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ABSTRACT Federated learning (FL) is a distributed machine learning approach that can achieve the purpose

of collaborative learning from a large amount of data that belong to different parties without sharing the raw

data among the data owners. FL can sufficiently utilize the computing capabilities of multiple learning agents

to improve the learning efficiency while providing a better privacy solution for the data owners. FL attracts

tremendous interests from a large number of industries due to growing privacy concerns. Future vehicular

Internet of Things (IoT) systems, such as cooperative autonomous driving and intelligent transport systems

(ITS), feature a large number of devices and privacy-sensitive data where the communication, computing,

and storage resources must be efficiently utilized. FL could be a promising approach to solve these existing

challenges. In this paper, we first conduct a brief survey of existing studies on FL and its use in wireless IoT.

Then, we discuss the significance and technical challenges of applying FL in vehicular IoT, and point out

future research directions.

INDEX TERMS Federated learning, IoT, vehicular networks, collaborative learning.

I. INTRODUCTION

With the advent of information and communications technol-

ogy, it has become technically easier to collect a large amount

of data, and therefore data-driven approaches are attracting

great interests from both industry and academia. Traditional

big data-based machine learning systems collect data to a cer-

tain location, such as the central servers. However, in recent

years, privacy has been one of the most important concerns

in the wide deployment of these big data platforms. Typically,

data belongs to different parties, which may fail to exchange

data among themselves due to privacy restrictions, such as

General Data Protection Regulation (GDPR) [1].

In the Internet of Things (IoT) era, user devices generate a

large amount of data that can be used to improve the user ex-

perience of a system. However, users are reluctant to provide

their personal data due to the risk of data misuse and leakage.

On the other hand, some IoT applications in vehicular envi-

ronments, including cooperative driving, must make timely

decisions based on different types of vehicle sensor data, in-

cluding Global Positioning System (GPS), camera, radar, and

so on. In addition, there are two main considerations. Firstly,

while the cloud can process data and make decisions based

on global information, collecting and transferring data from

distributed agents to the cloud requires a high bandwidth and

incurs a high delay. Secondly, while the distributed agents can

process data based on local information and knowledge, the

decisions made are normally influenced by local scenarios

only, rather than reflecting the global scenarios.

In order to solve the aforementioned issues, FL has been

proposed by Google [2] to allow multiple parties to jointly

train a model, which consists of neural network parameters,

while mitigating the privacy risks. In [2], multiple clients
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(or workers) cooperate with the central server to train a deep

neural network model. The central server first disseminates

an initial model of the training to the clients. Based on the

model, each client calculates its local updates of the global

model, such as stochastic gradient descent (SGD), based on

its own local dataset. After a predefined training period, all

clients send their own updates (SGD) to the central server,

and the central server aggregates these updates to calculate

a global model. Federated averaging (FedAvg) algorithm is

introduced to aggregate local updates generated by the clients.

These steps are repeated until the central server achieves a

satisfactory global model. Since all local datasets gathered by

the clients are not transferred and stored at the central server,

data privacy is achieved.

Different from conventional decentralized learning ap-

proaches, FL is expected to achieve the following key

advantages:
� Better suitability for non-IID distributed and unbalanced

data: FL relaxes the assumption of independent and

identically distributed (IID) data. While existing decen-

tralized approaches basically assume an IID distribution

of data among training agents, FL can achieve better

performance in non-IID data by efficient client selection

and using aggregation algorithms. FL is also capable of

handling unbalanced data distribution. Different clients

could have different sizes of data with different levels

of importance. FL, which is based on a loose federation

of clients and the leadership of the server, leads to an

efficient handling of unbalanced data.
� Low communication overhead: FL reduces the size of

communication data by only sharing the local updates of

the global model between the central server and clients.

It is also possible for FL to determine whether to choose

a client for training or not depending on the available

communication bandwidth, which ensure efficient com-

munication and improved system performance.
� Larger data for training: Due to the low communication

overhead and privacy-preserving feature, FL is able to

involve a large number of participants, which is impor-

tant for training a deep neural network model with high

accuracy.

These advantages has facilitated the rapid expansion of

interests in FL-based systems in various sectors, including

smart phone applications, supply chain, healthcare, finance,

and so on. Emerging vehicular IoT systems involve a larger

amount of vehicle sensor data and various types of appli-

cations in complex vehicular environments where limited

communication, computing and storage resources must be

optimally utilized to support the quality-of-service (QoS) of

each end user [3]. Meanwhile, novel services, such as coop-

erative autonomous driving and intelligent transport systems

demanding unprecedented high reliability, high accuracy, and

quick response, are emerging. Some services experience an

extreme variance in their resource demands with respect to

time, location, context, as well as individual users. Current

vehicular IoT systems only consider the intelligence of a sin-

gle vehicle agent or depend on the collection of vehicle data to

the cloud, which is unable to satisfy the needs of emerging ser-

vices. In addition, vehicles are equipped with different types

of sensor devices that generate and handle privacy-sensitive

data, and the environments vary with time and road types.

In order to realize a more intelligent vehicular IoT system, a

privacy-preserving collaboration among different vehicles and

roadside units is needed urgently.

