
Journal of Healthcare Informatics Research (2021) 5:1–19
https://doi.org/10.1007/s41666-020-00082-4

RESEARCH ARTICLE

Federated Learning for Healthcare Informatics

Jie Xu1 ·Benjamin S. Glicksberg2 ·Chang Su1 ·Peter Walker3 · Jiang Bian4 ·
Fei Wang1

Received: 19 August 2020 / Revised: 21 October 2020 / Accepted: 30 October 2020 /

© Springer Nature Switzerland AG 2020

Abstract
With the rapid development of computer software and hardware technologies, more
and more healthcare data are becoming readily available from clinical institutions,
patients, insurance companies, and pharmaceutical industries, among others. This
access provides an unprecedented opportunity for data science technologies to derive
data-driven insights and improve the quality of care delivery. Healthcare data, how-
ever, are usually fragmented and private making it difficult to generate robust results
across populations. For example, different hospitals own the electronic health records
(EHR) of different patient populations and these records are difficult to share across
hospitals because of their sensitive nature. This creates a big barrier for develop-
ing effective analytical approaches that are generalizable, which need diverse, “big
data.” Federated learning, a mechanism of training a shared global model with a cen-
tral server while keeping all the sensitive data in local institutions where the data
belong, provides great promise to connect the fragmented healthcare data sources
with privacy-preservation. The goal of this survey is to provide a review for feder-
ated learning technologies, particularly within the biomedical space. In particular, we
summarize the general solutions to the statistical challenges, system challenges, and
privacy issues in federated learning, and point out the implications and potentials in
healthcare.
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1 Introduction

The recent years have witnessed a surge of interest related to healthcare data analyt-
ics, due to the fact that more and more such data are becoming readily available from
various sources including clinical institutions, patient individuals, insurance compa-
nies, and pharmaceutical industries, among others. This provides an unprecedented
opportunity for the development of computational techniques to dig data-driven
insights for improving the quality of care delivery [72, 105].

Healthcare data are typically fragmented because of the complicated nature of
the healthcare system and processes. For example, different hospitals may be able
to access the clinical records of their own patient populations only. These records
are highly sensitive with protected health information (PHI) of individuals. Rigorous
regulations, such as the Health Insurance Portability and Accountability Act (HIPAA)
[32], have been developed to regulate the process of accessing and analyzing such
data. This creates a big challenge for modern data mining and machine learning (ML)
technologies, such as deep learning [61], which typically requires a large amount of
training data.

Federated learning is a paradigm with a recent surge in popularity as it holds great
promise on learning with fragmented sensitive data. Instead of aggregating data from
different places all together, or relying on the traditional discovery then replication
design, it enables training a shared global model with a central server while keeping
the data in local institutions where the they originate.

The term “federated learning” is not new. In 1976, Patrick Hill, a philosophy pro-
fessor, first developed the Federated Learning Community (FLC) to bring people
together to jointly learn, which helped students overcome the anonymity and isolation
in large research universities [42]. Subsequently, there were several efforts aiming at
building federations of learning content and content repositories [6, 74, 83]. In 2005,
Rehak et al. [83] developed a reference model describing how to establish an inter-
operable repository infrastructure by creating federations of repositories, where the
metadata are collected from the contributing repositories into a central registry pro-
vided with a single point of discovery and access. The ultimate goal of this model
is to enable learning from diverse content repositories. These practices in federated
learning community or federated search service have provided effective references
for the development of federated learning algorithms.

Federated learning holds great promises on healthcare data analytics. For both
provider (e.g., building a model for predicting the hospital readmission risk with
patient Electronic Health Records (EHR) [71]) and consumer (patient)-based appli-
cations (e.g., screening atrial fibrillation with electrocardiograms captured by smart-
watch [79]), the sensitive patient data can stay either in local institutions or with
individual consumers without going out during the federated model learning process,
which effectively protects the patient privacy. The goal of this paper is to review the
setup of federated learning, discuss the general solutions and challenges, and envision
its applications in healthcare.

In this review, after a formal overview of federated learning, we summarize the
main challenges and recent progress in this field. Then we illustrate the potential of
federated learning methods in healthcare by describing the successful recent research.
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At last, we discuss the main opportunities and open questions for future applications
in healthcare.

