in size and complexity, to 

accelerate the training, and reduce the 
computation load over the nodes. The target 
sparse model could be obtained from the global 
model by Adaptive Iterative Pruning (AIP) [19] or 
Neural Architecture Search (NAS) [51], performed 
adaptively by the server based on model 

performance and available client resources. 

6.3 RI3: Energy-aware data 
compression 

Many papers proposed different techniques to 

reduce the amount of data to be sent or received 
from the server [33, 54, 57]. The compression 
techniques used are: sketching, sparsification, 
quantization, and data encoding. They have helped 
to drastically reduce the communication costs for 
the client devices. However, they add overhead 

tasks to the nodes, resulting in memory and CPU 
usage to compress, encode, and decode the 
transmitted data. 

Many works [37, 37] have revealed the benefit 
of error-controlled lossy compression schemes on 
the compression rate and computation efficiency. 

We recommend  studying an equivalent technique 
adapted to Federated Learning’s update 
compression in order to further reduce the 
communication energy cost. 

6.4 RI4: Heterogeneity aware 
optimization 

Nodes heterogeneity is a crucial issue for 

Federated Learning in real world applications [35]. 
As a result, this topic has drawn the attention of the 
research community through several works [49, 
70], which proposed different methods based on 
discriminative participant nodes selection. They 
only choose the devices that have both the 

required resources and data for the training. While 
this seems to solve the heterogeneity issue, it may 
impact the model performance and convergence 
time, by eliminating some devices with either one 
of those. 

In this case, it would be more profitable to 

manage the devices in a way that takes advantage 
of their data and computation capabilities 
separately. Some nodes may participate with their 
data, others with their computing capacity, and the 
rest with both. To achieve this flexibility, some 
devices may exchange raw data, extracted features, 

or data labels. To preserve data privacy (one of the 
Fed ML rationales) during these communications, 

we may use a lightweight encryption technique 
(e.g., based on elliptic curves) for node-node 
communication or an homomorphic encryption 
scheme [18] for untrustworthy node-to-node 

relationships. 

We could also suggest an approach to managing 
heterogeneity that would be based on the 
separation of client nodes into two groups. The 
first one would contain powerful, resourceful 

devices dedicated to training tasks, and the other 

one would contain poor nodes for validation only 
on their own data. The validation score may be 
used as feedback to adaptively adjust model 
aggregation parameters. 

6.5 RI5: Results validation 

The majority of studied papers have validated their 
approach using emulated nodes on powerful 
computers. Moreover, a substantial focus was 

given to image recognition tasks using 

Convolutional Neural Networks (CNNs) and 
common data sets such as MNIST and CIFAR10. 
The choice of image data for validation can be 



explained by its sensitivity and significant size, 
resulting in elevated communication costs thereby 
justifying Fed ML usage. However, in IoT and also 

on mobile devices, there are other types of 

potential applications with different forms of data 
and learning tasks (e.g., environmental quantities 
such as temperature or humidity). 

In order to validate the proposed techniques 
and achieved results in a transparent and 
replicable way, we underline the importance of 

conducting an advanced testbed under real-world 
conditions with real IoT or mobile devices and 
diverse learning tasks. Moreover, we recommend 
to build a standardized benchmark for Federated 
Learning performance analysis, in order to allow 
researchers from all over the world to validate 

their works with real diverse data and real-life 
scenarios. 

6.6 RI6: Federated inference 

The majority of the literature on collaborative 

machine learning concentrated on the training 
phase.Although the inference task is less expensive 
in terms of energy and resources, we may need to 
consider it in the FedML context with energy-
constrained IoT devices to collaboratively 

compute predictions or classify events. This would 

also be beneficial in the case of audio and video 
processing, which involve large amounts of data 
and models. Moreover, the importance of this topic 
is apparent in the case where the correlation 
between multiple nodes is required to classify or 
predict a value. 

In this way, we recommend working on a 
collaborative inference framework for FedML that 
allows the nodes to support each other to balance 
the prediction or classification load instead of 
relying on the server for this task. Again, 

appropriate encryption mechanisms have to be 
used to guarantee data privacy. 

7 Threats to validity 
Any survey or systematic mapping study 

(including ours) is likely to have some common 

limitations [10], related to literature coverage and 
biases in processing the studied items. In order to 

reduce these threats as much as possible, we tried 
to follow a well-defined process [31]. It started 
with a thorough search of relevant papers in 
different databases, leveraging search term 

synonyms to get as many valid results as possible. 

We manually filtered the papers in multiple stages: 
using the title and the keywords, then reading the 
abstract, and finally  studying the full text. We have 
repeated this process at least two times: at the 
beginning, and after a couple of months. 

However, since we worked with the resources 
available at the time, there may be issues related to 
search string choice, the data collection process, 
research question choice, and time span. 

