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Abstract—The Internet of Things (IoT) is penetrating many
facets of our daily life with the proliferation of intelligent
services and applications empowered by artificial intelligence
(AI). Traditionally, AI techniques require centralized data col-
lection and processing that may not be feasible in realistic
application scenarios due to the high scalability of modern IoT
networks and growing data privacy concerns. Federated Learning
(FL) has emerged as a distributed collaborative AI approach
that can enable many intelligent IoT applications, by allowing
for AI training at distributed IoT devices without the need for
data sharing. In this article, we provide a comprehensive survey
of the emerging applications of FL in IoT networks, beginning
from an introduction to the recent advances in FL and IoT to
a discussion of their integration. Particularly, we explore and
analyze the potential of FL for enabling a wide range of IoT
services, including IoT data sharing, data offloading and caching,
attack detection, localization, mobile crowdsensing, and IoT pri-
vacy and security. We then provide an extensive survey of the
use of FL in various key IoT applications such as smart health-
care, smart transportation, Unmanned Aerial Vehicles (UAVs),
smart cities, and smart industry. The important lessons learned
from this review of the FL-IoT services and applications are also
highlighted. We complete this survey by highlighting the cur-
rent challenges and possible directions for future research in this
booming area.
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I. INTRODUCTION

R
ECENT years have witnessed the rapid development of

the Internet of Things (IoT) which provides ubiquitous

sensing and computing capabilities to connect a broad range

of things to the Internet [1]. To obtain insights into data

generated from ubiquitous IoT devices, artificial intelligence

(AI) techniques such as deep learning (DL) have been widely

exploited to train data models for enabling intelligent IoT

applications such as smart healthcare, smart transportation, and

smart city [2]. Traditionally, AI functions are placed in a cloud

server or a data center for data learning and modeling [3],

which incurs critical limitations given the IoT data explo-

sion. According to Cisco, there will be nearly 850 ZB of

data generated by all people, machines, and things at the

network edge by 2021. In sharp contrast, the global data cen-

ter traffic will only reach 20.6 ZB in this year [4]. With such

a tremendous growth of IoT data at the network edge, the

offloading of massive IoT data to the remote servers may

be infeasible do to the required network resources and the

incurred latency. The use of third-party servers for AI train-

ing also raises privacy concerns such as data breaches as

the training data may contain sensitive information such as

user addresses or personal preferences [5]. It is thus highly

necessary for developing innovative AI approaches to realize

efficient and privacy-enhanced intelligent IoT networks and

applications.

Recently, the concept of federated learning (FL) has

been proposed for building intelligent and privacy-enhanced

IoT systems. Technically, FL is a distributed collaborative

AI approach that allows for data training by coordinating

multiple devices with a central server without sharing actual

datasets [6]. For instance, multiple IoT devices can act as

workers to communicate with an aggregator (e.g., a server) for

performing neural network training in intelligent IoT networks.

More specifically, the aggregator first initiates a global model

with learning parameters. Each worker downloads the cur-

rent model from the aggregator, computes its model update,

e.g., via stochastic gradient descent (SGD), by using its local

dataset, and offloads the computed local update to the aggrega-

tor. Then, the aggregator combines all local model updates and

constructs a new improved global model. By using the comput-

ing power of distributed workers, the aggregator can enhance

the training quality while minimizing user privacy leakage.

Finally, the local workers download the global update from the

aggregator, and compute their next local update until the global
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training is complete. With its innovative operational concept,

FL can offer various important benefits for IoT applications

as follows:

• Data Privacy Enhancement: In FL, the raw data are not

required for the training at the aggregator. Therefore,

the leakage of sensitive user information to the exter-

nal third-party is minimized and a degree of data privacy

is provided. Following the increasingly stringent data

privacy protection legislation such as the General Data

Protection Regulation (GDPR) [7], the privacy protection

feature makes FL an ideal solution for building intelligent

and safe IoT systems.

• Low-latency Network Communication: Since there is no

requirement for transmitting IoT data to the server, the

use of FL helps reduce communication latencies caused

by data offloading. In return, it also saves network

resources, e.g., spectrum and transmit power, in the data

training.

• Enhanced Learning Quality: By attracting much compu-

tation resources and diverse datasets from a network of

IoT devices, FL has the potential to enhance the con-

vergence rate of the overall training process and achieve

better learning accuracy rates [8], which might not be

achieved by using centralized AI approaches with insuf-

ficient data and constrained computational capabilities.

In return, FL also improves the scalability of intelligent

networks due to its distributed learning nature.

With these unique advantages, FL has been proposed for use

in a variety of IoT applications, such as smart healthcare, smart

transportation, Unmanned Aerial Vehicles (UAVs), etc. For

example, FL has facilitated smart health services by enabling

machine learning (ML) modeling without sharing patient data

across multiple medical institutions [9]. By using FL, health

data owners, e.g., hospitals, do not need to exchange their

healthcare records with each other; instead, they train the AI

model locally and only upload the trained parameters to the

aggregator for global computation. In this way, FL creates col-

laborative healthcare environments among different hospitals

to accelerate patient diagnosis and treatment, without sacrific-

ing user privacy. In transportation systems, FL has also proved

its potential to provide smart vehicular services [10], such as

autonomous driving, road safety prediction, vehicular detec-

tion with high training accuracy and privacy enhancement, by

coordinating vehicles with roadside units for collaborative data

learning. The success of recent FL-IoT applications makes

now the right time to draw attention to this prominent area

of research.

A. Comparison and Our Contributions

Driven by the recent advances of FL and IoT, several

reviews of related work have appeared. For example, the

study in [11] provided a survey of the FL concept and

analyzed its key system components such as data distri-

bution, machine learning model, privacy mechanism, and

communication architecture. Similarly, the authors in [12]

discussed the FL concept from the architecture perspective,

along with the analysis of basic applications of FL in busi-

ness. Other articles in [13]–[15] also presented the concept of

FL architectures, software, platforms, and protocols and dis-

cussed a few possible research challenges in FL deployments.

Meanwhile, the study in [16] analyzed technical challenges

in FL system, including data privacy bottlenecks and network

attacks. Moreover, the use of FL in mobile edge networks was

investigated in [17]. The key focuses are on the discussion of

the challenges in FL implementation in edge networks and

the roles of FL in edge network optimization. Recently, the

potential of FL in wireless networks has been also explored

from various aspects. For example, an overview on the use

of FL in fog radio access networks was presented in [18],

with a discussion of the fundamental FL theory with respect

to the accuracy loss correction and the model compression.

An overview on the use of FL for wireless communications

was provided in [19] where the roles of FL in 5G applica-

tions are discussed, such as edge computing, spectrum sharing,

and 5G core network management. The integration of FL

and 6G wireless applications was explored in [20], where the

key challenges of using FL for 6G networks are highlighted.

Furthermore, a survey in [21] paid attention to the discussion

of the data preservation methods applied to FL to protect users

in the FL training. Another work in [22] presented a survey on

the key architectures of FL models with a very brief introduc-

tion to the use of FL in health informatics. The potential of FL

in vehicular networks was explored in [23], and the integrated

FL-UAVs models with representative use cases were discussed

in [24]. The comparison of the related works and our paper is

summarized in Table I.

Although FL has been studied extensively in the literature,

there is no existing work to provide a comprehensive and

dedicated review of the use of FL in IoT networks and applica-

tions, to the best of our knowledge. The potential of FL in IoT

services, such as IoT data sharing, data offloading, localization,

etc., has not been explored in the open literature [11]–[15],

[17]. Moreover, a holistic discussion of the integrated FL-IoT

applications from smart transportation to smart city is still

missing [22]–[24]. These limitations motivate us to conduct a

more comprehensive review of the integration of FL in IoT

networks. Particularly, we provide a state-of-the-art survey of

the applications of FL in various key IoT services such as IoT

data sharing, data offloading and caching, attack detection,

localization, mobile crowdsensing, and IoT privacy and secu-

rity. The key contribution of this paper lies in the extensive

discussion of the use of FL in a wide range of IoT applica-

tions, including smart healthcare, smart transportation, UAVs,

smart city, and smart industry. The key lessons learned from

the survey are also given. Finally, we discuss a number of

important research challenges and highlight interesting future

directions in FL-IoT. To this end, the key contributions of this

article are highlighted as follows:

1) We present a state-of-the-art survey on the application

of FL in IoT networks, starting from an introduction to

the recent advances in FL and IoT and the discussion of

the visions behind their integration.

2) We discuss the opportunities created by FL in many

key IoT services, namely IoT data sharing, data offload-

ing and caching, attack detection, localization, mobile

crowdsensing, and IoT privacy and security.
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TABLE I
EXISTING SURVEYS ON FL-RELATED TOPICS AND OUR NEW CONTRIBUTIONS

3) We perform a holistic investigation and analysis of the

potential of FL in a number of IoT applications, includ-

ing smart healthcare, smart transportation, UAVs, smart

city, and smart industry with discussions on commu-

nications and networking aspects. Taxonomy tables to

summarize the key technical aspects, contributions and

limitations of each FL approach used in IoT are also

provided.

4) From the survey of FL-IoT services and appli-

cations, the key lessons learned are highlighted.

Lastly, we identify a couple of important research

challenges and then discuss possible directions

for future research toward the full realization

of FL-IoT.

B. Structure of the Survey

This survey is organized as shown in Fig. 1. Section II dis-

cusses the state-of-the-art of FL and IoT, and the visions of

their integration are also highlighted. We provide an exten-

sive discussion of the use of FL in important IoT services in

Section III, including IoT data sharing, data offloading and

caching, attack detection, localization, and mobile crowdsens-

ing. The opportunities brought by FL in a number of key

IoT applications, such as smart healthcare, smart transporta-

tion, UAVs, smart city, and smart industry, are then explored

and analyzed in Section IV. From the comprehensive sur-

vey, we summarize and highlight several key lessons learned

in Section V. Section VI discusses the key research chal-

lenges, including threats in FL, performance issues of FL,
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Fig. 1. Organization of this article.

TABLE II
LIST OF KEY ACRONYMS

resource management in FL systems, and heterogeneity issues

in IoT networks, along with possible directions for future

research. Finally, Section VII concludes the article. A list of

key acronyms and abbreviations used throughout the paper is

given in Table II.

II. FL AND IOT: STATE OF THE ART

In this section, we present the state-of-the-art of FL and

IoT. The visions of their integration are also discussed.

A. Federated Learning

Since its inception in 2016 [25], FL has transformed many

intelligent IoT applications by offering new AI solutions with

its distributed and privacy-enhancing nature. The arrival of

this emerging distributed AI technology has the potential to

reshape the current intelligent IoT systems with advanced FL

architectures. Following the recent advances in mobile hard-

ware and the growing concerns of privacy leakage, FL is

particularly attractive for building distributed IoT systems, by

pushing AI functions, e.g., AI data training, to the network

edge at IoT devices where the data reside. As a result, the

user data are never shared directly with the third party while

enabling the cooperative training of a shared global model,

which benefits both network operators and IoT users in terms

of network resource savings and privacy enhancement. FL

thus would be a strong alternative for traditional centralized

AI approaches and helps accelerate the deployment of IoT

services and applications at a larger scale. We here introduce

the key concept of FL and then present some important FL

categories used in IoT networks.

1) Key FL Concept: The FL concept in IoT networks is

composed of two main entities: the data clients, e.g., IoT

devices and an aggregation server located at a base station

(BS) or an access point (AP), as illustrated in Fig. 2. Let

K = {1, 2, . . . ,K} denote the set of participants who use

IoT devices such as smartphone, laptop or tablet to collabora-

tively implement an FL algorithm for performing an IoT task.

For example, in an IoT-based vehicular network [26], [27],

vehicles can join a shared FL process to sense the road traf-

fic environment and produce a comprehensive traffic routing

map for reducing traffic congestion. In the next generation of

IoT networks, FL is of paramount importance for realizing

full intelligence in IoT systems at the network edge, since a

BS cannot collect all data from distributed IoT devices for

AI/ML training. FL allows IoT users and the BS to train a

shared global model while the raw data are remained at users’

devices. In an FL process, each IoT user k participates in train-

ing a shared AI/ML model by using their own dataset Dk∈K.

Hereinafter, the FL model trained at the IoT device is called

the local model wk . After local training, IoT users upload their

local model updates to the BS that then aggregates to build a

shared model, called the global model wG . By relying on the

distributed data training at the IoT devices, the aggregation

server at the BS can enrich the training performance without
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Fig. 2. The network architecture and communication process for FL-IoT.

significantly compromising user data privacy. As shown in

Fig. 2, the general FL process includes the following key steps:

1) System Initialization and Device Selection: The aggrega-

tor chooses an IoT tasks such as human activity recogni-

tion and sets up learning parameters, e.g., learning rates

and communication rounds. A subset of IoT devices to

participate in the FL process is also selected. Several

possible selection factors for this selection can be chan-

nel conditions and the importance of local updates of

each IoT device [17].

2) Distributed Local Training and Updates: After the train-

ing configuration, the server initializes a new model,

i.e., w
0

G
, and transmit it to the IoT clients to start the

distributed training. Each client k trains a local model

using its own dataset Dk and computes an update wk

by minimizing a loss function F(wk ):

w
∗
k

= arg minF(wk ), k ∈ K. (1)

Here, the loss function can be different for different FL

algorithms [28]. For example, with a set of input-output

pairs {xi , yi}
K
i=1

, the loss function F of a linear regres-

sion FL model can be defined as: F(wk ) = 1

2
(xT

i
wk −

yi )
2. Then, each client k uploads its computed update

wk to the server for aggregation.

3) Model Aggregation and Download: After collecting all

model updates from local clients, the server aggregates

them and calculates a new version of global model as

wG =
1∑

k∈K|Dk |

K∑

k=1

|Dk |wk , (2)

by solving the following optimization problem:

(P1) : min
wk∈K

1

K

K∑

k=1

F(wk )

subject to (C1) : w1 = w2 = · · · = wK = wG .

(3)

Here, the loss function F reflects the accuracy of the

FL algorithm, e.g., the accuracy of an FL-based object

classification task [29]. Moreover, the constraint (C1)

ensures that all clients and the server shares the same

learning model over the FL task after each training

round. After the derivation of the model, the server

broadcasts the new global update wG to all clients for

optimizing the local models in the next learning round.

The FL process is iterated until the global loss function

converges or a desired accuracy is achieved.

2) FL Classifications: Reviewing the recent advances of

FL algorithms used in IoT, we here classify FL into two

key dimensions, namely data partitioning and networking

structure [11], [12].

- Data Partitioning: Based on how training data are dis-

tributed over the sample and feature spaces, this category can

be divided into three small classes, including horizontal FL,

vertical FL, and federated transfer learning [12] as summarized

in Fig. 3.