Difference with Existing Reviews There has been a few review articles on federated
learning recently. For example, Yang et al. [109] wrote the early federated learning
survey summarizing the general privacy-preserving techniques that can be applied
to federated learning. Some researchers surveyed sub-problems of federated learn-
ing, e.g., personalization techniques [59], semi-supervised learning algorithms [49],
threat models [68], and mobile edge networks [66]. Kairouz et al. [51] discussed
recent advances and presented an extensive collection of open problems and chal-
lenges. Li et al. [63] conducted the review on federated learning from a system
viewpoint. Different from those reviews, this paper provided the potential of feder-
ated learning to be applied in healthcare. We summarized the general solution to the
challenges in federated learning scenario and surveyed a set of representative feder-
ated learning methods for healthcare. In the last part of this review, we outlined some
directions or open questions in federated learning for healthcare. An early version of
this paper is available on arXiv [107].

2 Federated Learning

Federated learning is a problem of training a high-quality shared global model with
a central server from decentralized data scattered among large number of different
clients (Fig. 1). Mathematically, assume there are K activated clients where the data
reside in (a client could be a mobile phone, a wearable device, or a clinical institution
data warehouse, etc.). Let Dk denote the data distribution associated with client k and

Fig. 1 Schematic of the federated learning framework. The model is trained in a distributed manner: the
institutions periodically communicate the local updates with a central server to learn a global model; the
central server aggregates the updates and sends back the parameters of the updated global model
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nk the number of samples available from that client. n = ∑K
k=1 nk is the total sample

size. Federated learning problem boils down to solving a empirical risk minimization
problem of the form [56, 57, 69]:

min
w∈Rd

F (w) :=
K∑

k=1

nk

n
Fk(w) where Fk(w) := 1

nk

∑

xi∈Dk

fi(w), (1)

where w is the model parameter to be learned. The function fi is specified via a loss
function dependent on a pair of input-output data pair {xi , yi}. Typically, xi ∈ R

d

and yi ∈ R or yi ∈ {−1, 1}. Simple examples include:

– linear regression: fi(w) = 1
2 (x�

i w − yi)
2, yi ∈ R;

– logistic regression: fi(w) = − log(1 + exp(−yix�
i w)), yi ∈ {−1, 1};

– support vector machines: fi(w) = max{0, 1 − yix�
i w}, yi ∈ {−1, 1}.

In particular, algorithms for federated learning face with a number of chal-
lenges [13, 96], specifically:

– Statistical Challenge: The data distribution among all clients differ greatly, i.e.,
∀k �= k̃, we have Exi∼Dk

[fi(w; xi )] �= Exi∼D
k̃
[fi(w; xi )]. It is such that any data

points available locally are far from being a representative sample of the overall
distribution, i.e., Exi∼Dk

[fi(w; xi )] �= F(w).
– Communication Efficiency: The number of clients K is large and can be much

bigger than the average number of training sample stored in the activated clients,
i.e., K � (n/K).

– Privacy and Security: Additional privacy protections are needed for unreliable
participating clients. It is impossible to ensure all clients are equally reliable.

Next, we will survey, in detail, the existing federated learning related works on
handling such challenges.

2.1 Statistical Challenges of Federated Learning

The naive way to solve the federated learning problem is through Federated Aver-
aging (FedAvg) [69]. It is demonstrated can work with certain non independent
identical distribution (non-IID) data by requiring all the clients to share the same
model. However, FedAvg does not address the statistical challenge of strongly skewed
data distributions. The performance of convolutional neural networks trained with
FedAvg algorithm can reduce significantly due to the weight divergence [111]. Exist-
ing research on dealing with the statistical challenge of federated learning can be
grouped into two fields, i.e., consensus solution and pluralistic solution.

2.1.1 Consensus Solution

Most centralized models are trained on the aggregated training samples obtained from
the samples drawn from the local clients [96, 111]. Intrinsically, the centralized model
is trained to minimize the loss with respect to the uniform distribution [73]: D̄ =
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∑K
k=1

nk

n
Dk , where D̄ is the target data distribution for the learning model. However,

this specific uniform distribution is not an adequate solution in most scenarios.
To address this issue, the recent proposed solution is to model the target distribu-

tion or force the data adapt to the uniform distribution [73, 111]. Specifically, Mohri
et al. [73] proposed a minimax optimization scheme, i.e., agnostic federated learning
(AFL), where the centralized model is optimized for any possible target distribution
formed by a mixture of the client distributions. This method has only been applied
at small scales. Compared to AFL, Li et al. [64] proposed q-Fair Federated Learning
(q-FFL), assigning higher weight to devices with poor performance, so that the distri-
bution of accuracy in the network reduces in variance. They empirically demonstrate
the improved flexibility and scalability of q-FFL compared to AFL.

