
����������
�������

Citation: Abreha, H.G.; Hayajneh,

M.; Serhani, M.A. Federated Learning

in Edge Computing: A Systematic

Survey. Sensors 2022, 22, 450.

https://doi.org/10.3390/s22020450

Academic Editors: Matteo Anedda

and Daniele Giusto

Received: 22 November 2021

Accepted: 31 December 2021

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Federated Learning in Edge Computing: A Systematic Survey

Haftay Gebreslasie Abreha , Mohammad Hayajneh and Mohamed Adel Serhani *

Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates
University, Al Ain P.O. Box 15551, United Arab Emirates; 202090183@uaeu.ac.ae (H.G.A);
mhayajneh@uaeu.ac.ae (M.H.)
* Correspondence: serhanim@uaeu.ac.ae

Abstract: Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology and is
widely used in several applications. However, in conventional DL architectures with EC enabled,
data producers must frequently send and share data with third parties, edge or cloud servers, to
train their models. This architecture is often impractical due to the high bandwidth requirements,
legalization, and privacy vulnerabilities. The Federated Learning (FL) concept has recently emerged
as a promising solution for mitigating the problems of unwanted bandwidth loss, data privacy, and
legalization. FL can co-train models across distributed clients, such as mobile phones, automobiles,
hospitals, and more, through a centralized server, while maintaining data localization. FL can
therefore be viewed as a stimulating factor in the EC paradigm as it enables collaborative learning
and model optimization. Although the existing surveys have taken into account applications of FL
in EC environments, there has not been any systematic survey discussing FL implementation and
challenges in the EC paradigm. This paper aims to provide a systematic survey of the literature on
the implementation of FL in EC environments with a taxonomy to identify advanced solutions and
other open problems. In this survey, we review the fundamentals of EC and FL, then we review the
existing related works in FL in EC. Furthermore, we describe the protocols, architecture, framework,
and hardware requirements for FL implementation in the EC environment. Moreover, we discuss the
applications, challenges, and related existing solutions in the edge FL. Finally, we detail two relevant
case studies of applying FL in EC, and we identify open issues and potential directions for future
research. We believe this survey will help researchers better understand the connection between FL
and EC enabling technologies and concepts.

Keywords: federated learning; edge computing; intelligent edge; edge AI; data privacy; data security

1. Introduction

According to Cisco, the number of connected IoT devices could exceed 75 billion by
2025, which is 2.5-times the amount of data produced in 2020 (i.e., 31 billion) [1]. Further-
more, IoT devices are equipped with heterogeneous and advanced sensors for various
crowdsensing applications such as smart industry [2], healthcare [3], and Unmanned Areal
Vehicle (UAV) [4] applications. In addition, the demand for time- and quality-sensitive
IoT applications is overwhelming currently, which requires an infrastructure with high
availability and resilience. However, managing massive, heterogeneous, and distributed
IoT data and providing services at a specified performance with cloud infrastructure looks
impossible. Edge Computing (EC) is a new architecture that extends Cloud Computing
(CC) services closer to data sources, which reduces the latency and bandwidth cost and
improves the resilience and availability of the network [5–7]. Thus, time-critical applica-
tions with specified Service Level Agreement (SLA) demands can be fulfilled by leveraging
the EC-enabled architecture. In addition, EC is a distributed computing paradigm that
can handle the proliferation of IoT data and take advantage of distributed heterogeneous
computing resources. EC combined with Deep Learning (DL) [8] is a promising technology
and is widely used in several applications.
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Data storage and model training occur on high-performance cloud servers in conven-
tional centralized ML approaches. Multiple edge nodes also collaborate with the remote
cloud to perform large distributed tasks that include both local processing and remote coor-
dination and execution. However, due to the inherent challenges listed below, transmitting
all data collected from edge devices to a central data center for training a model over the
network is not feasible:

• Communication cost: Sending large amounts of data from EC nodes or edge devices
to a remote server requires further network traffic encoding and transmission time.
In other words, insufficient bandwidth negatively affects the efficiency of data trans-
mission. In addition, cloud servers are often far from end-users, where data need
to travel across multiple edge nodes. Therefore, a network with thousands of edge
devices lacks the ability to meet the real-time, low-latency, and high Quality of Service
(QoS) requirements due to the long-distance data transmission [9]. Therefore, the
traditional cloud-based architecture is not suitable to accomplish the requirements
mentioned above;

• Reliability: Clients send their datasets via different communication network connec-
tions to the remotely located cloud server in conventional centralized model-training
architectures. Therefore, the wireless communications and core network connections
between clients and servers affect DL model training and inferences to a large extent.
Hence, the connection has to be reasonably reliable even when there is an interruption
in the network. Nevertheless, a centralized architecture faces system performance
degradation and possible failure because of the unreliable wireless connection between
the client and server, which can significantly affect the model;

• Data privacy and security concerns: Due to concerns about privacy and unauthorized
access to their data, users are often hesitant to share their information [10]. As a
result, the specific implementation of a set of controls, applications, and techniques
that identify the relative importance of various datasets, their sensitivity, compliance
requirements, and the application of appropriate safeguards to secure these resources
is required. Traditional centralized training, however, is vulnerable to sensitive data
privacy breaches, intruders, hackers, and sniffers since clients have to share their raw
data with third parties, such as cloud or edge servers, to train a model;

• Administrative policies: Data owners are becoming more concerned about their
privacy. Following public fears about privacy in the age of Big Data, legislators
have responded by enacting data privacy legislation. For example, the General Data
Protection Regulation (GDPR in the European Union) [11], California Consumer
Privacy Act (CCPA) [12] in the USA, and the Personal Data Protection Act (PDPA) in
Singapore [13] intend to restrict the collection of data to only those that are needed for
processing and consented to by consumers. Privacy legalization cannot be achieved
by the traditional centralized model-training architecture since clients must send raw
data to the server for model training.

Federated Learning (FL) is a concept developed by Google researchers in 2016, as a
promising solution for addressing the issues of communication costs, data privacy, and
legalization [14–19]. An FL approach is a distributed ML approach where models are
trained on end devices, organizations, or individuals under centralized control without
sharing their local datasets. This ensures the privacy of data during the training process. An
edge server or cloud server periodically gathers the trained parameters to create and update
a better and more accurate model, which is sent back to the edge devices for local training.
Generally, there are five steps in the FL training process. The FL server first determines an
ML model to be trained on the clients’ local database. Second, a subset of current clients is
chosen at random or using client selection algorithms such as Federated Client Selection
(FedCS) [20]. Third, the server multicasts the initial or updated global model to the selected
clients. The clients download the current global model parameters and train the model
locally. Then, each client in the subset sends updates to the server in the fourth step. Finally,
the FL server receives the updates and aggregates them using aggregation algorithms such
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as FedAvg [16] to generate a new global model without accessing any clients’ data. The
FL server orchestrates the training process and transmits the global model updates to the
selected clients each round. The steps iterate until the desired level of accuracy is achieved.

FL has several distinct advantages over traditional centralized ML training. The time
and bandwidth required for training and inference are significantly degraded because
local data are used and not frequently sent to a remote server. Thus, the updated model
can be used for prediction on the user’s device, for which FL ensures user privacy and
security as the data remain on the personal device. Moreover, collaborative learning
using FL is easy and consumes less power as the models are trained on edge devices.
The term implies that edge computing is a suitable environment for using FL. It is a
technology that enables the training of ML models on mobile edge networks. Therefore,
the communication costs, security, privacy, and legalization issues could be alleviated by
leveraging FL in the EC paradigm. Figure 1 shows how FL works in the context of edge
computing. Depending on how the global learning model is implemented, there are three
types of FL structures [21]: cloud-enabled, edge-enabled, and hierarchical (client-edge-
cloud-enabled) FL. Edge-enabled FL includes a group of devices in close proximity, so a
global learning model can be computed on the edge server. For aggregation, local models,
after being trained locally, are then sent to the edge server close to the edge devices. An
edge server aggregates and updates the model and then broadcasts it to the end devices. In
contrast, a cloud-enabled FL model computes a global learning model for edge systems that
are geographically distributed over a vast range of areas. Clients within a client range of the
edge server will collaborate on DL model training. The edge server will be the parameter
server for edge-enabled FL. In contrast to a server residing on the cloud, the parameter
server is typically located near the end-user, thus reducing the communication latency.
However, the edge servers are often resource constrained, which limits their computational
efficiency. The total number of clients participating in cloud-based FL will exceed millions,
resulting in big datasets for DL. As a result of network congestion, the connection with
the cloud server is slow and unpredictable, resulting in an inefficient training process.
The authors of [15] described the tradeoff between communication efficiency and the
aggregation convergence rate, such as more local computation utilized at the cost of less
communication. The parameter server, on the other hand, is located in the closest location
in the edge network, such as a base station. As a result, the edge parameter server’s
computation latency equals the contact latency. As a result, improved computation and
networking tradeoffs are possible. However, one disadvantage of edge-based FL is that
each server can only support a limited number of clients, resulting in the degradation of
training performance over time.

On the right side of Figure 1, FL with a hierarchical structure is illustrated, which
makes use of a cloud server to access the enormous training samples and use its local
clients to update the model quickly. By employing hierarchical FL, cloud communications
will be significantly reduced, complemented by efficient client–edge updates. Due to this,
the training runtimes and iterations will decrease significantly as compared to cloud-based
FL. The term “client” is used in this article to refer to devices or nodes that undertake
local ML training to generate the global FL model. As a result, the clients are determined
by the FL settings. The use of FL, originally designed for mobile devices, has expanded
rapidly into many other applications, including collaborating to train a model among many
organizations. “Cross-device” and “cross-silo” are terms used to describe the possible FL
settings for end devices and organizations as clients correspondingly [18]. Although the
existing surveys have taken into account applications of FL in EC environments, there has
not been any systematic review discussing FL implementation and challenges in the EC
paradigm. The purpose of this paper is to provide a systematic literature review of FL
deployment in EC environments, with a taxonomy that identifies advanced solutions and
other open issues. In this survey, we begin by discussing the fundamentals of EC and FL.
Then, we review the existing related works in FL in EC. Furthermore, we described the
protocols, architecture, framework, and hardware requirements for FL implementation
in the EC environment. Moreover, we discuss the applications, challenges, and related
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existing solutions in the edge FL. Finally, in addition to pertinent case studies, we identify
open issues and potential directions for future research. Finally, our goal in conducting this
survey is to provide readers with a better understanding of how FL and EC technologies
and concepts are linked.
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Figure 1. Three federated learning structures: (a). Cloud-enabled, (b) edge-enabled, and (c) hierarchi-
cal (client-edge-cloud-enabled).

As for the remainder of the paper, Section 2 describes EC, DL, and FL. Section 3
summarizes the literature review, which includes relevant review articles and explains
what this paper contributes. The methods of research adopted in this study are described in
Section 4. Section 5 discusses the architecture, challenges, and state-of-the-art solutions for
FL-enabled EC. Section 6 describes case studies involving UAVs and healthcare. Section 7
explains the open issues and possible future research directions. Section 8 concludes
the paper.

2. Fundamentals of Edge Computing and Federated Learning

Before diving into the results of our systematic survey, it is important to understand
the background and fundamentals of both EC and FL. In this section, we first provide this
overview, and then, we provide an overview of recent FL and edge computing surveys.

2.1. Edge Computing

Computing is becoming more ubiquitous, and services are overflowing from the cloud
to the edge. To solve this problem, there is a range of devices from cloud-based servers
to smartphones and wearables to IoT devices. As a result, Big Data data sources are shift-
ing from large-scale data centers on the cloud to diversified dispersed data sources with
advanced computing capabilities and enormous edge devices. However, for a variety of
reasons, the current cloud-based computing paradigm appears to be increasingly inca-
pable of managing and analyzing the collected/produced data at the edge [22]. Big Data
generated at the edge must be routed to a cloud server for processing, which is typically
located far away from the end device. This scenario will not be practical for time-sensitive
applications such as augmented reality, virtual reality [23], and autonomous vehicle net-
work systems [24]. Furthermore, with the growth of data quality generated at the edge,
network bandwidth between the edge devices and server is one of the bottlenecks for the
cloud-based computing paradigm. In addition to computational and communication costs,
IoT devices need to send raw data to the cloud server for processing. These include sending
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sensitive data to the server, such as patient information, which not only violates privacy,
but also threatens data security due to frequent data transmission [25].

Therefore, it would be more efficient to process the data at the edge of the network
described as edge computing. There are many new concepts aiming to operate on the
edge of the network in the evolution of EC, including Micro Data Centers (MDCs) [26],
Cloudlets [27], mobile edge computing [28] (also called multi-access edge computing [29]),
and fog computing [30,31]. However, there has not yet been agreement within the EC
community regarding the standard definitions, architecture, and protocols for EC [32]. This
group of upcoming technologies is commonly referred to as “edge computing”. Edge
computing brings compute power and data storage closer to the edge devices through
the use of distributed computing. This technology is emerging as an essential tool to
mitigate the bottleneck of emerging technologies. It reduces data transmission, improves
service latency, eases cloud computing pressure by leveraging distributed computing, and
enhances security and privacy. The concept of EC does not exclude the cloud computing
paradigm [33,34]. Edge computing, on the other hand, is a supplement to and extension of
cloud computing. Edge computing combined with cloud computing has three advantages
over cloud computing alone [25]: (1) the distribution of edge computing nodes can handle
many computation tasks without requiring the data to be exchanged with the cloud, thus
decreasing traffic on the backbone network; (2) data transmission delays can be reduced
and response times can be improved by hosting services at the edge; (3) the backup to the
Cloud is powerful because the cloud can process many computations without exchanging
data, thereby reducing the amount of network traffic. EC does not simply copy and transmit
cloud capabilities to the edge since the edge differs from the cloud server in functionality.
The edge is small, resource-constrained, and heterogeneous. Furthermore, edge nodes are
dispersed towards the network’s far end.

One may ask how edge computing delivers services and applications compared to
cloud computing. One of the main differences between edge and cloud computing is that
edge devices are only data consumers in the cloud computing paradigm, whereas they
are both data consumers and producers in EC, as described in Figure 2. Different types of
mobile devices and sensors, such as the IoT, Big Data, and social platforms connected to
the core network via the edge network, can be data producers or consumers, as shown in
Figure 2. The core network is connected to either or both private and public cloud networks.
The evolution of mobile networks, in particular 5G and beyond, brings cloud services
near the edge devices. Figure 2a shows the conventional cloud computing structure. Data
producers generate raw data and transfer them to the cloud, and data consumers send
a request for consuming data to the cloud, as noted by the solid line (1). The dotted
line (2) indicates the request for consuming data being sent from data consumers to the
cloud, and the result from the cloud is represented by the dotted line (3) where data are
distributed over the data consumers. This structure, however, is insufficient for the IoT.
First, the volume of data at the edge is excessive, resulting in a massive waste of bandwidth
and computing resources. Second, the demand for data privacy will be an impediment to
cloud computing in the IoT. Finally, because most IoT end nodes are energy constrained
and the wireless communication module is typically quite energy hungry, shifting some
processing operations to the edge could saves energy.

In the edge computing architecture depicted in Figure 2b, the computing distribu-
tion platform, for example AlibabaCloud [35], which includes applications such as data
caching/storage, computational offloading, data processing, request distribution, service
delivery, IoT management, security, and privacy detections, efficiently and effectively
performs on the edge network to achieve low latency, large bandwidth, and the mass
connection of the services. It is easier to manage the end-to-end connection and resource
sharing on the platform. As a result of the edge-based infrastructure, data can be produced
and consumed in close proximity to the edge itself, which reduces the need for data to be
moved back to the center in order to meet requirements such as security, reliability, and
privacy.
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Figure 2. (a) Cloud computing paradigm and (b) edge computing paradigm.