Regarding the search string choice, although 
we used clear keywords, there may be some 

missed opportunities due to bad keyword 
indexation. We have done a manual snowballing 
from the earlier validated papers, which helped us 
spot some missed articles by the automatic search 
process. However, this might not be always 
enough. 

 

Regarding the data collection process, each 
article was reviewed (title, abstract, and full text) 
by a single researcher, which might cause some 
errors. This problem was partially solved by 

discussions between us. 

In relation to the choice of research questions, 
despite our extensive discussions to be as 
comprehensive and clear as possible, there could 
be some aspects that were not covered. 

 

Regarding the time span, we covered the period 

starting from the seminal paper's publication in 
2016 until July 2021. Some interesting papers may 
have been published after. 

Finally, we hope to have more resources in the 

future to address the previous eventual 
shortcomings as well as others that our fellow 
researchers will kindly point out. 

8 Conclusions and future works 
Summary. In this paper, we presented the first 
Systematic Mapping Study, to the best of our 
knowledge, on Fed ML for Energy Constrained IoT 



devices. Through a reproducible Research Process, 
we selected 67 papers related to the topic since the 
publication of the founding paper by [46] and tried 
to compensate for eventual biases by snowballing 

and manual searches. 

The results analysis was structured around 5 
Research Questions related to publications overall 
tendency, Fed ML network architecture, and energy 

optimization schemes (reported results and 
validation). It appears that updates compression 

and clients selection have had the highest focus in 
the literature and yield interesting results in terms 
of decreasing the communication cost (up to 320x), 
convergence time (up to 98%) ; and energy 
consumption (up to 99%). 

From our analysis, we identified 6 Research 

Issues with associated recommendations: fully 
decentralized schemes, large model reduction, 
energy-aware data compression, heterogeneity 
exploitation, real-world results validation, and 
federated inference. Recommendations include 
methods, such as, global model size reduction and 

efficient data compression schemes, to help reduce 
the communication and computation costs for the 
nodes. To efficiently address the system 
heterogeneity, we pointed towards an adaptive 
and flexible management of the resource-limited 

devices and involved them in the training. Finally, 
we underline the need for a standard benchmark, 
dedicated to a transparent and rigorous validation 
of the results, with real world conditions and real 
test-beds. 
Future works. We plan to conduct a Systematic 

Literature Review (SLR) on the specific topic of 
fully decentralized Fed ML, which appears to be 

very interesting. Indeed, it eliminates the single 
point of failure and presents difficult challenges 
related to aggregating updates without any focal 
point. An SLR is dedicated to going in depth 

regarding a specific question, as opposed to an 
SMS, which broadly structures the field. Therefore, 
it is, in our opinion, the logical extension of our 
work. 
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A. Appendix 
This appendix lists all papers included in our study, 

tagged from P1 to P67 (chronological order). 

 



Table 5 Papers list 

Id Paper title Optimization technique 

 

P1 Federated Optimization:Distributed Machine Learning for On-Device Intelligence Data exchange optimization 

P2 Federated Learning: Strategies For Improving Communication Efficiency Data exchange optimization 

P3 
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 

Clients resource Management 

P4 
Communication-Efficient On-Device Machine Learning: Federated Distillation and 
Augmentation under Non-IID Private Data Data exchange optimization 

P5 
Efficient Training Management for Mobile Crowd-Machine Learning: A Deep 
Reinforcement Learning Approach Clients resource Management 

P6 Two-Stream Federated Learning: Reduce the Communication Costs Convergence acceleration 

P7 Adaptive Federated Learning in Resource Constrained Edge Computing Systems Data exchange optimization 

P8 
Federated Learning over Wireless Networks: Optimization Model Design and Analysis 

Data exchange optimization 

P9 CMFL: Mitigating Communication Overhead for Federated Learning Data exchange optimization 

P10 Distilling On-Device Intelligence at the Network Edge Data exchange optimization 

P11 
Federated Learning with Additional Mechanisms on-Clients to Reduce Communication Costs 

Convergence acceleration 

P12 Towards Faster and Better Federated Learning: A Feature Fusion Approach Convergence acceleration 

P13 
On-Device Federated Learning via Second-Order Optimization with Over-the-Air Computation 

Convergence acceleration 

P14 Model Pruning Enables Efficient Federated Learning on Edge Devices Convergence acceleration 

P15 Robust and Communication-Efficient Federated Learning from Non-IID Data Data exchange optimization 

P16 
Astraea: Self-balancing Federated Learning for Improving Classification Accuracy of Mobile Deep 
Learning Applications Clients resource Management 

P17 Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT Data exchange optimization 

P18 Performance Optimization of Federated Learning over Wireless Networks Clients resource Management 

P19 
Communication-Efficient Federated Deep Learning With Layerwise Asynchronous 
Model Update and Temporally Weighted Aggregation Data exchange optimization 

