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ABSTRACT The use of Unmanned Aerial Vehicles (UAVs) for wireless networks is rapidly growing as key

enablers of new applications, including: surveillance and monitoring, military, delivery of medical supplies,

telecommunications, etc. In particular, due to their unique proprieties such as flexibility, mobility, and

adaptive altitude, UAVs can act as mobile base stations to improve capacity, coverage, and energy efficiency

of wireless networks. On the other hand, UAVs can operate as mobile terminals to enable many applications

such as item delivery and real-time video streaming. In such context, data-driven Deep Learning-assisted

(DL) approaches are gaining a growing interest to not only exploit the huge amount of generated data, but

also to optimize the network operations, and hence ensure the QoS requirements of these emerging wireless

networks. However, UAVs are resource-constrained devices especially in terms of computing and power

resources, and traditional DL-assisted schemes are cloud-centric, which require UAVs’ data to be sent and

stored in a centralized server. This represents a critical issue since it generates a huge network communication

overhead to send raw data towards the centralized entity, and hence may lead to network bandwidth and

energy inefficiency of UAV devices. In addition, the transferred data may contain personnel data such as

UAVs’ localization and identity, which can directly affect UAVs’ privacy concerns. As a solution, Federated

Deep Learning (FDL), or distributed DL, was introduced, where the basic idea is to keep raw data where

it is generated, while sending only users’ local trained DL models to the centralized entity for aggregation.

Due to its privacy-preserving and low communication overhead and latency, FDL is much more adequate

for many UAVs-enabled wireless applications. In this work, we provide a general introduction of FDL

application for UAV-enabled wireless networks. We first introduce the FDL concept and its fundamentals.

Then, we highlight the possible applications of FDL in UAVs-enabled wireless networks by addressing

the suitability and how to use FDL to deal with target challenges. Finally, we discuss about key technical

challenges, open issues, and future research directions on FDL-based approaches in such context.

INDEX TERMS Deep learning, federated deep learning, UAVs-based wireless networks, wireless commu-

nications.

I. INTRODUCTION

Next-generation of wireless networks are undergoing a major

revolution. According to Cisco forecast, more than 75 billion

of connected IoT devices are expected by 2025, ranging

from sensors, wearable, smartphones, to connected cars, and

Unmanned Aerial Vehicles (UAVs) [1]. This transformation

is driving an exponential growth in wireless traffic generated

by heterogeneous connected devices. In such context, UAVs,

known also as drones, are quickly growing by admitting
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many key applications in wireless networks, ranging from

surveillance, monitoring, and delivery of medical supplies,

to military and telecommunications [2], [3]. In particular,

due to their unique proprieties such as flexibility, mobility,

and adaptive altitude, UAVs can operate as providers of wire-

less network infrastructure to improve capacity, coverage,

and energy efficiency of wireless networks. On the other

hand, UAVs can also act as flying users of existing wireless

infrastructure to enable applications such as remote sensing,

virtual reality, and item delivery. In fact, these new applica-

tions are coming with different requirements and needs [3].

Besides the need of high data rates – which has been the main
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requirement of conventional wireless networks in the last

decade – UAVs-based wireless networks have to deliver low-

latency and ultra-reliable services to cope with the dynam-

ics of end users [4], [5]. For example, autonomous drones

require the deployment of ultra-reliable communication links

in order to provide real-time and low-latency control of such

autonomous devices [6]. Moreover, UAV devices are limited

in terms of computing and energy resources and realizing

such applications is mainly related to UAVs’ flight time,

which depends on many factors like, UAVs’ energy, speed,

altitude, trajectory, etc.

On the other hand, Machine Learning-assisted (ML)

approaches are gaining a growing interest in many research

fields including wireless networks [7], [8]. Indeed, the use of

ML-based approaches for wireless networks is motivated by

not only the huge amount of generated traffic data but also the

inefficiency of traditional model-based solutions that are not

capable to deal with the dynamic complexity and heterogene-

ity of the next wireless networks [8]. This enables to integrate

more intelligent functions in order to optimize the network

operations and ensure, in real-time, different needs of emerg-

ing wireless applications. In other words, wireless devices

will be able to intelligently control their environment as well

as proactively taking more adequate actions by learning and

predicting the dynamic evolution of various network features,

e.g. traffic pattern, communication channel dynamics, user

context, content requests, etc. Moreover, as the flagship of

ML, Deep Learning (DL) is emerging as the most advanced

ML component outperforming conventionalML schemes [9].