2.2. Deep Learning

DL has attracted the attention of all researchers, academicians, and industry personnel
working in a variety of fields, including Computer Vision (CV) [36,37], healthcare [38],
game playing [39,40], autonomous vehicles [41,42], and Natural Language Processing
(NLP) [43,44] without the costly hand-crafted feature engineering required in conventional
ML. DL is a subfield of ML concerned with algorithms inspired by the structure and
function of the brain called Artificial Neural Networks (ANN). Furthermore, a Deep Neural
Network (DNN) is an ANN with multiple layers between the input and output layers.
To automatically identify and learn automatic feature extraction from Big Data datasets,
DL employs Neural Networks (NNs) [45,46]. Then, it uses these features in later steps to
classify the input, make decisions, or generate new information [47]. Neural networks are
modeled after the brain and consist of multiple layers of logistic regression units called
neurons. Neural networks are known to be able to learn complex hypotheses for regression
and classification. Conversely, training neural networks is difficult, as their cost functions
have many local minima. Hence, the training tends to converge to a local minimum,
resulting in the poor generalization of the network. For the last ten years, neural networks
have been celebrating a comeback under the term deep learning, taking advantage of many
hidden layers to build more powerful ML algorithms. Feed-forward and backpropagation
algorithms are the backbones of neural network architectures.

As the simplest neural network, feed-forward networks have three layers: an input
layer, one or more hidden layers, and a final output layer. The input is weighted and biased
through a non-linear activation function to produce the output in the conventional feed-
forward neural network. Furthermore, the choice of the activation function in the hidden
layer is critical to design an effective DNN model that will control how well the network
model learns the training dataset. Sigmoid, Softmax, and Rectified Linear Unit (ReLU) are
some of the desired activation functions used by DNNs. Table 1 shows the mathematical
expressions of the activation function. There are often many hidden layers in a DNN that
map the input to the output. For example, a classification DNN produces a vector of scores
for an image input based on the positional index of the highest score. Multi-layered DNNs
minimize the deviation between the actual value and the output, also known as the loss
function. Let us consider N number of input features designated as x1, x, ..., xN , with
weights of w1, w, ..., wN , respectively. f (·) is an activation function. Therefore, the output,
y, is driven from the individual weights and input feature, as illustrated in Equation (1).
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y = f (
N

∑
n=1

xi ∗ wi + b) (1)

Table 1. Mathematical expressions of activation functions.

Activation Function Equation Range

Linear Function f (x) = x (−∞, ∞)

Step Function f (x) =

{
0, for x < 0
1, for x ≥ 0

{0, 1}

Sigmoid Function f (x) = σ(x) = 1
1+e−x (0, 1)

Hyperbolic Tangent Function f (x) = tanh (x) = ex−e−x

ex+e−x (0, 1)

ReLU f (x) =

{
0, for x < 0
x, for x ≥ 0

(0, ∞)

Leaky ReLU f (x) =

{
0.01, for x < 0
x, for x ≥ 0

(−∞, ∞)

Swish Function f (x) = x σ(β(x)) =

{
x
2 , β = 0
max(0, x), β→ ∞

(−∞, ∞)

To minimize loss functions such as the Mean-Squared Error (MSE), Cross-Entropy
(CE), and Mean Absolute Error (MAE), DNNs use backward propagation techniques. Back-
propagation is the core of NN training. It is a technique for fine-tuning the weights of a
neural network based on the previous epoch’s error rate (i.e., iteration). By fine-tuning the
weights, you may lower the error rates and improve the model’s generalization, making it
more dependable. Optimizing techniques such as Stochastic Gradient Descent (SGD) are
used to calibrate the network weights. Weight updates are obtained by multiplying gamma
by the partial derivative of the loss function L with respect to the weight W. The gradient
descent iteration step size is the gradient descent learning rate. SGD is evaluated using the
following formula:

W = W − γ
∂L
∂W

(2)

∂L
∂W
≈ 1

m ∑
i∈B

∂l(i)

∂W
(3)

It should be noted that, in (2), the SGD formula is a minibatch GD formula. The
gradient matrix in Equation (3) is calculated as an average of the gradient matrices over
all B batches, where there are m training samples in each batch. As a result, the partial
derivative is preferable to full-batch GD, which employs the entire training set. Full-batch
GD can cause training and batch memorization to be delayed [48]. Back-propagation is used
to deduce gradient matrices from the gradient error input e described [49,50] as e = ∂LB

∂y .
To reduce the cost, the training iterations of both feed-forward and backward propagations
are repeated over multiple epochs. Properly trained DNNs generalize well, achieving
high inference accuracy when they are applied to a dataset they have not encountered
before, such as the test set. DNN learning can not only be supervised, but also semi-
supervised [51], unsupervised [52], and use reinforcement [53] learning models. There are
different types such as Convolutional Neural Networks (CNNs) [54], Recurrent Neural
Networks (RNNs) [55], and Multilayer Perceptrons (MLP) [56], which have already been
applied to different themes.
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2.3. Enabling Deep Learning at the Edge

Currently, DL training data are pre-processed in the proximity of the edge devices
prior to the cloud transmission. Due to the constant transmission of massive data from the
clients to the cloud, this approach consumes both many computational and communication
resources, thus preventing further algorithm performance improvement. Furthermore,
the client to cloud training architecture is not feasible for DL services requiring locality
and continuous training. All of these issues highlight the demand for a new training
system to supplement the current training scheme in the cloud. “DL training at the edge”
refers to model training that takes place at the edge, or perhaps among “end–edge–cloud”
nodes, with the edge serving as the core architecture [25]. Distributed DNN models are
well adapted to EC. To collectively train the DL model, the workload is dispersed among
numerous network computing centers such as the cloud, base stations, edge nodes, and
end devices by assigning each a small portion of the work to perform and then aggregating
the results. Subtasks for training are allocated based on the edge device and distributed
models that prioritize load balancing in inference tasks. The training process can be made
more efficient by using parallel servers. Data parallelism and model parallelism are the
two most frequent approaches to distributed training. Model parallelism divides a big
DL model into several sections, then feeds data samples to these segmented models for
parallel training. Model parallelism improves both the training speed and solves the
problem of having a large model, which is beyond the device memory size. Training of
the DL model, in general, demands a considerable amount of computing resources, such
as thousands of CPUs. Therefore, distributed GPUs are often used for parallel training
to solve the challenge. As an alternative to data parallelism, data partitioning involves
building a model from copies of the data and training them simultaneously on their data
samples, which increases training efficiency dramatically. However, most distributed
DNN architectures cannot handle heterogeneous datasets such as non-IID and unbalanced
data while also dealing with legalization and privacy concerns. Furthermore, the overall
system performance degrades when they deal with the heterogeneous environment. FL has
earned the attention of by many researchers and academicians to resolve these difficulties
appearing in centralized DL training.

2.4. Federated Learning

In 2016, McMahan [16] first coined the term federated learning to address privacy
concerns. As described in the Introduction, FL sets up many distributed clients, collabo-
ratively training a model by leveraging decentralized local datasets with the support of
a centralized server that controls and monitors the operation. Clients’ raw data remain
local and share the parameter updates with the server to achieve the required model per-
formance [18]. FL also enhances the data collection and diminishes the costs and risks
associated with centralized ML. Furthermore, edge computing is enabled by FL because it
allows DL models to be trained collaboratively to optimize networks.

The application of FL techniques on edge networks has the following advantages
over the traditional centralized ML model. Data owners send update parameters instead
of raw data to the FL server, which lowers the number and size of the communication
data. Therefore, it enhances network bandwidth utilization [57]. Second is the latency: in
time-critical applications [58] (i.e., industrial control, mobility automation, remote control,
and real-time media). Furthermore, applications that require real-time decisions, such as
event detection, augmented reality, and medical applications, can be processed locally at
end devices to improve performance [59]. As a result, FL systems have substantially lower
latency than centralized systems. Third is privacy: raw data are not sent to a central server,
ensuring the privacy of each user. More users can therefore train a better model if the raw
data are not sent to a central server [60]. FL enables participating clients to cooperatively
train a global model utilizing their joined data without disclosing each device’s personal
information to the centralized server. The three-step approach shown in Figure 3 is utilized
to achieve this privacy-preserving collaborative learning technique [61]:
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• Task initialization: In a specific interval, the server selects a certain number of de-
vices from the thousands available. It determines the target application and data
requirements once the training task is specified. In addition, the server sets the hy-
perparameters related to the model and training process, such as the learning rate.
Specifically, it initializes the weights on the server by leveraging weight initializa-
tion methods such as random, He, or Xavier initialization [3]. The parameter server
disseminates the global model w0

G and the FL task to the selected participants after
specifying the devices;

• Local model training: The participants receive the global model wt
G, where t denotes

the current iteration index, and each participant updates the local model parameters
wt

i based on their local data and device. The objective of client i is therefore to obtain
an optimal parameter wt

i at the t time iteration at the minimum value of the loss
function L(wt

i ) [50]:

wt
i = arg min

wt
i

L(wt
i )

Finally, each local model’s updated parameters are sent again back to the FL parame-
ter server;

• Global model aggregation: The centralized server receives the local parameters from
each participant and aggregates the local models from the participants, then sends the
updated global model parameters wt+1

G back to all the participating clients to minimize
the global loss function, L(wt

G), i.e.,

L(wt
G) =

1
N

N

∑
n=1

L(wt
i )

Furthermore, Steps 2 and 3 are repeated in the iteration process until the global loss
function achieves the optimal accuracy.
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3. Literature Review

This section presents the previous surveys conducted by researchers in FL in the
EC paradigm. The survey helps readers to comprehend the difference between previous
surveys and the one reported in this study. Furthermore, the contribution of this paper is
presented in this section briefly.

3.1. Related Works on Federated Learning in Edge Computing

To the best of our knowledge, there is no other systematic survey of work on FL in
EC. Despite the fact that there are surveys on both EC and FL, most studies handle the two
areas independently. Furthermore, most of the literature has not considered the hardware
requirement challenges. The authors of [7] presented a survey on architecture and com-
putational offloading in MEC explicitly. The convergence of the intelligent edge and edge
intelligence was studied in [25]. Moreover, Nguyen et al. [62] analyzed DRL solutions to
address emerging issues in communications and networking. In [33], the authors provided
a tutorial on fog computing and its related computing paradigms, challenges, and future
directions. Similarly, the authors of [6] described how mobile computing and wireless
communication resources are managed together in MEC. Furthermore, in [63], the authors
studied the architectures and frameworks for edge intelligence. The authors of [64] ana-
lyzed edge intelligence specifically for 6G networks. In addition, Cui et al. [65] reviewed
the applications of ML for IoT management. Similarly, in [66], they presented a survey on
computation offloading approaches in mobile edge computing. In addition, the authors
of [67] investigated the techniques for computational offloading. Abbas et al. [68] studied
the architectures and applications of MEC. Furthermore, in [69], the authors reviewed
the computation offloading modeling for EC. In addition, the authors of [70] investigated
the computing, caching, and communication issues in MEC. Furthermore, Yao et al. [71]
analyzed the phases of caching and the differences between caching schemes. Moreover,
in [72], they provided a survey on MEC for the 5G network architecture. However, none of
the works [25,33] and [64,66,69–79] considered the application of FL. Furthermore, all the
literature reviews except [12,71] are not SLRs. In addition, the surveys did not consider the
hardware requirement challenges, except [25].

Mothukuri et al. [80] provided a study focusing on the data privacy and security of FL
viewpoints and described the areas that require in-depth research. FL applications from the
industrial engineering and computer science perspectives were investigated by Li et al. [81].
Furthermore, asynchronous training, gradient aggregation, returned model verification,
block-chain-based FL, and federated training for unsupervised ML of the six research fronts
they outlined in their definition of FL. In addition, the authors emphasized outstanding
research concerns and obstacles in future study fields that may be optimized. In addition,
Zhang et al. [61] discussed existing FL research from five perspectives: data partition,
privacy techniques, relevant ML models, communication architecture, and heterogeneity
solutions. They also noted the challenges and potential research directions.

Furthermore, Li et al. [82] proposed an FL building block taxonomy that classifies
the FL system into six different aspects: data distribution, ML model, privacy mechanism,
communication architecture, the scale of the federation, and the motivation for FL. The
authors presented the design factors, case studies, and future research opportunities.
Similarly, in [19], the authors provided a brief tutorial on FL and the challenges of FL,
offered a broad overview of the literature, and highlighted several future research directions.
In particular, they considered four challenges of FL: communication efficiency, systems
heterogeneity, statistical heterogeneity, and privacy. In addition, Kairouz et al. [18] provided
a broad overview of current research trends and relevant challenges raised by researchers.
The authors focused on communication efficiency, data heterogeneity, privacy, and model
aggregation as particular challenges. The authors of [83] discussed the opportunities and
challenges in FL. The authors of [84] described the existing FL and proposed the architecture
of FL systems. Another focus was on describing the architecture and classification of the
different FL configurations used for different training data distributions, as described in [17].
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The authors of [85] described the applicability of FL in smart city sensing, as well as clear
insights on open issues, challenges, and opportunities. Moreover, Lyu et al. [86] presented
a survey paper focusing on the security threats and vulnerability challenges in FL systems;
furthermore, the authors of [87] summarized the most used defense strategies in FL. In
addition, the authors concluded that employing a single defensive method is insufficient
to provide adequate security against all possible attack modes. Similarly, Reference [88]
provided protocols and platforms to develop better privacy solutions for industries that
desperately need them. Moreover, Lo et al. [89] performed an SLR on FL from the software
engineering perspective.

However, the authors of [17–19,61,80–89] focused only on the application of FL and
did not explore the impact of the hardware requirements. Furthermore, they did not
include the implementation challenges of FL in the EC paradigm. In addition, except
in the articles [82,89], they did not adopt the SLR methodology for the surveys. The
authors of [90] highlighted FL’s applications in wireless communications, specifically the
cellular network architecture. They did not address the challenges of FL implementation
in edge networks. In addition, the article [50] discussed the basics and problems of FL
for edge networks, as well as prospective future research approaches. Moreover, the
authors of [91] described the FL implementation challenges, methods, and future directions
in 6G communications. Khan et al. [92] also discussed FL’s recent advancements in
enabling FL-powered IoT applications to run on IoT networks. They highlighted a number
of open research challenges, as well as potential solutions. In addition, Reference [93]
provided a comprehensive review of combining FL with the IoT in terms of privacy, resource
management, and data management, as well as the problems, potential solutions, and
future research directions. Similarly, the authors of [94] highlighted the requirements and
obstacles of FL implementation in wireless communications, particularly for 6G wireless
networks. Moreover, Reference [95] investigated and analyzed FL’s potential for enabling a
wide range of IoT services, such as IoT data sharing, data offloading and caching, attack
detection, localization, mobile crowdsensing, and IoT privacy and security, as well as the
current challenges and possible directions for future research in the field.