FL perfectly matches with these needs as it can efficiently

utilize the computing capabilities of decentralized agents (ve-

hicles) and preserve the privacy of the local data. However,

due to the complex and dynamic feature of vehicular envi-

ronments, the collaboration among a huge number of entities

faces some challenges. Considering the limited communica-

tion resources in vehicular environments, mobile edge com-

puting (MEC) [4]–[6] has been widely discussed in providing

a short delay for end users by conducting data caching and

computation offloading to end users nearby. MEC is expected

to incorporate FL in order to achieve the level of true in-

telligence in complex vehicular environments. However, the

deployment of FL in vehicular IoT encounters several key

challenges. First, the selection of clients for FL should address

the mobility, communication bandwidth, and the specific sce-

narios that the clients could represent. The consideration of

mobility and communication bandwidth ensures a successful

dissemination of the learning model and an accurate aggre-

gation of local updates from the clients. The consideration

of vehicle scenarios guarantees that selected data for training

includes a wide range of samples, avoiding the overfitting

for a non-representative scenario. Second, most vehicular IoT

applications have stringent QoS constraints. This urges us

to put more efforts on enhancing the FL architecture for a

better fit for vehicular environments. Third, the dynamicity of

vehicular environments makes the communication and com-

putational resource allocation particularly difficult. Therefore,

it becomes important to design efficient resource allocation

algorithms that could satisfy the need of FL.

Due to the aforementioned issues, conducting an efficient

learning in vehicular environments is a difficult scientific

problem. It is important to design a FL scheme that could

evaluate and improve one’s own behaviors with a low com-

munication overhead. In this paper, we give a survey on the

technical challenges and existing solutions regarding the inte-

gration of FL with vehicular IoT, and discuss future research

directions. The main contributions of this paper are as follows.
� This is the first survey paper discussing about the recent

advances related to vehicular IoT and FL, as well as the

application of FL in vehicular IoT-related scenarios.
� We not only discuss the technical challenges of applying

FL in vehicular IoT, but also explain the necessary im-

provements that should be made for IoT technologies in

order to support FL in vehicular environments.
� We describe possible future research directions related

to the integration of FL and vehicular IoT, and provide
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TABLE 1. List of Abbreviations

some new concepts and ideas that could promote the

related studies.

The remainder of the paper is organized as follows. We

first introduce the fundamentals of FL covering definitions,

classifications, basic algorithms, and procedures in Section II.

Then, we give a literature review on the recent advances of FL

in Section III. Section IV addresses the technical challenges

and existing solutions for the use of FL in wireless IoT envi-

ronments. By reviewing the open problems and recent efforts

on the use of FL in vehicular environments, Section V dis-

cusses the potential advantages and technical issues of using

FL in vehicular IoT. Section VI points out the future search

directions from different perspectives, and finally Section VII

draws our conclusions. Table 1 shows the list of abbreviations

used in this paper.

II. FEDERATED LEARNING FUNDAMENTALS

A. MAIN CONCEPT

As shown in Fig. 1, FL is a distributed machine learning

approach where multiple clients (workers) train a common

model using own local data under the instruction of a central

server. Instead of sending raw data to the central server, which

is common in the traditional centralized learning approach,

each client only sends an update of the common global model

to the central server who initializes the model. By using dis-

tributed training at the clients, the central server can enrich

the training result without sacrificing the privacy of the client

data. The basic steps for FL are as follows.

1) Client selection: The central server must specify the

client nodes that should be involved in the model train-

ing. The client selection should consider the data distri-

bution, the features of client nodes, the model training

requirements, and so on.

2) Model dissemination: Once the client nodes are se-

lected, the central server sends the initial model to

the selected client nodes for the purpose of distributed

learning at these clients.

3) Distributed learning: Each client node trains the model

using own local data, and calculates an update to the

central model, such as SGD for the federated averaging

model.

4) Client feedback: Each client sends its own updates to

the central server.

5) Aggregation: The central server calculates a new ver-

sion of the global model by aggregating the updates

from the client nodes according to an algorithm (such as

FedAvg) that is designed to optimize the performance of

FL. Some clients (stragglers) should be neglected at this

phase depending on the training results, update losses,

or some other reasons.

6) Model testing: The central server test the aggregated

global model using the data belonging to the rest of the

world (i.e., the entities that did not participate in the

training). According to the testing results, the central

server could tune some hyper parameters to repeat the

training process, or continue with the next step which is

model update.

7) Model update: The server updates the shared model

(i.e., the model that will be disseminated to all the

devices) according to the aggregated result from the

clients.

Table 2 shows the comparison of FL with other learning

approaches including the centralized learning, data center dis-

tributed learning and peer-to-peer learning. FL can provide an

acceptable learning accuracy with privacy preservation and a

low communication overhead.

B. CLASSIFICATION

As shown in Fig. 2, FL approaches can be classified into three

categories, namely, horizontal federated learning, vertical fed-

erated learning, and federated transfer learning. Horizontal

FL is the learning in the scenarios where multiple datasets

from different clients are the same in the feature space but

different in the sample space. For example, the datasets from

different hospitals represent the same feature space, i.e. the

information of patients, but different in the sample space,

i.e. the data from different patients. Vertical FL deals with

the clients that have data with the same sample space but

with different feature space, such as the bank statement and

shopping history information of the same group of people.

Federated transfer learning applies to multiple datasets that

differ both in the sample space and feature space.
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FIGURE 1. Federated learning.

TABLE 2. Comparison of FL With Other Learning Approaches

FIGURE 2. Classification of federated learning.

C. REPRESENTATIVE FEDERATED LEARNING APPLICATION

AND ALGORITHM

Gboard [7], a virtual keyboard software for mobile touch

screen, is the first application that shows the significance

of FL. In Gboard, FL is used to train a Long Short-Term

Memory (LSTM) model, namely Coupled Input and Forget

Gate (CIFG), using mobile devices. The purpose of the FL

in Gboard is to predict the next word input based on user

data. The experimental results show that the FL-based CIFG

model outperforms the central server-based model and n-gram

model on the learning efficiency while preserving the user

privacy. Gboard is one of the first implementations of FL for

a commercial use.

Federated averaging (FedAvg) algorithm [2] is a widely

used FL algorithm that combines local SGD on each client

with the central server that performs model averaging. FedAvg
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allows clients to perform multiple batch updates on local data

and exchanges the updated weights rather than the gradients,

which is more efficient in terms of communications.