• Horizontal FL (HFL): In HFL systems, all learning

clients cooperatively train a global FL model using their

local datasets with the same feature space but different

sample space, as shown in Fig. 3(a). Due to the same
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Fig. 3. Types of FL models with data partitioning.

data feature, clients can use a same AI model (e.g., lin-

ear regression, SVM) for their local training. In a HFL

system, each client locally trains its AI model to compute

a local update. For improved security, the computed local

update can be masked by using encryption or differential

privacy techniques [13]. Then, the server aggregates all

local updates from clients and computes the new global

update without the need for direct access to local data.

Finally, the server sends back the global update to all

clients for the next round of local learning. The above

process iterates until the loss function converges or a

desirable accuracy is achieved. In IoT applications, an

example of HFL is Wake-word detection [30], e.g., voice

assistants in a smart home. In this case, users speak the

same sentence (feature space) with the different types of

voice (sample space) on their smartphones and then the

local speaking updates are averaged by a parameter server

to create a global model for voice recognition.

• Vertical FL (VFL): Different from HFL, VFL solves the

shared AI model learning in a network of clients which

have the same sample space with different data feature

spaces [31], as shown in Fig. 3(b). In VFL, an entity

alignment approach is adopted to collect overlapped data

samples of clients. These samples are combined to train

a common AI model using encryption techniques. An

example of VFL in IoT applications can be the shared

learning model among entities in a smart city, e.g., e-

commerce companies and a banking institution. In a

smart city, an e-commerce company and a bank (different

data feature) which serve city customers (same sample

space) can join a VFL process to cooperatively train an

AI model using their datasets, e.g., historic user payment

at e-commerce companies and user account balance at

the bank. Using this model, VFL can estimate the optimal

personalized loans for all customers based on their online

shopping behaviours.

• Federated Transfer Learning (FTL): FTL [32] aims to

extend the sample space from the VFL architecture with

more learning clients that have datasets with differ-

ent sample space and different feature space, as shown

in Fig. 3(c). FTL transfers features from different fea-

ture spaces to the same representation that is used to

train data aggregated from multiple clients. Also, to pre-

serve data privacy and ensure security in the learning,

encryption techniques such as random masks are also

employed to encrypt gradient updates in the model update

stage. Based on the combined updates from learning

participants, the aggregation server can perform model

learning to find the global update by minimizing a loss

function [33]. In IoT networks, FTL can be used in

various domains, such as federated healthcare. For exam-

ple, FTL can support disease diagnosis by collaborating

different countries with multiple hospitals which have dif-

ferent patients (sample space) with different medication

tests (feature space). In this way, FTL can enrich the

shared AI model output for improving the accuracy of

diagnosis.

- Networking Structure: From the networking perspective,

this category can be divided into two small classes, includ-

ing centralized FL and decentralized FL [11] as summarized

in Fig. 4.

• Centralized FL (CFL): CFL is one of the most popular

FL architectures used in FL-IoT systems. As shown in

Fig. 4(a), a CFL system contains a central server and a

set of clients to perform an FL model. In a single round of

training, all clients participate in training a network model

in parallel using their own datasets. Then, all the clients

transmit the trained parameters to the central server which

aggregates them by using a weighted averaging algorithm

such as Federated Averaging (FedAvg) [34]. Then, the

computed global model is sent back to all clients for the

next round of training. At the end of the training process,

each client achieves a same global model along with its

personalized model. In CFL, the server is regarded as the

key component of the network for coordinating the aggre-

gation and distributing the model updates to the clients
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Fig. 4. Types of FL models with networking structure.

to accomplish an FL task, such as object detection [35],

while keeping training data secure and private.

• Decentralized FL (DFL): Unlike CFL, DFL is a network

topology without any central server to coordinate the

training process. Instead, all clients are connected

together in a peer-to-peer (P2P) manner to perform AI

training, as shown in Fig. 4(b). In this way, in every com-

munication round, the clients also perform local training

based on their own dataset. Then, each client implements

model aggregation using the model updates received

from neighbor clients through the P2P communication

to achieve a consensus on the global update [36]. DFL is

designed to fully or partially replace CFL when the com-

munication with the server is not available or the network

topology is highly scalable. Due to the contemporary

features, DFL can be integrated with P2P-based commu-

nication technologies such as blockchain [37] to build

decentralized FL systems. Such that, the DFL clients

can communicate via blockchain ledgers where model

updates can be offloaded to the blockchain for secure

model exchange and aggregation [38]. In the following

sections, some DFL systems based on blockchain will be

explained in details.

B. Internet of Things

With its ubiquitous sensing and computing capabilities, IoT

is envisioned to connect a wide range of objects and things to

the network, aiming to facilitate customer services and applica-

tions. To provide intelligence for IoT systems, AI techniques

such as ML and DL have been widely adopted in IoT for

enabling intelligent IoT systems [39] thanks to their ability to

discover knowledge of IoT data and get insights for realizing

different smart applications, e.g., human activity classification,

vehicular traffic control, weather prediction. In the following,

we analyze two key aspects of IoT networks, namely IoT data

analytics and intelligent service provision.

1) IoT Data Analytics: In IoT networks, AI techniques can

be integrated to build data analytic functions to process data

collected from ubiquitous IoT devices such as sensors, actu-

ators, smart phones, personal computers, and radio frequency

identifications (RFIDs). ML/DL approaches such as neural

networks have advanced computational models with multiple

processing layers to learn the representations of data from

different levels of abstraction, which helps extract useful fea-

tures from natural data without requiring sophisticated feature

engineering and tuning. These features make them attractive

for handling different types of IoT data such as different

modalities (image, time-series, video and text) or big data vol-

ume (data streaming from millions of sensing devices) [39].

For example, a popular AI technique called Recurrent Neural

Network (RNN) includes multiple links with neurons that are

connected together to create a directed graph which allows

RNNs to process data as temporal sequences of variable

lengths in data processing tasks. The details of popular AI

techniques used in data analytics can be found in our recent

survey [40].

2) Intelligent Service Provision: Based on intelligent data

analytics, AI can offer a number of IoT services. For example,

RNN can be used to predict traffic flow by using a graph of a

vehicular road network [41]. That is, the topology of the road

map is transformed into a spatio-temporal graph to create a

structural RNN, which then can capture spatio-temporal fea-

tures of the traffic speed data in time-series forms from sensors

mounted on road segments. Another work in [42] leverages

a set of ML classifiers such as Bayes network, random for-

est, and support vector machine (SVM) to provide intelligent

indoor localization based on data collected from capacitive

sensors in room settings. Moreover, DL has been used in [43]

for human activity recognition. Here, an RNN model is built

to extract deep features from Wi-Fi signal data via offline

training that allows to remove redundancy information in raw

data. Then, a Long-short Term Memory (LSTM) architecture

is combined with RNN to provide further feature extraction

for better detection accuracy with low computational complex-

ity. Such representative use cases clearly demonstrate the great

potential of AI techniques in IoT networks. With the help of
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Fig. 5. A typical FL-IoT system.

FL, AI can achieve a much better level of scalability and pri-

vacy preservation by coordinating multiple devices to perform

AI training at the edge of IoT networks while keeping data

safe and secure at local devices. This also opens the door for

newly emerging IoT services and applications which will be

explored in this paper.

C. Visions of the Use of FL in IoT

In traditional IoT systems [39], [40], AI functions are often

placed on data centers or cloud servers, which is obviously

not scalable to the exponential growth of IoT devices and the

high data distribution of large-scale IoT networks. Moreover,

given a massive amount of ubiquitous IoT datasets in the

big data era [4], it is infeasible to transmit a huge volume

of data over complex environments to the data center for AI

training. FL can provide more attractive features for enabling

distributed intelligent IoT services and applications by using

the computational capabilities of multiple IoT devices for data

training, as shown in Fig. 5. This new architecture not only

provides high quality of experiences for users in terms of low

communication latency and privacy protection, but also ben-

efits network operators such as channel bandwidth savings

and more efficient computing resources of network servers

for AI implementation. Indeed, FL has the great potential to

transform current IoT systems, with many newly emerging

services and applications. For example, the use of FL enables

distributed data learning by leveraging computational capabil-

ities of IoT devices to achieve an common objective, such

as offloading latency minimization [44]. Each mobile device

acts as an FL client to train a local model and transmit the

computed updates to an aggregator for overall model compu-

tation. The federation of mobile devices helps eliminate the

need for a centralized data processing architecture, instead

of performing data training locally using their own dataset

without degrading learning performances and compromising

user privacy values. FL is also promising to enable other IoT

services such as attack detection or localization. For example,

enabled by the privacy enhancing features of FL, federated

attack detection and defense solutions can be realized using

FL where each IoT device joins to run an AI model, such

as a DNN, in order to train the threat model to fight against

adversaries [45]. The cooperation of multiple devices accel-

erates the learning process and improves learning accuracy

while mitigating the risks of attack on the model learning.

Moreover, FL is integrated with a centralized indoor localiza-

tion model [46] that relieves fingerprint collection workload

and reduces network costs with privacy awareness, forming a

decentralized indoor localization scheme by using the compu-

tational capability of distributed mobile devices. The useful-

ness of FL thus opens new opportunities for emerging localiza-

tion services, such as localization in mobile indoor networks

with global positioning system, mobile target tracking and

navigation.

In addition to that, FL is able to provide new directions

for enabling smart IoT applications, such as smart health-

care, smart transportation, and smart city. In fact, FL has

the potential to support smart healthcare and reshape the cur-

rent intelligent healthcare systems by proving AI functions

for supporting healthcare services while enhancing user pri-

vacy and low latency with the cooperation of multiple entities

such as health users and healthcare providers across medi-

cal institutions [47]. Furthermore, FL has been introduced to

bring AI functions to the network edge to empower smart

transportation, involving a number of participants, such as

vehicles, to collaboratively train globally shared AI models

without the need for long data transmission and compromis-

ing user privacy. Some possible applications of FL in smart

transportation can be vehicular traffic planning and vehicu-

lar resource management. FL is also a very useful solution

to replace traditional centralized ML approaches in traffic

prediction tasks [10], [26] by running ML models directly at

the edge devices, e.g., vehicles, based on their datasets such

as road geometry, traffic flow and weather. The use of massive

data from multiple vehicles and the large computational capa-

bility of all participant help provide better traffic prediction

outcomes, which cannot be achieved by using centralized ML

techniques with less dataset and limited computation. FL has

been exploited to provide distributed AI functions for decen-

tralized smart city applications such as intelligent smart city

data management [48]. In this context, FL is helpful to struc-

ture data streams from ubiquitous IoT devices that work as

FL clients for performing local learning without sharing their

data to external third-parties. This would reshape the cur-

rent forms of smart cities by providing newly exiting services

such as smart urban communication, social economy shar-

ing, social activity monitoring, and interconnection of global

citizens.

In the following sections, we will present an extensive sur-

vey on the use of FL for IoT services and applications through

different use cases. The roles and benefits of FL in IoT systems

are discussed in details, and some key lessons obtained from

the survey are also highlighted.
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Fig. 6. The architecture of federated learning-based data sharing for IoV with blockchain [52].

III. FL FOR IOT SERVICES

In this section, we present a state-of-the-art survey on the

use of FL for IoT services, including IoT data sharing, data

offloading and caching, attack detection, localization, mobile

crowdsensing, and IoT privacy and security.

A. FL Serving as an Alternative to IoT Data Sharing

Data sharing is one of the key services in IoT, aiming to

transfer data over a shared network to serve end users in a

specific application. Instead of sharing the raw IoT data, FL

offers an alternative of sharing learning results to enable intel-

ligent IoT networks with low latency and privacy preservation.

The work in [49] presents a collaborative data sharing model

for industrial IoT applications where data owners and data

requestors can achieve secure and fast data exchange among

decentralized multiple parties. Due to the resource constraints

of IoT users, an FL scheme is designed that enables the estima-

tion the types of data sharing requests with queries submitted

by a requester to return the correctly computed results towards

these queries for sharing. Moreover, to protect the sharing pro-

cess against external attacks, a blockchain [50] is integrated

with the FL architecture to build immutable data blocks that

are controlled by all parties for transparency and improvement

of data ownership without the need for any central author-

ity. Once the sharing requests or data are recorded in the

blockchain, they cannot be modified or changed which thus

mitigate the risks of data leakage and improve network security

accordingly. Simulation results from real-time datasets confirm

the effectiveness of the proposed FL-based sharing scheme

with high learning accuracy and improved security. In line with

the discussion, the authors in [51] develop a federated tensor

mining framework in industrial IoT based on the FL concept

to integrate multisource data for enabling tensor-based mining

with security guarantees. More specifically, multiple factories

cooperate to join the tensor mining by sharing their data, which

have been encrypted using a homomorphic encryption tech-

nique, with a centralized server. Such that, the server only

collects the ciphertext data and federates them into a tensor,

while raw data are kept at local factories, which thus protects

data privacy for the tensor mining. Although eavesdroppers

can attack the centralized server to compromise the aggregated

ciphertext and attackers can read ciphertext on communication

channels, they cannot get the key for data decryption. By using

two industrial alliances in Beijing and Shanghai with over 100

IoT nodes per factory for simulations, the proposed federated

model can be improved by 24% on mining accuracy com-

pared to the privacy-preserving compressive sensing method,

and provide high security degrees and efficient attack detection

without performance degradation.

FL has been applied to realize distributed data sharing in

vehicular networks. The research in [52] suggests an asyn-

chronous federated data sharing framework for Internet of

Vehicles (IoV) where each vehicle acts as an FL client to coop-

eratively share data with an aggregation server at a macro BS

(MBS). Vehicles with different service demands such as traffic

prediction or path selection can make a data sharing request

to the MBS. By performing a shared global model based on

accumulated vehicular datasets, the MBS transforms the shar-

ing process into a computing task to solve sharing requests

of vehicles based on an actor-critic reinforcement learning

framework. This approach learns to analyze the behaviors of

participating nodes classified as bad or good nodes, aiming to

support the intelligent data sharing decision by selecting the
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optimized participating nodes with sharing cost minimization.

To further improve security and reliability of the data shar-

ing, blockchain has been used that aims to verify the model

parameters and store them in immutable ledgers. The diagram

for such a data sharing scheme based on FL and blockchain

is illustrated in Fig. 6.

Moreover, an asynchronous FL scheme for resource sharing

in vehicular networks is also introduced in [53]. Here, a local

differential privacy mechanism that can preserve the privacy

of local updates, is integrated into gradient descent training for

enabling secure and robust FL sharing. Particularly, to avoid

high communication cost and reduce security risks caused by

the centralized FL architecture, a decentralized FL model is

designed that allows to aggregate vehicles’ model updates at

distributed MBSs. Experiments from practical datasets show

the promising results of the proposed decentralized FL scheme

with better accuracy and privacy protection over traditional

centralized FL approaches. An FL scheme is also consid-

ered in [54] for knowledge sharing in vehicular networks

with hierarchical blockchain. The proposed sharing architec-

ture includes two main chain, i.e., ground chains and a top

chain. To be clear, ground chains contain multiple vehicles

as FL clients to implement local learning using their own

hardware and road side units (RSUs) as decentralized FL

aggregators that work in a blockchain network to securely

collect transactions within their coverage. Meanwhile, the

top chain maintains multiple RSUs that are responsible for

performing FL model computation. The FL results are then

appended into the block ledger for sharing among RSU and

vehicles for security and traceability.