Another commonly used method is globally sharing a small portion of data
between all the clients [75, 111]. The shared subset is required containing a uniform
distribution over classes from the central server to the clients. In addition to han-
dle non-IID issue, sharing information of a small portion of trusted instances and
noise patterns can guide the local agents to select compact training subset, while the
clients learn to add changes to selected data samples, in order to improve the test
performance of the global model [38].

2.1.2 Pluralistic Solution

Generally, it is difficult to find a consensus solution w that is good for all components
Di . Instead of wastefully insisting on a consensus solution, many researchers choose
to embracing this heterogeneity.

Multi-task learning (MTL) is a natural way to deal with the data drawn from
different distributions. It directly captures relationships among non-IID and unbal-
anced data by leveraging the relatedness between them in comparison to learn a
single global model. In order to do this, it is necessary to target a particular way in
which tasks are related, e.g., sharing sparsity, sharing low-rank structure, and graph-
based relatedness. Recently, Smith et al. [96] empirically demonstrated this point on
real-world federated datasets and proposed a novel method MOCHA to solve a gen-
eral convex MTL problem with handling the system challenges at the same time.
Later, Corinzia et al. [22] introduced VIRTUAL, an algorithm for federated multi-task
learning with non-convex models. They consider the federation of central server and
clients as a Bayesian network and perform training using approximated variational
inference. This work bridges the frameworks of federated and transfer/continuous
learning.

The success of multi-task learning rests on whether the chosen relatedness
assumptions hold. Compared to this, pluralism can be a critical tool for dealing with
heterogeneous data without any additional or even low-order terms that depend on
the relatedness as in MTL [28]. Eichner et al. [28] considered training in the presence
of block-cyclic data and showed that a remarkably simple pluralistic approach can
entirely resolve the source of data heterogeneity. When the component distributions
are actually different, pluralism can outperform the “ideal” IID baseline.
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2.2 Communication Efficiency of Federated Learning

In federated learning setting, training data remain distributed over a large number of
clients each with unreliable and relatively slow network connections. Naively for syn-
chronous protocol in federated learning [58, 96], the total number of bits that required
during uplink (clinets → server) and downlink (server → clients) communication by
each of the K clients during training is given by:

Bup/down ∈ O(U × |w| × (H(	wup/down) + β)
︸ ︷︷ ︸

update size

) (2)

where U is the total number of updates performed by each client, |w| is the size
of the model and H(	wup/down) is the entropy of the weight updates exchanged
during transmitting process. β is the difference between the true update size and
the minimal update size (which is given by the entropy) [89]. Apparently, we can
consider three ways to reduce the communication cost: (a) reduce the number of
clients K , (b) reduce the update size, (c) reduce the number of updates U . Starting
at these three points, we can organize existing research on communication-efficient
federated learning into four groups, i.e., model compression, client selection, updates
reducing, and peer-to-peer learning (Fig. 2).

2.2.1 Client Selection

The most natural and rough way for reducing communication cost is to restrict the
participated clients or choose a fraction of parameters to be updated at each round.
Shokri et al. [92] use the selective stochastic gradient descent protocol, where the

Fig. 2 Communication efficient federated learning methods. Existing research on improving communica-
tion efficiency can be categorized into a model compression, b client selection, c updates reducing, and d
peer-to-peer learning
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selection can be completely random or only the parameters whose current values
are farther away from their local optima are selected, i.e., those that have a larger
gradient. Nishio et al. [75] proposed a new protocol referred to as FedCS, where
the central server manages the resources of heterogeneous clients and determines
which clients should participate the current training task by analyzing the resource
information of each client, such as wireless channel states, computational capacities,
and the size of data resources relevant to the current task. Here, the server should
decide how much data, energy, and CPU resources used by the mobile devices such
that the energy consumption, training latency, and bandwidth cost are minimized
while meeting requirements of the training tasks. Anh [5] thus proposes to use the
Deep Q-Learning [102] technique that enables the server to find the optimal data
and energy management for the mobile devices participating in the mobile crowd-
machine learning through federated learning without any prior knowledge of network
dynamics.