In FL, a statistical model (e.g., linear regression, neural net-

work, boosting) is chosen to be trained on the clients. Clients

start training after receiving the initial model and calculation

tasks from the central server. Although most existing FL sys-

tems use neural networks in the training of local updates, the

neural network is not the only option. In this paper we use FL

to denote the federated learning with neural networks unless

specifically mentioned.

III. RECENT ADVANCES OF FL

There are some survey papers discussing the basic concept

and technologies about FL [8], [9]. Different from existing

works, this section puts a special focus on recent literature

published in the last two years. Existing studies mainly dis-

cuss about two different broad topics, namely, the enhance-

ment of learning efficiency, and privacy & security issues.

Table 3 summarizes the recent studies on FL.

A. LEARNING EFFICIENCY OF FL

The convergence speed of learning is an important issue for

FL. While most existing works use SGD or its integration

with momentum, Liu et al. [10] employ momentum gradient

descent (MGD), a deterministic gradient descent (DGD) ap-

proach with momentum, in the model training phase. The ap-

proach is called momentum federated learning (MFL). MFL

utilizes the advantage of DGD over SGD in convergence

speed under convex optimization, and therefore shows faster

convergence performance on MNIST and CIFAR-10 datasets.

Although FL avoids transmitting the raw data by conduct-

ing distributed learning at clients, there are still some informa-

tion should be shared between clients and the central server in

order to update the global shared model. This communication

overhead should be seriously controlled especially in a net-

work bandwidth limited scenario. There are many studies dis-

cussing about the improvement of communication efficiency

of FL. Recent study [11] formulates FL as biobjective opti-

mization problem with two objectives of communication cost

minimization and learning accuracy maximization. Then, the

authors introduce a multi-objective evolutionary algorithm to

reduce the communication costs while improving the learning

accuracy. Sparse evolutionary training (SET) is enhanced to

reduce the connections of deep networks without sacrificing

the performance, and thus reduce the size of model parameters

for communications.

Chen et al. [12] propose a communication-efficient scheme

for FL that employs a layerwise asynchronous update strategy

considering both the client side and server side operation. An

asynchronous learning approach is used on the client side

training, and a temporally weighted aggregation strategy is

used on the server side to reduce the communication over-

head and improve the learning efficiency. Two data sets with

different deep neural networks (DNNs) are used in the experi-

ments to show the advantage of the proposal over conventional

FL approaches. Sattler et al. [13] introduce an approach that

conducts compression on the downstream communications
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and considers complex learning environments including non-

IID, small batch sizes, and unbalanced data. The approach is

named sparse ternary compression (STC). The authors show

that STC is communication-efficient by using four different

learning tasks to demonstrate the performance advantage of

STC over federated averaging.

Wang et al. [14] propose CMFL, a communication-

mitigated federated learning approach that reduces communi-

cation overhead by eliminating some irrelevant updates from

clients. This is achieved by the server sending the global

tendency information to the clients, and a client avoiding the

transmissions if its update does not match with the global

tendency. The authors show that CMFL is able to reduce

the size of data exchange between the clients and the central

server while ensuring the convergence of learning. In [15],

Jeong et al. introduce a scheme that can achieve significant

reduction of communication overhead with a very small level

of accuracy reduction. In the scheme, the communication pay-

load size is determined based on the output dimension, which

is called federated distillation (FD). Federated augmentation

(FAug), a generative adversarial network (GAN) based data

augmentation scheme is also introduced to solve the non-IID

problem. In [16], the authors propose a feature fusion method

to aggregate the features for both the local and global models.

The aggregation is able to reduce the communication costs

and stimulate the convergence.

Bao et al. [17] propose FLChain, a blockchain for FL to

provide trust and incentive. FLChain maintains client infor-

mation and training details for public auditability. Incentive

mechanism is integrated to motivate the clients to behave

honest and monitor other clients with misbehavior. Toyoda

and Zhang [18] employ the theory of mechanism design, a

field in economics and game theory, to design an incentive-

aware blockchain-enabled FL. They introduce repeated com-

petition for FL in order to enable rational behaviors of

clients. A generic full-fledged protocol is designed on a public

blockchain. In [19], Zou et al. consider a special FL system

where each mobile device allocates own data and computa-

tion resources among different model owners (central servers

with different learning objectives). They model dynamic be-

haviors of mobile devices (clients) using evolutionary game

theory. Two metrics, specifically the accuracy and energy con-

sumption, are defined for the benefits and costs, respectively.

Martinez et al. [20] present a workflow for recording and

incentive purpose based on blockchain technology. A smart

contract-based scheme is integrated to conduct validation and

verification of gradients in order to determine the reward for

the corresponding client.

Non-IID data could cause a degradation of learning accu-

racy of FL. In [21], the authors propose adaptive FL frame-

work that alleviates the negative impact of imbalanced data

by using two approaches. First, for the global imbalance, data

augmentation is conducted for minority classes. Second, the

framework reschedules the training of clients to solve the

local imbalance. In order to deal with a scenario where new

devices keep joining the system, Li et al. [22] introduce an

online FL approach that derives model parameters for new

devices based on the local data and existing model without

revisiting the data of existing devices. The approach shows a

comparable accuracy to conventional algorithms with smaller

computation, communication and storage costs.

Client evaluation and selection also could have a significant

impact on the learning performance. Wang et al. [23] discuss

the techniques to evaluate the contributions of clients in FL

process. They propose two different approaches for horizontal

FL and vertical FL, respectively. For the horizontal FL, the

contribution is evaluated by comparing with and without the

contribution of a client. In the vertical FL, Shapley values [23]

are used to assess the contribution of each client. Considering

some limitations of Shapley value-based approaches, Song

et al. [24] define Contribution Index, a new metric that en-

hances Shapley value to evaluate the contribution of different

clients in a horizontal FL. Two gradient-based methods are

also proposed to speed up the calculation process of Contri-

bution Index.