Furthermore, to facilitate the data sharing of non-

independent and identically distributed (non-IID) among edge

devices, a HFL scheme is proposed in [55] for the shared learn-

ing between edge devices as participants and a cloud server

as the aggregator. To deal with the issue of weight divergence

caused by traditional FL, a federated swapping model is further

developed based on a few shared data during the HFL that can

mitigate the adverse impact of non-IID data. Also, a semisu-

pervised learning scheme is adopted to predict objects for

video analysis applications among edge devices. By using real-

world video data, the proposed FL scheme can achieve high

accuracy in image classification, with an increase of 3.8%, and

the overall performance of object detection task is improved

by 1.1%, compared to the conventional FedAvg algorithm.

However, the reliance on a remote cloud for FL operation can

result in long communication latency. For this problem, the

authors in [56] suggest a cost-efficient optimization framework

that can coordinate edge devices and cloud by minimizing

the communication latency. In this regard, the scheduling of

shared data and admission control along with accuracy tuning

are jointly optimized. The simulation results verify the fea-

sibility of the proposed algorithm with reduced latency and

privacy enhancement in various network settings. Similarly,

the study in [57] also considers an FL scheme in a mobile

IoT network consisting of cloud servers and mobile devices

as learning clients. The potential of FL in mobile cloud is

investigated via a video recommendation system where each

cloud collaboratively trains a local FL algorithm enabled by

a dual-convolutional probabilistic matrix factorization model

with user profile and textual information of videos as non-IID

datasets. By using computed local updates, a federated recom-

mendation algorithm is designed to enable information fusion

among clouds with communication latency awareness. A draw-

back of this proposed scheme is the lack of security protection

design for cloud-based learning in the FL process. To over-

come this challenge, a secure data collaboration framework

is studied in [58] for federated data learning among multiple

parties, including public data center and private data center,

enabled by a blockchain ledger. The data usage event and FL

updates are offloaded to the blockchain before transmitting to

the central server for secure aggregation, while the data control

of users is ensured.

B. FL for the Optimization of IoT Data Offloading and

Caching

In addition to data sharing, FL has proved its strong ability

to facilitate IoT data offloading and caching services in many

applied domains.

1) FL-Based Optimization for IoT Data Offloading:

Recently, the role of FL in IoT data offloading has been inves-

tigated. For example, an FL-based data offloading scheme for

IoT networks is proposed in [59] based on deep reinforcement

learning (DRL). Such that, multiple IoT devices act as DRL

agents to build an intelligent offloading policy for offloading

cost minimization with respect to different task probabilities

via the FL concept. This solution not only enhances data pri-

vacy due to the distribution of data learning in different agents

but also mitigates the burden posed on the IoT network due to

the centralized offloading architecture. Moreover, the cooper-

ation of IoT devices under the guidance of the FL process is

able to improve the overall training accuracy of the learning

model. Simulations from different offloading task probabili-

ties indicate an improvement in the offloading performance

in terms of high system utility and low task transmission

latency. The use of FL for edge data offloading is also inves-

tigated in [44] where mobile devices collaboratively learn a

shared offloading model in edge computing. The key objective

is to maximize learning accuracy with respect to offloading

latency and energy consumption constraints. Each FL client (or

mobile device) acts as a local optimizer to solve a Lagrangian

Dual problem formulated to achieve optimal offloading. Based

on the proposed FL scheme, the offloading performance can

be improved in terms of better accuracy compared to the

heterogeneity-unaware equal task allocation approach [60].

An FL-empowered task offloading problem with mobile edge

computing (MEC) has been also analyzed in [61]. FL is com-

bined with SVM to predict the user association for minimizing

energy costs spent on task computation and transmission his-

tory. This can be done by using a learning federation approach

with FL which allows each mobile user to learn an SVM model

using its own dataset and then exchange the local updates for

computing a global model based on the constraints of user

association and task data size. As a result, the cooperation

of users helps the BS to determine the best user association

for offloading, aiming to reduce the energy consumption with

high learning accuracy.
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In terms of video data offloading, the authors in [62] suggest

an FL-based solution for federated video analytics systems.

An MEC server is built as a controller to control the resize

rate by choosing different NNs to adjust the size of frames

offloaded in the network. Then, edge devices and the MEC

server join to learn an FL algorithm to guide the video offload-

ing process across the edge network in a fashion the learning

accuracy is ensured while the offloading latency is minimized.

Meanwhile, an offloading scheme for vehicular networks with

FL is recently considered in [63]. Due to the user privacy con-

cerns raised by the direct data offloading, FL has been used

to build a cooperative learning architecture in which vehicles

and RSUs can share a common learning model. This advanced

approach potentially reduces learning costs with respect to

agent selection and data sharing in task offloading. Recently,

FL is leveraged in [64] to characterize an offloading solution

for data processing tasks in fog computing networks. By using

FL, each mobile device can perform locally model learning

for offloading optimization with respect to resource limita-

tions and model accuracy without sharing raw data with the

fog server for privacy protection. In particular, mobile devices

can exchange their model updates together to minimize their

model errors and adjust learning rates in a way the learn-

ing cost is optimized. By simulating with MNIST datasets

consisting of thousands of images, the proposed FL-based

offloading scheme can improve network resource utilization

without sacrificing the learning accuracy of local models.

2) FL-Based Optimization for IoT Data Caching: IoT

data offloaded from mobile devices can be cached by edge

servers [65] where FL can play an important role in estab-

lishing intelligent caching policies, in order to cope with the

explosive growth of mobile data in modern IoT networks.

The use of FL can help overcome the challenges faced by

traditional learning approaches in terms of high privacy con-

cerns since data users may not trust the third-party server

and thus hesitate to offload their private data for caching.

As shown in [66], FL is very useful to build proactive data

caching schemes in edge computing without the need for

direct access to user data to predict the most popular files for

caching. By using the FL concept, mobile users can down-

load the NN model from a cache entity, such as an edge

server, for local training before sending back the model to

the server for aggregation in an iterative manner. This enables

data file recommendation at the server based on the simi-

larity of users and the files using latent features. Compared

to baseline methods such as Oracle (Future caching demands

are known in advance), random (random content selection)

and Thompson Sampling (win and loss-based selection), the

FL-enabled scheme achieves a better caching efficiency with

increasing cache size and communication rounds. FL is also

adopted in [67] to train DRL agents to manage communication

and computation usage in MEC systems for task offloading

and content caching at MEC servers. By using FL, user equip-

ments (UEs) do not need to offload their data to the MEC

servers; instead, they train the DRL model at local devices and

only submit the model parameters to the server. This learning

solution aims for privacy protection and spectrum resource

savings as well as ensures the robustness of the learning due

to less impacts on unbalanced data and poor communication at

any learning client. The role of FL in supporting DRL train-

ing for content replacement in data caching is also verified

in [68] in which UEs can cooperatively learn a shared model

and keep raw data local, while the cloud at a BS can learn

a global model by averaging local updates. Particularly, the

content replacement can be formulated as a Markov decision

process that is cooperatively solved by UEs via the FL process.

To estimate the content caching placement at terrestrial

BSs in UAV-based 6G networks, a 2-stage FL algorithm is

designed in [69] among mobile users, UAVs/BSs, and a het-

erogeneous computing platform. In the FL architectures, each

mobile user holds a deep neural network (DNN) model that

contains shallow and dense layers. The parameters of shal-

low layers help learn the general features of content access,

while the parameters of dense layers support the learning of

specific content features and user context information. As a

result, the global updates at the BSs can achieve a better insight

of data traffic flow for improving caching performances. Two

real-word datasets including 100,000 ratings on 1682 movies

from 943 users and over a million ratings on 3883 movies

from 6040 users are employed to evaluate the FL algorithm,

showing a better caching efficiency with improved learning

accuracy. Recently, FL is integrated with blockchain to build

secure learning schemes for content caching in edge com-

puting [70]. Smart contracts [71], a kind of self-executing

program running on the blockchain, are employed to perform

access verification and credit investigation during the content

offloading and caching at the edge servers. Then, IoT devices

participate in the local training using their own datasets to

learn the features of users and files, and share the gradient

updates to the edge server for popular file estimation, aiming

to improve the overall cache hit rate. By compressing gradients

at the local devices, the proposed scheme can further reduce

communication overhead during the FL process. Simulations

from MovieLens datasets confirm a significant improvement

of caching efficiency over the traditional FL-based caching

algorithms. Meanwhile, the authors in [72], [73] pay attention

to content popularity prediction with FL. In fact, the popular-

ity prediction of proactive edge caching at BSs can mitigate

the traffic load and enhance user experience, by selecting the

most popular and important contents in the offloaded data

package. FL comes as a viable solution to estimate the file

popularity without disclosing sensitive user information and

user preference. In this context, a NN can be used to train

the preference-weighted file popularity at local devices using

historic request records, aiming to enhance the cache hit rate.

By using FL, local updates can be averaged at a global edge

server to predict popular files to be cached to balance the data

usage experience of all participants.

C. FL for IoT Attack Detection

The popularity of IoT applications and services has become

the main targets of malicious adversaries that can attack

AI/ML models integrated in IoT networks, by modifying data

inputs or changing learning network weights which can lead

to erroneous predicted outputs [74]. Many solutions have been
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Fig. 7. Federated attack detection and defense in FL-based IoT networks.

proposed to cope with attacks in IoT such as ensemble diver-

sity or adversarial training [75], but they are mostly applied

to a specific type of attack and not scale well to distributed

IoT networks. FL has emerged as a strong alternative to pro-

vided distributed intelligence for IoT systems with the ability

to detect a wide range of attacks and support network defense

solutions [45]. Enabled by the privacy enhancement feature

of FL, a federated attack detection and defense solution is

built in a fashion that each industrial IoT device joins to run

a DNN model locally, in order to retrain the threat model to

fight against adversaries. In this process (as shown in Fig. 7),

each IoT device first produces adversarial samples to create a

retraining set; then, the local trained updates are offloaded to

a cloud server for synchronization. Finally, the cloud server

computes a global model and then sends back to the local

devices for the next round of learning. The cooperation of

multiple devices accelerates the learning process and improves

the detection of adversaries while mitigating the risks of attack

on the model learning. In such a distributed learning envi-

ronment, to ensure robust and safe FL operations, developing

attack detection inside the FL architecture is essentially impor-

tant. An attack detection approach is proposed in [76] for

robust and safe FL process. To be clear, a stochastic dynamical

system is designed to evaluate the aggregated parameters in

each FL round by using derive explicit conditions that prevent

attacks from interfering the FL process at the aggregator. This

work motivates more innovative solutions for attack detection

and prevention for the FL, such as in [77]. Here, a spectral

anomaly detection mechanism is built at the global server to

identify abnormal updates by verifying their low-dimensional

embeddings to remove noise and potentially malicious sam-

ples while remaining useful data features. In practical leaning

scenarios, clients such as IoT devices may be malicious ones

and be curious about the model updates of other users at the

global server. In this regard, the recognition and detection of

malicious nodes are of paramount importance for safe FL [78].

A solution using a pre-trained anomaly detection model is

necessary to identify abnormal behaviors of clients in each

communication round, by producing the surrogates of the local

model weight updates at the global server. As a result, mali-

cious clients and attacks can be detected and eliminated from

the FL process while the federated model is preserved [79].

In addition to that, FL models can also be used to auto-

matically detect adversarial clients in wireless networks, such

as IoTs [80]. Particularly, a dynamic linguistic quantifier is

designed at the aggregation server to evaluate the weight con-

tribution of each client in order to filter out adversarial clients

and detect attacks such as model update poisoning attacks,

data poisoning attacks, and evasion attacks.

Moreover, FL also facilitates the detection of compromised

IoT devices in federated IoT networks. In fact, with the sophis-

tication of attacks and threats, it is challenging to detect them

with current solutions [81] that often recognize attacks by

making deviations from normal behaviour profiles of users,

which suffers from high false alarm rate and long detec-

tion delay. Moreover, IoT data are highly distributed over the

large-scale network and each IoT device often has low com-

puting power to run a detection algorithm. To overcome these

challenges, FL comes as a natural solution to perform attack

detection algorithms for distributed IoT networks [82]. Each

IoT device can submit a detection profile obtained by local

training to a security gateway where local updates are aggre-

gated to build a common detection model for the IoT network.

The involvement of a large number of IoT devices with diverse

features and massive datasets enhances the learning accuracy

for better attack detection efficiency. Experiments with Mirai

malware on a testbed confirm a high detection rate with 95.6%

with low learning time, compared to the centralized learning
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approach at an IoT server. Another FL-based attack detec-

tion scheme is also considered in [83] where smart filters are

built at IoT gateways to identity and prevent cyberattacks in

industry 4.0. More specifically, each filter is built based on

a DNN that trains local datasets collected from its subnet-

work such as a smart farming or an energy plant. The trained

model updates are then averaged at a central server to per-

form a detection algorithm. By integrating massive updates

from multiple IoT gateway, the server can generate a high

learning accuracy rate without compromising user privacy and

saving network channel spectrum resources. FL has been also

used to support federated intrusion detection in IoT [84] for

replacing traditionally centralized learning-based approaches.

An important issue of designing intrusion detection systems

is quick detection while user information is protected. FL can

meet this requirement by distributing AI/ML models to the

local devices and using the computational capability of all

clients such as routers for building a strong attack defense

mechanism for better detection rate. To improve the scalability

of intrusion detection, a line-speed and scalable FL approach

is introduced in [85]. Each IoT device runs a binarized NN

for packet classification at the line speed of nearby switches

in a scalable manner, while preserving privacy of network

traces. Interestingly, FL can be deployed on mobile devices

such as Android phones for malware detection [86]. A safe

semi-supervised ML algorithm is integrated at each Android

phone that cooperatively contacts with other phones to build a

shared malware classification algorithm at a data server. The

results obtained from simulations show a high accuracy of

malware app detection without false alarms.