2.2.2 Model Compression

The goal of model compression is to compress the server-to-client exchanges to
reduce uplink/downlink communication cost. The first way is through structured
updates, where the update is directly learned from a restricted space parameterized
using a smaller number of variables, e.g., sparse, low-rank [58], or more specifically,
pruning the least useful connections in a network [37, 113], weight quantization [17,
89], and model distillation [43]. The second way is lossy compression, where a full
model update is first learned and then compressed using a combination of quantiza-
tion, random rotations, and subsampling before sending it to the server [2, 58]. Then
the server decodes the updates before doing the aggregation.

Federated dropout, in which each client, instead of locally training an update to
the whole global model, trains an update to a smaller sub-model [12]. These sub-
models are subsets of the global model and, as such, the computed local updates
have a natural interpretation as updates to the larger global model. Federated dropout
not only reduces the downlink communication but also reduces the size of uplink
updates. Moreover, the local computational costs is correspondingly reduced since
the local training procedure dealing with parameters with smaller dimensions.

2.2.3 Updates Reduction

Kamp et al. [52] proposed to average models dynamically depending on the utility of
the communication, which leads to a reduction of communication by an order of mag-
nitude compared to periodically communicating state-of-the-art approaches. This
facet is well suited for massively distributed systems with limited communication
infrastructure. Bui et al. [11] improved federated learning for Bayesian neural net-
works using partitioned variational inference, where the client can decide to upload
the parameters back to the central server after multiple passes through its data, after
one local epoch, or after just one mini-batch. Guha et al. [35] focused on techniques
for one-shot federated learning, in which they learn a global model from data in
the network using only a single round of communication between the devices and
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Fig. 3 Privacy-preserving schemes. a Secure multi-party computation. In security sharing, security values
(blue and yellow pie) are split into any number of shares that are distributed among the computing nodes.
During the computation, no computation node is able to recover the original value nor learn anything about
the output (green pie). Any nodes can combine their shares to reconstruct the original value. b Differential
privacy. It guarantees that anyone seeing the result of a differentially private analysis will make the same
inference (answer 1 and answer 2 are nearly indistinguishable)

the central server. Besides above works, Ren et al. [84] theoretically analyzed the
detailed expression of the learning efficiency in the CPU scenario and formulate a
training acceleration problem under both communication and learning resource bud-
get. Reinforcement learning and round robin learning are widely used to manage the
communication and computation resources [5, 46, 106, 114].

2.2.4 Peer-to-Peer Learning

In federated learning, a central server is required to coordinate the training process of
the global model. However, the communication cost to the central server may be not
affordable since a large number of clients are usually involved. Also, many practical
peer-to-peer networks are usually dynamic, and it is not possible to regularly access a
fixed central server. Moreover, because of the dependence on central server, all clients
are required to agree on one trusted central body, and whose failure would interrupt
the training process for all clients. Therefore, some researches began to study fully
decentralized framework where the central server is not required [41, 60, 85, 91]. The
local clients are distributed over the graph/network where they only communicate
with their one-hop neighbors. Each client updates its local belief based on own data
and then aggregates information from the one-hop neighbors.

2.3 Privacy and Security

In federated learning, we usually assume the number of participated clients (e.g.,
phones, cars, clinical institutions...) is large, potentially in the thousands or millions.
It is impossible to ensure none of the clients is malicious. The setting of federated
learning, where the model is trained locally without revealing the input data or the
model’s output to any clients, prevents direct leakage while training or using the
model. However, the clients may infer some information about another client’s pri-
vate dataset given the execution of f (w), or over the shared predictive model w [100].
To this end, there have been many efforts focus on privacy either from an individual
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point of view or multiparty views, especially in social media field which significantly
exacerbated multiparty privacy (MP) conflicts [97, 98] (Fig. 3).

2.3.1 Secure Multi-party Computation

Secure multi-party computation (SMC) has a natural application to federated learning
scenarios, where each individual client uses a combination of cryptographic tech-
niques and oblivious transfer to jointly compute a function of their private data [8,
78]. Homomorphic encryption is a public key system, where any party can encrypt
its data with a known public key and perform calculations with data encrypted by
others with the same public key [29]. Due to its success in cloud computing, it comes
naturally into this realm, and it has certainly been used in many federated learning
researches [14, 40].