The authors of [96] provided a thorough overview of FDL applications for UAV net-
works, as well as technical obstacles, unresolved questions, and future research objectives.
Moreover, the authors of [97] discussed the implementation challenges of FL techniques for
the full integration of the communication, computation, and storage capabilities of F-RANs.
Moreover, future trends of FL-enabled intelligent F-RANs, such as potential applications
and open issues, were discussed. In [98], they reviewed FL applications and the advances
of FL towards enabling the vehicular IoT. Finally, the authors provided a few open research
challenges regarding the FL-enabled vehicular IoT. Similarly, the author of [99] explored the
key factors responsible for this problem and explored how FL could provide solutions for
the future of digital health and the challenges and trends in implementing FL. In addition,
Reference [100] covered the applications of FL to autonomous robots and introduced the
key background concepts and considerations in current research. The authors of [101]
provided a review of FL technologies within the biomedical space and the challenges.
Moreover, the authors of [102] presented a comprehensive tutorial on FL in the domain of
communication and networking. However, none of the publications in [50,90–102] adopted
the SLR methodology. Moreover, the authors of [50,90,91,94,102] did not take into account
the challenges of FL implementation in the EC paradigm. Furthermore, the existing litera-
ture except [7,94] did not analyze the hardware requirements in implementing FL in the
EC environment.

Table 2 summarizes the comparison of our survey with current surveys in the litera-
ture based on a set of relevant criteria including the Systematic Literature Review (SLR)
methodology, Edge Computing (EC), Federated Learning (FL), Case Studies (CS), Hard-
ware Requirements (HWR), and Future Research Directions (FRD). First, we analyzed if
the existing related survey papers used an SLR approach to identify the challenges and
directions for FL implementation within the EC paradigm. For their respective applications
in the domain of federated learning, the authors of [62,66,82,89] applied different SLR
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methodologies. The SLR methodology, however, has never been used in most related
surveys. In our screening, almost all of the related survey papers addressed the open
research issues and directions, except for the papers by [65,72,83,87,88]. In addition, we
examined whether survey papers described the results of their research supported by case
studies as a means of explaining the features of the field. Therefore, most of the literature
did not show results illustrated by use-cases, as can be seen in the table. Furthermore,
we analyzed the review articles to determine if they described FL and EC clearly in such
a way as to characterize the challenges and future research trends. As we can see in the
table, there are surveys on EC and FL, but the existing studies treated these two topics
separately. In [6,7,25,33,62–66,68–72], the authors explored edge computing without in-
cluding federated learning. Similarly, the authors of [17–19,61,81–88,90–93,96] described
generic federated learning without relating to edge computing. In addition, we examined
whether the current reviews explored and discussed the HWR challenges in their study,
which provides the knowledge of hardware limitations and mitigating techniques. A recent
article [25,102] identified the hardware constraints in edge computing. However, they
were unable to demonstrate the hardware requirements to implement federated learning
models in an edge computing environment. As far as we know, the survey papers did
not include FL, EC, HWR, and FRD using the SLR methodology that we used. Therefore,
we analyzed FL implementation in EC by adopting an SLR research methodology in this
paper. Furthermore, we also discussed the HWR and described the possible FRD backed
by case studies.

3.2. Contributions

Although there have been several surveys studies conducted on federated learning
in edge computing [17–19,61,80–102], there has not been a systematic review of FL in EC
yet. With a taxonomy that identifies advanced solutions, as well as other related open
problems, this paper provides a systematic review of the literature on FL implementation
in EC environments. To illustrate the future scope of the implementation of FL in the
EC paradigm, we performed a Systematic Literature Review (SLR) to compare, analyze,
explore, and understand the current attempts and directions. In addition, to the best of our
knowledge, this is the first review of the state-of-the-art literature examining the impact
of architectural and hardware requirements on FL implementation in an edge computing
context. First, we review the fundamentals of EC and FL, then we review the existing works
related to FL in EC. In addition, we describe the protocols, architecture, framework, and
hardware requirements for FL implementation in the EC environment. Additionally, we
discuss the applications, challenges, and existing solutions for edge-enabled FL. Finally,
we detail two relevant case studies of applying FL in EC, and we identify open issues and
potential directions for future research. We believe this survey will help researchers in
the field better understand the connection between FL and EC-enabling technologies and
concepts. As a result, the main objectives of this paper are as follows:

• Classifying and describing the techniques and approaches to understand FL in the
EC paradigm. Furthermore, this survey will help readers understand the current
literature’s tendency and emphasis in the field of EC and FL;

• Categorizing and analyzing the challenges and constraints in EC to FL implementa-
tion settings;

• Identifying and evaluating state-of-the-art technical solutions to mitigate the chal-
lenges in FL implementation in the EC context;

• Providing case studies that leverage the enabling technologies of the FL and EC
paradigm, such as healthcare and autonomous vehicles;

• Enhancing the understanding of FL implementation in the EC paradigm by providing
insights into existing mechanisms and future research directions.



Sensors 2022, 22, 450 13 of 45

Table 2. Comparison of our survey to current state-of-the-art surveys.

References Summary SLR EC FL CS HWR FRD

[7] Survey on architecture and computation offloading in MEC X X X X X X

[25] Survey on convergence of the intelligent edge and edge intelligence X X X X X X

[62] Communication and networking issues being addressed by DRL X X X X X X

[33] Survey on fog computing and related edge computing paradigms X X X X X X

[6] Survey on the integrated management of mobile computing and wireless communication
resources in MEC X X X X X X

[63] Edge intelligence architectures and frameworks’ survey X X X X X X

[64] Survey on edge intelligence specifically for 6G networks X X X X X X

[65] Management of IoT systems, e.g., network security and management by leveraging ML X X X X X X

[66] Survey on computation offloading approaches in mobile edge computing X X X X X X

[67] Survey on techniques for computation offloading X X X X X X

[68] Survey on architectures and applications of MEC X X X X X X

[69] Survey on computation offloading modeling for edge computing X X X X X X

[70] A MEC survey on computing, caching, and communications X X X X X X

[71] Comparative study of caching phases and caching schemes X X X X X X

[72] Survey on MEC for the 5G network architecture X X X X X X

[80] Survey on the data privacy and security of FL X X X X X X

[81] Survey on FL applications in industrial engineering and computer science X X X X X X

[61] Survey on FL research from five perspectives: data partition, privacy techniques, relevant
ML models, communication architecture, and heterogeneity solutions X X X X X X

[82]
Proposed an FL building block taxonomy with six different aspects: data distribution, ML
model, privacy mechanism, communication architecture, the scale of the federation, and the
motivation for FL

X X X X X X

[19] Tutorial on FL challenges X X X X X X

[18] Overview of current research trends and relevant challenges X X X X X X

[83] Discussed the opportunities and challenges in FL X X X X X X

[84] described the existing FL and proposed an architecture of FL systems X X X X X X

[17] Described the different FL settings in more detail, emphasizing their architecture and catego-
rization X X X X X X

[85] Discussion on the applicability of FL in smart city sensing X X X X X X

[86] Survey on the security threats and vulnerability challenges in FL systems X X X X X X

[87] Summarized the most used defense strategies in FL X X X X X X

[88] Developed protocols and platforms to help industries in need of FL build privacy-preserving
solutions X X X X X X

[89] Performed a systematic literature review on FL from the software engineering perspective X X X X X X

[90] Highlighted FL’s applications in wireless communications X X X X X X

[50] Discussed the basics and problems of FL for edge networks X X X X X X

[91] Analysis of FL from the 6G communications perspective X X X X X X

[92] Survey on FL-powered IoT applications to run on IoT networks X X X X X X

[93] Survey on the FL-enabled IIoT X X X X X X

[94] Survey on FL implementation in wireless communications X X X X X X

[95] Analysis of FL’s potential for enabling a wide range of IoT services X X X X X X

[96] FDL application for UAV-enabled wireless networks X X X X X X

[97] Survey on the implementation of FL and challenges X X X X X X

[98] Review of FL for vehicular IoT X X X X X X

[99] Survey on FL for the future of digital health X X X X X X

[100] Survey on applications of FL to autonomous robots X X X X X X

[101] Review of FL technologies within the biomedical space and the challenges X X X X X X

[102] A tutorial on FL in the domain of communication and networking X X X X X X

[65] Analysis and design of heterogeneous federated learning X X X X X X

Our Paper A systematic review on FL implementation in the EC paradigm X X X X X X

Note: X = does include; CS: Case Studies; X = does not include; HWR: Hardware Requirements; SLR: Systematic
Literature Review; FRD: Future Research Directions; EC: Edge Computing; FL: Federated Learning.
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4. Research Methodology

The SLR is a well-known method for evaluating papers that come from reliable sources.
As the name implies, the SLR aims at determining, interpreting, and evaluating research
answers that correspond to the defined research questions. Therefore, the aim of this paper
is to review the most recent works of literature by using the SLR research methodology.
To retrieve the primary study results, we performed both manual and automatic searches.
We analyzed the implementation of federated learning in an edge computing environment
based on its impacts, support, applications, and challenges. The primary studies were
subjected to quality assessment to capture the best results in the study. We applied both
backward and forward snowball approaches to find the most relevant results. To reduce
bias in research, researchers must adhere to a predefined protocol. A thorough review
of all studies included in an SLR identifies existing research gaps and provides a basis
for conducting further investigations and further elucidating the new phenomenon. We
utilized the research methodology depicted in Figure 4 [103] to build the SLR, which
consisted of five stages. The first step was to formulate the research questions, and the
second was to select sources and search strategies. In the third step, results were selected
for inclusion and excluded from consideration. The analysis and synthesis of the research
papers were discussed in the fourth and fifth steps of the research methodology adopted in
this paper, respectively. Furthermore, various software tools, including Excel, were used
for the analysis phase.

Stage 1:
Research Question

Formulation

Stage 2:
Source Selection
 and Strategies

Stage 3:
Inclusion and

Exclusion Methods

Stage 4:
Analysis and
Synthesis

Stage 5:
Reporting and
Utilization of

Findings

Figure 4. Research methodology adopted in the current study [103].

4.1. Research Question Formulation (Stage I)

Several Research Questions (RQs) might arise during the implementation of FL in
the EC scheme. The main purpose of this section is to describe the potential RQs and the
methodology we followed to solve the problems. Therefore, answering the following RQs
is the purpose of this review paper.

RQ-1: What are the architecture and components of FL? The goal of this question is to
clarify the structures and elements of the FL design. This question helps readers understand
the architecture types for designing FL in the EC infrastructure.

RQ-2: What are the hardware requirements and existing frameworks for FL implemen-
tation in the EC environment? The main objective of this question is to explore and discuss
the hardware requirements of computing devices to implement FL algorithms. Moreover,
the existing frameworks for FL schemes were reviewed. The goal of this research question
helps readers easily understand the current hardware requirements of the state-of-the-art
framework to implement an FL scheme in the EC paradigm.

RQ-3: What are the applications of FL in the EC environment? This research question
intends to identify the state-of-the-art research regarding the applications/roles of FL in
the EC environment.

RQ-4: What are the research challenges of FL implementation in the EC paradigm?
This research question aims to underline the challenges of FL implementation in the
EC environment.

RQ-5: What are the state-of-the-art research solutions proposed to mitigate the chal-
lenges analyzed in RQ-4? This question intends to find the state-of-the-art research trends
to mitigate the challenges that arise in the implementation of FL in the EC paradigm.
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RQ-6: What are the possible case studies to analyze FL implementation in the EC
paradigm? This question intends to find the FL implementation in different areas.

RQ-7: What are the potential open research issues and future directions in FL imple-
mentation in the EC context? This question aims to define the open questions and research
directions in FL in the EC approach. Consequently, answering this question encourages
researchers to understand the current research findings and trends in FL in EC.

4.2. Source Selection and Strategy (Stage II)

Our review included papers published between the 1 January 2016 and 10 October
2021 time frame that deployed FL schemes in the EC context. We searched through the
following search engines and databases: (i) Scopus, (ii) ScienceDirect, (iii) Springer Link,
and (iv) ArXiv, which offered excellent coverage of the topics under study. Our search
strategy revolved around the terms “federated learning” and “edge computing” and
included synonyms and abbreviations as supplementary terms such as “federated ML,
federated artificial intelligence, federated AI, federated intelligence, federated training”
and “Edge Network, Edge Node, Edge Device” to increase the search results.

4.3. Inclusion and Exclusion Methods (Stage III)

We considered that we included the majority of the literature on EC, FL, and FL
implementation in the EC context. We devised search strings for each primary source to
review the title, abstract, and keywords. After completing the first draft of the search strings,
we examined the results of each search string on each database to check the effectiveness
of the search strings. The initial search found 882 papers with 343 from Scopus, 116 from
ScienceDirect, 202 from Springer Link, and 221 from ArXiv. In addition, using the advanced
search criteria, we limited the source type to the English language, journal, conferences,
and preprint literature types. We ended up with 204 papers after screening, excluding, and
eliminating duplicates.

4.4. Analysis and Synthesis (Stage IV)

At this stage, we classified and processed the existing literature that reported the
implementation, architecture, and applications of FL in the EC paradigm. This resulted in
six classes, i.e., challenges (including communication efficiency, privacy and security, client
selection and scheduling, heterogeneity, and service pricing), case studies, the background
and fundamentals, applications, and the architecture and framework, as shown in Figure 5.
Furthermore, we provide the total number of articles every year since the birth of FL
(i.e., 2016) and depict this in Figure 6. In addition, Figure 7 shows the total number of
publications per year in the scope of the subject bases. Furthermore, Figure 8 shows the
total number of articles in the subject area of the publication on an annual basis.

Federated Learning Implementation
in Edge Computing

Background
and

Fundamentals

Architecture
And

Frameworks
Applications

Challenges (
communication
efficiency,
privacy...)

Case Studies
Open Issues
& Future
Directions

Figure 5. Taxonomy of federated learning in EC papers based on the high-level classification to be
analyzed in this survey.
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Figure 6. Percentage breakdown of the literature in federated learning in edge computing.
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Figure 7. Total number of articles on federated learning in edge computing vs. publication year.
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Figure 8. Total number of publications per year in the subject bases.

4.5. Reporting and Utilization of the Findings (Stage V)

As shown in Figure 6, the majority of the papers have been published since 2020. This
implies the publication rate and field of interest have grown dramatically. The majority
(57.3%) of the literature explores the challenges that edge federated learning can face in
an edge computing environment. Researchers need to recognize today’s challenges and
solutions to anticipate future research directions and tasks. The most frequently explored
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challenges were heterogeneity, communication efficiency, security, privacy, and client
selection. The second-most surveyed topic specifically in the last couple of years was
open-source and licensed frameworks for federated learning architecture implementation
on an edge network, with 12.7% of the surveyed papers in the selection. The literature
describes the various federated learning architectures, as well as a framework to implement
them in an edge computing environment. Furthermore, researchers have analyzed and
implemented the collaborative learning paradigm for different use-cases such as healthcare,
smart homes, smart transportation, and autonomous systems. Due to this, we observed that
approximately 12.7% of the papers published since 2016 in the field of distributed learning
models focused on the use-cases of the FL model for edge computing. In addition, 10.4% of
the works in the literature describe the background and fundamentals of FL in EC. These
works aimed to explore the fundamental principles of edge computing and the learning
models that reasonably fit into this field. Moreover, articles discussing FL applications in EC
accounted for 6.9% of the publications. Federated learning is discussed in these publications
for various edge computing applications, including malware detection, anomaly detection,
computation offloading, content caching, task scheduling, and resource allocation.