D. FL for IoT Localization

The proliferation of smart devices enables a wide range

of location-based services which often rely on localization

systems. Wireless signals and channel state information (CSI)

can be employed to determine the preferred reference loca-

tions of the target object. Traditional AI/ML-based localization

systems often suffer from the lack of robustness due to the

dynamics of mobile environments and privacy leakage bottle-

necks caused by the centralized data processing architecture

for object localization [87]. FL can provide interesting solu-

tions for enabling efficient and privacy-preserved localization

services. As an example, FL is used in [88] to build a privacy-

preserving indoor localization model in residential building

settings. Mobile users can build their AI models locally by

using received signal strength measurements from beacons

with labelled locations, while the central server builds a global

multilayer perceptron model from local updates for accurate

localization estimation. By using available RSS data from

UJIIndoorLoc database [89], a simulation is performed for the

proposed FL scheme, showing a significant improvement in

the localization accuracy while privacy is preserved in differ-

ent indoor settings. The potential of FL in indoor localization

services is also verified in [46] to solve the issues of repetitive

task learning and privacy leakage risks due to the reliance of a

central AI server. In the proposed architecture, FL is integrated

with a centralized indoor localization model that relieves fin-

gerprint collection workload and reduce network costs with

privacy awareness, forming a decentralized indoor localization

scheme by using the computational capability of distributed

mobile devices. Each device runs a deep learning model using

labeled fingerprint data and unlabeled crowdsourced data and

then exchanges the computed updates with a central server for

building a global statistical localization model. The use of FL

clearly shows a better performance in terms of lower com-

munication cost, privacy protection, and robustness in various

fingerprint data distribution settings.

Another work in [90] also leverages FL to build a feder-

ated localization scheme for WiFi networks. By using WiFi

signals that represents predefined reference locations, mobile

devices can build their local fingerprints to run a DNN model

followed by a deep autoencoder for noise removal. Then, the

local weights are combined by a central server to generate a

general model. Besides, to protect the communication chan-

nel during the offloading phase, a homomorphic encryption

technique is adopted to encrypt local updates. An experiment

is conduced in a laboratory corridor setting, indicating a high

localization estimation accuracy with high security. Similarly,

a Federated Localization (FedLoc) framework is considered

in [91] for providing accurate localization services in IoT

networks. By cooperating multiple users in the model learning

using local fingerprint data, FL minimizes the bias of loca-

tion estimation with privacy protections. The usefulness of FL

opens new opportunities for emerging localization services,

such as localization in mobile indoor networks with global

positioning system (GPS), mobile target tracking and naviga-

tion based on inertial sensors, and wireless traffic prediction

with BSs.

E. FL for IoT Mobile Crowdsensing

With the development of IoT, mobile crowdsensing is

designed to take advantage of pervasive mobile devices for

sensing and collecting data from physical environments to

serve end users. In intelligent mobile crowdsensing systems,

traditional AI/ML architectures have been deployed for model

training and processing [92]. However, these traditional crowd-

sensing solutions usually require direct access to user data,

which leaves a chance for privacy leakage. Moreover, the

use of a central server to handle all sensing data is not a

scalable solution, making it hard to cope with the massive

volume of data from ubiquitous IoT devices. FL would be

a very promising tool to accelerate the learning and train-

ing for crowdsensing models. In fact, FL has been used in

recent works with encouraging results. For example, FL is

used to support automatic content suggestions for on-device

keyboards [93], by sensing and suggesting relevant contents,

e.g., search queries, based on input texts from a network of

smartphones. The feasibility of FL has been tested in Gboard

on Android phones where each phone runs a query suggestion

model based on local on-device information and collaborates

with a cloud server. By using a SGD-based optimization

model, the cloud can train the text prediction model to generate

a suggested query when a user types on the phone. The study

in [94] shows an FL-based mobile crowdsensing scheme, with

a focus on privacy-preserving XGBoost training with the coop-

eration of multiple mobile users. A secure gradient aggregation
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Fig. 8. Federated learning for blockchain-based crowdsensing in UAV
networks.

algorithm is designed by integrating homomorphic encryp-

tion with secret sharing, which prevents the central server

from guessing decryption result before operating aggregation.

Simulations MNIST datasets reveal very competitive results,

with high accuracy rate (over 98%), and a reduction of 23.9%

runtime and 33.3% communication latency for gradient aggre-

gation. Similarly, a security mechanism is proposed in [95]

along with FL for secure XGBoost training in mobile crowd-

sensing with cloud computing. The FL model takes three main

entities into account building the federated system, including

users, edge servers and cloud. Here, users run classification

and regression tree models at local devices and then offload

the computed updates to the cloud for averaging protected by

a security protocol built on the edge layer. Given a crowd-

sourcing/crowdsensing system, the work in [96] focuses on

designing an incentive mechanism [97] by analyzing the inter-

actions between the participating clients and the aggregator

at an edge server to minimize learning costs. To be clear,

each client selects a learning strategy for solving its local

sub-problem to ensure desired accuracy with lowest partici-

pation costs, while the central server builds a utility function

by averaging local updates to offer reward to the clients. This

incentive process is modelled by a two-stage Stackelberg game

that can outperform the heuristic approach in terms of a util-

ity gain improvement by 22% for different system settings.

The game theoretic approach is also adopted in [98] for the

FL-based crowdsensing in IoT networks. MEC servers, cloud

and IoT sensors cooperatively join to build a shared learning

model in a fashion the utility of MEC operators is maximized

by considering a tradeoff between the revenue and energy cost

via a Stackelberg equilibrium formulation.

In traditional FL systems, the reliance on a central server

for aggregation can result in high communication overhead

and less robustness due to the heterogeneity of different IoT

devices. The authors in [99] solve these problems by pro-

viding a distributed FL framework in a sensing platform for

distributed decision making and learning among IoT devices.

To mitigate latency incurred by the central server communi-

cation, an infusing redundancy solution is considered to speed

up distributed stochastic gradient descent calculation based

on a distributed of datasets. In this way, each IoT node only

needs to compute the model based on its mini-batch instead

of the whole datasets, which will reduce computation latency

accordingly. Recently, FL is also employed to build a secure

UAV-based crowdsensing approach [100], as shown in Fig. 8.

Instead of relying on a central aggregator, blockchain is intro-

duced to decentralize the learning process by integrating UAVs

with task publishers with a blockchain ledger that make the

data training and contribution verification among UAVs secure

and transparent. To further improve privacy for the local learn-

ing updates, a local differential privacy technique is adopted

in communication rounds with aggregate accuracy guarantees.

Based on that, an incentive mechanism is also built to eval-

uate the efficiency of the interactions between publishers and

UAVs. Experiment results from a MNIST dataset including

60,000 training samples and 10,000 test samples with con-

volutional neural networks (CNNs) as the learning model at

UAVs show a high utility of UAVs and low aggregation error

along with low convergence latency.

F. FL-Based Techniques for Privacy and Security in IoT

Services and Networks

In IoT networks, security and privacy remain huge issues for

IoT devices, which introduce a whole new degree of attacks

and privacy concerns for consumers. This is because these

devices not only collect personal information but can also

monitor user activities. Many AI/ML algorithms have been

adopted to address security and privacy issues, by their abil-

ity to classify and detect threats and privacy bottlenecks in

IoT networks. However, these traditional solutions also have

several limitations, including the need for centralized IoT

data collection and user privacy exposure due to public data

sharing. FL appears as an attractive approach for enabling

intelligent privacy and security services in IoT networks. For

example, FL has been used for data privacy preservation

in vehicular IoT networks [101] where two-phase mitigat-

ing scheme is proposed for intelligent data transformation

and collaborative data leakage detection. Different from the

existing schemes, the proposed vehicular FL solution allows

participants (e.g., vehicles) to train models locally with their

own data without a centralized curator, which contributes sig-

nificantly to protecting their data privacy. Moreover, a joint

mapping approach is performed over multiple vehicles to

ensure the utility of data after the transformation, allow-

ing for mapping raw data of multiple parties into learned

data models. The learned model contains valid information

to be further used in tasks such as resource allocation without

revealing their raw data, which further enhances privacy pro-

tection. Similarly, to avoid the privacy threat to vehicular IoT

networks, a new approach is suggested in [102] using FL com-

bined with local differential privacy which aims for perturbing

gradients generated by vehicles while not compromising the

utility of gradients. This would prevent attackers from deduc-

ing original data even though they obtain perturbed gradients.
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TABLE III
TAXONOMY OF FL-IOT SERVICES

As a result, the FL server gathers and averages users’ submit-

ted perturbed gradients to obtain the average d result to update

the global model’s parameters without privacy concerns. In

FL-IoT systems, a centralized entity is often used to perform

model aggregation which introduces single-point failures and

privacy concerns due to the curious server. Blockchain [37] can

be used to address this issue, aiming to replace the centralized

aggregator in the traditional FL system [103]. A consortium

blockchain is used to store FL model updates permanently.

More specifically, a manufacturer first uploads an initial model

to the blockchain so that customers can send requests to obtain

that model. After training models locally, customers upload

their locally trained models to the blockchain and a hash will

be sent to the blockchain as a transaction. The hash can be

used to retrieve the actual data from blockchain storage. The

leader and miners are responsible for confirming transactions

and calculating the averaged model parameters to obtain a

global model. To protect privacy of customers and improve

the test accuracy, the scheme also enforces differential pri-

vacy on the extracted features for providing a new level of

privacy for FL training.

Moreover, FL has been applied to protect security in IoT

services and networks. For instance, the work in [104] consid-

ers an NN-based FL scheme for network anomaly detection

such that the participants do not share their training data

to a third party, which can prevent the training data from

being exploited by attackers. A multi-task learning method is

proposed by using a distributed DNN which can perform the

network anomaly detection task, traffic recognition task, and

traffic classification task simultaneously. Experimental results
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TABLE IV
TAXONOMY OF FL-IOT SERVICES (CONTINUED)

demonstrate the effectiveness of FL in detecting network

anomalies, achieving an accuracy of 97.81% and closeness to

the centralized scheme. In the current FL-IoT systems, clients

are autonomous in that their behaviors are not fully governed

by the aggregator. As a result, a client may intentionally or

unintentionally deviate from the prescribed course of feder-

ated model training, which leads to abnormal behaviors, such

as turning into a malicious attacker or a malfunctioning client.

An FL-based approach is studied in [78] where security is ana-

lyzed, aiming to detect anomalous clients at the server side by

using low-dimensional surrogates of model weight vectors for

anomaly detection. Recently, blockchain is also integrated into

FL to solve security issues in fog-based IoT networks [105].

With hybrid identity generation, comprehensive verification,

and access control offered by decentralized blockchain, FL

model updates are transmitted safely over the distributed fog

network in an immutable manner. Also, the mining process

performed by the miners allows for robust authentication on

user access during the training against malicious threats and

learning data breaches.

In summary, we list FL-IoT services in the taxonomy

Table III and Table IV to summarize the technical aspects as
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Fig. 9. FL-IoT application domains.

well as the key contributions and limitations of each reference

work.

IV. FL FOR IOT APPLICATIONS

Enabled by the roles and benefits of FL in IoT services as

presented in the previous section, here we provide an extensive

discussion of the integration of FL into a wide range of key IoT

applications, including smart healthcare, smart transportation,

UAVs, smart city, and smart industry along with applied use

case domains, as summarized in Fig. 9.

A. FL for Smart Healthcare

In smart healthcare, AI-based approaches have been exten-

sively adopted to learn health data to facilitate healthcare

services, e.g., intelligent imaging for disease detection [106].

A key issue in such a traditional AI model is the privacy

concern caused by the public data sharing with the cloud or

the data centre for data training [107]. Indeed, compared to

other domains, data in healthcare systems are highly sensi-

tive subject to health regulations such as United States Health

Insurance Portability and Accountability Act (HIPPA) [108].

The removal of metadata such as patient information is insuffi-

cient to preserve privacy of patients, especially in the complex

healthcare settings where multiple parties such as hospitals and

insurance companies have access to healthcare database as a

part of the employment requirements, including data analysis

and processing. Obviously, the use of traditional AI methods

with the reliance on a central server for analytics is not an ideal

solution for modern healthcare. FL can offer alternative solu-

tions by providing intelligence with privacy awareness, where

the data sharing is not needed [47]. Recent works have demon-

strated the practicality of FL in smart healthcare sector with

advanced features. Here, we focus on analyzing the roles of FL

in healthcare with two use cases, including EHRs management

and healthcare cooperation.

1) FL for Electronic Health Records (EHRs) Management:

Some research efforts have been devoted to the use of FL for

enabling flexible and privacy-preserving EHRs management

in healthcare operations. For instance, a collaborative learn-

ing protocol based on FL is introduced in [109] for an EHRs

system with the cooperation of multiple hospital institutions

and a cloud server. Here, each hospital runs a NN using its

own EHRs with the help of cloud server. To ensure privacy for

model parameters in the FL process, a lightweight data per-

turbation method is considered to perturb the training-related

data, which thus can defend model memorization attack in the

learning. Although attackers can obtain perturbed information

of EHRs, it is hard to obtain or recover the original data.

Simulations on AlexNet NN with standard CIFAR-10 dataset

verify a good performance in terms of prediction accuracy and

security levels for EHRs learning. The authors in [110] also

build a federated NN training framework that allows each hos-

pital participates in learning part of the model using its EHRs

data source. An eICU collaborative research database col-

lected from 58 hospitals comprising 1,264,89 ICU admissions

is used to evaluate the proposed FL algorithm in terms of the

prediction rate of patient mortality during the ICU admission.

To save network resources spent by the communication to the

central server in EHRs learning, the study in [111] introduces

a fully decentralized FL approach by combining classic non-

convex decentralized optimization and decentralized stochastic

gradient tracking. Each hospital runs a learning model locally

to extract patients features from real-world datasets (i.e., pro-

prietary clinical dataset including 7919 patients diagnosed with

mild cognitive impairment) by using a decentralized stochastic

gradient algorithm combined with a linear speedup technique

to accelerate the convergence rate. Although FL enables dis-

tributed learning without sharing EHRs, model updates still

remain privacy leakage due to inference attacks on the com-

munication channel. To overcome this challenge, differential

privacy techniques can be useful to improve privacy protection

for FL-based EHRs learning [112]. By using an objective per-

turbation method which adds noise to the objective function at

local models, we can acquire a differentially private approxi-

mation that produces a minimizer of the perturbed objective.

Several simulations have been tested with using AI models

such as gradient descent, namely perceptron, SVM, showing

that the proposed approach can offer strong privacy levels

while ensuring high training performance.

The potential of FL has been investigated in solving dis-

tributed binary supervised classification problems to estimate

hospitalizations for cardiac events [113]. Here, each data

holder, such as a mobile user with smartphone, runs a SVM

model using EHRs datasets featured by age, gender, and race

and physical characteristics, and then exchanges the computed

updates with an aggregator for building a global hospitaliza-

tion prediction model. The proposed solution has the potential

to support prediction of the progression of several popular

diseases with cardiovascular conditions. FL is also applied

to predict adverse drug reactions (ADR) on EHRs data to

solve issues of data shortage in a single site for rare ADR

detection [114]. Each medical site performs an AI model such
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as SVM, single-layer perceptron, and logistic regression, and

contributes to the computation of a global model by using its

sensitive and imbalanced real-world EHRs data. Experiments

for two use cases, namely prediction of chronic opioid usage

and prediction of extrapyramidal symptoms for patients, are

implemented. Compared to the centralized AI approaches,

FL offers a similar accuracy performance in predicting ADR

without sacrificing user data privacy. To further improve the

accuracy rate and accelerate the convergence speed for FL in

EHRs learning, the authors in [115] suggest to remove irrel-

evant updates while exploring the relevance of local updates

using a sign method at each EHRs owner in the FL archi-

tecture consisting of secret providers, EHRs owners, and a

central server. Further, security and privacy are also consid-

ered in [116] for an FL-based medical imaging processing

architecture. Here, hospitals, healthcare providers and patients

cooperatively train a secure FL model with the support of

differential privacy to build a secure multi-party computation

model for image analytics by an algorithm owner at a medical

center.