DL is expected to become the most used scheme in many

fields including wireless networks, robotics, image, text, and

speech recognition, language processing, etc. [9].

However, traditional ML schemes are cloud-centric and

require the data to be sent and processed in a central entity,

e.g. a cloud server or a data center. TheseML schemes are not

suitable for the UAV-based wireless networks for the follow-

ing reasons. Firstly, the inaccessibility of private data since

the generated data may contain personal and sensitive infor-

mation such as UAVs’ localization and identity. Secondly,

the transfer of stream raw data to the cloud continuously by

UAVs, such as image and video data types, require a high net-

work bandwidth and consumemore UAVs’ energy, especially

with the limited available bandwidth and UAVs’ energy-

constrained. Finally, the cloud-centric schemes involves an

unacceptable latency especially for applications that need

real-time decisions such as autonomous drones monitoring

and UAV-based virtual reality applications. Therefore, there

is an imperative need to go toward decentralized learning

solutions to handle efficiently distributed sub-datasets gen-

erated by UAV devices.

Recently, Google introduced Federated Deep Learn-

ing (FDL) concept [10], [11], as a decentralized approach.

In FDL, wireless devices use their local data to train, coop-

eratively, local DL models, and send the local models, i.e.

models’ weights, to a FDL server for aggregation. Thus,

FDL enables to keep the private data where it is gen-

erated and to train DL models in a distributed manner.

In addition, FDL improves highly the network overhead by

avoiding to send data towards a central entity. Thus, FDL

consumes less bandwidth as compared to the centralized ML

scheme. Moreover, it was demonstrated that FDL is more

suitable for ultra low latency applications since it enables

wireless devices to collaboratively, and in parallel, learn a

shared prediction model while keeping all the training data

on device [12]. This implies that FDL can be an enabling

technology for next UAVs-based wireless networks to train

learning models, as compared to the centralized cloud-centric

approaches. In this context, since UAVs cannot independently

support centralized schemes of deep learning due to power

and computing limitations in addition to the limited available

bandwidth, the FDL concept is more suitable for UAVs-

based wireless networks. FDL provides not only privacy-

preserving of UAVs’ data but also reduces both network

overhead and latency by avoiding to send experienced data

to a central node. In this paper, we detail how FDL can be

applied for UAVs-enabled wireless networks to deal with

their challenges. Moreover, we address the suitable deep

learning algorithm to deal with each challenge and why it is

suitable.

To the best of our knowledge, there are only two works

that review the usage of FDL for wireless networks [13], [14].

The authors in [13] extend the original FDL work [10], [11]

and discuss about its use cases in cellular 5G architecture,

while the authors in [14] focus on the mobile edge networks,

aiming at bringing the intelligence, learning models, closer

to the edge where data is generated. Unlike these two works,

we address the FDL application for the emergent UAVs-

based networks. Our work covers mainly: (i) an introduction

on the general FDL concept and its features. (ii) FDL use

cases in UAVs-enabled wireless networks, spanning from 5G

networks and beyond, IoT, Edge computing and caching,

to Flying Ad-Hoc Networks. (iii) An extensive discussion

about open challenges that require further research efforts.

These challenges are mainly related to learning security, con-

vergence and scalability.

The remainder of this paper is organized as follows.

Section II gives a general background on FDL. The main

applications of FDL for UAVs-based wireless networks are

highlighted in section III. Section IV describes open problems

and future research directions. Section V concludes the paper.