There have been a number of articles published in the past six years in the fields of
edge computing and federated learning, as illustrated in Figure 7. The statistics indicates
that since the advent of federated learning in 2016, the number of publications related to
federated learning in an edge network grew dramatically in 2020 and 2021. Figure 8 depicts
the total number of publications annually since 2016 on the four subject bases: case studies,
background and foundations, architecture and frameworks, and challenges. Over the past
three years, the majority of papers addressing this topic have focused on implementation
challenges and potential solutions of federated learning in an edge computing paradigm.
As shown in the figure, federated learning architectures and frameworks have also been a
hot topic since 2019 in the area. In addition, there are federated learning case studies based
on the edge computing paradigm such as in autonomous systems, smart healthcare, and
smart transportation. Moreover, the RQ’s are answered in Sections 5–7. Figure 5 shows the
taxonomy of federated learning in edge computing to analyze the state-of-the-art challenges
and solutions we followed in this survey paper. We categorized the existing literature into
twohigh-level classifications based on the objectives of the papers. The background and fun-
damentals include edge computing, deep learning, and federated learning implementations
in edge networks. Architectures and frameworks cover potential architectures for federated
learning and frameworks to implement it in an edge computing paradigm. Furthermore,
applications deal with the possible applications of federated learning in an edge computing
setting. In addition, challenges such as communication efficiency, privacy, security, and
service pricing are discussed regarding current challenges and potential solutions in the
distributed learning paradigm. Case studies are use-cases to demonstrate the application
of federated learning implementation in an edge computing paradigm.

5. Review and Analysis of Federated Learning Implementation in Edge Computing

This section first describes the FL architecture in the EC paradigm. Following that, we
go over the FL protocols and frameworks. In addition, we describe the hardware require-
ments for FL edge computing devices. Finally, we discuss the challenges and cutting-edge
solutions for FL implementation in the EC paradigm. Furthermore, for the FL implementa-
tion in the EC environment analysis, this section introduces a taxonomy that includes the
studies to be discussed in this review. Figure 5 summarizes the possible classification of FL
implementation in the EC paradigm. The classification is based on: (i) Background and
fundamentals, which have already been covered in Section 2, (ii) FL applications for the
edge computing framework, (iii) implementation challenges for FL in the edge computing
paradigm, (iv) FL architectures and frameworks for the edge computing environment, as
well as (v) case studies of FL implementation in the edge computing paradigm, discussed
in Section 6.
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5.1. Federated Learning in Edge Computing: Protocols, Architectures, and Frameworks

It is convenient to begin with the network protocol to gain an understanding of the
system architecture. To improve overall system performance, the authors of [14] proposed
an FL protocol at the system level. The communication protocol deals with the overall FL
training process. Thus, it considers the status of the communication between the server
and devices, such as communication security, unstable device connectivity, availability,
and communication security. The FL server, which is a cloud-based distributed service,
and end devices, such as phones, participate in the protocol. When the device tells the
server that it is ready to perform an FL operation for a given FL population, the server
performs the operation. Learning problems or applications are identified by a globally
unique name in an FL population. Tasks associated with FL populations include training
with the provided hyperparameters or testing the trained models against local data. In a
given time window, the server typically selects a subset of a few hundred devices from
the potentially tens of thousands of devices available to it. This subset is used to process
a specific FL task. This interaction between devices and a server is referred to as a round.
Devices remain connected to the server throughout the round. The server specifies which
computations to perform on the selected devices. To do this, it uses an FL plan that contains
a TensorFlow graph and instructions on how to execute it. Once the round is set up, the
server sends an FL checkpoint with the current global model parameters and any other
required information to each participant. Each participant sends an FL checkpoint to the
server based on its local dataset and global state. The FL parameter server updates its
global state, and the process repeats. Figure 9 illustrates the communication protocol used
to develop a global singleton population model in each training round, which consists of
three phases:

1. Selection: Devices that meet the eligibility criteria check in to the server on a regular
basis through bidirectional communication streams. The availability of clients is
kept track of through the stream: whether or not anything is alive and to organize
multi-step communication. Furthermore, an FL parameter server selects a subset of
active clients for participation in a training round, and they perform a specified FL
task based on a defined client selection algorithm such as FedCS [20]. Subsection C
discusses the client selection methods and challenges;

2. Configuration: For the selected devices, the FL server configuration varies depending
on the aggregation method selected, such as simple [15] or secure [104]. An FL plan
and an FL checkpoint are sent to each selected device along with the global model;

3. Reporting: The parameter FL server waits for updates from the participating clients.
As updates arrive, the server aggregates them using predefined algorithms such as
FedAvg [15] and instructs the reporting devices when to reconnect. When a sufficient
number of clients are connected over time, the federated training is accomplished un-
der the control of the server, and the server’s global model will be updated; otherwise,
the round will be abandoned. The model update is frequently sent to the server via
encrypted communication. To eliminate objective inconsistency, the authors of [105]
proposed FedNova as a normalized averaging method.

A couple of papers such as [14,106] described the FL architecture and proto-
cols. For example, Kiddon et al. [14] explained the architecture both on the device
participating in FL and the design of the FL server. According to the proposal, we
can describe the overall architecture by categorizing it into two main segments: the
participating device and FL server architectures.
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Figure 9. Federated learning protocol [14].

5.1.1. Architecture of Participating Device

This architecture defines the software design that runs on an FL device, which consists
of three core components: application process, example store, and FL runtime. The first
responsibility of a participating device in on-device learning is to keep a repository of locally
collected data for model training and evaluation. By implementing an API, applications
are responsible for making their data available to the FL runtime as an example store. An
example store for an application could, for example, be a SQLite database that records
action suggestions shown to the user and whether or not those suggestions were accepted.
The FL runtime will access an appropriate example store to compute model updates when
a task arrives at the device.

5.1.2. Architecture of the Federated Learning Server

The FL server is designed to handle many different scales of population and one or
more dimension. Rounds can have thousands of participants or hundreds of millions, so
the server must be able to handle them. From a few dozen clients to hundreds of millions,
the server must be able to handle FL populations of all sizes. Each round can also contain
updates as large as ten megabytes, and the size of the updates can vary from kilobytes to
megabytes. Depending on when devices are idle and loading, the amount of traffic flowing
through a given geographic region can vary greatly throughout the day.

The actor programming model is at the heart of the FL server. Among the principal
actors are:

• Coordinators: Trains are synchronized globally and flow in lockstep by these top-
level players (one for each population). Based on the number of tasks scheduled for
FL, the coordinator receives information about the number of devices connected to
each selector;

• Selectors: This accepts and forwards device connections. When the coordinator
starts the master aggregator and a set of aggregators, the selectors are instructed to
send a subset of their connected devices to the aggregators. This technique allows
the coordinator to efficiently assign devices to FL tasks regardless of the number of
available devices;

• Master aggregators are spawned to complete the work according to the number of
devices and the update size. To balance the number of devices and the update size,
they scale as needed.
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Furthermore, the authors of [106] described the software architecture design concerns
in building FL systems. The architecture consists of four components: client management
patterns, model management patterns, model training patterns, and model aggregation
patterns. The client management patterns manage the client devices’ information and
their interaction with the central server. In addition, the model management patterns
include model transmission, deployment, and governance such as message compression,
model versioning, and model deployment. The multitasking model trainer, which handles
both model training and data preprocessing, is one of the model training patterns. Model
aggregation patterns, on the other hand, are model aggregation design solutions that
can be used for a variety of purposes. The authors defined four types of aggregators:
asynchronous, decentralized, hierarchical, and secure. An asynchronous aggregator’s goal
is to reduce aggregation latency and improve system efficiency, whereas a decentralized
aggregator’s goal is to improve system reliability and accountability. The hierarchical
aggregator is used to improve model quality and optimize resources. The secure aggregator
is designed to protect the models’ security.

The performance of the system is determined not only by the FL architecture, but also
by the architecture of the edge network. FL services, on the other hand, rely heavily on
complex software libraries. The training model requires not only the computing power of
edge devices, but also the ability to respond quickly to services offered by the edge comput-
ing architecture. As a result, an appropriate combined EC and FL architecture is required
to deal with the coordinated integration of computing, networking, and communication
resources. For protection against degradation, it is both necessary to utilize computation
virtualization and to integrate network virtualization and management technologies. SDN
and NFV are new technologies that aim to improve resource management and orchestra-
tion. FL is also a key enabler for implementing a virtualized environment for resource
management and orchestration [25,107].

5.1.3. Open-Source Federated Learning Frameworks

FL is actively being developed, and several open-source frameworks are currently
being used to implement it. Managing and analyzing a large amount of collected data
from edge nodes or devices is one of the challenging issues in the FL-enabled environment.
Thus, FL frameworks help engineers to ease the use, develop, and enhance the accuracy
and performance of learning models. In this subsection, we discuss the open-source FL
frameworks recently developed for FL:

• TensorFlow Federated (TFF): TFF [108] is an open-source framework for decentralized
ML and other computations. TFF was created to enable open research and experi-
mentation with FL by Google. TFF’s building blocks can also be used to implement
nonlearning computations such as federated analytics. TFF’s interfaces are divided
into two layers: (i) FL API and (ii) Federated Core (FC) API. The FL API offers a set of
high-level interfaces that allow developers to apply the included implementations of
federated training and evaluation to their existing TensorFlow models. Furthermore,
the FC API is a set of lower-level interfaces for expressing novel federated algorithms
in a strongly typed functional programming environment by combining TensorFlow
with distributed communication operators. This layer also serves as the foundation
upon which FL is built;

• Federated AI Technology Enabler (FATE) : The FATE [109] project was started by
Webank’s [110] AI Department to provide a secure computing framework to sup-
port the federated AI ecosystem. It uses homomorphic encryption and multi-party
computation to implement secure computation protocols (MPCs). It supports the
FL architecture, as well as the secure computation of various ML algorithms such as
logistic regression, tree-based algorithms, deep learning, and transfer learning;

• Paddle Federated Learning framework (PaddleFL) : PaddleFL [111] is a PaddlePaddle-
based open-source FL framework. Several FL strategies will be provided in PaddleFL,
including multi-task learning [112], transfer learning [113], and active learning [114],
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with applications in computer vision, natural language processing, recommendations,
and so on. PaddleFL developers claim that based on Paddle’s large-scale distributed
training and elastic scheduling of training jobs on Kubernetes, PaddlePaddle can be
easily deployed on full-stack open-sourced software;

• PySyft framework: PySyft is an MIT-licensed open-source Python project for secure
and private deep learning. Furthermore, it is a PyTorch-based framework for perform-
ing encrypted, privacy-preserving DL and the implementation of related techniques
such as Secure Multiparty Computation (SMPC) and Data Privacy (DP) in untrusted
environments while protecting data. PySyft is designed to retain the native Torch
interface, which means that the methods for performing all tensor operations remain
unchanged from PyTorch. When a SyftTensor is created, a LocalTensor is created
automatically to apply the input command to the native PyTorch tensor. Participants
are created as virtual workers to simulate FL. As a simulation of a practical FL setting,
data in the form of tensors can be split and distributed to virtual workers. The data
owner and storage location are then specified using a PointerTensor. Model updates
can also be retrieved from the virtual workers for global aggregation;

• Federated Learning and Differential Privacy framework (FL& DP): A simple FL and
DP framework has been released under the Apache 2.0 license. FL is an open-source
framework [115]. Granada’s Andalusian Research Institute for Data Science and
Computational Intelligence developed the framework of Sherpa.AI. This framework
uses TensorFlow Version 2.2 and the SciKit-Learn library to train linear models and
clusters;

• LEAF : LEAF [116] is an FL benchmarking system that has applications in FL, multi-
task learning, meta-learning, and on-device learning. It consists of three parts: (1) a
collection of open-source datasets, (2) a set of statistical and system metrics, and (3) a
set of reference implementations. Because of LEAF’s modular design, these three com-
ponents can readily be integrated into a variety of experimental workflows [117]. The
“Datasets” module preprocesses and transforms the data into a common format that
can be used in any ML pipeline. The “Reference Implementations” module in LEAF
is a growing repository of common federated techniques, with each implementation
generating a log of various statistical and system characteristics. Through LEAF’s
“Metrics” module, any log created in a proper format can be used to aggregate and
analyze these metrics in a variety of ways.

5.1.4. Proprietary Federated Learning Frameworks

FL technologies are applied in a variety of ways, including open-source frameworks.
Some major industry leaders have created proprietary libraries that are not open-source and
are only available under a limited license. In addition to the open-source FL frameworks,
there are proprietary frameworks from leading IT companies. NVIDIA, for example, added
FL support to its NVIDIA Clara Train SDK. IBM is working on a framework called IBM
Federated Learning [118]:

• IBM Federated Learning Framework: A Python framework for FL in an enterprise
environment is IBM Federated Learning. IBM distributes the framework under a
license that restricts its use [119]. One of the most salient features of the framework
is the large number of ML algorithms it contains. Besides NN, linear classification,
and decision trees (ID3 algorithm), it also supports K-means, naive Bayes, and rein-
forcement learning algorithms. IBM FL integrates libraries such as Keras, PyTorch,
TensorFlow, SciKit-learn, and RLlib;

• NVIDIA Federated Learning Framework [120]: It is not possible to open source the
entire framework of the NVIDIA Clara Train SDK because of the restrictive license
under which it has been released. For NVIDIA Clara Train SDK, FL requires CUDA
6.0 or later. It supports TensorFlow [121], TResNet [122], and AutoML, making the
development of models easy and intuitive. To track the progress of model training, the
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software uses a centralized workflow between the server and the clients. The original
model is then sent to each client.

5.2. Hardware Requirements for Implementing Federated Learning in an Edge
Computing Environment

DL is capable of a wide range of advanced tasks, including image classification/object
detection, audio/speech recognition, and anomaly detection, which require huge computa-
tional resources. Edge devices, on the other hand, have limited computational resources,
memory footprints, and power consumption. As a result, before implementing FL in the EC
paradigm, it is necessary to research the most recent EC hardware requirements and gaps
to fill. We were inspired by this idea to conduct a brief investigation into the EC hardware
requirements, which we present in Table 3.

Table 3. Comparison of hardware accelerators for the implementation of federated learning in
edge computing.