2) FL for Healthcare Cooperation: In addition, FL with its

distributed and privacy-preserved nature can promote secure

healthcare cooperation for better medical service delivery. The

study in [117] presents a cooperative healthcare framework

enabled by FL among medical IoT devices. Each device joins

to run a NN using electrocardiogram datasets to build an

arrhythmia detection model at a powerful server. Compared

to the FedAvg algorithm, the proposed FL scheme tested on

64 IoT devices can achieve a lower communication over-

head with a small accuracy loss in a practical arrhythmia

detection task. Meanwhile, in order to solve issues caused by

device, data, and model heterogeneity that can adversely affect

the FL process, a new personalized FL solution is proposed

in [118] for cloud-edge-based healthcare. In this case, per-

sonalization learning is performed at local devices to mitigate

heterogeneities while attaining high-quality personalized mod-

els. Enabled by FL-based optimization for data offloading

as presented in Section III-B, a federated offloading scheme

is designed for mobile healthcare. That is, each IoT device

can choose to offload its computationally intensive tasks to

edge gateways which execute the learning models before send-

ing the updates to the cloud for combination. This realizes

a cooperative network of cloud, edge, and IoT devices for

healthcare applications with the help of differential privacy and

homomorphic encryption techniques for security improvement.

To promote the federation of wearable devices in supporting

healthcare, a transfer learning framework called FedHealth

is studied in [119] for wearable healthcare with the help of

FL. FedHealth allows to aggregate the data from separate

hospital organizations with multiple wearable IoT devices to

build a strong AI model for medical tasks, such as human

activity recognition, enabled by homomorphic encryption for

health data privacy preservation [120]. By using the computa-

tional capability of distributed hospitals, FL offers a powerful

data analytic solution for improving recognition accuracy

rate compared to centralized AI approaches, as confirmed in

numerical simulations. To reduce latency spent by communi-

cations among FL clients and the server, a new chain-directed

Fig. 10. Federated learning for smart healthcare: A case study for COVID-19
image classification with blockchain [127].

Synchronous Stochastic Gradient Descent approach is intro-

duced in [121] for personal mobile sensing in healthcare

applications. Based on a modified DL4J library integrated on

smartphones, two CNNs are performed by employing multi-

channel sensing data, indicating a high performance in terms

of high training accuracy and communication delays reduced

by 53% with a Ring-scheduler approach. Smartphones have

been utilized in [122] to implement an FL algorithm for fed-

erated mobile healthcare, with a focus on solving the cold

start issue caused by slow data generation and computation

of certain mobile devices in the cooperative FL process. For

large-scale healthcare cooperation, blockchain [123] has been

emerged as a viable solution that can be integrated with FL

for building decentralized healthcare systems involving a large

number of medical entities acted as data workers [124]. By

using blockchain, the central authority in the traditional FL

architecture is eliminated, which promotes network connec-

tivity and accelerates the training process over the large-scale

healthcare system. Moreover, fine-grained data access poli-

cies on blockchain, such as smart contracts [71], can provide

reliable authentication for federated health data processing. A

similar decentralized approach on a P2P network for federated

healthcare is also studied in [125]. In this context, all data cen-

ters directly communicates with each other without relying on

a central authority, which thus reduces data leakage due to

curious third-parties and mitigates communication delays.

Very recently, the potential of FL to support the fight-

ing against infectious diseases such as COVID-19 [126] has

been investigated [127], as indicated in Fig. 10. A number

of hospitals cooperatively communicate each other via the

blockchain to run DL algorithms locally for identifying CT

scans of COVID-19 patients. At each hospital, a deep cap-

sule network is developed to enhance image classification

performance, while FL provides guidance for transmissions

of model updates to perform the model aggregation at a

common hospital. Simulations from 34,006 CT scan slices

(images) of 89 subjects verify a high COVID-19 image clas-

sification and low data loss in FL algorithm running. FL is
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also used in [128] to provide privacy-preserved AI solutions

for COVID-19 chest X-ray image analytics. Several practical

experiments have been implemented where multiple COVID-

19 CXR image owners run local learning networks such as

ResNet18 for image classification and then share the computed

parameters with a data center for mobile averaging while the

data ownership of each user is ensured.

B. FL for Smart Transportation

In the past few years, AI/ML techniques have been exploited

to enable intelligent transportation systems (ITSs) by perform-

ing centralized vehicular data learning at the data centre [129],

which requires data sharing in untrusted environments and thus

potentially introduces privacy issues. FL has been introduced

to bring AI functions to the network edge, involving a num-

ber of participants, such as vehicles, to collaboratively train

globally shared AI models without the need for long data

transmission and compromising user privacy. Reviewing the

literature in the FL-based smart transportation domain, we here

focus on analyzing the applications of FL in vehicular traffic

planning and vehicular resource management.

1) FL for Vehicular Traffic Planning: Many FL-based

architectures have been proposed to support vehicular traf-

fic planning which is an important service in ITS for traffic

prediction and vehicle control for congestion minimization.

For example, FL is considered in [130] to replace traditional

centralized ML approaches in traffic prediction tasks by run-

ning ML models directly at the edge devices, e.g., vehicles,

based on their datasets such as road geometry, traffic flow and

weather. Another privacy-aware traffic prediction solution is

studied in [10] where multiple entities such as government,

companies, stations join to run a Gated Recurrent Unit neu-

ral network (FedGRU) locally to estimate traffic flow and

then calculate local updates for aggregation at a data center.

Here, an improved FedAvg algorithm is developed based on

a joint announcement-enabled an aggregation mechanism for

better scalability of the FL scheme. Simulation results from

using a Caltrans Performance Measurement System (PeMS)

database [131] show less accuracy degradation and high pri-

vacy levels over centralized learning methods. In [132], a

traffic simulator is introduced with the help of FL for guiding

reinforcement learning (RL) agents on vehicles in self-driving

tasks by pooling their robotic car resources without sharing

raw data. The proposed scheme is promising to support col-

lision avoidance RL tasks in high-speed autonomous driving

where latency and privacy are among the critical concerns.

To attract more vehicles to run computation algorithms for

traffic prediction, an incentive mechanism is designed in [26]

for UAVs-based vehicular networks. In this scenario, UAVs

are used to provide data collection and computation offload-

ing support for Internet of Vehicles (IoV), such as capturing

car parking and monitoring traffic conditions from stationary

vehicles and roadside units, and then participate in the privacy-

preserved collaborative model training. A contract is designed

among six UAVs and a single subregion to ensure the high-

est utility and the lowest marginal cost of each UAV within

coverage areas. Meanwhile, the authors in [27] combine FL

with blockchain to build decentralized traffic planning solu-

tions for vehicular systems. Each vehicle acts as an FL client

to run an ML model and exchange computed updates together

via a blockchain ledger while verifying their corresponding

rewards. The use of blockchain potentially overcomes the chal-

lenges faced by traditional FL approaches in terms of long

communication and security risks due to curious third-parties.

2) FL for Vehicular Resource Management: In addition to

traffic planning, FL has the potential to facilitate resource

management strategies for vehicle-to-vehicle (V2V) networks.

An FL-based approach is introduced in [133] to support

vehicular ultra-reliable low-latency communication (URLLC)

where each vehicle can learn a generalized Pareto distribu-

tion (GPD) of network queues with respect to power control

and resource allocation without revealing the information of

queue length samples. Then, the computed GPD parameters

are updated to the RSU for aggregation in a longer time

scale. Compared to centralized learning approaches, FL offers

more benefits for intelligent vehicular services such as bet-

ter efficiency in resource usage, lower power consumption

with a similar learning accuracy. Another resource alloca-

tion scheme for vehicle-to-everything (V2X) communication

is also considered in [134]. In this setting, FL is combined

with DRL [135] to build a federated intelligent resource allo-

cation strategy, in order to maximize the sum capacity of

vehicular users with respect to latency and reliability con-

ditions. Each vehicular user is regarded as a DRL agent

in the FL architecture to run a DNN algorithm for optimal

mode selection and resource allocation, while the BS aggre-

gates the updates offloaded from users to build undirected

graphs using channel gain information. Further, motivated by

FL-based optimization for IoT data caching as discussed in

Section III-B2, a federated solution for caching and comput-

ing resource management in MEC-based vehicular networks

is proposed in [63]. In particular, vehicles cooperatively com-

municate with RSUs to perform federated learning in which

each entity computes a sub-gradient descent update as part of

the joint parameter optimization for system cost minimization.

Simulations with five RSUs and several vehicles demonstrate

a high performance regarding learning accuracy compared

to non-cooperative learning approaches [136]. The authors

in [137] also build a federated Q-learning algorithm for coop-

erative tasks offloading with multiple V2X, aiming to optimize

the failure probability and communication resource usage.

A consensus Q-table is designed to guide the Q-learning

agent to make decisions, e.g., offloading selection, in a fed-

erated manner for minimizing running cost over the vehicular

network.

C. FL for Unmanned Aerial Vehicles (UAVs)

UAVs play an important role in various services such

as goods delivery, disaster monitoring or military and have

been regarded as a key technology in 5G/6G wireless

networks [138] due to its high flexibility and seamless con-

nectivity. To provide intelligence in UAV networks, AI/ML

techniques have been used for UAV tasks at ground BSs such

as trajectory planning, power control, target recognition [139].

However, because of the high mobility and high altitude of
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Fig. 11. Federated learning for UAV-based ground air quality monitor-
ing [146].

UAVs, it is challenging to ensure the continuous communica-

tions between UAVs and BSs with respect to dynamic aerial

environment conditions. Therefore, using centralized AI/ML

approaches to perform UAV tasks may not be an ideal solu-

tion, especially when having to transmit a large amount of data

over the aerial links. Distributed learning, such as FL, can pro-

vide better learning solutions for intelligent UAVs networks

by using a cooperation of multiple UAVs without transferring

raw data to BSs and sacrificing data privacy. We here ana-

lyze the use of FL in UAVs via two aspects, including UAV

communications and UAV network management.

1) FL for UAV Communications: Several works have been

done on the use of FL for facilitating UAV communications.

The study in [140] leverages FL to build a federated path con-

trol strategy for large-scale UAV networks. Each UAV runs a

NN and then share the model parameters with a central unit

for obtaining a global model, which makes the estimation of

the population density function at UAVs more accurate. The

use of FL would mitigate the data volume transferred over

the aerial environment and thus reduce communication delays

and privacy concerns, while increasing training speed of the

global model due to the employment of computing resources

of all UAVs. The simulations confirm that federated learning

algorithms can reduce transmission time, motion energy of

UAV communications, as well as achieve minimum collision

risks in windy environments. Instead of using a central server

like in [140], the authors in [141] use a leading UAV as an

FL aggregator to manage a swarm of following UAVs in an

intra-swarm network. Based on a defined minimum number of

communication rounds, the key objective is to jointly optimize

both power allocation and scheduling for UAVs, aiming to

reduce the FL convergence round, with respect to learn-

ing, communication delay, and flying coverage constraints.

Through a numerical simulation, the proposed joint scheme

can reduce the convergence round by 35%, compared to non-

joint schemes (i.e., power allocation or scheduling design).

Another work in [142] pays attention to federated beamform-

ing design [143] for UAV communications, by employing a

local extreme learning machine (ELM) model with respect to

CSI consideration. Then, a stochastic parallel random walk

alternating direction algorithm is designed based on UAV

dynamics and CSI collection to accelerate the convergence rate

to a consensus among UAVs. Another work in [144] focuses

on developing a convolutional auto-encoder based on FL for

illumination distribution in UAV communications. Unlike the

traditionally centralized ML techniques that perform all ML

learning at a server with a complete set of illumination data,

FL enables UAVs to collaboratively train the auto-encoder

only by using their partial illumination data, which potentially

reduces transmission power and improves privacy. In this way,

UAVs have more flexible solutions to adjust its serving posi-

tion and user association for communication power savings.

Toward UAV-based 6G networks, FL has been used in [145]

for on-demand 3D deployment by connecting UAVs with a

BS. In particular, an air-to-air FL algorithm is built that allows

UAVs to train their model within the aerial environments, with

the help of controllable deployments of cooperative UAVs for

low communication energy consumption while remaining high

learning accuracy.

2) FL for UAV Network Management: The work in [146]

studies a federated UAV management architecture for aerial

UAV swarms sensing network integrated with a ground sens-

ing network for forming a hybrid spatio-temporal sensing

system, as shown in Fig. 11. Each UAV acts as an FL

client to monitor the air quality index in its coverage area

without revealing raw data by cooperating UAVs with a cen-

tral server which is responsible for running a light-weight

DenseMobileNet model based on haze features offloaded from

distributed UAVs. The ultimate goal is to provide air qual-

ity forecasts while controlling UAV energy consumption in

aerial sensing tasks. Compared to CNN and SVM-based algo-

rithms, the proposed federated learning scheme can achieve a

better accuracy in air quality estimation with privacy protec-

tion and energy efficiency. Based on the FL concept for IoT

attack detection in Section III-C, a federated UAV network

management architecture is also considered in [147] for solv-

ing issues related to security threats. To be clear, a federated

jamming attack detection approach is introduced that allows

UAV clients to perform AI model training locally with respect

to communication efficiency and unbalanced data proper-

ties before sharing computed updates to a server based on

a Dempster-Shafer theory-based client group prioritization

model. By using a CRAWDAD jamming attack dataset, the

learning accuracy for jamming detection is improved with low

training time in various UAV group evaluations. A similar

security protection scheme is presented in [148] where FL is

combined with reinforcement learning for defense strategies

against jamming attack. Learning updates from FL models at

UAVs are combined by a Q-learning table using a Bellman

equation [149] that is able to determine optimal UAV paths

for minimal security risks. The application of the adaptive
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federated reinforcement learning approach thus can achieve

high accuracy rate in attack detection (over 82%) with fast

convergence rate and high learning rewards.

D. FL for Smart City

The integration of smart devices and high-tech infrastruc-

ture, and integrated monitoring systems in city environments

along with communication technologies forms smart city

ecosystems, aiming to promote the quality of life for urban

citizens, by enabling the seamless delivery of food, water,

and energy to end users [150]. To realize smart cities, AI/ML

techniques have been widely adopted to provide intelligence

properties thanks to their ability to handle real-time big data

generated from sensors, devices, and human activities [2]. To

do that, most of AI-based smart city solutions rely on a cen-

tralized learning architecture on a data center, such as a cloud

server, which is obviously not scalable to the rapid expansion

of smart devices in smart cities. FL offer more attractive fea-

tures for enabling decentralized smart city applications with

high privacy levels and low communication delays. There are

two key domains FL can offer useful services for smart city,

including data management and smart grid.