II. OVERVIEW ON FEDERATED DEEP LEARNING

Federated Deep Learning (FDL) is based essentially on Deep

Neural Network (DNN) to train collaboratively learningmod-

els on end devices, while alleviating privacy concerns and

reducing communication overhead. It should be noted that

federated learning may be based on any ML algorithm to

train a federated learning model. In this work, we focus

only on deep learning as it represents the most advanced

ML approach. In this section, we first introduce DNN model

training. Then, we give a general overview on the emerging

FDL concept.
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A. DEEP NEURAL NETWORK

DNN has become an essential tool in Artificial Intelligence

field, due to its success and progress in many domains.

A DNN is composed of three main levels of layers: (i) an

input layer, (ii) multiple hidden layers that map an input to

an output, and (iii) an output layer. A weighted and bias-

corrected input values are passed over an activation func-

tion, such as ReLu and Softmax functions [9], to obtain an

output [9].

First, the dataset is divided into the training and test sub-

sets. Then, the training subset is fed to the neural network,

as input data for the optimization of weights. The weights

are updated using stochastic gradient descent (SGD) method

with a predefined rate (learning rate), such that the loss

function, i.e., distance between the real and model output,

is minimized. The training process is repeated over many

epochs, i.e., full passes over the training subset, for accuracy

improvement.

As a machine learning technique, DNN algorithms can be

classified into three main categories:
• Supervised learning: the considered dataset comprises

both input and output features. Thus, in supervised

learning, a DNN algorithm is used to learn the mapping

function from the input to the output [15].

• Unsupervised learning: the considered dataset contains

only input features. In this case, a DNN algorithm must

be able to extract all types of unknown patterns over

input features [16].

• Reinforcement learning: It is based on a feedback loop

between the used DNN algorithm and the surrounding

environment. Hence, the used DNN algorithmwill expe-

rience a dataset that changes over time [17].
We note that in this work, we focus more on DNN

supervised learning, where there are several variants used

according to the target problem [9], such as, Artificial Neural

Network (ANN), Convolutional Neural Network (CNN), and

Recurrent Neural Network (RNN). However, describing these

architectures is out of the scope of this paper.

B. FEDERATED DEEP LEARNING

The FDL concept is composed of two main entities: the

clients (participants) which are the data owners and the Fed-

erated Learning (FL) server. Let N = {1, . . . ,M} denotes the

set of M participants, each i ∈ N has a private Data Subset

DSi∈N . Each participant i trains a Local Model Li using its

local data subset DSi∈N , and then sends only the local model

parameters, i.e. model weights, to the FL server. Finally,

all received local models are aggregated to create a Global

Model G = ∪i∈NLi. It is worth noting that traditional

machine learning approaches use D = ∪i∈NDSi to train a

global model, in a centralized way.

In fact, the global model aggregation step is an important

part of the FDL system. The FDL system is based mainly

on a FederatedAveraging (or FedAvg) algorithm [11] and

illustrated in Algorithm 1. The FL server first initializes the

training process (line 3). Then and at each round, it selects

a randomly subset of participants and aggregates their local

models in order to generate a global model (lines 4 − 11).

On the other hand, for a given number of epochs, each par-

ticipant splits its data into batches1 (lines 15 − 16). Then,

based on a learning rate, it updates its local model by apply-

ing an average gradient on each batch at the current local

model(lines 17−20). This enables to implement the Stochas-

tic Gradient Decent (SGD) with a fixed learning rate, in a

distributed manner.

Algorithm 1 FederatedAveraging [11]

Require: Number of server Round Max_Round , number of

clients M , number of local epochs E , Batches size B,

learning rate η.

Ensure: Global model Gj+1.

1:

2: Executed on Server executes:

3: Initialize G0

4: for j = 1 to Max_Round do

5: P = random set of clients of M

6: for Each client i ∈ P in parallel do

7: L
j+1
i ← ClientUpdate(i,L j)

8: end for

9: Gj+1← 1
|P|

∑i=|P|
i=1 L

j+1
i

10: end for

11: return Gj+1 to participants.