Name Owner Pros Cons

CPU/GPU NVIDIA and Radeon High memory, bandwidth, and throughput Consumes a large amount of power

FPGA Intel

High performance per watt of power con-
sumption, reduced costs for large-scale
operations, excellent choice for battery-
powered devices and on cloud servers for
large applications

It requires a significant amount of storage,
external memory and bandwidth, and com-
putational resources on the order of billions
of operations per second

ASIC Intel

Minimizes memory transfer, most energy ef-
ficient compared to FPGAs and GPUs, and
best computational speed compared to FP-
GAs and GPUs

Long development cycle, Lack of flexibility
to handle varying DL network designs

The advancement of DNN collaborative training on an edge network such as FL
encourages industries to accelerate hardware to support the computational workloads and
storage required. These include growth in Central Processing Units (CPUs), Graphics Pro-
cessing Units (GPUs), and new Application-Specific Integrated Circuits (ASICs) designed to
support DNN model computation. With a high depth of an NN model, the DNN structure
becomes more complex. To train and test the model, billions of operations and millions of
parameters, as well as significant computing resources are required. A requirement of this
nature poses a computational challenge for General-Purpose Processors (GPPs). As a result,
hardware accelerators to improve the performance of the DNN model can be explored by
categorizing them into three edge hardware types for FL:

1. GPU-based accelerators: A GPU is an efficient computing tool because it is able to
perform highly efficient matrix-based operations coupled with a variety of hardware
choices [123]. The GPU accelerator, on the other hand, uses much power, making
it difficult to use on cloud servers or battery-powered devices. In addition to its
GPU-based architecture, the NVIDIA Tensor Core architecture runs large amounts
of computations in parallel to increase throughput and efficiency. NVIDIA DGX1
and DGX2 [124] are two popular GPU-based accelerators that offer accelerated deep
learning performance. There are also Intel Nervana Neural Network Processors [122],
two different GPU accelerators that can be used for deep learning training (NNP-L
1000) and the deep learning inference (NNP-I 1000). Mobile phones, wearable devices,
and surveillance cameras enable rapid deployment of DL applications, making them
even more valuable near the venue. There are ways to perform DL computation on
edge devices without moving them to the cloud, but they have limited computing
power, storage, and power consumption. Several academics are developing a GPU
accelerator for edge computing to solve the bottlenecks. Reference [125], for exam-
ple, described ARM Cortex-M microcontrollers and developed CMSIS-NN, a set of
efficient NN kernels. CMSIS-NN reduces the memory footprint of NNs on ARM
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Cortex-M processor cores, allowing the DL model to be implemented in IoT devices
while maintaining standard performance and energy efficiency;

2. FPGAs-based accelerator: Although GPU solutions are frequently used in cloud
computing for DL modeling, training, and inference, similar solutions may not be
available at the edge due to power and cost constraints. Furthermore, edge nodes
should be able to handle numerous DL compute requests at once, making the use
of lightweight CPUs and GPUs impracticable. As a result, edge hardware based on
FPGAs is being investigated for edge DL. As a tradeoff for low speed, FPGAs are more
energy efficient than GPUs when computing machine-learning algorithms. FPGAs are
increasingly vying with GPUs for the implementation of AI solutions as the market
evolves. It is estimated that FPGAs are 10-times more power efficient than GPUs,
according to Microsoft Research’s Catapult Project [126]. In terms of FPGA-based
accelerators , Microsoft’s Project Brainwave is outstanding. It is a high-performing
distributed system with soft DNN engines rendered with Intel’s Stratix FPGAs that
use real-time, low-latency artificial intelligence [127]. However, it requires a significant
amount of storage, external memory and bandwidth, and computational resources on
the order of billions of operations per second. Therefore, as FL demands a sufficient
storage size for local datasets, further research is required for FL implementation
requirements in FPGA-enabled edge devices;

3. ASIC-based accelerator: FPGAs have higher DL inefficiency and require more complex
programmable logic, while ASIC architectures for DL have higher power efficiency,
but lower reconfigurability. Either way, ASICs are more suitable for DL applications
due to their high DL efficiency and programmability. ASICs still provide a much
higher overall efficiency than FPGAs for simple algorithms even though FPGAs
can reduce the power consumption in computing by optimizing ML algorithms to
the hardware design. ASICs introduce complex logic, while FPGAs introduce pro-
grammability, increasing the hardware design costs. Moreover, FPGAs have a limited
frequency of 300 MHz, four- to five-times less than typical ASICs [123]. Furthermore,
due to their reduced network overhead and off-chip memory access characteristics,
ASICs are increasingly being used in EC by academia and industry. They also support
DL training with a low power and processing time [128]. EdgeTPU [129] is a Google-
developed open, end-to-end infrastructure for implementing AI solutions that is a
prime example of an ASIC-based accelerator installed in an EC. ASIC-based accelera-
tors are hence promising hardware components for implementing FL in EC devices.
Although it has already been tried for several DL applications in EC, such as object
identification and recognition [130] and emotion recognition [131], more research is
needed to understand the impact of ASIC-based accelerators for FL implementation
in EC. However, ASIC-based accelerators have a long development cycle and are not
flexible to cope with varying DL network designs.

5.3. Federated Learning Applications in an Edge Computing Environment

FL was described in the preceding sections as an EC-enabling technology that fa-
cilitates collaborative learning over networks. Additionally, FL allows for decentralized
decision-making and the customization of task assignments to each network node, provid-
ing multiple applications to the EC field. In the following, we study the main approaches
that employ FL application to solve challenges in the EC area. Despite the fact that various
studies demonstrated that FL applications including sensitive time such as cancer detec-
tion [73] and COVID-19 detection [74,75] applications are drawing attention, we focus on
three primary FL applications in EC, which are outlined below.

5.3.1. Computation Offloading and Content Caching

We can bridge the gap between cloud capacity and edge device requirements by
bringing edge intelligence to the edge. This improves the QoS and enables the delivery of
content. Furthermore, EC leverages the computational resources everywhere in the network
using relevant computation offloading schemes, therefore intelligent decision-making to
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cache or not to cache, when and how task computation offloading is required to enhance
the efficiency of communication and computation resources as these have a direct impact
on the QoS and QoE of the system performance. Researchers and engineers have been
committed to intelligent content cache delivery and computation offloading schemes in
the EC environment by leveraging DL for the last decade [76,77,79,132,133]. However, the
traditional centralized cognitive system would not be feasible for the following reasons:

1. In the case of EC implementations that involve massive clients, Big Data training
is uploaded to a central cloud server for model training through an uplink channel
(i.e., wireless link). This introduces additional burdens and congestion on the uplink
channel;

2. The uploaded training dataset to the server may be sensitive to privacy, such as patient
history data, which results in potential privacy violations;

3. Consider that we need to train the DL model at the end device such as mobile phones,
tablets, wearable things, and implanted sensors to prevent privacy. However, the
model training demands intensive computational capacity and energy to find the
optimal solution as in the SGD convergence algorithm. It uses a large amount of
data factors and parameters over a large scale. Thus, DL training at the resource-
constrained edge introduces extra energy consumption and long processing times;

4. The conventional centralized training of a DL model fails to handle non-IID and
unbalanced data distributions. However, the data distribution in the EC environment
depends on several conditions such as the location and amount of data. In addition,
the performance of DL usually deteriorates with weak consideration of both data and
network state heterogeneity.

FL has been used to deliver intelligent computation offloading and content cache deci-
sions since its introduction to address these challenges. It has become increasingly feasible
to cache and deliver mobile content using middle servers (or middleboxes, gateways, or
routers). Users can thus easily use the same content without duplicating transmissions by
eliminating redundant data from remote cloud servers. A library of content files placed in
the edge network from all clients may be requested in the system. Based on the content
popularity (i.e., the probability distribution of contents requested from all clients) [134],
there is a common interest of all users in the network. Edge node agents determine whether
local content shall be replaced based on whether they should cache or not.

The authors of [135] presented a dynamic cache allocation scheme FedCache by lever-
aging FL in edge networks. In [136], a system that combines IoT devices, edge nodes,
the remote cloud, and blockchain was investigated for content caching. The authors also
suggested a blockchain-assisted FL compression method, the CREAT algorithm, to predict
content files. Furthermore, the combination of FL and blockchain was used to improve data
security and shorten the time it takes to upload data. Furthermore, References [137,138] also
proposed a proactive caching scheme by leveraging FL in the edge computing paradigm.
Edge devices typically have limited computational power and are resource constrained.
Therefore, they can use the uplink channel to offload their computation tasks or complete
them locally. Therefore, intelligent decision-making is required to perform the offloading
process locally [134]. Ren et al. [139] demonstrated FL-enabled computation offloading by
deploying multiple DRL agents in distributed IoT devices to indicate their decisions. FL
empowers distributed DRL training and reduces the transmission cost between the IoT
devices and edge nodes. Furthermore, S. Shen et al. [140] proposed DRL and FL-enabled
computation offloading algorithms in the IoT-based edge computing environment. The
authors of [141] considered the context information of the application, requests, sensors,
resources, and network, which had a significant impact on the offloading decisions. More-
over, they leveraged FL and DRL for context-aware offloading in MEC with multiple user.
Compared to the previous works, the context-aware offloading algorithm is better in terms
of energy consumption, execution cost, network usage, delay, and fairness.

Coupling service caching and computation tasks in a resource-constrained (i.e., limited
storage and capacity) edge device is among the challenging issues in the field. S. Zhong
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et al. [141] proposed the GenCOSCO algorithm for cooperative service caching and com-
putation offloading, which improved the QoS of the system while reducing the average
time consumption of task execution. In addition, the authors took into account the hetero-
geneity of task requests, application data pre-storage, and base station cooperation when
developing the GenCOSCO algorithm. Additionally, to optimize caching and computation
offloading decisions in a MEC system by taking dynamic and time-varying conditions into
account, the authors of [134] proposed using DRL and FL together. Several base stations
were used to cover the collection of clients in the MEC system. Cached files and local files
were replaced by the DRL agent when caching was enabled.

5.3.2. Malware and Anomaly Detection

Malware is a global threat that has grown in number and diversity with the rapid
growth of IoT applications, making threat detection and analysis a critical challenge to
address. A major challenge in developing effective malware detection is the increasing
diversity of the malware syntax and behavior. As a result, the most important steps in
mitigating and preventing severe consequences in the edge computing environment are
acquiring knowledge of different threats and developing efficient malware attacks (or
cyber-attacks) and anomaly detection schemes [142]. Currently, there are some approaches
proposed for malware and anomaly detection and prevention in a different environment.
The authors of [143] proposed deep learning-assisted cyber intrusion attack detection using
the Gaussian naive Bayes classifier. Furthermore, they used the NSL-KDD [144] dataset
and the UNSW-NB15 [145] dataset for model training, which had a shorter detection time
and higher classifier accuracy. In [146], a CNN was used to extract an accurate feature
representation of data and then classify them using the LSTM model for cyber-attack detec-
tion, which can outperform other DL methods for detecting intrusions. DL-based solutions
depend on the available datasets to achieve the required detection accuracy. However,
the datasets usually contain sensitive or confidential data that would significantly affect
environmental or personal security and privacy. In order to circumvent these problems,
FL-based attack detection models have been introduced for EC-enabled networks.

The authors of [147] proposed an FL-enabled anomaly detection framework for EC-
enabled networks, as illustrated in Figure 10. Each participating client encompasses
different IoT devices that produce a set of private training data for anomaly detection. This
model contains four building blocks: local training, cloud aggregation, anomaly detection,
and global model. All participants perform local model training using their own local
datasets. To improve the recognition accuracy, after training the global model, participants
send their trained local models to the FL server. Each participant receives an update of the
global model based on the data collected by the server. The communication rounds are
repeated until the desired performance level is achieved. After the global model is updated,
the anomaly detection engine can use it.

Figure 10 illustrates how edge computing applications can detect anomalies or attacks
using federated learning. The nodes build local models based on the individual datasets.
The updated local models are also sent to the FL server from each selected node, as
illustrated by the blue dotted lines in the figure. As a result, global model aggregation
occurs in the parameter server (i.e., cloud aggregation). The anomaly detection block
includes training and testing the model to develop a global cyber-attack detection model.
In the proposed system, the anomaly detection block consists of four components: a pattern
learner, a pattern recognizer, a threshold determinator, and an anomaly classifier. When the
training has been completed and the model has been configured for testing, the pattern
learner receives the global model. In order to determine a suitable threshold value for a
specific problem, the pattern recognizer tests the model and evaluates its performance
based on the test data. An anomaly classifier generates an inference based on the threshold
value. An anomalous data point is detected in the anomaly detection system if it does not
pass the threshold set by the determinator. Once this round of training is completed, the
updated global model can be deployed on sensors. All IoT devices involved in the first
round of training receive the updated global model after the model weights are updated by
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the anomaly detection engine. This engine is located in the IoT system. A new round of
training begins when the weights in the global model are adjusted and the weights in the
local model are updated.

Furthermore, the authors of [147,148] leveraged the multi-task learning paradigm
to solve multiple tasks simultaneously, while anomaly detection in FL settings is based
on commonalities and differences in tasks. Furthermore, the authors of [149] proposed
a distributed deep-learning scheme of cyber-attack detection in fog-to-things computing,
which they considered in terms of accuracy, detection rate, and scalability, as the metrics of
the model. Anomaly detection is not the scope of this survey, and we recommend readers
read the papers [150–154], where FL was used an an enabling technology for malware and
anomaly detection.
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Figure 10. Federated learning-based anomaly/attack detection framework for edge computing.

5.3.3. Task Scheduling and Resource Allocation

Edge computing is supposed to support various resource-hungry IoT applications and
services with low latency in the edge network, which minimizes the response time and bur-
den of the backhaul link between the edge device and the server. Computationally intensive
IoT tasks are sent to neighboring VMs at the edge server to achieve low-latency services.
However, edge nodes are generally resource-constrained such as in terms of computation,
storage, and network. Thus, task scheduling is an important technique to maintain a Key
Performance Indicator (KPI) of the network effect and efficiency to improve the QoS and
QoE. However, task scheduling in the edge computing paradigm is challenging for the
following reasons. The transmission latency is stochastic due to the dynamic behavior of
the link between the end devices and the edge node, making scheduling complex and
challenging. Furthermore, in terms of availability, speed, ready time, and response time,
edge resources are dynamic and variable, posing design issues for scheduling algorithms.
In addition, the task arrival rate, task size, and delay requirements are diverse for various
IoT applications, making task scheduling in edge computing more challenging. In order
to implement task scheduling in EC, two challenges must be addressed: time scheduling
and resource allocation. Time scheduling determines the task execution order, and resource
allocation is responsible for assigning tasks to suitable VMs for execution [155].

The authors of [155] leveraged DRL to solve both time scheduling and resource
allocation considering the diversity of tasks and the heterogeneity of available resources,
and a Fully Connected Neural network (FCN) applied to extract the features. Several studies
including [156–159] showed that DRL has been the popular centralized DL algorithm
implemented in EC for the task scheduling and resource allocation scheme. However, due
to privacy concerns, edge device owners are hesitant to share their identifiers. For example,
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sharing their individual Queue State Information (QSI) causes severe privacy consequences.
As a result, FL-based task scheduling and resource allocations address this issue.

Wang et al. [160] investigated an optimization scheme to reduce energy and time con-
sumption for task computation and transmission in MEC-enabled High-Altitude Balloon
(HAB) cellular networks. HABs perform computation tasks for users with limited capacity
and energy. Because the data sizes of the computation tasks vary, the user association
policy should be optimized to meet the requirement while consuming the least amount of
energy. To overcome these constraints, the authors used an SVM-based federated learning
algorithm to map the relationship among the user association, service sequence, and task
partitioning schemes. The authors of [161] also suggested a distributed, FL-based com-
bined transmit power and resource allocation scheme for ultra-reliable and low-latency
vehicular communication.

5.4. Implementing Federated Learning in an Edge Computing Environment: Challenges
and Solutions

As explained in the earlier sections, FL shows its increasingly significant role in sup-
porting edge computing services and applications. Despite its great potential, in this
section, we would like to discuss the relevant research challenges considered for future FL
implementation in edge networks. Here, we focus on a few relevant challenges and their
corresponding state-of-the-art solutions in FL, including communication efficiency, manag-
ing heterogeneity, security and privacy preservation, and service pricing requirements in
the edge network.

5.4.1. Communication and Computation Efficiency

One of the primary goals of FL is to reduce the burden of the communication link in
the core network by training a high-quality centralized model with distributed training
data across a large number of clients, each with unreliable and relatively slow network
connections [16]. In addition to the unreliable wireless and asymmetric channel charac-
teristics, intensive training and several updates are performed between clients and the
server to improve model accuracy. Furthermore, complex DL models include millions
of parameters in different applications such as image recognition and detection [162,163].
Thus, the updates with large dimensions require a high communication cost and are a
bottleneck for training. Therefore, communication efficiency approaches seek to reduce the
communication overhead that arises from the exchange of messages between the server
and clients that run the model training in a distributed fashion. The key to reducing com-
munication costs in FL in an edge network is to decrease the number of devices involved in
the communication, total communication rounds, and model update size. Model updates
messages are compressed between the server and the client to minimize the size, referred
to as model compression. For FL implementation, compression techniques, specifically the
quantization and sparsification compression methods, are used to reduce the update size.