P20 
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning 

Data exchange optimization 

P21 Faster On-Device Training Using New Federated Momentum Algorithm Convergence acceleration 

P22 BACombo—Bandwidth-Aware Decentralized Federated Learning Clients resource Management 

P23 Ternary Compression for Communication-Efficient Federated Learning Data exchange optimization 

P24 
Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning 

Data exchange optimization 

P25 
SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead 

Clients resource Management 

P26 
Federated Neuromorphic Learning of Spiking Neural Networks for Low-Power Edge 
Intelligence Data exchange optimization 

P27 
Towards Communication-Efficient Federated Learning in the Internet of Things with Edge 

Computing Data exchange optimization 

P28 Energy-Efficient Radio Resource Allocation for Federated Edge Learning Clients resource Management 

P29 Client-Edge-Cloud Hierarchical Federated Learning Clients resource Management 

P30 Energy-Aware Analog Aggregation for Federated Learning with Redundant Data Clients resource Management 

P31 Convergence Time Minimization of Federated Learning over Wireless Networks Clients resource Management 



P32 Optimizing Federated Learning on Non-IID Data with Reinforcement Learning Clients resource Management 

P33 Accelerating Federated Learning via Momentum Gradient Descent Convergence acceleration 

P34 
Optimal User Selection for High-Performance and Stabilized Energy-Efficient Federated Learning 

Platforms Clients resource Management 

P35 
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and 
Quantization Data exchange optimization 

P36 
Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing 
Systems Clients resource Management 

P37 
Q-GADMM: Quantized Group Admm For Communication Efficient Decentralized Machine 

Learning Data exchange optimization 

P38 
FedMCCS: Multi Criteria Client Selection Model for Optimal IoT Federated Learning 

Clients resource Management 

P39 FetchSGD: Communication-Efficient Federated Learning with Sketching Data exchange optimization 

P40 
FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under 
Non-IID Data Data exchange optimization 

 
P41 Lazily Aggregated Quantized Gradient Innovation for Communication-Efficient Federated 

Learning 
Data exchange optimization 

P42 
Toward Communication-Efficient Federated Learning in the Internet of Things With Edge 
Computing Data exchange optimization 

P43 Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge Clients resource Management 

P44 
CatFedAvg: Optimizing Communication-efficiency and Classification Accuracy in Federated 

Learning Clients resource Management 

P45 
Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach 

Data exchange optimization 

P46 Communication-Efficient Federated Distillation Data exchange optimization 

P47 
A Trust and Energy-Aware Double Deep Reinforcement Learning Scheduling 
Strategy for Federated Learning on IoT Devices Clients resource Management 

P48 
Device Scheduling for Energy-Efficient Federated Learning over Wireless Network 
Based on TDMA Mode Clients resource Management 

P49 
 Distillation-Based Semi-Supervised Federated Learning for Communication- 
Efficient Collaborative Training with Non-IID Private Data Data exchange optimization 

P50 Time-Correlated Sparsification for Communication-Efficient Federated Learning Data exchange optimization 

P51 
Energy-Aware Resource Management for Federated Learning in Multi-Access Edge Computing 

Systems Clients resource Management 

P52 
FEDZIP: A Compression Framework for Communication-Efficient Federated Learning 

Data exchange optimization 

P53 FedProf: Optimizing Federated Learning with Dynamic Data Profiling Clients resource Management 
P54 Toward Resource-Efficient Federated Learning in Mobile Edge Computing Clients resource Management 

P55 
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous 
Clients Clients resource Management 

P56 
Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and 

Power Transfer Data exchange optimization 

P57 
Gradient Statistics Aware Power Control for Over-the-Air Federated Learning in Fading Channels 

Clients resource Management 

P58 
Accelerating Federated Learning for IoT in BigData Analytics With Pruning, 
Quantization andSelective Updating Convergence acceleration 

P59 Communication Efficient Federated Learning with Adaptive Quantization Data exchange optimization 

P60 
Adaptive Batch Size for Federated Learning in Resource-Constrained Edge Computing 

Convergence acceleration 

P61 
Communication-Efficient Federated Learning with Dual-Side Low-Rank Compression 

Data exchange optimization 

P62 
Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing 

Clients resource Management 

P63 
Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for 
Federated Learning Convergence acceleration 

P64 
To Talk or to Work: Flexible Communication Compression for Energy Efficient 
Federated Learning over Heterogeneous Mobile Edge Devices Data exchange optimization 



P65 
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning 

Data exchange optimization 

P66 
COFEL: Communication-Efficient and Optimized Federated Learning with Local Differential 
Privacy Data exchange optimization 

P67 
Energy-Efficient Federated Edge Learning with Joint Communication and Computation Design 

Clients resource Management 
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