12:

13: Executed on Client i:

14: ClientUpdate(i,L)

15: for Each local epoch e from 1 to E do

16: batches← (split data DSi into batches of size B)

17: for Each batch b ∈ batches do

18: L ← L − η∇f (L, b) (∇f (L, b) is the average

gradient on batch b at the current model L)

19: end for

20: end for

21: return L to FL server.

Although the primary objective of the FDL concept is

privacy-preserving, shared some local models may still reveal

private information. Thus, participants can add a protec-

tion layer by sending encrypted local models to the FL

server. Then, the latter uses a secure aggregation algo-

rithm to aggregate the local models without decrypting

them [18].

C. FEDERATED DEEP LEARNING FOR UAV-BASED

NETWORKS

In UAV-based networks, UAVs may collaboratively build a

learning model based on FDL concept. As we mentioned

before, this will not only preserve privacy of UAVs’ data but

also improve the use of UAVs’ resources including energy

and computing resources. FIGURE 1 illustrates the FDL

1A batch refers to a random subset of a participant’s local dataset
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FIGURE 1. Training process of UAV-based networks using Federated Deep
Learning.

training process of UAVs-based networks. It comprises three

main steps:

• Step 1 (Training Initialization): According to the tar-

get application, the FL server, which may be edge or

cloud server, specifies needed data type and training

hyper parameters including learning rate and number of

epochs. The FL server also generates an initial global

model G0. Then, G0, data type requirements, and train-

ing hyper parameters are broadcasted to participating

UAVs (clients). We note that the FL server decides about

both learning rate and number of epochs so as not to

deplete UAVs’ resources.

• Step 2 (UAVs’ Models Training): Each UAV i starts to

collect new data and update parameters of its localmodel

L
j
i , based on the global model Gj, where j is the current

iteration index. Each UAV also aims to find optimal

parameters minimizing the loss function. The updated

parameters are periodically sent to the FL server.

• Step 3 (Global Model Aggregation): When receiving

the local models from UAVs, the FL server aggregates

them and sends back the updated model parameters to

the UAVs. The FL server aims to minimize the average

global loss function Loss(Gj), i.e.:

Loss(Gj) =
1

M

i=M∑

i=1

Loss(L
j
i ) (1)

We note that the local training and aggregation steps

(Steps 2-3) are repeated until a desired accuracy is achieved

or the loss function converges.

III. FEDERATED DEEP LEARNING APPLICATIONS IN

UAV-ENABLED NETWORKS

Having introduced FDL and its main features, we now

highlight some of its use cases in UAV-enabled wireless

networks. TABLE 1 illustrates the target FDL applications

for UAV-enabled networks along with references. For each

UAV-enable network, TABLE 1 describes the main chal-

lenges that FDL can deal with, the main components of FDL

such as clients, aggregator, and feature data, and the expected

results after applying the FDL.

A. UAV FOR 5G CELLULAR NETWORKS

UAV Applications: As cost effective approach, deploying

UAVs as base stations in 5G is envisioned as a promis-

ing solution for improving wireless connectivity as well

as extending network coverage, especially for geographical

zones with a lack of cellular infrastructure [3]. In particu-

lar, UAV base stations would be useful and economically

viable to deploy small cells during temporary events, such

as festivals and sport events [19]. On the other hand, UAVs

can also act as users of the 5G wireless infrastructure for

remote sensing, surveillance, package delivery, and virtual

reality applications [20]. Moreover, to deal with blockage

and interference of wireless backhauling, UAVs can play a

vital role in enabling reliable and cost-effective connectivity

between a set of base stations and a core network, in terrestrial

networks [21].

Challenges and FDL use cases: In such context, we focus

on three key challenges [3].

(i) Wireless signal propagation: The Air-to-Ground com-

munication (A2G) channel is more susceptible to path

loss, delay spread and fading, as compared to the tradi-

tional ground communication channel. In fact, the A2G

channel depends highly on the UAV altitude and type

of the propagation environment. However, centralized

learning solutions are not suitable for this challenge

as they require privacy-sensitive UAVs data, such as

altitude and mobility data, to be transmitted to a cen-

tral entity. Therefore, the FDL concept may be used

to enable each UAV predicting, in a federated way,

the A2G channel quality related to its altitude and

mobility information. UAVs will be able to dynami-

cally adjust their altitude in a self-organizing way, and

hence autonomously optimize the A2G communication.