Furthermore, the optimization methods for FL are largely derived from traditional
distributed ML optimization [164]. To determine the primary and dual variables, the
traditional distributed approach sends the local stochastic gradients to a central node,
which then aggregates the gradients from each client. The main bottleneck slowing down
the distributed optimization is due to the heavy communication outages caused by this
approach. Utilizing local SGD with periodic averaging is one way to reduce the complexity
of computations under a budget [16,165]. With local SGD, the model is updated by the
client several times via SGD, and an average of the models of the various clients happens
at regular intervals. By reducing the synchronization frequency between the working
nodes, local SGD can reduce the overhead of distributed learning [166]. Furthermore, the
authors of [167] proposed a method that supports multiple local updates on the workers
for reducing the communication frequency between workers.

Alistarh et al. [168] proposed Quantized SGD (QSGD), a family of compression
schemes with convergence guarantees to improve performance. Similarly, the authors
of [169] proposed an FL framework to improve the FL convergence time and training
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loss, which includes three components: (1) probabilistic device selection for limiting the
number of participating devices, (2) a universal FL parameter compression method for
reducing the volume of data conveyed at each FL iteration, and (3) a resource allocation
scheme for optimizing the usage of the wireless channel. FedPAQ [57] relies on three key
features: (1) periodic averaging, where models are updated locally at devices and only
periodically averaged at the server; (2) training rounds consisting of only a fraction of the
devices; (3) quantized message passing where the edge nodes quantize their updates before
uploading to the parameter server. Gradient quantization methods should be used with
caution when updating federated models. When training with non-IID data, that is highly
distributed, the model divergence increases. A quantized model update leads to many
quantization divergences as the training size increases. To compensate for errors in model
fitting, one can use the quantization described in [170]. SGDs with reduced variance and
quantized SGDs with reduced variance [171] are also essential.

In [172], to reduce the communication cost, the authors proposed a convex optimiza-
tion formulation to minimize the coding length of stochastic gradients. The key idea is
to randomly drop out the coordinates of the stochastic gradient vectors and amplify the
remaining coordinates appropriately to ensure the sparsified gradient [163] is unbiased. To
solve the optimal sparsification efficiently, a simple and fast algorithm was proposed for
an approximate solution, with a theoretical guarantee of sparseness. The authors of [173]
introduced a novel Time-Correlated Sparsification (TCS) scheme, which builds upon the
notion that a sparse communication framework can be considered as identifying the most
significant elements of the underlying model. Dynamic device scheduling has also a great
impact on optimizing both the communication and computation costs [174]. Generally,
FL implementation in the EC paradigm imposes not only communication cost, but also
computing cost. Although local SGD is more communication efficient than distributed
SGD, it consumes more power and energy in the participating devices. Therefore, optimum
methods are required to study to explore communication and computation efficiency.

5.4.2. Heterogeneity Management

Unlike the traditional distributed optimization, the participating devices and networks
are considered in terms of hardware such as CPUs, GPUs, memory, network configuration,
and power supply. The diversity in the devices’ hardware and network configurations
is known as system heterogeneity. System heterogeneity significantly affects the model
aggregation efficiency and accuracy and may lead to the divergence of the optimization.
Therefore, several kinds of research have been conducted to mitigate the impact of system
heterogeneity in the FL training process. FedProx, a variation of FedAvg, was proposed
in [175] to address system heterogeneity by which the device characteristics vary depending
on where the federated training is being run. In FedProx, tasks are associated with the
resources available on each device based on the work that needs to be performed. Fur-
thermore, the authors of [176] presented a federated learning framework that allows one
to handle heterogeneous client devices that couples a parameterized superquantile-based
objective. Yang et al. [177] proposed the first empirical study to characterize the effects of
heterogeneity in FL using large-scale data from 136k smartphones that could faithfully
reflect heterogeneity in real-world settings. Furthermore, they created a heterogeneity-
aware FL platform that adheres to the standard FL protocol while taking heterogeneity into
account. Similarly, in [178], the extent of device heterogeneity, which is a major contributor
to training time in FL, was investigated. Furthermore, they proposed AQFL, an approach
that uses adaptive model quantization to homogenize client computing resources.

Traditional distributed learning systems provide access to the entire training dataset to
a central server. To obtain an efficient model, the server splits the dataset into subsets and
distributes them to participating devices based on the distributions. Due to the fact that
the local dataset is only accessible by the data owner, this method is not practical for FL.
Another issue that can arise in a federated system is that the amount of participating devices’
local datasets varies. Some have a regular size and a normal distribution, while others
are small and have a limited number of data points. Therefore, the clients can frequently
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generate and collect imbalanced datasets that limit the accuracy of the FL model. Several
studies have shown that imbalanced distributed training data lead to a degradation of the
accuracy of FL applications. The authors of [179] highlighted the effects of the imbalanced
distribution and developed Astraea’s self-balancing FL framework, which mitigates the
imbalances. Moreover, the proposed framework relieves the global imbalance by adaptive
data augmentation and downsampling, and by averaging the local imbalance, it creates a
mediator to reschedule the training of clients based on the Kullback–Leibler Divergence
(KLD) of their data distribution. Moreover, the authors of [180] designed new methods for
detecting data imbalances in FL and mitigating their effects. In addition, they proposed
a monitoring scheme that can infer the composition fraction of the training data for each
FL round and designed a new loss function to mitigate the effects of the imbalanced data.
Dipankar et al. [181] introduced a new loss function called fed-focal loss to alleviate the
effects of data imbalance by redesigning the cross-entropy loss to weight loss designated to
well-classified models along the lines of focal loss.

In contrast to traditional DL training, participating devices across all edge networks
generate and collect datasets in a non-Identical and Independent Distribution (non-IID) in
FL model training, which has the potential to bias optimization procedures in DL model
development [182]. The FL statistical model requires two levels of sampling: to access
a data point, at the first level a client i ∼ Q, the distribution over available clients, and
extracting examples (x, y) ∼ Pi(x, y) from local clients training dataset distribution, where
x is the features and y is the label. Non-IID data in FL mean the difference between Pi
and Pj for different clients i and j, respectively. This indicates the data on each node being
generated by a distinct distribution xt ∼ Pt. Moreover, the number of data points on each
node may also vary significantly [183]. The non-IID dataset is then one of the statistical
challenges of FL, lowering the model accuracy or making the weight parameter drastically
different. For neural networks trained on highly biased non-IID data, the FL model accuracy
drops by around 55% when each client device trains on only a single class of data [183].
Overcoming problems with non-IID training data is one of the current research topics, and
several researchers have worked to mitigate this problem.

To approach the non-IID challenge, Smith et al. [112] proposed a multi-task learning
framework and developed MOCHA to address the system challenges in MTL. However,
this approach differs significantly from previous work on federated learning. McMahan
et al. [16] showed that FedAvg can work with certain non-IID data and the accuracy
is drastically reduced. The authors of [184] proposed a strategy to improve training on
non-IID data by creating a small subset of data that is shared globally by all edge devices.
Similarly, the authors of [180,184–187]

used heuristic approaches that aimed to deal with statistical heterogeneity by sharing
local device data or server-side proxy data. However, these methods may be unrealistic,
burden network bandwidth, and violate the key privacy assumption of FL.

Furthermore, Li et al. [175] proposed the FedProx framework to address heterogeneity
by allowing partial information aggregation and adding a proximal term to FedAvg [16].
In addition, Wang et al. [188] proposed a FedMA framework, an aggregation strategy for
non-IID data partition that shares a global model layer in a layerwise manner. In addition,
Reisizadeh et al. [189] proposed FedRobust, which assumes that the data follow an affine
distribution shift and address this problem by learning the affine transformation. This
complicates the generalization if we cannot estimate the explicit affine transformation.
Andreux et al. [190] proposed a SiloBN framework that empirically showed that local
clients that retain some untrainable Batch Normalization parameters (BN) can improve
robustness to data heterogeneity, but did not provide a theoretical analysis of the approach.
Xiaoxiao Li et al. [191] proposed an effective method, FedBN, that uses local BN to mitigate
feature shift before model averaging, and instead, it keeps all BN parameters strictly local,
which is the state-of-the-art solution to mitigate the statistical heterogeneity challenge in FL.
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5.4.3. Privacy and Security Preservation

The original intent of FL was to resolve the issues related to data privacy, ownership,
and legalization [80]. The fact that models, parameters, and global models are shared with
each client presents several risks for exploiting FL’s vulnerabilities in EC environments.
Edge FL needs to investigate the existing attacks and solutions to provide a secure and
privacy-protected environment for user data. In this section, we describe the security
and privacy vulnerabilities in the implementation of FL in the EC paradigm, as well as
existing solutions:

1. Security: Since FL has numerous clients for collaborative training and exposure to
model parameters, it is vulnerable to various attacks and risks. Therefore, we can ana-
lyze the security challenges by identifying the threats/attacks and the corresponding
defense/solutions:

(a) Attacks: Generally, two main classifications of attacks are identified to manipu-
late the collaborative learning process in the edge FL: Byzantine and poisoning
attacks. Byzantine attack is the attack performed by a fully trusted node that
has turned rogue and already has passed all authentication and verification
processes, for example when selected participants turn into rogues in the FL
learning process. If some nodes are compromised, attacked, or fail, the entire
FL system fails [192,193].
A poisoning attack is similar to an injection attack in the FL training process.
The two types of poisoning attacks are data poisoning and model poisoning. By
targeting ML algorithms’ vulnerability and introducing malicious data during
training, data poisoning attacks aim to maximize the classification error [194].
Through FL, the client interacts with the server; the client sends the training
data and parameters, but the client can also manipulate the training to poison
the model. Data poisoning in FL refers to sending false model parameters
using dirty samples to train the global model. Malicious clients can also inject
malicious data into a local model’s processing in a method known as data
injection. Because of this, a malicious agent is able to manipulate the local
models of multiple clients and influence the global model. Malicious agents
use fake data in data poisoning, but they target global models directly in model
poisoning. Research has shown that data poisoning attacks are less effective
than model poisoning attacks [194]. When multiple clients use a large-scale
FL product, there is a greater likelihood of model poisoning happening. It
is generally possible to poison the global model by modifying the updated
model and then sending it to the central server for aggregation;

(b) Defense: A client may intentionally or unintentionally deviate from the pre-
scribed course of FL training, resulting in abnormal behaviors. Timely detec-
tion and aversion of these abnormal client’s behavior is therefore critical to
minimize their negative impact [195]. Many solutions have been proposed,
mainly related to the safe FL training process. The authors of [196] proposed
a detection method for Byzantine attackers using a pre-trained anomaly de-
tection model, a pre-trained autoencoder model running at the server level to
detect anomalous model weight updates and identify their originators. Based
on their results, they found that detection-based approaches outperform con-
ventional defense-based methods significantly. However, Byzantine-tolerant
aggregation methods are inefficient due to the non-identically and indepen-
dently distributed training data. Moreover, Wei Wan et al. [197] proposed
a density-based detection technique to protect against high-rate attacks by
modeling the problem as anomaly detection to effectively detect anomalous
updates. Due to this, the global model became less adversarial. However, this
approach is computationally intensive even though it improves the accuracy of
the global model, which will be affected by the convergence of the aggregated
model. In fact, model poisoning attacks with limited training data can be
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highly successful, as demonstrated by [198]. In order to prevent such attacks,
several recommendations were proposed. When a participant shares a new
version of the global model, the server evaluates whether the updated version
can improve the global model. By default, the server marks the participant
as a potential attacker, and after viewing updated models for a few rounds, it
can decide whether or not the participant is malicious. The second solution
allows participants to compare their updated models. Malicious participants
can update models that are too different from those around them. Until it can
determine whether or not this participant is malicious, the server will observe
updates from this participant. Although impossible to prevent, model poison-
ing attacks can occur because it is impossible to assess the progress of each and
every participant when training with millions of participants. Therefore, more
effective solutions are needed.
Furthermore, the authors of [199] described the use of a learning-rate-adjustment
system against Sybil-based poisoning attacks that uses the similarity of gradient
updates to regulate learning rates. A system using FoolsGold can withstand
the Sybil data poisoning attack with minimal modifications to the conventional
FL process and without using any auxiliary information. In other words, using
a variety of participant distributions, poisoning targets, and attack strategies,
the authors showed that FoolsGold mitigates such attacks. However, they did
not propose any convergence-proof defense methods. Further, the authors of
[200] presented a method of detecting and eliminating malicious model updates
based on spectral anomaly detection techniques exploiting its low dimensions.
Both Byzantine and targeted model poisoning attacks include the detection
and removal of spectra anomalies occurring on the server side. The central
server can detect and remove malicious updates using a powerful detection
model, providing targeted defenses. Convergence and computational complexity,
however, will need to be analyzed;

2. Privacy: Although FL improves the privacy of participating clients, there may still
be a breach of privacy when data are exchanged among servers. During the training
process, orchestrating FL servers may extract personal data [80,201]. Privacy threats
in FL generally fall into three categories: attacks by affiliation inference, inadvertent
data leakage and reconstruction inference, and GANs-based inference attacks. An
affiliation inference attack searches for private data in the training dataset, abusing
the global model. In such cases, the information about the training dataset is derived
by guessing and training the predictive model to predict the original training data.
Furthermore, inadvertent data leakage and reconstruction inference is a method to
extract information from the FL server by sending model updates from participating
edge devices. Since GAN can effectively learn the distribution of training data, GAN-
based attacks aim to reconstruct, for example, human-distinguishable images from
the victim’s personal dataset [80].
Differential Privacy (DP) and secure aggregation approaches are the two most com-
mon methods to mitigate privacy issues in FL [104]. Differential Privacy (DP) is a
mathematical concept often used in statistical machine learning to overcome personal
information leakage during data collection and processing. Thus, numerous works of
literature proposed DP as the main privacy-preserving algorithm in FL implementa-
tion. The authors of [202] analyzed FL using the DP approach and designed a client
selection method to improve privacy for subscribers. Yao Fu et al. [203] analyzed the
practicality of DP in FL by tuning the number of iterations performed to optimize
model accuracy. Secure model aggregation is a privacy-preserving algorithm that
ensures that multiple clients participate in global model training while protecting their
data shared with others. Therefore, secure model aggregation is a critical component
of FL model training. It can be implemented in different approaches such as homo-
morphic Encryption [204], secure multiparty computation [205], and blockchain [206].
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Recent research has been conducted on blockchain-enabled FL in edge networks.
The authors of [207] proposed a data-protecting blockchain-based FL for IoT devices.
As DP algorithms are lightweight compared to secure aggregation algorithms, they
can be deployed easily in edge computing environments with limited resources. DP
algorithms are generally used for less sensitive queries, making them vulnerable to
privacy leaks, especially when adaptive queries are needed in applications or services.
Although more computationally and storage intensive, secure aggregation algorithms
are more secure than DP-based aggregation.