B. PRIVACY & SECURITY OF FL

The privacy and security concern of FL also receive great

attentions in the relevant areas. Xu et al. [25] introduce Ver-

ifyNet, a FL framework that enhances the privacy of local

gradients with a double-masking protocol. VerifyNet also pro-

vides an approach to verify the integrity of the aggregated

results from the central server by using the homomorphic hash

function and pseudorandom technologies. The experiments on

real-world data are conducted to show the tractability of Veri-

fyNet. Nasr et al. [26] design a white-box inference method

to conduct a privacy analysis on FL models. The privacy

vulnerabilities of SGD are discussed. In [27], the authors

study the privacy risk of FL, and propose a GAN-based attack

that allows servers to target a specific client and compromise

the client level privacy. Triastcyn and Faltings [28] introduce

Bayesian differential privacy, a natural relaxation of differen-

tial privacy that provides better privacy guarantees for clients.

The main idea is based on a fact that FL tasks are often

focused on a particular type of data.

In order to protect the privacy of the gradients from an

untrusted server, Zhang et al. [29] propose a privacy-enhanced

FL scheme based on the additively homomorphic cryptosys-

tem which enables applying functions on encrypted data with-

out revealing the values of the data. A distributed selec-

tive SGD method is employed to achieve distributed encryp-

tions and reduce the communication costs. An authentication

mechanism is also incorporated to verify the clients. Sharm

et al. [30] enhance the security of existing federated transfer

learning models under malicious setting where some players

could arbitrarily deviate from the predefined protocol. They

use a variant of Multi-Party Computation (MPC) to improve

usability under existence of malicious clients. In [31], Cao

et al. analyze the effect of poisoned data and the number of

attackers on the performance of distributed poisoning attacks,

and propose a scheme to drop poisoned local models dur-

ing the training of global model. Gao et al. [32] introduce
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a privacy-preserving framework for heterogeneous federated

transfer learning, which uses an end-to-end secure multi-party

learning approach.

IV. FL AND WIRELESS INTERNET OF THING

We give an overview of the recent studies on FL and wireless

IoT by classifying these works into three different categories,

namely, the studies on the application of FL for wireless IoT,

the studies on technologies for enabling FL in wireless IoT,

and the efforts on privacy & security improvement. The recent

studies are summarized in Table 4.

A. APPLICATION OF FL FOR WIRELESS IOT

Wang et al. [33] propose a FL framework for MEC systems

for optimizing computing, caching and communications. A

collaboration among mobile devices and edge servers is dis-

cussed for a better training of FL models in optimizing the

system performance. In [34], a FL-based imitation learning

framework is proposed for cloud robotic systems with het-

erogeneous sensor data. The study shows that FL is able

to improve the efficiency and accuracy of imitation learning

at a robot by using the knowledge of other robots. Zhou

et al. [35] propose a FL framework for social recommender

systems. FL is used to learn a centralized model using the

collaboration between a large number of clients with context-

awareness and big data supports. Yin et al. [36] propose a

FL-based secure data collaboration framework for IoT. Based

on a blockchain-based mechanism, the framework enables

the collaboration between multiple parties on learning with

privacy preservation. A combination of blockchain and FL

is introduced in [37] for a privacy-preserving data exchange

in industrial IoT. FL is integrated into the consensus process

of a permissioned blockchain to improve the efficiency of

computation and data sharing.
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Ren et al. [38] propose a FL-based framework for large-

scale IoT environments with edge computing. They use FL for

the purpose of joint allocation of communication and comput-

ing resources. Fantacci and Picano [39] uses FL to solve the

allocation of virtual machine replica copies in hybrid cloud-

MEC networks. They use FL to predict the user application

demands in order to maximize the hit percentage. In [40], Lu

et al. introduce a privacy-preserving asynchronous FL mecha-

nism for MEC. An asynchronous test process is inserted after

each round of training at a client, which determines whether

the updates from the client will be sent to the central server

or not. A FL framework for power allocation in decentral-

ized wireless networks is investigated by Yan et al. [41]. The

framework adopts an on-line Actor-Critic algorithm for the

local training, and a collaboration among clients is achieved

by sharing the gradients and weightages. Mowla et al. [42]

propose a FL-based jamming attack detection mechanism for

flying ad hoc networks. A client selection approach based

on Dempster-Shafer theory is also used to improve the ef-

ficiency of FL. Chen et al. [43] propose a FL-based frame-

work for minimizing “breaks in presence” in wireless virtual

reality (VR) networks. They use FL to predict the location

and orientation of users by enabling multiple clients to col-

laboratively train their deep echo state networks based on

local data.

Nguyen et al. [44] propose a FL-based intrusion detection

system for IoT. Based on FL, the system can aggregate be-

havior profiles efficiently based on device-type-specific com-

munication profiles automatically, and no labeled data are

required for detection. Saputra et al. [45] use FL to conduct

accurate energy demand prediction with low communication

overhead for electric vehicle networks. The charging stations

work as clients in FL process, and only exchange trained

model with the charging station provider without exchanging

raw user data. Verma et al. [46] propose a web service-based

implementation of FL for cross domain enterprise data shar-

ing. Yu et al. [47] introduce a FL-based proactive content

caching scheme for edge computing. In this FL model, the

mobile devices work as clients, and the base station is the

central server.

Sozinov et al. [48] apply FL for human activity recognition.