Using an ANN as reinforcement learning [22], UAVs

can adjust their location to serve ground users according

to the predicted channel quality and hence adapt dynam-

ically to the propagation environment. We note that an

ANN corresponds perfectly to this challenge in order to

build a multi-variable regression model about predicting

the continuous values of channel quality variable.

(ii) UAVs trajectory planning: It is mainly impacted by

UAVs’ energy constraints. Usually, both UAVs mobil-

ity and energy consumption metrics have to be cou-

pled in order to deal with this challenge. Consequently,

the UAVs’ mobility and energy level are required, which

may not be easy to share in the network because of

privacy concerns. In this case, the FDL concept is

more adequate so that each UAV may learn about local

energy consumption related to each mobility trajectory.

This enables UAVs determining their trajectories by

predicting the energy consumption of each potential
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TABLE 1. FDL applications in UAV-enabled networks.

path. In this case, the deep RNN with Long Short-Term

Memory (LSTM) may be applied to predict next energy

consumption due to its effectiveness to deal with time-

varying data [23]. We note that LSTM is a modified

version of RNN, which makes it easier to remember past

data in memory (energy consumptions in our case).

(iii) UAVs deployment as mobile base stations: This chal-

lenge is receiving special attention in order to improve

network coverage and connectivity. In fact, an optimal

deployment of UAVs depends onmany factors including

geographical area, behaviors of ground users, UAV-to-

ground channel characteristics, etc. Accordingly, this

challenge is more difficult to address in a centralized

way, since it requires different data from different enti-

ties. To solve it the FDL concept may be used to deal

with each factor separately. For instance, to deal with

ground users’ behavior, FDL enables to learn ground

users’ behavior in terms of their mobility pattern. Then,

factors’ learning models can be combined to generate

a global model, which will help to perform optimal

deployment and path planning of UAVs base stations.

In fact, the mobility pattern of ground users is a set of the

spatial and time distribution features of travel behavior.

Hence, an hybrid deep algorithm of CNN with LSTM

suits this challenge, since CNN can extract spatial fea-

tures while LSTM deals with time characteristics [24].

(iv) Physical resource allocation: another challenge related

to UAVs when they act as mobile base stations is

that about Resource Block (RB) allocation to ground

users with limited available frequency spectrum. In fact,

ground users are heterogeneous in terms of their col-

lected data type as well as data rate requirements that

depend to target applications. UAVs must assign the

needed number of RBs to meet ground users’ require-

ments. This challenge requires the UAVs to adapt

dynamically and in real time to users requirements and

centralized learning may introduce more latency to deal

with. Therefore, an ANN reinforcement learning, in fed-

erated way, is more suitable for this challenge, since it

enables the UAVs to collaboratively generate a predic-

tion model regarding the number of RBs to assign [22].

Reinforcement learning makes UAVs able to dynami-

cally assign the needed number of RBs according to the

users’ needs. Moreover, the ANN reinforcement learn-

ing can find relationship between the users’ data rate and

the UAVs’ location, enabling UAVs to find the locations

that increase the users’ data rates.

B. FLYING AD-HOC NETWORKS

1) UAV APPLICATIONS

Another emerging use case of UAVs is Flying Ad-hoc Net-

works (FANET), in which a set of UAVs can communicate
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with each other in an ad-hoc way [3]. In fact, FANET enables

a broad range of applications including remote sensing, dis-

aster and wildfire management, agricultural management,

relay networks, etc. In this context, UAVs can play a key

role in expanding the communication range and connectivity

at geographical zones with limited cellular coverage. Also,

UAVs can form a relaying network by providing a reliable

communication between remote senders and receivers that

cannot directly communicate due to their separation distance

or obstacles.