Although SMC guarantees that none of the parties shares anything with each other
or with any third party, it can not prevent an adversary from learning some individ-
ual information, e.g., which clients’ absence might change the decision boundary
of a classifier, etc. Moreover, SMC protocols are usually computationally expensive
even for the simplest problems, requiring iterated encryption/decryption and repeated
communication between participants about some of the encrypted results [78].

2.3.2 Differential Privacy

Differential privacy (DP) [26] is an alternative theoretical model for protecting the
privacy of individual data, which has been widely applied to many areas, not only
traditional algorithms, e.g., boosting [27], principal component analysis [15], sup-
port vector machine [86], but also deep learning research [1, 70]. It ensures that
the addition or removal does not substantially affect the outcome of any analysis
and is thus also widely studied in federated learning research to prevent the indirect
leakage [1, 70, 92]. However, DP only protects users from data leakage to a cer-
tain extent and may reduce performance in prediction accuracy because it is a lossy
method [18]. Thus, some researchers combine DP with SMC to reduce the growth of
noise injection as the number of parties increases without sacrificing privacy while
preserving provable privacy guarantees, protecting against extraction attacks and
collusion threats [18, 100].

3 Applications

Federated learning has been incorporated and utilized in many domains. This
widespread adoption is due in part by the fact that it enables a collaborative model-
ing mechanism that allows for efficient ML all while ensuring data privacy and legal
compliance between multiple parties or multiple computing nodes. Some promis-
ing examples that highlight these capabilities are virtual keyboard prediction [39,
70], smart retail [112], finance [109], and vehicle-to-vehicle communication [88]. In
this section, we focus primarily on applications within the healthcare space and also
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discuss promising applications in other domains since some principles can be applied
to healthcare.

3.1 Healthcare

EHRs have emerged as a crucial source of real world healthcare data that has been
used for an amalgamation of important biomedical research [30, 47], including for
machine learning research [72]. While providing a huge amount of patient data for
analysis, EHRs contain systemic and random biases overall and specific to hospitals
that limit the generalizability of results. For example, Obermeyer et al. [76] found
that a commonly used algorithm to determine enrollment in specific health programs
was biased against African Americans, assigning the same level of risk to healthier
Caucasian patients. These improperly calibrated algorithms can arise due to a variety
of reasons, such as differences in underlying access to care or low representation in
training data. It is clear that one way to alleviate the risk for such biased algorithms is
the ability to learn from EHR data that is more representative of the global population
and which goes beyond a single hospital or site. Unfortunately, due to a myriad of
reasons such as discrepant data schemes and privacy concerns, it is unlikely that data
will eve be connected together in a single database to learn from all at once. The
creation and utility of standardized common data models, such as OMOP [44], allow
for more wide-spread replication analyses but it does not overcome the limitations
of joint data access. As such, it is imperative that alternative strategies emerge for
learning from multiple EHR data sources that go beyond the common discovery-
replication framework. Federated learning might be the tool to enable large-scale
representative ML of EHR data and we discuss many studies which demonstrate this
fact below.

Federated learning is a viable method to connect EHR data from medical institu-
tions, allowing them to share their experiences, and not their data, with a guarantee
of privacy [9, 25, 34, 45, 65, 82]. In these scenarios, the performance of ML model
will be significantly improved by the iterative improvements of learning from large
and diverse medical data sets. There have been some tasks were studied in fed-
erated learning setting in healthcare, e.g., patient similarity learning [62], patient
representation learning, phenotyping [55, 67], and predictive modeling [10, 45, 90].
Specifically, Lee et al. [62] presented a privacy-preserving platform in a federated
setting for patient similarity learning across institutions. Their model can find sim-
ilar patients from one hospital to another without sharing patient-level information.
Kim et al. [55] used tensor factorization models to convert massive electronic health
records into meaningful phenotypes for data analysis in federated learning setting.
Liu et al. [67] conducted both patient representation learning and obesity comorbidity
phenotyping in a federated manner and got good results. Vepakomma et al. [103] built
several configurations upon a distributed deep learning method called SplitNN [36]
to facilitate the health entities collaboratively training deep learning models without
sharing sensitive raw data or model details. Silva et al. [93] illustrated their federated
learning framework by investigating brain structural relationships across diseases
and clinical cohorts. Huang et al. [45] sought to tackle the challenge of non-IID
ICU patient data by clustering patients into clinically meaningful communities that
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captured similar diagnoses and geological locations and simultaneously training one
model per community.