1) FL for Data Management: With its decentralized and

privacy-preserved nature, FL has been exploited to provide dis-

tributed AI functions for large-scale intelligent data manage-

ment systems in smart cities. For example, a semi-supervised

FL method called FedSem is introduced in [48] to provide

distributed processing for unlabeled data in smart cities. To

evaluate the usefulness of FL in a smart city, a prototype

with smart vehicles is considered where each vehicle learns a

DNN model based on traffic sign image datasets. Then, a cen-

tral server coordinates to select multiple participants in each

learning round for model orchestrating. A German traffic sign

dataset between 1000 vehicles is employed to simulate the FL

algorithm in a fashion in each round, only 30 vehicles are

selected to train and perform model updating. Implementation

results indicate a good performance in terms of high accu-

racy without much testing loss for unlabeled smart city data.

To overcome the challenges posed by the ubiquity of smart

city data from different streams and devices and user privacy

concerns, FL is also used in [151] to structure data streams

from ubiquitous IoT devices that act as FL clients to perform

local learning without sharing their data to external third-

parties. This would reshape the current forms of smart cities by

providing newly exiting services such as smart urban commu-

nication, social economy sharing, social activity monitoring,

and interconnection of global citizens [152]. These services

can be empowered by intelligent sensing which allows IoT

devices to sense physical environments and perform data learn-

ing for extracting useful information to serve end users [99].

In this regard, FL can be employed to develop distributed

sensing platforms with pervasive computing for smart cities.

Each device can collect data locally and runs part of an AI

model such as a NN, using its hardware without exchanging

its personal information for security and privacy. As a result,

communication costs such as latency are significantly reduced

while learning qualities are ensured. FL for mobile pervasive

computing in smart cities is also considered in [153]. For

example, vehicles can join an FL system to collaboratively

train AI models for prediction of locations of charger instal-

lations without revealing information to RSUs. This kind of

on-device processing offered by FL thus can help solve issues

related to data ethics, data privacy, and security in smart city

services. Meanwhile, the authors in [55] suggest to use FL for

building a video data management platform in smart cities. To

be specific, videos can be collected as live street videos from

connected mobile cameras such as IoT devices on buses, roads

and transferred to edge devices. Then, each edge device runs

a semi-supervised learning algorithm that can perform local

video analytics based on multiple video segments divided from

raw video frames. To solve the issue of the non-IID data, a

FedSwap operation solution is proposed, aiming to mitigate

the diversity of the data and increase the accuracy of image

classification by 3.8%, as confirmed in simulations.

2) FL for Smart Grid: Smart grid holds an significant role

in supporting industrial systems and manufacturing processes,

by delivering energy resources to the households and factories

via electrical grids [154]. FL can provide privacy-enhanced

intelligent solutions to realize safe smart grid operations.

Indeed, FL is used to establish federated predictive power

schemes in a network of edge data centers that run a recur-

rent neural network locally to estimate future energy demands

based on historical customer energy usage datasets before

being aggregated at a cloud server for constructing a global

prediction model [155]. In this way, user information such

as energy preference and home addresses is not revealed to

the cloud for privacy protection. Moreover, by cooperating

data centers over different urban areas, the prediction model

can achieve a high learning performance with better accuracy

rate, compared to centralized learning solutions at a single

server [156]. Another FL algorithm is also designed in [157]

for electricity power learning in power IoT networks consisting

of electric providers and IoT users. A communication model

is then formulated based on an FL process that aims to solve

the tradeoff between resource consumption, user utility and

local differential privacy.

E. FL for Smart Industry

Smart industry refers to the integration of intelligence into

manufacturing processes where AI techniques such as ML

and DL play important roles in learning big data generated

from industrial machines for process modeling, monitor-

ing, prediction and control in production stages [158]. The

performance of AI functions mostly depends on available

training data, but it requires sharing among companies and

factories. Due to the raising concerns of user privacy issues,

sharing a large amount of data over the industrial networks

for AI implementation is not an efficient solution. FL has

emerged as a much more attractive approach that helps realize

intelligence for industrial systems without data exchange and

privacy leakage [159], as shown in Fig. 12. Here we focus on

analyzing the roles of FL in robotics and Industry 4.0, and

then discuss efficient FL solutions for industrial edge-based

IoT. Then, we introduce several real-world FL implementation

cases and testbeds in industrial IoT.
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Fig. 12. Federated learning for cooperative industry [159].

1) FL for Robotics and Industry 4.0: Robotic is a crucial

component of automobile industrial systems that is able to han-

dle manufacturing tasks by its automated and programmable

features. How to perform real-time data processing and protect

data privacy for robotic systems is a critical challenge. FL can

help solve these problems by allocating intelligence to robotic

devices, instead of relying on a remote server for data pro-

cessing. For example, FL can be adopted to support robotics

in data learning by implementing AI models at local robots

without unpredictable network transmission delays [160]. In

this way, each robot only offloads the gradient parameters

updates to build a shared model at the cloud without shar-

ing its raw data for privacy guarantees based on a differential

privacy technique. The authors in [161], [162] investigate a

federated imitation learning scheme for cloud robotics. Each

robot participates in training an imitation NN using its own

sensor image dataset. Then, it offloads the updated parame-

ters to the cloud for fusing knowledge before sending back

to robots for the next round of learning and thus, robots

can benefit from exchanged knowledge values. Through com-

munication rounds, the server can accumulate a significant

knowledge of different robots to build a powerful learning

model, and thus the imitation learning efficiency and accuracy

of local robots can be improved in comparison with centralized

learning approaches. As an extended version of cloud comput-

ing, fog/edge computing is also helpful to provide low-latency

communication for federated robotics [163]. Both computing,

networking, and storage resources among robots are shared

with a fog server for enabling federated learning with secu-

rity awareness. Edge computing is also integrated with FL

in [164] to realize a collaborative learning among robotic arm

devices. Due to the complexity and dynamics, each device

runs a separate reinforcement learning model for determining

its own control policy, and then shares mature policy model

parameters to a cloud server for combination. Experiments on

multiple rotary inverted pendulum devices [164] confirm high

learning performance regarding learning speed with respect

to different learning clients. Enabled by the FL-based IoT

localization concept as presented in Section III-D, a feder-

ated Simultaneous Localization and Mapping (SLAM) system

with cloud computing is deployed in [165]. Three robots coor-

dinate with a cloud server to build an FL algorithm, aiming to

construct a global map of an unknown environment enabled

by a deep learning detector that can achieve robust feature

extraction and high feature matching accuracy.

In the industrial revolution, Industry 4.0 is the new con-

cept whose aim is to promote the automation of manufacturing

and industrial operations, which stimulates the development of

smart factories for producing smart products without human

involvement [166]. FL can be used to support distributed

intelligent industry 4.0 systems. As an example, a privacy-

preserved FL framework is introduced in [167] to realize

industrial intelligence where multiple mobile users join to

build a common AI model based on local gradients that are

encrypted with homomorphic ciphertext with a distributed

Gaussian mechanism at a cloud server. This solution poten-

tially reduces the risks of privacy leakage from the local

gradients and shared parameters in the FL communication

rounds. To enhance the performance of compound TCP in

industry 4.0 WiFi networks, the authors in [168] suggest to

use FL to collaborate multiple access points with respect to

WiFi uploading and downloading dynamics and wireless data

losses. Each access point performs a regression model based

on quality of service (QoS) data samples and specifies learning
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parameters for contributing to a global server. Recently, an

integrated FL-blockchain architecture is designed for indus-

trial IoT networks [169]. FL provides the ability of distributed

learning at local IoT devices by using both static data and

data streams, while blockchain can provide high degrees of

security with immutable ledgers and smart contracts that can

provide authentication for learning interactions in FL imple-

mentation. Blockchain is also employed in [170] to provide

security for FL implementation in industrial 4.0 networks. By

using linked transactions, learning updates are verified and

transmitted effectively for model aggregation, which in return

accelerates learning convergence for FL algorithms.

2) Efficient FL for Industrial Edge-Based IoT Networks:

In recent years, industrial edge computing has been applied

widely in IoT networks due to its capability to provide instant

computation and storage services [171]. The introduction of

edge computing in IIoT can also significantly reduce the

decision-making latency and save bandwidth resource. To

enable intelligent and privacy-enhanced edge-based IIoT appli-

cations, efficient FL solutions have been applied by using the

distributed learning capability of edge devices and the train-

ing federation in IIoT networks from both communication and

network resource aspects.

- Communication-Efficient FL for Industrial Edge-Based

IoT: The authors in [172] consider a communication-efficient

FL approach called CE-FedAvg which is able to reduce the

number of rounds to convergence and the total data uploaded

per round over the traditional FedAvg scheme. This is real-

ized by using a joint design of distributed Adam optimization

and compression of uploaded models. In each communi-

cation round, the model server selects a subset of clients

based on their power/communication properties and sends the

weights and moments to them. Then, the server dequantizes

and reconstructs the sparse updates from the clients and aver-

ages the updates for a global model that is downloaded by

clients for sparsifying and quantizing the model deltas and

sparse indices for compression. Implementation results on

an industrial edge computing-like testbed using Raspberry Pi

clients show the effectiveness of the proposed scheme with

lower communication latency while the training accuracy is

preserved. To solve the communication overhead issues for

parameter synchronization in FL, a general gradient sparsifi-

cation (GGS) framework is proposed in [173] for FL-based

edge IoT networks. The key idea is to combine gradient cor-

rection and batch normalization which allows the FL optimizer

to properly treat the accumulated insignificant gradients, which

makes the model converge better. It also mitigates the impact

of delayed gradients on the global training without increasing

the communication overhead. Also, a dynamic FL solution is

proposed in [174] for power grid-based MEC environments

where industrial IoT nodes such as metering devices collab-

orate with an MEC server to build an ML model for. To

solve the issue of failure of communications between indus-

trial clients and the server, a delay deadline constrained-FL

framework is considered to avoid extremely long training

delay via a dynamic client selection problem formulation

for maximizing the computing utility with communication

latency reduction in the FL process. Another solution named

communication-mitigated federated learning (CMFL) is intro-

duced in [175] for reducing communication overhead for

FL-based edge IoT networks. CMFL provides clients with the

feedback information regarding the global tendency of model

updates, aiming to identify the relevance of an update at a

client with others. To do so, in each learning iteration, a client

first receives the feedback information about the global update

from the central server. Next, the client proceeds its local

training and produces a local update. The client then com-

pares it with the global update, checking how well the two

gradients align with each other. By avoiding uploading those

irrelevant updates to the server, CMFL can substantially reduce

the communication overhead while still guaranteeing learning

convergence.

- Network Resource-Efficient FL for Industrial Edge-Based

IoT: Network resource optimization and allocation are impor-

tant to ensure robust FL training over distributed edge IoT

networks. For example, a fair network resource allocation

framework in wireless networks is suggested in [176] that

encourages a more uniform resource (e.g., bandwidth) distri-

bution across devices in FL-based edge networks. This allows

for minimizing the aggregated reweighted loss such that the

devices with higher loss are given higher relative weight,

by taking into account the important characteristics of the

federated setting such as communication-efficiency and low

participation of devices. The work in [177] focuses on for-

mulating a joint computation and transmission optimization

problem, aiming to minimize the total energy consumption

for local computation and wireless transmission in FL-based

edge IoT systems. To solve this problem, an iterative algo-

rithm is proposed with low complexity where in each step

of this algorithm, new closed-form solutions are derived for

the joint optimization of time allocation, bandwidth allocation,

power control, computation frequency, and learning accuracy.

In FL-based edge networks, how the model owner can decide

amounts of energy recharged to the workers and to choose

channels, i.e., the default channel or the special channels,

for global model transmissions to maximize the number of

successful transmissions while minimizing the energy cost is

highly important. To overcome these challenges, the work

in [178] proposes to employ a DRL algorithm that enables the

model owner to find the optimal decisions on the energy and

the channels with no existing network knowledge. A stochas-

tic optimization problem of the model owner is derived that

maximizes the number of global model transmissions while

minimizing the energy cost and the channel cost. Furthermore,

an industrial IoT-based FL scheme is also studied in [179]

with a focus on resource management for mobile IoT devices

such as robots by considering multiple resource constraints,

e.g., bandwidth, processor, or battery life which has not been

considered in previous FL schemes with assumptions of suffi-

cient resource availability. In each communication round, the

resource availability is checked for model training and the trust

score of each robot is verified to make decision for client train-

ing. Regarding the robots with delayed model update response,

the trust score can be adjusted in the next round of training,

which potentially reduces the straggler effect in robotic-based

FL systems.
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TABLE V
TAXONOMY OF FL-IOT APPLICATIONS

3) FL Implementation and Testbeds in Industrial IoT:

Inspired by the great potential of FL in IoT systems, there are

several recent projects implemented to investigate the feasibil-

ity of FL in real-life industrial applications. As an example,

the work in [180] implements a testbed for an FL-based smart

home platform in a real-world IoT setting. More specifically, a

smart home architecture is proposed, consisting of smart home

IoT devices (e.g., camera, light bulb, door locks), a router,

and an intrusion detection system with a SQLite database. By

using an FL algorithm, smart home devices can train an ML

model using their local information to share the learned models

with the router for combination. In this way, FL helps users

(i.e., smart home owners) to build home assistant solutions

such as object detection and control their home by the coor-

dination of distributed IoT devices in a privacy-preserving

manner. Another project in [181] focuses on a verifiable FL

platform to achieve efficient and secure model training in

industrial IoT. A verification mechanism is built at the FL

clients (i.e., industrial IoT devices) to verify the accuracy of

the aggregated results based on the characteristics of Lagrange

interpolation, which allows devices to detect forged results

in the FL training. The proposed FL model is promising to

solve secure training issues in intelligent industrial applica-

tions. For example, FL can be used to train risk assessment

models in enterprise risk assessment tasks, by collaborating

multiple banks to build high-quality risk assessment models
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without leaking the enterprise customer data. FL is also tested

in [182] to provide privacy-preserved intelligence for cyber

physical systems smart farming and smart logistics in indus-

tries. A platform called FengHuoLun is designed involving

three views from macro to micro, namely entity view, edge

view, and global view. Here, the entity view includes industrial

IoT devices; the edge view implements the business require-

ments from industrial stakeholders, while the global view is

at the cloud layer for running an FL algorithm that aggregates

distributed ML models computed at local devices in the entity

layer. A testbed is implemented in a wireless sensor network

for intelligent abnormal detection with sparse representation,

but experimental results have not been reported. In [64], an

FL-based system is integrated in fog environments where col-

laborative IoT devices (e.g., smart factory machines) perform

local data processing and transmit their learned parameters to

a cloud server for model aggregation after each time interval.