2) CHALLENGES AND FDL USE CASES

This use case inherits the challenge of UAVs trajectory plan-

ning between each two start and end points, while consider-

ing UAVs’ energy constraints, dynamic environment changes

like departure (or arrival) of UAVs, physical obstacles (see

section III-A, challenge (ii)). Thus, collaboration and coordi-

nation between UAVs are crucial features in order to define

an optimal UAV trajectory, based on FDL concept. Further,

FANET comes with another challenge related to data routing,

especially in relaying network, due to its dynamic topology.

Data routing must be performed in multi-hop way, in order to

deliver efficiently data from a remote transmitter to receiver,

through UAVs, and with respect to performance metrics such

as end to end delay, packet delivery ratio, and energy con-

sumption. Indeed, dealing with data routing between UAVs

in a centralized way needs a direct access to privacy-sensitive

UAVs data in terms of their mobility patterns, such as speed,

positions, and direction, which may not be possible in prac-

tice. Hence, the FDL is a match made in heaven scheme

for data routing between UAVs. For instance, each UAV can

locally learn about routing performance of each next hope

node, based on many factors like direction, speed, mobility

pattern, energy, etc. To do so, since it is a multi-variable

regression problem which may be linear or not according the

data distribution, an ANN may be implemented in order to

model the routing problem and provide predictions regarding

routing performance related to each next hope node. Then,

local models will be aggregated to generate a global model

that will help to extract the optimal routing path between

the source and destination nodes, in addition to dynamically

update of the UAVs’ routing table. Moreover, predicting

the topology changes of FANET through the prediction of

UAVs’ next position can highly improve the network per-

formance in terms of communication and control operations.

For instance, given limited UAVs’ communication ranges,

predicting FANET topology, via future positions, gives an

idea about FANET connectivity and hence can help to not

consider the wireless links that are more prone to failure.

Also, predicting FANET topology can help UAVs in search

and rescue mission to cover regions that are not already cov-

ered However, as we mentioned in section III-A, challenge

(ii), predicting UAVs’ mobility cannot be done in centralized

way due to privacy issues. So, UAVs can collaboratively learn

their own mobility patterns in federated way. Similar to chal-

lenge (iii) of section III-A, an hybrid deep algorithm of CNN

with LSTM can deal with UAVs’ mobility pattern. Indeed,

CNN with LSTM can extract the relationship between spa-

tiotemporal features of UAVs mobility [24].

C. UAV FOR INTERNET OF THINGS NETWORKS

1) UAV APPLICATIONS

The conventional wireless networks are seeing a gradually

transformation into a massive Internet of Things(IoT) net-

works that is composed of a heterogeneous set of devices

including, smartphones, drones, tablets, sensors, wearable,

and vehicles. IoT networks are expected to enable many

applications related to different sectors such as transportation,

smart cities, energy management, and healthcare. However,

IoT devices are limited in terms of energy battery and have

to deliver their data to a terrestrial base station, usually at

ultra low latency or high data throughput. In such context,

the UAVs are exploited as aerial base stations to provide

a reliable wireless connectivity of the massive IoT devices,

which enables them to effectively send their data.

2) CHALLENGES AND FDL USE CASES

The main challenge of this application is how to deploy

efficiently the UAVs, as aerial base station, to deal with

IoT connectivity as well as battery limited challenges [25].

To deal with this challenge, both the A2G channel quality

to deal with signal attenuation issue between IoT devices

and UAVs (as discussed in section III-A, challenge (i)), and

distribution load of ground IoT devices must be considered.

Indeed, for the latter issue, a high-resolution traffic load of all

devices may be required, which not only is difficult to share in

the network due to privacy concerns, but alsomay increase the

network overhead and hence lead that IoT devices consume

more energy. Thus, dealing with this issue in a distributed

manner is more suitable. To do so, each ground IoT device

can build locally a regression model, using a deep ANN

algorithm, about its traffic load, before aggregating all local

models to build a global model of all IoT devices.

In fact, an optimal placement of UAVs may be determined

when combining the two learning models about traffic load

and A2G channel quality. Consequently, it enables the IoT

devices to efficiently connect to UAVs stations and with a

lower transmit power.