Federated learning has also enabled predictive modeling based on diverse sources,
which can provide clinicians with additional insights into the risks and benefits of
treating patients earlier [9, 10, 90]. Brisimi et al. [10] aimed to predict future hospital-
izations for patients with heart-related diseases using EHR data spread among various
data sources/agents by solving the l1-regularized sparse Support Vector Machine
classifier in federated learning environment. Owkin is using federated learning to
predict patients’ resistance to certain treatment and drugs, as well as their survival
rates for certain diseases [99]. Boughorbel et al. [9] proposed a federated uncertainty-
aware learning algorithm for the prediction of preterm birth from distributed EHR,
where the contribution of models with high uncertainty in the aggregation model is
reduced. Pfohl et al. [80] considered the prediction of prolonged length of stay and
in-hospital mortality across thirty-one hospitals in the eICU Collaborative Research
Database. Sharma et al. [90] tested a privacy preserving framework for the task of
in-hospital mortality prediction among patients admitted to the intensive care unit
(ICU). Their results show that training the model in the federated learning frame-
work leads to comparable performance to the traditional centralized learning setting.
Summary of these work is listed in Table 1.

3.2 Others

An important application of federated learning is for natural language processing
(NLP) tasks. When Google first proposed federated learning concept in 2016, the
application scenario is Gboard—a virtual keyboard of Google for touchscreen mobile
devices with support for more than 600 language varieties [39, 70]. Indeed, as users
increasingly turn to mobile devices, fast mobile input methods with auto-correction,
word completion, and next-word prediction features are becoming more and more
important. For these NLP tasks, especially next-word prediction, typed text in mobile
apps is usually better than the data from scanned books or speech-to-text in terms
of aiding typing on a mobile keyboard. However, these language data often contain
sensitive information, e.g., passwords, search queries, or text messages with personal
information. Therefore, federated learning has a promising application in NLP like
virtual keyboard prediction [7, 39, 70].

Other applications include smart retail [112] and finance [54]. Specifically, smart
retail aims to use machine learning technology to provide personalized services to
customers based on data like user purchasing power and product characteristics for
product recommendation and sales services. In terms of financial applications, Ten-
cent’s WeBank leverages federated learning technologies for credit risk management,
where several Banks could jointly generate a comprehensive credit score for a cus-
tomer without sharing his or her data [109]. With the growth and development of
federated learning, there are many companies or research teams that have carried out
various tools oriented to scientific research and product development. Popular ones
are listed in Table 2.
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Table 1 Summary of recent work on federated learning for healthcare

Problem ML method No. of clients Data

Patient similarity learning [62] Hashing 3 MIMIC-III [50]

Patient similarity learning [108] Hashing 20 MIMIC-III

Phenotyping [55] TF 1–5 MIMIC-III, UCSD [104]

Phenotyping [67] NLP 10 MIMIC-III

Representation learning [93] PCA 10–100 ADNI, UK Biobank, PPMI,
MIRIAD

Mortality prediction [45] Autoencoder 5–50 eICU Collaborative Research
Database [81]

Hospitalization prediction [10] SVM 5, 10 Boston Medical Center

Preterm-birth prediction [9] RNN 50 Cerner Health Facts

Mortality prediction [80] LR, NN 31 eICU Collaborative
Research Database

Mortality prediction [90] LR, MLP 2 MIMIC-III

Activity recognition [16] CNN 5 UCI Smartphone [4]

Adverse drug reactions
Prediction [19, 20]

SVM, MLP, LR 10 LCED, MIMIC

Arrhythmia detection [110] NN 16, 32, 64 PhysioNet Dataset [21]

Disease prediction [33] NN 5, 10 Pima Indians Diabetes Dataset
[95], Cleveland Heart Disease
Database [23]

Imaging data analysis VAE 4 MNIST, Brain Imaging Data

Mortality prediction [101] LRR, MLP, LASSO 5 Mount Sinai COVID-19
Dataset

TF tensor factorization, MLP multi-layer perceptron, VAE variational autoencoder, LCED Limited
MarketScan Explorys Claims-EMR Data. https://www.ibm.com/downloads/cas/6KNYVVQ2

4 Conclusions and Open Questions

In this survey, we review the current progress on federated learning including, but
not limited to healthcare field. We summarize the general solutions to the various
challenges in federated learning and hope to provide a useful resource for researchers
to refer. Besides the summarized general issues in federated learning setting, we list
some probably encountered directions or open questions when federated learning is
applied in healthcare area in the following.