A testbed is implemented on a MNIST dataset combined with

data traces from a Raspberry Pi to simulate the network delays

and resource usage when integrating FL in IoT networks.

The implementation results verify the efficiency of FL in

terms of low communication latency due to model learning

without sharing raw data and privacy preservation with guar-

anteed training accuracy. Several other works also investigate

the practicality of FL in real-world healthcare settings. For

instance, a federated edge learning system called FEEL is

designed in [183] for mobile healthcare. Here, an edge-based

training task offloading strategy is proposed to improve the

training efficiency at distributed health users, while a differ-

ential privacy scheme is integrated to strengthen the privacy

preservation during the FL training. A real-world healthcare

FL experiment is tested in a network of 100 hospitals with

using clump thickness as physiological attributes for building

training samples, showing a low resource consumption and

good privacy protection.

In summary, we list FL-IoT applications in the taxonomy

Table V and Table VI to summarize the technical aspects as

well as the key contributions and limitations of each reference

work.

V. LESSONS LEARNED

In this section, we summarize the key lessons learned from

this survey, which thus provide an overall picture on the

current research of FL-IoT services and applications.

A. Lessons Learned From FL-IoT Services

Reviewing the state-of-the-art in the field, we find that FL

plays an increasingly important role in facilitating intelligent

IoT services in a wide range of applied domains, as highlighted

as follows.

1) FL Serving as an Alternative to IoT Data Sharing: FL-

IoT can achieve privacy-enhanced and scalable data sharing in

IoT networks among decentralized multiple parties without the

need for direct data offloading to cloud servers or third-parties.

From [51], it can be learned that FL is an efficient approach for

federated data sharing among multiple clients (e.g., factories)

in IoT tasks such as tensor mining. By using FL, the server

only collects the ciphertext data and federates them into a ten-

sor, while raw data are kept at the local factories, which thus

protects data privacy for the tensor mining. Particularly, FL

can be combined with other privacy techniques such as differ-

ential privacy [53] to improve the privacy of local updates, by

integrating it into gradient descent training for enabling secure

and robust FL sharing. Moreover, the security of FL-based data

sharing can be improved by combining with the blockchain

technology, as shown in [54]. In this context, the information

of trained parameters can be appended into immutable blocks

on the blockchain during the client-server communications.

2) FL for the Optimization of IoT Data Offloading and

Caching: Due to the high data distribution of large-scale IoT

networks, FL can provide distributed AI solutions to sup-

port intelligent data offloading and caching at the network

edge [59]. The use of FL enables distributed data offload-

ing by leveraging computation capabilities of IoT devices to

achieve an overall offloading target, such as offloading latency

minimization [44]. Each FL client (such as a mobile device)

acts as a local optimizer to solve an optimization problem for-

mulated to achieve optimal offloading. Also, the federation of

mobile users helps eliminate the need for a central server of

offloaded data processing, instead of performing local train-

ing by using their own dataset. Then, each user exchanges

the local updates for computing a global model for privacy

and computing efficiency. FL can also offer innovative data

offloading in vehicular networks [63] in which vehicles and

RSUs can share a common learning model to build a coopera-

tive learning architecture, aiming to reduce learning costs with

respect to agent selection and data sharing in task offloading.

In addition to that, the use of FL also helps overcome the

challenges faced by traditional learning approaches in terms

of high privacy concerns since data users may not trust the

third-party server and thus hesitate to offload their private

data for IoT data caching. In fact, FL is very useful to build

proactive data caching schemes in edge computing without

the need for direct access to user data [66]. Such that, mobile

users can download the AI model from a cache entity, such

as an edge server, to perform local training before sending

back the computed model to the server for aggregation in

an iterative manner, for selecting the most popular files for

caching. FL is also integrated with blockchain to build secure

learning schemes for content caching in edge computing [70].

IoT devices participate in the local training using their own

datasets to learn the features of users and files, and share the

gradient updates to the edge server for popular file estimation,

aiming to improve the overall cache hit rate.

3) FL for IoT Attack Detection: The heterogeneity of IoT

applications and services has become a main target of mali-

cious adversaries that can attack AI/ML models integrated

in IoT networks. FL has emerged as a strong alternative to

perform distributed learning for IoT networks with the abil-

ity to detect a wide range of attacks and support network

defense solutions [75]. Enabled by the privacy-enhancing fea-

tures of FL, federated attack detection and defense solutions

can be realized where each IoT device joins to run an AI

model, such as DNN, in order to retrain the threat model

to fight against adversaries [45]. The cooperation of multiple
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TABLE VI
TAXONOMY OF FL-IOT APPLICATIONS (CONTINUED)

devices accelerates the learning process and improves learn-

ing accuracy while mitigating the risks of attack on the model

learning. Moreover, FL also facilitates the detection of com-

promised IoT devices in federated IoT networks. In fact, with

the sophistication of attacks and threats, it is challenging to

detect them with current centralized AI approaches that often

recognize attacks by making deviations from user behavior

profiles, which suffers from high false alarm rate and long

detection delay. FL comes as a natural solution to perform

attack detection algorithms for distributed IoT networks [82].

Each IoT can submit a detection profile obtained by local train-

ing to a security gateway where local updates are aggregated



1648 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 3, THIRD QUARTER 2021

to build a common detection model for the IoT network. The

involvement of a large number of IoT networks with diverse

features and massive datasets enhances the learning accuracy

for better attack detection efficiency. To improve the scalabil-

ity of detection of attacks, such as intrusion, line-speed and

scalable FL approaches have recently introduced [86]. Each

IoT device runs a neural network for packet classification at

the line speed of nearby switches in a scalable manner, while

preserving privacy of network traces.

4) FL for IoT Localization: FL can provide interesting

solutions for enabling efficient and privacy-enhanced local-

ization services, aiming to solve problems such as the lack

of robustness due to the dynamics of mobile environments

and privacy leakage bottlenecks caused by the centralized data

processing architecture. As indicated in [46], FL can provide

privacy for indoor localization services by forming a decen-

tralized indoor localization scheme using the computational

capability of distributed mobile devices without compromis-

ing sensor data. We also find that homomorphic encryption

techniques are very useful to further improve privacy in FL

training, by allowing for local update encryption which helps

prevent the central server from guessing decryption result

before aggregation. This in turn provides high security for data

training while ensuring a high location estimation accuracy.

Furthermore, according to [90], FL is able to minimize the bias

of location estimation with privacy guarantees by cooperating

multiple users in the model learning using local fingerprint

data. The usefulness of FL thus opens new opportunities for

emerging localization services, such as localization in mobile

indoor networks with global positioning system, mobile target

tracking and navigation.

5) FL for IoT Mobile Crowdsensing: Traditionally, the

reliance of a central server such as a single cloud to handle all

sensing data is not a scalable solution, making it hard to cope

with the massive volume of data from ubiquitous IoT devices.

FL would be a very promising tool to accelerate the learning

and training for crowdsensing models. Each client selects a

learning strategy for solving its local sub-problem to ensure

desired accuracy with lowest participation costs, while the cen-

tral server builds a utility function by averaging local updates

to offer rewards to the clients [96]. Particularly, to overcome

the challenges faced by conventional FL architectures with a

central aggregator, which can incur high communication over-

head and less robustness, decentralized FL has emerged as a

promising solution for large-scale crowdsensing tasks [99]. In

this way, each IoT node only needs to compute the model

based on its mini-batch instead of the whole datasets, which

will reduce computation latency accordingly. Among decen-

tralized technologies, blockchain is a strong candidate that can

be combined with FL to decentralize the learning process in

UAV-based crowdsensing services [100]. FL allows UAVs to

train local models using sensing datasets and share updates

via the blockchain ledger for server communication and model

combination in a secure and transparent manner.

6) FL-Based Techniques for Privacy and Security in IoT

Services and Networks: FL also appears as an attractive

approach for enabling intelligent privacy and security services

in IoT networks. As indicated by [101], FL is useful to enhance

data privacy in IoT environments (e.g., vehicular networks).

This is enabled by the fact that participants (e.g., vehicles)

are allowed to train models locally with their own data with-

out the need for sharing sensitive user data, which contributes

significantly to protecting data privacy. To replace the central-

ized entity that is commonly used in FL systems, blockchain

is an ideal candidate to build a decentralized FL-IoT system

to solve issues of single-point failures by using consensus

protocols (e.g., shared mining) to synchronize and coordinate

the FL training [103], [105]. These solutions give insights

into developing serverless learning architectures for security

improvements in FL-IoT systems.

B. Lessons Learned From FL-IoT Applications

In this sub-section, we discuss the key lessons acquired from

the use of FL in various IoT applications.

1) FL for Smart Healthcare: FL can provide a number of

efficient solutions for smart healthcare and potentially reshapes

the current intelligent healthcare systems by proving AI func-

tions for supporting healthcare services while improving user

privacy and reducing low latency with the cooperation of

multiple entities such as health users and healthcare providers

across medical institutions [47]. It can be learned from [109]

that FL can enable flexible and privacy-preserving EHRs man-

agement in healthcare operations, by building intelligent EHRs

systems with the cooperation of multiple medical institutions

and a powerful server such as the cloud. We also find that a few

fully decentralized FL approaches [111] can provide decentral-

ized optimization and stochastic gradient tracking by using the

cooperation of hospitals with a decentralized stochastic gradi-

ent algorithm to accelerate the convergence rate. Moreover,

based on [118], personalized FL is necessary for mitigating

data heterogeneities in distributed health IoT networks while

attaining high-quality personalized models. FL also allows

each IoT device to choose offloading of its computationally

intensive tasks to edge gateways which execute the learning

models before sending the updates to the cloud for combina-

tion. This realizes a cooperative network of cloud, edge, and

IoT devices for healthcare applications with the help of dif-

ferential privacy and homomorphic encryption techniques for

security improvement.

2) FL for Smart Transportation: Recently, FL has been

introduced to bring AI functions to the network edge to

empower smart transportation, involving a number of par-

ticipants, such as vehicles, to collaboratively train globally

shared AI models without the need for long data transmission

and compromising user privacy. Several possible applications

of FL in smart transportation can be vehicular traffic plan-

ning and vehicular resource management. In fact, FL can be

used to replace traditional centralized ML approaches in traffic

prediction tasks [10], [26] by running ML models directly at

the edge devices, e.g., vehicles, based on their datasets such as

road geometry, traffic flow and weather. The use of massive

data from multiple vehicles and huge computation capabil-

ity of all participant helps provide better traffic prediction

outcomes, which cannot be met by using centralized ML tech-

niques with less dataset and limited computation. Moreover, by
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combining with blockchain, FL is useful to build decentralized

traffic planning solutions for vehicular systems [27]. In this

regard, each vehicle acts as an FL client to run an ML model

and exchange computed updates together via a blockchain

ledger while verifying their corresponding rewards. Further,

FL has the potential to facilitate resource management strate-

gies for vehicle-to-vehicle (V2V) networks [133]. FL along

with advanced AI techniques such as DRL [135] is promising

to build federated intelligent resource allocation strategies, in

order to maximize the sum capacity of vehicular users with

respect to latency and reliability conditions. Vehicles as DRL

agents can collaborate to run distributed DNN algorithms for

optimal mode selection and resource allocation, while the BS

aggregates the updates offloaded from users to build undirected

graphs using channel gain information.

3) FL for UAVs: In UAV networks, due to the high mobil-

ity and high altitude of UAVs, it is challenging to ensure

the continuous communications between UAVs and BSs with

respect to dynamic aerial environmental conditions to per-

form intelligent UAV tasks. The use of centralized AI/ML

approaches in such scenarios may not be an ideal solution,

especially when having to transmit a large amount of data

over the aerial links. FL can provide better learning solu-

tions for intelligent UAVs networks by using a cooperation

of multiple UAVs without transferring raw data to BSs and

compromising data privacy [140]. The use of FL would mit-

igate the data volume transferred over the aerial environment

and thus reduce communication delays and privacy concerns,

while increasing training speed of the global model due to the

employment of computing resources of all UAVs. Moreover,

FL enables UAVs to collaboratively train AI models only by

using their partial illumination data [144], which potentially

reduces transmission power and improves privacy. In this way,

UAVs have more flexible solutions to adjust its serving posi-

tion and user association for communication power savings.

FL also makes federated UAV management much more flex-

ible and with privacy awareness [146]. Each UAV acts as

an FL client to monitor the air quality index in its coverage

area without revealing raw data by cooperating UAVs with a

central server which is responsible for running a light-weight

DenseMobileNet model based on haze features offloaded from

distributed UAVs. For security protection in UAV networks, FL

is combined with reinforcement learning to implement defense

strategies against jamming attack [149], by cooperating learn-

ing updates from FL models at UAVs with a Q-learning table

to determine optimal UAV paths for minimal security risks.

4) FL for Smart City: To realize smart cities, AI/ML

techniques have been widely adopted to provide intelligence

properties thanks to their ability to handle real-time big data

generated from sensors, devices, and human activities [2].

However, most proposed AI-based smart city solutions rely

on a centralized learning architecture on a data center, such

as a cloud server, which is obviously not scalable to the

rapid expansion of smart devices in smart cities. FL offers

more attractive features for enabling decentralized smart city

applications with high privacy levels and low communica-

tion delays [48]. FL is also important for structuring data

streams from ubiquitous IoT devices that act as FL clients

for performing local learning without sharing their data with

external third-parties [151]. This would reshape the current

forms of smart cities by providing new services such as smart

urban communication, social economy sharing, social activity

monitoring, and interconnection of global citizens. Moreover,

we also realize that FL can enable intelligent solutions for

smart grid, a critical component of smart city ecosystems, by

offering management and energy transmission solutions in a

decentralized manner with privacy improvement [155].

5) FL for Smart Industry: FL can also provide viable solu-

tions to realize intelligence for industrial smart systems with

many applied domains such as robotics and Industry 4.0 with-

out data exchange and privacy leakage. Following [160], FL is

an attractive approach to coordinate the data learning among

robotics for industrial tasks, e.g., traffic routing, without unpre-

dictable network transmission delays. Edge computing is also

integrated with FL to realize a collaborative learning among

robotic arm devices [164]. Due to the complexity and dynam-

ics, each device runs a separate ML model, e.g., reinforcement

learning, for determining its own control policy, and then

shares mature policy model parameters to a cloud server

for aggregation. FL also plays an important role in support-

ing distributed intelligent industrial applications in Industry

4.0 [167]. Particularly, decentralized FL in Industry 4.0 can be

realized by combining with the blockchain technology which

can provide high degrees of security with immutable ledgers

and smart contracts that can provide authentication for learn-

ing interactions in FL implementation [169]. Furthermore,

to enable intelligent and privacy-enhanced edge-based indus-

trial IoT applications, many efficient FL solutions have been

introduced to solve communication issues by using update

reconstruction techniques [172], [173] or relevance detection

during the model update [175]. Network resource management

is another critical issue in industrial FL-IoT system design that

has been solved via resource allocation [176] and stochastic

training optimization [178].