They find that FL could achieve a comparable accuracy to

the centralized learning. Zhou et al. [49] propose a FL-based

real-time data processing architecture for multi-robot systems.

Doku et al. [50] uses a combination of FL with blockchain to

determine data relevance and store relevant data in a decen-

tralized manner.

B. TECHNOLOGIES FOR ENABLING FL IN WIRELESS IOT

Pandey et al. [51] propose a crowdsourcing framework to sup-

port FL in wireless IoT environments with a communication-

efficient way. They introduce an incentive mechanism based

on Stackelberg game model to attract the participation of

clients in FL. Kang et al. [52] introduce a reputation-based

client selection mechanism for FL in mobile networks. The

learning efficiency of FL is improved by providing more in-

centives to the clients with higher reputations. Zhan et al. [53]

design a deep reinforcement learning (DRL) based incentive

mechanism for FL in edge computing. DRL is used to deter-

mine the optimal strategies for the central server and clients.

Yunus and Ercetin [54] consider the capability difference of

clients in the incentive mechanism design. Feng et al. [55]

propose a joint pricing and relay node selection approach for

FL in wireless relay networks where a Stackelberg game is

used to model the problem.

Choi and Pokhrel [56] propose a multichannel ALOHA

scheme for improving the communication efficiency of FL

in a cellular system. It is argued that an adaptation of access

probability based on the significance of local updates at each

user could improve the aggregation performance in FL. Yang

et al. [57] propose an over-the-air computation-based aggre-

gation approach for FL in wireless environments. A sparse

and low-rank modeling approach is used to maximize the

number of clients that could satisfy the mean-squared-error

requirement. Ang et al. [58] propose a robust design for FL

under noisy communications. They consider the noise in both

aggregation and broadcast process, and provide a formulation

for the training problem. In [59], Zhu et al. present a broad-

band analog aggregation framework for low latency FL in

wireless networks. The waveform-superposition property of

multi-access channels is utilized to achieve a communication-

efficient aggregation of updates. Yang et al. [60] analyze the

effect of different scheduling policies on FL in wireless en-

vironments. Three different well-used scheduling algorithms,

namely, random scheduling, round robin, and proportional fair

are discussed. The implementation issue of FL over wireless

channels is discussed in [61].

Amiri and Gunduz [62] consider a bandwidth-limited fad-

ing multiple access channel between the clients and the central

server, and propose three different techniques to improve the

performance of FL. Mills et al. [63] improve the federated

averaging algorithm by using Adam optimization and a com-

pression scheme. Adam optimization speeds up the conver-

gence speed, and the compression scheme reduces the com-

munication overhead. Wang et al. [64] analyze the conver-

gence bound for FL with non-IID data, and propose a control

algorithm that achieves a tradeoff between local updates and

global aggregation in order to improve the accuracy of FL for

resource-constrained edge computing systems. Hua et al. [65]

investigate the FL problem over wireless networks consider-

ing model aggregation errors, and propose an approach that

updates local models by second-order optimization methods.

Tran et al. [66] provide an analytical model for FL over

wireless networks with special focus on the energy consump-

tion, learning time, training accuracy, and heterogeneity of

clients.

Savazzi et al. [67] propose a server-less variant of FL for

massive IoT networks. An adaptation of the FedAvg algorithm

for distributed consensus paradigms is proposed. Qu et al. [68]

use a blockchain-based approach to achieve decentralized
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privacy protection for FL. A similar block-chain based ap-

proach is also discussed in [69] for enabling on-device FL

without any central servers. Khan et al. [70] propose a self-

organizing FL scheme for wireless IoT. First, cluster heads

are selected based on a decentralized approach among self-

organizing nodes by considering social relationship and com-

putational capability. Then, the cluster head nodes perform the

same functions as the central servers in the conventional FL.

Anh et al. [71] propose a deep Q-learning algorithm for

resource allocation in mobile crowd FL. The energy, com-

putational resource, and wireless resource are considered in

the algorithm. Chen et al. [72] discuss the performance opti-

mization of FL over wireless networks. They consider joint

wireless resource allocation and user selection problem in

order to minimize the loss function.

C. PRIVACY & SECURITY

Hao et al. [73] propose a privacy-enhanced FL scheme for

industrial IoT. This scheme is able to preserve the privacy of

local gradients and shared parameters by achieving example-

level differential privacy with a distributed Gaussian mecha-

nism. In order to improve the security level of FL in mobile

networks, Kang et al. [74] introduce the concept of reputation

based on a consortium blockchain. Based on the reputation

metric, the central server selects the clients with high rep-

utation values. Zhang et al. [75] propose a poisoning attack

against FL systems based on GAN.

FIGURE 3. FL and vehicular IoT.

V. FEDERATED LEARNING AND VEHICULAR IOT

A. OVERVIEW OF VEHICULAR IOT

There are plenty of studies about vehicular IoT. As shown in

Table 6, we give a brief review of these research efforts by

classifying them into three different categories in terms of IoT

layer architecture, namely, the perception layer, networking

layer, and application layer studies.
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1) PERCEPTION LAYER

A positioning approach with high accuracy and reliability is

required in vehicular IoT systems in order to enable delay-

sensitive and mission-critical applications. However, the con-

ventional GPS receiver cannot satisfy the requirements. Some

research efforts target for achieving a better positioning ser-

vice. Jo et al. [76] propose an algorithm that integrates GPS

with in-vehicle sensor information to achieve accurate posi-

tioning in various driving conditions. Soatti et al. [77] propose

a positing scheme that improves the position accuracy by

enabling information sharing among vehicles in cooperative

ITS. The scheme uses an implicit cooperative positioning

approach where vehicles share some physical features, such

as traffic lights and inactive cars in the surrounding areas, to

refine their location estimates. Being independent of explicit

ranging information between vehicles, this approach is easy-

to-implement. Shieh et al. [78] propose a vehicle position-

ing method that uses two one-dimensional signal-direction

discriminators mounted on a vehicle to calculate the relative

position of another vehicle by measuring the coming direc-

tions of the signal emitted from the vehicle. A recent analysis

on vehicle positioning requirements for vehicular IoT appli-

cations is conducted by Williams and Barth [79].