– Data Quality. Federated learning has the potential to connect all the isolated
medical institutions, hospitals, or devices to make them share their experiences
with privacy guarantee. However, most health systems suffer from data clutter
and efficiency problems. The quality of data collected from multiple sources is
uneven and there is no uniform data standard. The analyzed results are appar-
ently worthless when dirty data are accidentally used as samples. The ability to
strategically leverage medical data is critical. Therefore, how to clean, correct,
and complete data and accordingly ensure data quality is a key to improve the
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Table 2 Popular tools for federated learning research

Project name Developer Description

PySyft [87] OpenMined It decouples private data from model
training using federated learning, DP,
and MPC within PyTorch. TensorFlow
bindings are also available [77].

TFF [31] Google With TFF, TensorFlow provides users
with a flexible and open framework
through which they can simulate dis-
tributed computing locally.

FATE [3] Webank FATE support the Federated AI
ecosystem, where a secure computing
protocol is implemented based on
homomorphic encryption and MPC.

Tensor/IO [24] Dow et al. Tensor/IO is a lightweight cross-
platform library for on-device
machine learning, bringing the power
of TensorFlow and TensorFlow Lite
to iOS, Android, and React native
applications.

machine learning model weather we are dealing with federated learning scenario
or not.

– Incorporating Expert Knowledge. In 2016, IBM introduced Watson for Oncol-
ogy, a tool that uses the natural language processing system to summarize
patients’ electronic health records and search the powerful database behind it
to advise doctors on treatments. Unfortunately, some oncologists say they trust
their judgment more than Watson tells them what needs to be done.1 Therefore,
hopefully doctors will be involved in the training process. Since every data set
collected here cannot be of high quality, so it will be very helpful if the standards
of evidence-based machine are introduced, doctors will also see the diagnostic
criteria of artificial intelligence. If wrong, doctors will give further guidance to
artificial intelligence to improve the accuracy of machine learning model during
training process.”

– Incentive Mechanisms. With the internet of things and the variety of third party
portals, a growing number of smartphone healthcare apps are compatible with
wearable devices. In addition to data accumulated in hospitals or medical cen-
ters, another type of data that is of great value is coming from wearable devices
not only to the researchers but more importantly for the owners. However,
during federated model training process, the clients suffer from considerable
overhead in communication and computation. Without well-designed incentives,
self-interested mobile or other wearable devices will be reluctant to participate

1http://news.moore.ren/industry/158978.htm
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in federal learning tasks, which will hinder the adoption of federated learn-
ing [53]. How to design an efficient incentive mechanism to attract devices with
high-quality data to join federated learning is another important problem.

– Personalization. Wearable devices are more focus on public health, which
means helping people who are already healthy to improve their health, such as
helping them exercise, practice meditation, and improve their sleep quality. How
to assist patients to carry out scientifically designed personalized health man-
agement, correct the functional pathological state by examining indicators, and
interrupt the pathological change process are very important. Reasonable chronic
disease management can avoid emergency visits and hospitalization and reduce
the number of visits. Cost and labor savings. Although there are some general
work about federated learning personalization [48, 94], for healthcare informat-
ics, how to combining the medical domain knowledge and make the global model
be personalized for every medical institutions or wearable devices is another
open question.

– Model Precision. Federated tries to make isolated institutions or devices share
their experiences, and the performance of machine learning model will be signif-
icantly improved by the formed large medical dataset. However, the prediction
task is currently restricted and relatively simple. Medical treatment itself is a very
professional and accurate field. Medical devices in hospitals have incomparable
advantages over wearable devices. And the models of Doc.ai could predict the
phenome collection of one’s biometric data based on its selfie, such as height,
weight, age, sex, and BMI.2 How to improve the prediction model to predict
future health conditions is definitely worth exploring.
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56. Konečnỳ J, McMahan B, Ramage D (2015) Federated optimization: distributed optimization beyond
the datacenter. arXiv:1511.03575
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