VI. RESEARCH CHALLENGES AND DIRECTIONS

As discussed in the above sections, FL demonstrates its

increasingly significant role in empowering IoT services and

applications. Despite its great potential, the extensive survey

also reveals several critical research challenges to be con-

sidered for future FL-IoT system implementation. We here

analyze several key challenges, concerning FL such as threats,

performance issues, resource management, and heterogeneity

issues in IoT networks. Several possible research directions

for these challenges are also discussed.

A. Security and Privacy Issues in FL

Although FL can provide privacy protection for distributed

IoT systems where the sharing of raw IoT data is not required

in the learning process, FL still remains several security and

privacy vulnerabilities from both learning clients and server

sides [184]. For example, at the client side, an adversary can

modify data features or inject an incorrect subset of data in the

original dataset to embed backdoors into the model, aiming to

adjust the training objective of local clients. This is also called
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as backdoor poisoning attacks which also poison local model

updates at the clients before offloading to the server [185].

Meanwhile, the central server may contaminate the aggre-

gated local updates and deploy attackers to steal the training

data from gradients in a few iterations [186] because the fact

that the gradients of the weights are the inner products of the

error of learning layers and features. Consequently, the global

updating can reveal extra information about personal features

of local training data which thus poses user privacy at risks.

This issue becomes more critical in the IoT networks where

user information such as user preference, home addresses

must be preserved in applied intelligent domains with FL.

Without a protection mechanism, FL becomes a security and

privacy bottleneck in intelligent IoT systems and thus makes it

challenging to attract users in the collaborative data training.

Under these contexts, developing innovative solutions to

cope with threat challenges is of paramount importance for

safe FL systems. Perturbation techniques [186] such as dif-

ferential privacy or dummy can be used to protect training

datasets against data breach, by constructing composition the-

orems with complex mathematical solutions. As an example,

differential privacy is applied in [187] by inserting artifi-

cial noise (e.g., Gaussian noise) to the gradients of neural

network layers to preserve training data and hidden per-

sonal information against external threats while the conver-

gence property is guaranteed. This solution would ensure that

the server or malicious users cannot learn much additional

information of user samples from the received messages under

any auxiliary information and attack. Similarly, an anonymous

and privacy-preserving FL scheme is introduced in [188] for

the mining of industrial big data. To mitigate privacy leak-

age, fewer parameters are shared between the server and each

participant while having less impact on the model accuracy.

Differential privacy is then applied on shared parameters with

a Gaussian mechanism to provide strict privacy preservation

on a proxy server as the middle layer between the server and

all the participants. Moreover, the study in [189] proposes a

secure aggregation scheme for safe FL systems, in order to

provide the strongest possible security with respect server-

mediated, unauthenticated network conditions. The core idea

is to use a double-masking structure that can protect clients

by encrypting local updates and key sharing among users and

the server for achieving fair data verification and key agree-

ment during the aggregation. The further privacy protection

in FL-IoT is still an ongoing research topic, and new innova-

tive solutions and techniques are desired to improve privacy

for FL-based IoT systems from both client (e.g., IoT device)

and communication (e.g., over the wireless server-client links)

perspectives.

B. Communication and Learning Convergence Issues of

FL-IoT

Another challenge raised from FL-IoT implementation is

its limited performance in terms of communication and learn-

ing convergence. In fact, communications in FL training in

both uplinks and downlinks are highly sensitive due to the

unbalanced and non-IID data since each training data at

each client is different in size and distribution owing to

different sensing environments. Further, when the number of

clients grows exponentially, direct communications between

numerous clients and a server for offloading updates become

infeasible due to the increasing workload on the network chan-

nels [93]. In addition to that, the convergence of FL algorithms

in IoT systems is not always ensured due to the heterogeneous

training capabilities of different IoT devices and training data

complexity. Indeed, the well-known FL algorithm FedAvg

makes limited assumption that all IoT device clients join in

each communication round for FL training [190], which is

often not feasible in realistic IoT scenarios due to device

connection loss or running out of battery. Moreover, the con-

vergence speed of current FL algorithms is constrained due

to the use of first-order gradient descent in loss function

minimization [191].

Several possible solutions have been proposed to solve

issues related to FL performances. The research in [192] pro-

poses a new efficient communication protocol that is able to

compress uplink and downlink communications while remain-

ing high robustness to the increased number of clients, and data

distribution. These properties can be achieved by using a com-

bination of sparsification, ternarization, error accumulation,

and optimal Golomb encoding techniques for uplink compres-

sion and speeding up parallel training in the global server

without compromising learning convergence. Moreover, a new

optimization algorithm is proposed in [193] for FL-based IoT

networks, called FetchSGD, that can train high-quality models

for communication efficiency. At each communication round,

clients compute a gradient based on their local data, then com-

press the gradient using a data structure called a Count Sketch

before sending it to the central aggregator. The aggregator

maintains momentum and error accumulation count sketches,

and the weight update applied at each round is extracted

from the error accumulation sketch. In this way, the proposed

scheme reduces the amount of communication required each

round, while still conforming to the training quality require-

ments of the federated setting. To improve the convergence

rate of FL algorithms, a new FL design called Momentum

federated learning is presented in [194]. A momentum gra-

dient descent (MGD) approach is integrated at the central

server to minimize the loss function with less computation

due to optimized learning parameters, compared to traditional

FL algorithms with first-order gradient descent.

C. Resource Management in FL-IoT

The concept of FL-IoT mostly relies on scalable data par-

allelism and on-device training at IoT devices before the

aggregation of learning parameters at a global server. To

achieve a synchronous update at the server, all IoT devices

need to devote their storage and computing resources for their

data training. Unfortunately, this requirement is not always

met due to the resource constraints of certain IoT devices

with weak computation capacities [195], which thus can cause

significant delays to the synchronized parameter aggregation

at the server. Moreover, training deep learning models such

as DNN directly on IoT devices may not be achieved due

to the requirement of much CPU frequency and battery for

solving training tasks, especially training with image and
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audio data [196]. Compared to edge devices, resources of IoT

devices are still very limited for large AI training. Therefore,

optimizing one-device AI/ML models would be a viable solu-

tion that can mitigate the computational burden posed on IoT

devices.

To facilitate resource management in on-device FL training,

several approaches have been provided. The work in [197]

proposes a resource-aware FL architecture on mobile devices

which are used to train neural networks by taking information

of computation resource into consideration. To be clear, a soft

training technique is introduce for accelerating the training of

stragglers with weak computational capabilities. This can be

done by allowing them to train partially the model through

masking a particular number of resource-intensive neurons

during their local training stage, but being recovered in the

parameter aggregation stage without compromising the over-

all model convergence. For optimized on-device AI models, an

improved DNN architecture called DeepRebirth is designed

in [198] for mobile AI training. Particularly, a streamlined

slimming model is integrated with the consecutive non-tensor

and tensor layer which has the potential to speed up the train-

ing and model execution and thus can mitigate running time

and save memory resources. Simulations also confirm a high

training performance with 3x training speed and 2.5x memory

saving while only 0.4% performance drop on top-5 accu-

racy is observed via the ImageNet validation dataset. Another

possible solution for resource management in FL is [199]

where data-importance and compute communication-aware

resource management algorithms are proposed to optimize

training accuracy, fairness and convergence time. The atten-

tion is focused on the resource management problem of

sampling clients in each round taking into account commu-

nication, compute and statistical heterogeneity with the goal

of reducing convergence time. To be clear, importance sam-

pling and rank ordering based algorithms were developed that

allow prioritization of clients based on their resources in the

presence of non-I.I.D data across clients. Performance evalu-

ation on a supervised image classification task on benchmark

datasets showed significant reduction in the overall training

time without loss of performance in the model training.

D. Feasibility of Deploying AI Learning Functions on IoT

Sensors

Another possible challenge is the feasibility of running AI

functions on IoT sensors. Due to the constraints of hardware,

memory, and power resources, certain IoT sensors cannot join

to train a full-size AI model [200]. In fact, advanced ML algo-

rithms often takes a large amount of memory and power for

model training and the storage of model parameters and train-

ing variables. For example, training relatively simple image

classification models such as ResNet-50 still requires a num-

ber of CPU cycles and megabytes of memory space [201].

Moreover, the high communication cost caused by AI training

is also a crucial bottleneck of on-device FL implementation.

Indeed, the model exchange between IoT sensors and the

server incurs communication overhead which scales up with

the model size [202]. This would discourage IoT sensors from

participating in training large models for running on-device

FL algorithms. In addition to that, how to address the energy

consumption issue in FL-IoT systems, especially in the light-

weight mobile devices with less battery sources is another

critical challenge. In this context, it is important to achieve

effective and efficient local training on local devices for energy

savings while the training quality should be ensured.

Several possible solutions should be considered to facili-

tate on-device AI learning for FL-IoT systems. One direction

is to improve AI hardware usage on IoT sensors. The work

in [203] introduces a software-based deep learning accel-

erator to support AI/DL training on mobile hardware. The

key idea is to use a set of heterogeneous processors (e.g.,

GPUs) where each computing unit exploits distinct computa-

tional resources for processing different inference phases of

DL models. This aims to optimize hardware usage for data

training without compromising performance accuracy, enabled

by the control of two algorithms, i.e., runtime layer compres-

sion and deep architecture decomposition. Simulation results

demonstrates its superior performance in terms of low exe-

cution time and energy consumption in AI hardware running,

compared to cloud offloading-based approaches. This research

is promising and likely to enable developing sensor process-

ing and mobile AI inference, which would enable on-device

FL implementation at scale. Additionally, a scheme called

Tiny-Transfer-Learning (TinyTL) is proposed in [204] for

memory-efficient on-device sensor learning. TinyTL freezes

the weights while learning only the bias modules, thus there

is no need to store the intermediate activations which reduces

the memory footprint. To compensate for the capacity loss, a

memory-efficient bias module is integrated which improves the

model capacity by refining the intermediate feature maps of

the feature extractor with a small memory overhead. Through

simulations on image classification datasets, this approach can

achieve the same level accuracy compared to fine-tuning the

full Inception-V3 while reducing the training memory foot-

print by a factor of up to 12.9, which has the potential to

allow for on-device AI implementation, including FL set-

tings on IoT sensor devices. In terms of communication

cost in on-device FL training, the authors in [205] propose

a light-weight model training strategy, by using a concept of

model output exchange instead of model parameter exchange.

Such that, only model outputs are exchanged between IoT

devices and the server, which potentially solves communi-

cation latency issues caused by the increase of model size.

This new method can achieve a significant latency reduc-

tion up to 99% compared to existing FL algorithms, for the

similar training accuracy performance under non-IID data dis-

tributions. Moreover, to solve the energy consumption issue

in FL-IoT systems, a number of advanced techniques are

integrated, including gradient sparsification, gradient quanti-

zation, weight quantization, and dynamic batch sizes in the

FL training procedure to mitigate energy costs for 5G mobile

devices [206]. A trade-off analysis is also provided which

gives insights into how to balance the energy consumption for

local computing for model training and wireless communica-

tions for model exchange, aiming to boost the overall energy

efficiency.
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TABLE VII
SUMMARY OF RESEARCH CHALLENGES AND POSSIBLE DIRECTIONS FOR FL-IOT

E. Standard Specifications

The introduction of vertical FL-IoT use cases in future

intelligent networks imposes major architectural changes to

current mobile networks in order to simultaneously support

a diverse variety of stringent requirements (e.g., autonomous

driving, e-healthcare, etc.) In such a context, network stan-

dards and elements play an important role in deploying

FL-IoT ecosystems at large-scale due to the reliance of

other important computing services such as edge/cloud ana-

lytics server and edge-IoT communication protocols. Such

elements have the power to fill the gaps in the FL-IoT

ecosystem to make it sharper and technologically visible.

For example, the Industry Specification Group (ISG) of

the European Telecommunications Standards Institute (ETSI)

has released an initiative called ETSI Multi-access Edge

Computing (MEC) [207], which aims to leverage seamless and

open edge computing and communication frameworks for inte-

grating various edge computing-based applications originating

from the vendors, developers and third-party service providers.

All authentic operators can run their specific network domains

at the edge of deployed MEC. This initiative could be a sig-

nificant element to the FL-IoT systems where FL aggregation

can be done by the support of computing services offered by

MEC. IoT data training can also be stored and processed off-

line at the edge nodes which will also facilitate services like

video analytics, augmented reality, data caching, and content

delivery. Moreover, to enable FL-IoT services and applica-

tions, standards for edge-IoT communication protocols are
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essential. For example, OPC-UA has been applied widely for

edge-IoT scenarios [208]. This Open Platform Communication

standard is designed to support the platform independent

Unified Architecture for edge-IoT services. Another proto-

col is MODBUS which is the communication standard for

connecting industrial electronic equipment. MODBUS comes

with a variety of protocols such as remote terminal unit

(RTU), TCP/IP, UDP, Plus, Pemex and Enron. It relies on

a mesh networking architecture and is able to communicate

with the supervisory control and data acquisition systems

over the industrial, scientific and medical radio bands. Among

wireless protocols, Wi-Fi is one of the most prevalent IoT

communication protocols, allowing for connections between

IoT devices and computing servers such as edge nodes in

FL-IoT systems. Very recently, the IEEE 802.11 working

group has initiated discussions on releasing the next generation

of Wi-Fi standard, referred to as IEEE 802.11be Extremely

High Throughput [209], which can meet the peak throughput

requirements set by upcoming IoT applications in the 5G/6G

era. These standards are expected to support service providers

in deploying intelligent IoT services at the network edge with

FL-IoT components and devices. In summary, the research

challenges and directions are highlighted in Table VII.

VII. CONCLUSION

FL is an emerging distributed AI approach that has sparked

great interest to realize privacy-enhancing and scalable IoT

services and applications. In this article, we have explored the

opportunities brought by FL to facilitate IoT networks through

a state-of-the-art survey and extensive discussions based on the

emerging studies in the field. This work is motivated by the

lack of a comprehensive survey on the use of FL in IoT. To

bridge this gap, we have first introduced the recent advances

in FL and IoT and provided insights into their integration.

We have then provided an updated survey on the applica-

tion of FL in key IoT services, namely IoT data sharing, data

offloading and caching, attack detection, localization, mobile

crowdsensing, and IoT privacy and security. Subsequently, we

have paid an attention to the discussion of latest developments

of the integrated FL-IoT applications in various significant use-

case domains, including smart healthcare, smart transportation,

UAVs, smart city, and smart industry. From the extensive sur-

vey, several main lessons learned have been also summarized

and analyzed. Finally, we have identified a few key research

challenges and possible directions for further investigation. We

believe that this article will stimulate more attention in this

emerging area, and encourages more research efforts toward

the full realization of FL-IoT.
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