Low-cost sampling technologies, such as compressed video

sensing (CVS), are widely used in vehicular IoT for one of the

perception approaches. Some studies discuss how to improve

the accuracy of CVS. Guo et al. [80] propose a convolutional

neural network (CNN) based compressed video sensing tech-

nology that uses CNN in analyzing the temporal correlation

of video frames in the measurement domain. Guo et al. [81]

conduct a survey on the applications of compressed sensing in

vehicular IoT systems. Alasmary et al. [82] discuss the prob-

lem of sensing vehicles with roadside cameras. They study the

effect of vehicle mobility and camera activation time in order

to reduce the number of activated sensors.

Ding et al. [83] use a kinematic information aided user-

centric access approach to satisfy the ultra-high reliability

and low latency requirements of cooperative perception in

autonomous driving. Huang et al. [84] conduct a study on the

redundancy of collective perception for connected vehicles.

A probabilistic data selection scheme is proposed to reduce

the redundancy while ensuring the system reliability. In [85],

Sridhar and Eskandarian propose a system that uses visual

and inertial sensors to perform cooperative localization based

on the relative information of two vehicles sharing a common

field of view.

2) NETWORKING LAYER

There are many types of communication approaches available

for vehicular networks including cellular communications,

IEEE 802.11p, and mmWave. IEEE 802.11p is the default

standard for vehicle-to-vehicle communications. The mobility

of vehicle is one of the main reasons that makes the vehicle-to-

everything (V2X) communication challenging, especially for

IEEE 802.11p where multi-hop communications are required

duo to the limited signal coverage. The mobility could incur a

frequent change of network topology and also result in various

node densities in different roads or hours. In a highly mobile

or dense environment, it is particularly difficult to find the

best communication path using a simple mathematical model

especially when there are multiple types of communication

approaches are available. There are some routing protocols

addressing the issue of providing an efficient route in V2X

communications [86], [87]. Due to limited coverage of IEEE

802.11p, when the network density is low, the issue of in-

termittent connectivity occurs. For the purpose of providing

communications for devices with intermittent connectivity,

delay tolerant network (DTN) protocols are also discussed in

the literature [88], [89].

The communications in vehicular environment can be clas-

sified into two categories in terms of networking perspec-

tive, namely, unicast communications and broadcast commu-

nications. Aforementioned studies [86]–[89] consider unicast

communications. The broadcast communications are used

to disseminate some messages including control messages

and safety-related messages. The multi-hop broadcasting of

messages is challenging due to the lack of retransmissions

for broadcast MAC frames. The multi-hop broadcast proto-

cols can be further classified into two categories, namely,

sender-oriented protocols [91]–[93] and receiver-oriented pro-

tocols [94], [95]. In the sender-oriented protocols, the for-

warder nodes are specified by the upstream forwarder (or the

sender) node. In the receiver-oriented protocols, the forwarder

nodes are selected based on probabilistic approaches.

In addition to routing protocols, there are some re-

search efforts on resource management in vehicular envi-

ronments. These studies cover different aspects including

the transmission scheduling in cognitive environment [96],

handover efficiency in cellular/IEEE 802.11p hybrid vehic-

ular networks [97], and resource allocation for vehicular

communications [98].

3) APPLICATION LAYER

There are many studies on the computing or task offloading

issues in vehicular IoT. The concept of autonomous vehicu-

lar edge computing is proposed in [99] to utilize the com-

putational resources of vehicles in vicinity. An ant colony

optimization-based scheduling algorithm is used for task of-

floading. In [100], a computation offloading approach is pro-

posed based on a game theoretical approach by considering

QoS constraints, communication overhead, and the distance

between the vehicle and the access point. Liu et al. discuss

multi-task scheduling problem by considering the dependency

between tasks, and solve the problem by prioritizing the tasks.

Zhang et al. [101] discuss task migration problem with a

consideration of offloading delay, and formulates the problem

as a finite horizon Markov decision process.

He et al. [102] design a multi-layer vehicular cloud plat-

form based on vehicular IoT technologies targeting for intelli-

gent parking applications and vehicular data mining services.
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A decentralized data storage scheme for vehicular networks is

proposed in [103] to enable decentralized storing of informa-

tion with moving vehicles. Khattak et al. [104] discuss pos-

sible smart city applications with LoRaWAN-based vehicular

networks. More interesting vehicular IoT applications are sur-

veyed in [105] where technical challenges and opportunities

are also discussed.

B. OVERVIEW ON FL FOR VEHICULAR IOT

There are several studies focusing on the use of FL in ve-

hicular IoT. These research efforts are summarized in Ta-

ble 6. Lu et al. [106] discuss secure data sharing problem

in Internet of Vehicles (IoV), and propose an asynchronous

FL scheme based on a hybrid blockchain. FL is used to re-

lieve the communication load and privacy concerns. Sama-

rakoon et al. [107] discuss the problem of joint power and

resource allocation for ultra-reliable low-latency communica-

tions (URLLC) in vehicular environments. FL is used to esti-

mate the tail distribution of the network-wide queue lengths

that reflects the network status. Ye et al. [108] discuss the

use of FL for image classification in vehicular IoT. A se-

lective model aggregation approach is introduced to select

local models calculated at vehicles by considering the local

image quality and the computational capability of each vehi-

cle. BRIK et al. [109] discuss possible applications of FL for

unmanned aerial vehicles (UAVs). Lu et al. [110] propose an

asynchronous federated learning scheme for resource sharing

in vehicular IoT. They use a local differential privacy tech-

nique to protect the privacy of local updates. An asynchronous

approach is employed in FL to enable distributed peer-to-peer

model updates between vehicles, which is more suitable for a

decentralized vehicular network.