5.4.4. Client Selection and Resource Allocation

The FL server requires sufficient data from participating clients to develop the model
with the required accuracy. However, limited wireless resources restrict the number of
participating clients in each round. For this reason, in FL model development, a subset
of the participating clients takes part in the raining process in each round. Therefore, the
participating clients need to be selected and scheduled to participate in the training process
in each round to achieve the required performance of the model. There are a couple of
works that address this issue and the approaches proposed in the existing works. The
authors of [208] described the convergence analysis of federated optimization for biased
client selection strategies and quantified how selection bias affects the convergence speed.
They also proposed power-of-choice, a communication- and computation-efficient client
selection framework that can flexibly bridge the tradeoff between convergence speed and
solution bias. Minxue et al. [209] proposed FedGP, an FL framework built on a correlation-
based client selection strategy to increase the convergence rate of FL by modeling the
loss correlations between clients with a Gaussian process. Similarly, the authors of [210]
proposed a Probabilistic Node Selection framework (FedPNS) to dynamically change the
probability for each node to be selected, based on the output of optimal aggregation.
FedPNS can preferentially select nodes that drive faster model convergence. Furthermore,
Bo Xu et al. [211] proposed online client scheduling for fast FL to minimize the training
latency of a wireless FL system for a given training loss through client scheduling, instead
of assuming that the prior information about the wireless channel state and the local
computing power of the clients are available.

5.4.5. Service Pricing

Service pricing approaches determine how client devices interact with the FL server
from an economic viewpoint. As a result, federated learning requires economic models
to make the process more appealing to clients. Currently, some research works have
been presented on the service pricing models in federated learning. The authors of [212]
proposed two gradient-based methods to allocate the profit generated by the joint model to
individual data providers in FL. In addition, Jiawen K. et al. [213] developed the contract
theory to design an effective incentive mechanism for simulating mobile devices with
high-quality (e.g., high-precision) data to participate in federated learning. Moreover, the
authors of [214] adopted the relay network to construct a cooperative communication
platform to support the transmission and trading of model updates. Similarly, Yutao J.
et al. [214] investigated the design of two auction mechanisms for the federated learning
platform to maximize the social welfare of the federated learning services market.

6. Federated Learning in Edge Computing: Case Studies

Case studies are presented in this section to help better understand the requirements
and advantages of FL implementation in the EC setting across different applications. Follow-
ing are the use cases and solutions that were identified to demonstrate the implementation
of FL in EC:

6.1. Smart Healthcare

DL-enabled EC was introduced to reduce overburdening on cloud servers and also to
enable real-time analysis of smart home and medical data. In [215], the authors described
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ResiDI, an intelligent decision-making system for a residential distributed automation
infrastructure utilizing wireless sensors and actuators. Similarly, leveraging fog computing
and artificial intelligence plays a crucial role in smart home applications [216–218]. How-
ever, the modern DL models have millions of parameters that need to be learned from
sufficiently large curated datasets to achieve clinical-level accuracy and decision-making
precision for residential data. This data streaming from the medical devices to the server
still adds backbone load and latency, which can be fatal for clinical decisions. Moreover,
in healthcare, data privacy is one of the most important issues for an organization and
government legislation, which cannot be achieved with traditional DL. In FL, training is
performed at the individual client level, and then, the local weights of each client are sent
to the server. The server collects the updated local weights and computes the new global
weights. Then, the client downloads the global weights from the server and continues the
training process. Therefore, FL aims to mitigate the above problems by training algorithms
collaboratively without sharing the data themselves. By combining federated learning and
data aggregation with a strong focus on security and privacy, the authors of [219] proposed
IOTFLA, an architecture for smart homes. Furthermore, FL can be used to solve privacy
issues and reduce the risk of data breaches for clinical information as it does not require
data transmission and centralization. Thus, FL is a fundamental technology for future
smart healthcare [99]. As described in Figure 11, patient data are held locally, and the
trained model is sent to the parameter FL server for the purpose of aggregation without
sharing the local medical data. A nurse or doctor can make medical decisions based on the
global model.

New Global Model

New Global ModelNew Global Model

Local Data
Local Data Local Data

Model Update
Model Update

Model Update

New Global Model

Clinical Inference

FL Server

Figure 11. Federated learning in smart healthcare with an edge-computing-enabled infrastructure.

The successful implementation of FL in an EC-enabled healthcare infrastructure could
therefore hold significant potential for enabling precision medicine at scale, leading to
models that provide unbiased decisions, optimally reflect an individual’s physiology, and
respond to rare diseases, while addressing governance and privacy concerns. For this
reason, several proposals have been made to describe the possible solutions of FL in EC-
enabled smart healthcare. The authors of [220] analyzed and implemented differential
privacy techniques to protect patient data in a federated learning facility to ensure data
security of patient brain tumor segmentation. They studied differential privacy techniques
for protecting patient data in federated learning environments. Exploiting the BraTS dataset,
they used federated learning systems to model brain tumor segmentation. According to the
experimental results, the model performance correlated negatively with privacy protection
costs. Similarly, N. Rieke et al. [99] highlighted the challenges and considerations of edge
FL-enabled infrastructure as it relates to the evolution of digital health. Privacy, security,
performance, level of trust, heterogeneity of data, traceability, and accountability were
among the challenges and limitations discussed by the authors. In addition, the data in
these settings are sensitive and need to be protected accordingly. The system architecture
enables participating health institutions and hospitals to securely and privately train
their models using their distributed computational resources. However, it has not been
examined whether the security or privacy of clinical data was sufficiently protected when
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a non-trusted participant acted as an intermediary and was provided access to it via the
FL system, potentially violating clinical data privacy and security. In this way, FL can
guarantee patient privacy when designing medical AI systems. However, it may be possible
to estimate data throughout the model aggregation phase even though the data have not
been obtained or exposed in FL. For the system design, to preserve privacy against a variety
of modern privacy attack methods, the authors pointed out that other privacy preservation
techniques, such as DP, SMC, and homomorphic encryption, may be needed. In addition,
the authors of [101] provided an overview of federated learning technologies, particularly
in the biomedical domain. Although the health institutions collaborated, all training data
remained at the original institutions. The authors explored ways to deal with the statistical
problems, system challenges, and privacy concerns that are associated with federated
learning, as well as its implications and opportunities for healthcare. Furthermore, through
the use of three benchmark medical datasets, the authors of [221] aimed to evaluate the
reliability and performance of FL. The authors developed an FL framework with APIs in
Django and AWS using the benchmark datasets MNIST, MIMIC-3, and ECG from Physionet.
While their FL model performed as well as the more traditional centralized model, it had
better privacy.

6.2. Unmanned Aerial Vehicles

The use of Unmanned Aerial Vehicles (UAVs) in applications such as surveillance
and monitoring, military, medical supply delivery, and telecommunications has increased
dramatically over the past decade. By using UAVs as mobile base stations, mobile networks
can become more comprehensive, powerful, and energy efficient. In contrast, a UAV can be
used for several tasks, including video streaming and delivery. Aside from utilizing vast
amounts of data, data-driven DL will improve the efficiency of networks, as well as the
quality of service they provide. However, DL-based systems are cloud-based and require
UAV data to be sent to and stored on a central server. While transmitting raw data to the
processing unit, UAVs consume much energy and network bandwidth. Because of this, it
places an enormous burden on the network. In addition, the transmitted raw data may
have personal information including the UAV’s location and identity, which may directly
affect the UAV’s privacy [96].

Given these challenges, FL emerges as a promising paradigm that aims to protect
device privacy by allowing devices to train DL models locally without sending their raw
data to a server. Instead of training the DL model on the data server, FL allows devices
to perform local training on their own data. As described above, UAVs can be used as
Base Stations (BSs) in mobile wireless networks in areas where it is difficult to implement
BSs. Mobile devices on the ground can utilize FL to perform distributed DL tasks without
relying on a central system. A UAV does not need to receive raw data during training
because the devices do not need to send them. Each of the mobile devices uses its own local
dataset to train the DL models, which are then sent to an FL-enabled UAV server for further
model aggregation. During local model training, the UAV server collects the device-specific
parameters, aggregates them, and sends the updated parameters to the associated devices.
As a result, raw data remain on the devices, protecting the privacy and reducing network
traffic at the same time. Several rounds are performed until a certain level of accuracy is
achieved, as shown in Figure 12. Therefore, a UAV network with FL improves the QoS
and privacy of clients. For this reason, the topic has attracted many researchers in the field,
and some studies have already been proposed [222]. According to the authors of [222], a
framework was developed for asynchronous distributed learning on UAV networks. This
framework allows for training of models locally without transferring sensitive data to a
UAV server. They investigated how to reduce the execution time and accuracy losses in
multi-UAV networks that support federated learning. In order to improve the learning
efficiency, AFL uses mobile devices with high communication and computation capabilities.
However, their approach is still susceptible to data leakage from aggregated gradients.
Therefore, cryptographic mechanisms are needed to ensure that FL is aggregated in a secure
manner. In order to ensure FL-based UAV network security and privacy, more research is
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needed. UAV-based exploration was also performed by the authors of [223]. As part of the
UAV-aided exploration scenario, they planned to use Ground Fusion Centers (GFCs) to
display image classification tasks if multiple UAVs are to be coordinated from a location
that is strategic, but inaccessible, such as the top of a mountain, where recharging batteries
might not be feasible.

Aggregated Global Model
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Data
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Figure 12. Federated Learning in UAVs with an edge-computing-enabled infrastructure.

7. Open Issues and Future Research Directions

Although several research solutions have been proposed to mitigate the challenges in
FL implementation in the EC paradigm, there are challenges that are still unresolved. In
addition to the research initiatives reported above, we envision several potential prospective
research trends for federated learning implementation in edge computing in the near future,
as described below:

• Multi-model support federated learning training process: In the FL training process, it
is assumed that the participating clients update their corresponding model parameters
according to a global model. However, clients may wish to train multiple models,
even during their idle time. Therefore, decoupling global model aggregation from
local training allows clients to use different learning algorithms. For instance, it may
be necessary to develop multiple and various models using a federated approach for
different purposes. How should the federated learning architecture look? What is
the best way to manage this problem? Therefore, appropriate techniques need to be
analyzed and implemented;

• Impact of wireless channel: Edge devices are often connected to edge or cloud servers
over unreliable wireless channels. Moreover, we believe that channel characteristics
affect the model accuracy. Therefore, studying the impact of the network requirements,
especially wireless communication, on the accuracy of federated model training is
considered a future research trend. Noise, path loss, shadowing, and fading are all
impairments that should be considered in wireless communication systems. In the
federated learning process, the communication between clients and parameter servers
usually occurs over an impaired wireless channel. This raises some research questions,
for example: How does channel fading affect learning? How can it be mitigated?

• Joint dynamic client selection and adaptive model aggregation: We described the
effects of client selection and model aggregation algorithms on resource allocation
independently. However, adaptive model aggregation and dynamic client selection
for resource allocation considering the non-IID behavior of data, computational power,
the data size, network capacity, and link reliability are among the future research
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works. Therefore, joint dynamic client selection and adaptive model aggregation
should be investigated as future research trends. Consider, for instance, the algorithms
and their complexities that are suitable for dynamically varying client requests and
volatile resources on both the client-side and server-side. In such scenarios, how can
we manage the federated learning training process?

• Adaptive privacy-preserving security solution: We already described the tradeoff
between privacy-preserving techniques and communication/computational efficiency.
It is critical to develop solutions that protect privacy while supporting a heterogeneity
of client devices in terms of hardware and software. Therefore, an adaptive privacy-
preserving security solution is a possible research direction;

• SDN/NFV-enabled federated learning implementation: Software-Defined Network-
ing (SDN) and Network Function Virtualization (NFV) have captured people’s atten-
tion and are increasingly redefining the way networks are built and managed for a
modern, connected, always-on world. We also believe that SDN/NFV would be a
possible research topic;

• Service pricing in edge federated learning: As we described earlier, service pricing in
federated learning in edge computing determines how clients interact economically
with the cloud/edge server. However, service pricing in federated learning at the edge
has not yet been analyzed and implemented and requires further research;

• New federated learning approach: The size of the federated learning model is too large
to fit on a resource-constrained edge device. Moreover, the training of the federated
learning model is too slow to converge and meet the delay requirements in certain
delay-sensitive applications. A new federated learning approach is required to achieve
the goals dynamically. Therefore, dynamic and adaptive federated learning must be
analyzed and implemented for resource-constrained edge devices.

8. Conclusions

FL is highly suited for EC applications, as it can take advantage of the processing edge
servers’ capabilities and the highly distributed edge devices generating data. FL allows
the collaborative framework of a DL model for edge computing network optimization. As
a result, it is an enabling technology in edge computing networks. This paper presented
a systematic literature review on FL in the EC paradigm with 200 primary studies in this
article. In addition, we discussed the challenges in implementing FL at the edge, which
includes communication and computation efficiency, heterogeneity, privacy and security,
client selection and resource allocation, and service pricing. For the above challenges, we
compiled a comprehensive overview of the latest developments and solutions. Furthermore,
we described two case studies (i.e., smart healthcare and UAV) relevant to demonstrate the
application of FL in the EC environment. In conclusion, we highlighted the open subjects
and potential prospective research trends in implementing FL into the EC paradigm, which
encourages researchers to extend and develop their existing work.
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117. Caldas, S.; Duddu, S.M.K.; Wu, P.; Li, T.; Konečný, J.; McMahan, H.B.; Talwalkar, A. Leaf: A benchmark for federated settings.

arXiv 2018, arXiv:1812.01097.
118. Kholod, I.; Yanaki, E.; Fomichev, D.; Shalugin, E.; Novikova, E.; Filippov, E.; Nordlund, M. Open-Source Federated Learning

Frameworks for IoT: A Comparative Review and Analysis. Sensors 2020, 21, 167. [CrossRef] [PubMed]
119. IBM Homepage. Available online: https://ibmfl.mybluemix.net/ (accessed on 24 September 2021).
120. NVIDIA Homepage. Available online: https://docs.NVIDIA.com/clara/ (accessed on 27 September 2021).
121. Markidis, S.; Der Chien, S.W.; Laure, E.; Peng, I.B.; Vetter, J.S. NVIDIA Tensor Core Programmability, Performance & Precision.

In Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Vancouver,
BC, Canada, 21–25 May 2018; pp. 522–531.

122. Ridnik, T.; Lawen, H.; Noy, A.; Ben, E.; Sharir, B.G.; Friedman, I. TResNet: High Performance GPU-Dedicated Architecture.
In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January
2021; pp. 1399–1408.

123. Du, L.; Du, Y. Hardware Accelerator Design for Machine Learning. In Machine Learning—Advanced Techniques and Emerging
Applications; IntechOpen: London, UK 2018.

124. NVIDIA Homepage. Available online: https://www.NVIDIA.com/en-us/data-center/dgx-2/ (accessed on 1 October 2021).
125. Du, L.; Du, Y.; Li, Y.; Su, J.; Kuan, Y.-C.; Liu, C.-C.; Chang, M.-C.F. A Reconfigurable Streaming Deep Convolutional Neural

Network Accelerator for Internet of Things. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 198–208. [CrossRef]
126. Putnam, A. The Configurable Cloud—Accelerating Hyperscale Datacenter Services with FPGA. In Proceedings of the 2017 IEEE

33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; p. 1587.
127. Microsoft Homepage. Available online: https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-

brainwave/ (accessed on 2 October 2021).
128. Venkataramanaiah, S.K.; Yin, S.; Cao, Y.; Seo, J.-S. Deep Neural Network Training Accelerator Designs in ASIC and FPGA.