D. UAVs FOR CONTENT CACHING AT EDGE COMPUTING

1) UAV APPLICATIONS

Content caching at the edge computing emerges as promising

paradigm for applications that are delay-sensitive [14]. It con-

sists in bringing popular content closer to the edge, at base

stations or access points, to be exploited locally.

2) CHALLENGES AND FDL USE CASES

Asmobile users, one of the main challenges of such paradigm

is to determine efficiently which contents should be stored

in each cache by predicting the UAVs contents popularity.

However, this requires to directly access to private UAVs
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information for content differentiation which is not be pos-

sible in practice. Federated learning is a match made in

heaven scheme for contents’ popularity prediction as it

enables locally training models, and hence data user privacy-

preserving. For instance, an Augmented Reality (AR) appli-

cation needs to access to privacy-sensitive data of users in

order to obtain popular elements of the augmentations. It is

clear that this challenge is binary classification problem (pop-

ular or not), and hence an ANN algorithm can be used in a

federated way to learn these popular elements before storing

these information locally to reduce the latency.

Moreover, UAVs can also act as flying base stations to

improve the caching efficiency by tracking users’ mobility,

and hence effectively provide the popular contents [26]. It is

clear that this use case inherits the aforementioned challenges

of UAVs deployment (see section III-A, challenge (iii)).

Thus, FDL can also be applied to deal with such challenges

by, for instance, learning users’ mobility patterns and their

content request distribution, in a distributed way. In this

case, the hybrid CNN with LSTM algorithm is more suit-

able in order to deal with the spatiotemporal features of

both mobility patterns and content request distribution. Then,

the aggregated learning model will help to manage the UAVs

deployment.

E. SUMMARY AND DISCUSSION

In this section, we described the main challenges of UAV-

based networks for which it is suitable the FDL concept.

It is clear that the FDL concept can perfectly improve the

privacy issue of UAVs’ data by performing the learning where

the data is generated. It also introduces a lower latency to

generate learning models and hence supports the ultra low

latency requirement of the emergent UAV-based applications.

In addition, the FDL avoids to send collected data to a central

node. Consequently, on one hand, it highly reduces the net-

work overhead and hence the consumed bandwidth, and on

the other hand, it allows less power consumption of UAVs,

since the data transmission is the operation that consumes

more the energy of UAVs devices, especially with UAVs’

energy-constraint. Moreover, UAVs can also optimize the

use of their computing resources since they generate only

local learning models using their small datasets. Therefore,

the FDL concept enables the UAVs-based network not only to

ensure the privacy of UAV users but also to improve latency,

network overhead and bandwidth, and UAVs’ energy and

computing resources.

Beside, FDL is based on deep learning algorithms to build

learning models. The used deep algorithm depends mainly on

the target problem. In fact, as it is based on a feedback loop

between the deep algorithm and its environment, the ANN as

reinforcement learning is adequate for challenges in which

UAVs must adapt dynamically to their surrounding envi-

ronment such as wireless signal propagation environment.

As well, the deep ANN algorithm is usually used to deal with

regression problems whether the output variable (to predict)

is a continuous or categorical variable. Hence, the ANN

algorithm suits perfectly the prediction of FANET routing

performance as well as traffic load of UAVs-based IoT net-

works. Some UAVs challenges are related to the time series

prediction problem e.g. prediction of UAVs’ energy con-

sumption in the next time slot and based on the consump-

tion history. In such context, the RNN with LSTM is more

adequate since LSTM can extract the time features among

the input data and also to remember past data in memory.

Moreover, the hybrid CNN with LSTM can deal with spa-

tiotemporal series prediction problems, such as UAVs mobil-

ity, as CNN extracts the spatial features of experienced data

while LSTM deals with the time ones.

IV. OPEN PROBLEMS AND FUTURE RESEARCH

DIRECTIONS

The use of federated learning for wireless networks is still

in its early stages. Despite the various new opportunities it

offers, there are many critical challenges in using federated

learning for UAV-enabled networks. In what follows, we dis-

cuss some of these challenges in addition to future research

directions.