As shown in Fig. 3, FL can be used in vehicular environ-

ments to train a global model by using the data collected at

vehicles with privacy protections. The federated learning in

vehicular IoT is expected to bring the following benefits.
� Better efficiency: Designing an efficient resource alloca-

tion in vehicular environments is particularly challeng-

ing due to the dynamic and decentralized features of

vehicle networks. FL could enable better utilization of

network resources, storage and computational resources

by conducting a collaborative learning among heteroge-

neous agents including vehicles, roadside units (RSUs)

or cellular base stations.
� Better privacy: Vehicles are attached with different types

of sensor devices. However, the exchange of the sen-

sor date with other vehicles or the cloud arises privacy

concern, resulting in strict restrictions for the use of

vehicular big data. FL provides a way to utilize vehicular

big data while mitigating privacy risks.
� Shorter response time: In a FL system, a client can con-

duct actions based on the global knowledge and local

data, which achieves a lower latency as compared with

the conventional approaches that make decision at the

central server side. The FL can be incorporated with

edge computing to facilitate various real-time systems

for vehicular IoT.
� Better utility: By utilizing the data from a large number

of devices with a privacy-preserving approach, FL could

enable some new applications that could not be possible

for the conventional learning approach.

C. FL AND PERCEPTION IN VEHICULAR IOT

1) PERCEPTION TECHNOLOGIES FOR AUTONOMOUS

VEHICLES

Since every single perception technology has its own limi-

tations, it is important to employ a multi-modal evaluation

approach, which draws a conclusion by aggregating the results

and knowledge coming from different sensors. However, dif-

ferent sensing devices could draw different conclusions which

could be contradictory with each other. It is even possible that

each sensor only has very limited and imprecise information.

We have to take into account all these contradictory, impre-

cise, and inaccurate features of the sensed data. It is also im-

portant to use collaborative computing to achieve multi-agent

collaborative perception in order to improve contextual aware-

ness of a vehicular IoT system. Here, FL based approaches

can be used to find an efficient solution by using the knowl-

edge from multiple vehicles with different scenarios, which

is important to further improve the perception efficiency and

accuracy at each single vehicle.

Considering an efficient utilization of wireless resource and

short delay, it is important to conduct learning in the vicinity

of vehicles. In order to apply FL for decentralized networks,

the approach based on vehicle clustering can be incorporated

as shown in Fig. 4. Some vehicle are selected as the central

servers of FL based on a decentralized clustering approach

proposed in [111], [112]. The dissemination of the global

model of FL can be done by a broadcast protocol, such as [91],

and the model updates from the clients to the central server

could use unicast protocols [86].

2) VEHICLE BASED PERCEPTION

Vehicles are always equipped with multiple sensors. By an-

alyzing data from multiple vehicles, we can achieve the pur-

pose of improving ITS, surveillance systems, user behavior
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FIGURE 4. FL based perception for vehicular IoT.

analysis and so on [113]. For example, GPS, vehicle velocity,

inter-vehicle distance data can be used to analyze the road

condition, which enables a better navigation system and road

system. The vehicle camera data can be used for the purpose

of surveillance, accident alert, and car insurance. However,

it is challenging to collect these data from multiple vehicles

since these data are privacy-sensitive and the data size is too

large. In order to solve this problem, FL could be a possible

way to conduct distributed perception by processing the data

at the end vehicles and then integrating the results to make the

final decision.

D. FL AND VEHICULAR NETWORKING

Vehicles could have different types of communication inter-

faces, which forms a multi-access communication environ-

ment [114]. The networking resource allocation in vehicular

environments is extremely challenging due to the frequent

change of network topology and unstable wireless signals.

Most vehicular IoT applications exhibit strict requirements

on the response delay and reliability. In order to achieve an

efficient communication in a highly mobile multi-access ve-

hicular environment, we have to find the best network resource

allocation policy in a complex and varying environment.

Since the best networking policy is dependent on the distri-

bution of communication, computing, and storage resources,

it is difficult to use a simple mathematical model to define

the problem. Therefore, a data driven intelligent approach

should be considered. However, each vehicle only has limited

information about the environment, and the exchange of data

with different parties arise privacy concerns. Considering the

importance of including data from different road conditions

in the learning with privacy protection, FL would be the best

solution. FL can utilize vehicular big data generated from a

large number of vehicles, and build a global model that could

be used by any vehicles. FL can also be easily integrated

with edge computing where the edge computing provides an

underlying infrastructure for FL. The following problems are

considered to be important for the era of vehicular networking

and FL.

� FL-based networking with vehicular big data: FL can

be employed to solve a joint optimization problem of

communication interface selection and route selection

problem based on collaborative learning among vehicles.
� FL-based intelligence for spatiotemporal changes: The

spatial and temporal changes of vehicular environment

require an intelligent approach that can evolve with the

change of environment. Therefore, it is important to de-

sign a FL scheme that could work properly in vehicular

environments with spatiotemporal changes.
� Efficient networking enabling FL in vehicular environ-

ments: Due to the dynamic topology of vehicular net-

works, the communication between clients and the cen-

tral server of FL faces challenges. Communication and

signaling protocols should be improved to support an ef-

ficient implementation of FL in vehicular environments.

Different types of communication protocols including

unicast and broadcast protocols should be designed to

satisfy different QoS constraints of communications in

FL.