A. SECURITY AND PRIVACY CONCERNS

Although the primary objective of the FDL concept is

privacy-preserving, shared some local models may still reveal

private information. Thus, the authors in [18] proposed a

secure aggregation algorithm that enables clients to encrypt

their local models, while allowing the FL server to aggregate

local models without decrypting them [18]. However, analyz-

ing the global aggregated model can still help to disclose the

participation of some learners. Hence, designing algorithms

to provide privacy at participants-level, rather than protecting

a gathered data, is highly needed.

In the context of UAVs networks, providing the privacy

at UAVs-level (clients) requires high computation tasks in

addition to those needed for the local learning. Thus, effi-

cient FDL algorithms that reach a trade-off between clients’

constrained-resources and privacy protection are also highly

needed.

Like traditional ML algorithms, the local models are

updated periodically when a new data are collected. Thus,

an adversary can manipulate the result of the federated learn-

ing process by injecting either poison data or poison gradient

updates. In this context, FDL algorithms must be reliable

against data-poisoning as well as model-poisoning adver-

saries, while resilient techniques, to such adversarial attacks,

are also highly required.

B. FEDERATED LEARNING SCALABILITY CONCERNS

The performance of FDL process depend strongly on the

participation of local learners that enable both global and

local models updates. In such context, selecting the optimal

number of UAVs (clients), frequency of local and global

models updates need more investigation to design scalable

FDL algorithms at all levels. In addition, participants are

assumed to be always connected to the FDL system.However,
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in UAV networks, some UAVs may switch off due to energy

or connectivity constraints, which can also affect the learning

performance. Therefore, FDL algorithms must be robust to

clients drop out by anticipating such scenarios.

Another challenge is to select the adequate UAV learners

with appropriate data, especially when the collected data

are unlabeled or mislabeled. In fact, existing studies assume

that the data are labeled which is not always the case for

generated data in UAVs-based networks. Hence, the designed

FDL algorithm should also be robust to such challenge by, for

instance, enabling a first step to learn the labels of collected

data by the UAVs (clients) themselves.

C. UAV-ENABLED NETWORK CONCERNS

Most of existing studies focused on issues related to the FDL

design including: learning rate and convergence, aggregation

rate, frequency of model updates, etc. However, there are

other issues related to the UAV-enabled wireless network,

which is under study such as participants with heterogeneous

resource capacities, in terms of computing, local data size,

and energy, the uncertainty of wireless channels, etc. Hence,

new studies must be initiated in designing efficient FDL

algorithms that consider wireless networks constraints, while

ensuring the learning model accuracy. For instance, a special

attention should be addressed to the trade-offs: (i) between

computation and communication latencies and the model

learning accuracy, and (ii) between the required computation

to perform the local training and clients energy consumption.

D. LEARNING CONVERGENCE CONCERNS

One of the main challenges of the FDL concept is the learning

convergence, which is not always guaranteed for distributed

schemes and with the heterogeneous capabilities of UAVs’

resources. In [27], the authors studied the gradient descent

convergence for convex loss functions.

However, on one hand, the objective of some learningmod-

els, including deep neural networks, is to learn a non-convex

loss functions; on the other hand, convex losses require a high

number of model updates [11], which may affect the UAVs-

constrained resources. Therefore, more analytical studies are

needed to address learning convergence for non-convex func-

tions, while considering the main constraints of UAVs-based

networks especially in terms of resources.

V. CONCLUSION

This paper addressed the role of federated deep learning con-

cept to deal with some challenges of UAV-enabled wireless

networks. Federated learning is emerging as a decentralized

learning paradigm that improves communication overhead

as well data privacy of UAV-based wireless networks by

performing the model training in distributed way.

We first provided a general introduction about federated

learning and its fundamentals. We then highlighted many use

cases of federated learning in UAV-enabled networks ranging

from 5G networks and beyond, IoT, Edge computing and

caching, to Flying Ad-Hoc Networks. Finally, we discussed

about many key open challenges and future research direc-

tions about the use of federated learning in wireless networks.
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