E. FL AND VEHICULAR IOT APPLICATIONS

FL could facilitate the advance of various types of vehicular

IoT applications. For example, in the existing autonomous

driving systems, each vehicle is trained online based on the

observation of single vehicle, resulting in a limited knowledge

about the environment. FL can provide more information for

each vehicle by using the collaboration among vehicles. Duo

the ability of expanding the data size and types by involving

more workers (clients) in training, FL is capable of supporting

emerging applications such as intelligent traffic signal control,

navigation systems, collaborative autonomous driving, EV

charging decision, collision avoidance systems, vehicle pla-

tooning, automatic road enforcement based on decentralized

vehicle cameras, and so on. However, in order to achieve a

seamless integration of FL and vehicular IoT applications, the

following topics need further investigations.
� FL framework for emerging applications: Different ap-

plications could have different level of requirements on

the sensing, communication, computing, and storage re-

sources. It is important to design a suitable FL frame-

work for each application in order to optimize the per-

formance. On the other hand, a common FL architec-

ture for vehicular IoT should be designed to enable fast

deployment of a FL system with easy parameter tuning

according to the application requirements.
� Protocols for supporting FL in vehicular environments:

Existing protocols for FL do not adequately consider the

dynamic feature of vehicular environments. It is neces-

sary to design mobility-aware protocols for FL includ-

ing the client selection, model aggregation, and model

disseminations.

VI. FUTURE RESEARCH DIRECTIONS

The dynamic and complex features of vehicular IoT scenar-

ios, the limited resources, and the heterogeneity of network
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entities require an efficient FL learning scheme and relevant

technologies, which opens up many interesting research topics

as the following.
� FL framework for emerging vehicular IoT applica-

tions: FL framework design would continually be an

important research topic due to the outstanding perfor-

mance of collaborate learning in the relevant areas. More

applications can be benefited from the use of FL. It is

interesting to find new applications that could be pos-

sible with FL. The framework design should consider

the underlying sensing and networking infrastructure in

order to achieve the convergence of intelligent sensing,

networking, and computing in vehicular IoT.
� Resource allocation with FL: The overall performance

of the system depends on the allocation of limited re-

sources including communication, computing, and stor-

age resources, among the agents. Conventional mathe-

matical optimization approaches face challenges in solv-

ing the resource allocation problem since the vehicular

environment is complex, and the information observed at

each vehicle is imprecise and contains errors. Neural net-

work shows its advantages in solving complex problems

by utilizing big data. The big data related to user data

traffic, network status, resource allocation strategy and

the corresponding QoS satisfaction rate can be utilized

to find the optimal solution. A FL approach that uses

neural networks in local training is expected to be a

promising way to solve the resource allocation problem

for vehicular IoT.
� Big data empowered approaches with FL: Data driven

approaches are attracting increasing interests due to its

capability of finding a good solution for a complex sys-

tem. With FL, an efficient use of vehicular big data with

privacy protection becomes possible. This would create

new opportunities for a study on data driven approaches

in learning the best policy in vehicular IoT. An efficient

use of cross domain big data would also be an interesting

topic. As a simple example, it is possible to use vehicle

traffic big data to improve the communications in vehic-

ular networks [115]. Thanks to the privacy-preserving

feature of FL, the use of big data becomes possible,

which creates a need on establishing new schemes for

better big data utilization.
� Communication, computing, and caching strategies

for FL: The application of FL in vehicular environments

involves a large number of heterogeneous devices, which

requires an efficient underlying infrastructure to support

collaborative learning. Due to the special characteristics

of vehicular environments, the design of more enhanced

communication, computing, and caching strategies for

FL needs special concerns.
� Vehicular environment-aware FL: FL protocols

should be configured to support an efficient deployment

of FL in vehicular environments. Therefore, the stud-

ies regarding vehicular environment-aware FL protocols

and algorithms are expected to attract more attentions

with the rapid development of FL systems. The related

efforts should include different perspectives such as the

client selection algorithms, data aggregation protocols,

data dissemination protocols, and so on.
� Privacy, security & incentive: FL is proposed to

achieve privacy protections to the local data. However,

in a scenario where dishonest clients and servers exist,

the conventional FL approach could also face privacy

risks. Therefore, the problem of how to realize a more

trusty FL by eliminating all the possible risks requires

further discussions. In order to be resistant to potential

attacks, the security issue is also important for a FL

system because it determines the usability of the system.

The incentive problem needs investigations as well for

the purpose of involving more workers to improve the

accuracy of a FL system.
� Collaborative intelligence: The vehicular IoT involves

various types of devices including vehicles, sensors,

RSUs, base stations, edge severs, cloud servers, and

other devices. An efficient collaboration of these het-

erogeneous devices with FL could reach the level of

collaborative intelligence that achieves intelligent per-

ception of environment, intelligent networking, and in-

telligent processing of vehicular big data. The related

areas of collaborative intelligence should be discussed

from the perspectives of both efficient collaboration

among heterogeneous devices and efficient learning ap-

proaches with collaborations.

VII. CONCLUSION

With the growing interest in federated learning from both

industries and academics, a discussion on the use of FL in

vehicular IoT environments becomes important. In this paper,

we discussed the existing studies, technical challenges, pos-

sible solutions, and open problems regarding the application

of FL in vehicular IoT. We first conducted a survey on the

recent efforts of FL and then explained its applications and

challenges in wireless IoT environments. Existing studies on

the use of FL for vehicular IoT were also reviewed with de-

tailed discussions on the technical issues. We then discussed

the future research directions on the integration of FL with

vehicular IoT taking into account both the application of

FL for vehicular IoT, and the enhancement of vehicular IoT

technologies for supporting FL. We believe this work could

expedite the research process for both FL and vehicular IoT.

.
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