In Proceedings of the 2020 International SoC Design Conference (ISOCC), Yeosu, Korea, 21–24 October 2020; pp. 21–22.
129. Yazdanbakhsh, A.; Seshadri, K.; Akin, B.; Laudon, J.; Narayanaswami, R. An evaluation of Edge tpu accelerators for convolutional

neural networks. arXiv 2021, arXiv:2102.10423.
130. Bong, K.; Choi, S.; Kim, C.; Han, D.; Yoo, H.-J. A Low-Power Convolutional Neural Network Face Recognition Processor and a

CIS Integrated with Always-on Face Detector. IEEE J. Solid-State Circuits 2017, 53, 115–123. [CrossRef]
131. Desoli, G.; Chawla, N.; Boesch, T.; Singh, S.-P.; Guidetti, E.; De Ambroggi, F.; Majo, T.; ZambottI, P.; Ayodhyawasi, M.; Singh,

H.; et al. 14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems. In
Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017;
pp. 238–239.

132. Mutalemwa, L.C.; Shin, S. A Classification of the Enabling Techniques for Low Latency and Reliable Communications in 5G and
Beyond: AI-Enabled Edge Caching. IEEE Access 2020, 8, 205502–205533. [CrossRef]

133. Perez-Torres, R.; Torres-Huitzil, C.; Truong, T.; Buckley, D.; Sreenan, C.J. Using Context-Awareness for Storage Services in Edge
Computing. IT Prof. 2021, 23, 50–57. [CrossRef]

134. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and
Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]

135. Chilukuri, S.; Pesch, D. Achieving Optimal Cache Utility in Constrained Wireless Networks through Federated Learning.
In Proceedings of the 2020 IEEE 21st International Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Cork, Ireland, 31 August–3 September 2020; pp. 254–263.

http://dx.doi.org/10.1109/TSP.2021.3106104
http://dx.doi.org/10.1109/TMC.2020.2994639
https://www.tensorflow.org/federated
https://fate.fedai.org/
https://www.webank.it/webankpub/wbresp/home.do
https://paddlefl.readthedocs.io/en/stable/
http://dx.doi.org/10.1109/MIS.2020.2988525
https://sherpa.ai/
https://leaf.cmu.edu/
http://dx.doi.org/10.3390/s21010167
http://www.ncbi.nlm.nih.gov/pubmed/33383803
https://ibmfl.mybluemix.net/
https://docs.NVIDIA.com/clara/
https://www.NVIDIA.com/en-us/data-center/dgx-2/
http://dx.doi.org/10.1109/TCSI.2017.2735490
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
http://dx.doi.org/10.1109/JSSC.2017.2767705
http://dx.doi.org/10.1109/ACCESS.2020.3037357
http://dx.doi.org/10.1109/MITP.2020.3043164
http://dx.doi.org/10.1109/MNET.2019.1800286


Sensors 2022, 22, 450 42 of 45

136. Cui, L.; Su, X.; Ming, Z.; Chen, Z.; Yang, S.; Zhou, Y.; Xiao, W. CREAT: Blockchain-assisted Compression Algorithm of Federated
Learning for Content Caching in Edge Computing. IEEE Internet Things J. 2021, 1. [CrossRef]

137. Yu, Z.; Hu, J.; Min, G.; Xu, H.; Mills, J. Proactive Content Caching for Internet-of-Vehicles based on Peer-to-Peer Federated
Learning. In Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong
Kong, China, 2–4 December 2020; pp. 601–608.

138. Qi, K.; Yang, C. Popularity Prediction with Federated Learning for Proactive Caching at Wireless Edge. In Proceedings of the 2020
IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6.

139. Ren, J.; Wang, H.; Hou, T.; Zheng, S.; Tang, C. Federated Learning-Based Computation Offloading Optimization in Edge
Computing-Supported Internet of Things. IEEE Access 2019, 7, 69194–69201. [CrossRef]

140. Shen, S.; Han, Y.; Wang, X.; Wang, Y. Computation Offloading with Multiple Agents in Edge-Computing–Supported IoT. ACM
Trans. Sens. Netw. 2020, 16, 1–27. [CrossRef]

141. Zhong, S.; Guo, S.; Yu, H.; Wang, Q. Cooperative service caching and computation offloading in multi-access edge computing.
Comput. Netw. 2021, 189, 107916. [CrossRef]

142. Liu, W.; Lin, H.; Wang, X.; Hu, J.; Kaddoum, G.; Piran, J.; Alamri, A. D2MIF: A Malicious Model Detection Mechanism for
Federated Learning Empowered Artificial Intelligence of Things. IEEE Internet Things J. 2021, 1. [CrossRef]

143. Zhou, Y.; Han, M.; Liu, L.; He, J.S.; Wang, Y. Deep learning approach for cyberattack detection. In Proceedings of the IEEE
INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19
April 2018; pp. 262–267.

144. Unb Homepage. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 2 October 2021).
145. Cloudstor Homepage. Available online: https://Cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys (accessed on

2 October 2021).
146. Sahu, A.K.; Sharma, S.; Tanveer, M.; Raja, R. Internet of Things attack detection using hybrid Deep Learning Model. Comput.

Commun. 2021, 176, 146–154. [CrossRef]
147. Sater, R.A.; Ben Hamza, A. A Federated Learning Approach to Anomaly Detection in Smart Buildings. ACM Trans. Internet Things

2021, 2, 1–23. [CrossRef]
148. Zhao, Y.; Chen, J.; Wu, D.; Teng, J.; Yu, S. Multi-Task Network Anomaly Detection using Federated Learning. In Proceedings of

the Tenth International Symposium on Information and Communication Technology—SoICT 2019, Ha Long Bay, Hanoi, Vietnam,
4–6 December 2019; pp. 273–279.

149. Abeshu, A.; Chilamkurti, N. Deep Learning: The Frontier for Distributed Attack Detection in Fog-to-Things Computing. IEEE
Commun. Mag. 2018, 56, 169–175. [CrossRef]

150. Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated Learning-based Anomaly
Detection for IoT Security Attacks. IEEE Internet Things J. 2021, 1. [CrossRef]

151. Rey, V.; Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G.; Jaggi, M. Federated learning for malware detection in iot devices. arXiv 2021,
arXiv:2104.09994.

152. Chen, Y.; Zhang, J.; Yeo, C.K. Network Anomaly Detection Using Federated Deep Autoencoding Gaussian Mixture Model. In
Proceedings of the Machine Learning for Networking; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–14.

153. Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained Anomaly Detection Models for
Federated Learning: An Intrusion Detection Case Study. Appl. Sci. 2018, 8, 2663. [CrossRef]

154. Hsu, R.-H.; Wang, Y.-C.; Fan, C.-I.; Sun, B.; Ban, T.; Takahashi, T.; Wu, T.-W.; Kao, S.-W. A Privacy-Preserving Federated Learning
System for Android Malware Detection Based on Edge Computing. In Proceedings of the 2020 15th Asia Joint Conference on
Information Security (AsiaJCIS), Taipei, Taiwan, 20–21 August 2020; pp. 128–136.

155. Sheng, S.; Chen, P.; Chen, Z.; Wu, L.; Yao, Y. Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing.
Sensors 2021, 21, 1666. [CrossRef] [PubMed]

156. Meng, F.; Chen, P.; Wu, L.; Cheng, J. Power Allocation in Multi-User Cellular Networks: Deep Reinforcement Learning
Approaches. IEEE Trans. Wirel. Commun. 2020, 19, 6255–6267. [CrossRef]

157. Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing. IEEE J.
Sel. Areas Commun. 2020, 38, 1133–1146. [CrossRef]

158. Baek, J.; Kaddoum, G. Heterogeneous Task Offloading and Resource Allocations via Deep Recurrent Reinforcement Learning in
Partial Observable Multifog Networks. IEEE Internet Things J. 2021, 8, 1041–1056. [CrossRef]

159. Alwarafy, A.; Abdallah, M.; Ciftler, B.S.; Al-Fuqaha, A.; Hamdi, M. Deep Reinforcement Learning for Radio Resource Allocation
and Management in Next Generation Heterogeneous Wireless Networks: A Survey. arXiv 2021, arXiv:2106.00574.

160. Wang, S.; Chen, M.; Yin, C.; Saad, W.; Hong, C.S.; Cui, S.; Poor, H.V. Federated Learning for Task and Resource Allocation in
Wireless High-Altitude Balloon Networks. IEEE Internet Things J. 2021, 8, 17460–17475. [CrossRef]

161. Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M. Distributed federated learning for ultra-reliable low-latency vehicular
communications. IEEE Trans. Commun. 2019, 68, 1146–1159. [CrossRef]

162. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

163. Chauhan, R.; Ghanshala, K.K.; Joshi, R.C. Convolutional Neural Network (CNN) for Image Detection and Recognition. In
Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 122–129.

http://dx.doi.org/10.1109/JIOT.2020.3014370
http://dx.doi.org/10.1109/ACCESS.2019.2919736
http://dx.doi.org/10.1145/3372025
http://dx.doi.org/10.1016/j.comnet.2021.107916
http://dx.doi.org/10.1109/JIOT.2021.3081606
https://www.unb.ca/cic/datasets/nsl.html
https://Cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys
http://dx.doi.org/10.1016/j.comcom.2021.05.024
http://dx.doi.org/10.1145/3467981
http://dx.doi.org/10.1109/MCOM.2018.1700332
http://dx.doi.org/10.1109/JIOT.2021.3077803
http://dx.doi.org/10.3390/app8122663
http://dx.doi.org/10.3390/s21051666
http://www.ncbi.nlm.nih.gov/pubmed/33671072
http://dx.doi.org/10.1109/TWC.2020.3001736
http://dx.doi.org/10.1109/JSAC.2020.2986615
http://dx.doi.org/10.1109/JIOT.2020.3009540
http://dx.doi.org/10.1109/JIOT.2021.3080078
http://dx.doi.org/10.1109/TCOMM.2019.2956472
http://dx.doi.org/10.1109/cvpr.2016.90


Sensors 2022, 22, 450 43 of 45

164. Swenson, B.; Murray, R.; Kar, S.; Poor, H.V. Distributed Stochastic Gradient Descent: Nonconvexity, Nonsmoothness, and
Convergence to Local Minima. arXiv 2020, arXiv:2003.02818.

165. Stich, S.U. Local SGD converges fast and communicates little. arXiv 2018, arXiv:1805.09767.
166. Deng, Y.; Mahdavi, M. Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency.

In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. PMLR 2021, 130, 1387–1395.
167. Beznosikov, A.; Dvurechensky, P.; Koloskova, A.; Samokhin, V.; Stich, S.U.; Gasnikov, A. Decentralized Local Stochastic Extra-

Gradient for Variational Inequalities. arXiv 2021, arXiv:2106.08315.
168. Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; Vojnovic, M. QSGD: Communication-efficient SGD via gradient quantization and

encoding. Adv. Neural Inf. Process. Syst. 2017, 30, 1709–1720.
169. Chen, M.; Shlezinger, N.; Poor, H.V.; Eldar, Y.C.; Cui, S. Communication-efficient federated learning. Proc. Natl. Acad. Sci. USA

2021, 118. [CrossRef] [PubMed]
170. Wu, J.; Huang, W.; Huang, J.; Zhang, T. Error compensated quantized SGD and its applications to large-scale distributed

optimization. In Proceedings of the 35th International Conference on Machine Learning. PMLR 2018, 80, 5325–5333.
171. Gandikota, V.; Kane, D.; Maity, R.K.; Mazumdar, A. vqsgd: Vector quantized stochastic gradient descent. In Proceedings of the

24th International Conference on Artificial Intelligence and Statistics. PMLR 2021, 130, 2197–2205.
172. Wangni, J.; Wang, J.; Liu, J.; Zhang, T. Gradient sparsification for communication-efficient distributed optimization. arXiv 2017,

arXiv:1710.09854.
173. Ozfatura, E.; Ozfatura, K.; Gunduz, D. Time-Correlated Sparsification for Communication-Efficient Federated Learning. In Pro-

ceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021;
pp. 461–466.

174. Sun, Y.; Zhou, S.; Niu, Z.; Gunduz, D. Dynamic Scheduling for Over-the-Air Federated Edge Learning with Energy Constraints.
IEEE J. Sel. Areas Commun. 2021, 1. [CrossRef]

175. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. arXiv 2018,
arXiv:1812.06127.

176. Laguel, Y.; Pillutla, K.; Malick, J.; Harchaoui, Z. A Superquantile Approach to Federated Learning with Heterogeneous Devices.
In Proceedings of the 2021 55th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 24–26
March 2021; pp. 1–6.

177. Yang, C.; Wang, Q.; Xu, M.; Chen, Z.; Bian, K.; Liu, Y.; Liu, X. Characterizing Impacts of Heterogeneity in Federated Learning upon
Large-Scale Smartphone Data. In Proceedings of the Web Conference 2021, Virtual Event, France, 25–29 April 2022; pp. 935–946.

178. Abdelmoniem, A.M.; Canini, M. Towards Mitigating Device Heterogeneity in Federated Learning via Adaptive Model Quantiza-
tion. In Proceedings of the 1st Workshop on Machine Learning and Systems, Online, UK, 26 April 2021; pp. 96–103.

179. Duan, M.; Liu, D.; Chen, X.; Liu, R.; Tan, Y.; Liang, L. Self-Balancing Federated Learning with Global Imbalanced Data in Mobile
Systems. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 59–71. [CrossRef]

180. Wang, L.; Xu, S.; Wang, X.; Zhu, Q. Addressing Class Imbalance in Federated Learning. arXiv 2020, arXiv:2008.06217.
181. Sarkar, D.; Narang, A.; Rai, S. Fed-Focal Loss for imbalanced data classification in Federated Learning. arXiv 2020,

arXiv:2011.06283.
182. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
183. Hsieh, K.; Phanishayee, A.; Mutlu, O.; Gibbons, P.B. The non-iid data quagmire of decentralized machine learning. In Proceedings

of the 37th International Conference on Machine Learning. PMLR 2020, 119, 4387–4398.
184. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-IID data. arXiv 2018, arXiv:1806.00582.
185. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Communication-efficient on-device machine learning: Federated

distillation and augmentation under non-IID private data. arXiv 2018, arXiv:1811.11479.
186. Huang, L.; Yin, Y.; Fu, Z.; Zhang, S.; Deng, H.; Liu, D. LoAdaBoost: Loss-based AdaBoost federated machine learning with

reduced computational complexity on IID and non-IID intensive care data. PLoS ONE 2020, 15, e0230706. [CrossRef] [PubMed]
187. Yang, M.; Wang, X.; Zhu, H.; Wang, H.; Qian, H. Federated learning with class imbalance reduction. In Proceedings of the 2021

29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021.
188. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,

arXiv:2002.06440.
189. Reisizadeh, A.; Farnia, F.; Pedarsani, R.; Jadbabaie, A. Robust federated learning: The case of affine distribution shifts. arXiv 2020,

arXiv:2006.08907.
190. Andreux, M.; du Terrail, J.O.; Beguier, C.; Tramel, E.W. Siloed Federated Learning for Multi-centric Histopathology Datasets.

In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Berlin/Heidelberg, Germany,
2020; pp. 129–139.

191. Li, X.; Jiang, M.; Zhang, X.; Kamp, M.; Dou, Q. Fedbn: Federated learning on non-IID features via local batch normalization.
arXiv 2021, arXiv:2102.07623.

192. Li, Z.; Yu, H.; Zhou, T.; Luo, L.; Fan, M.; Xu, Z.; Sun, G. Byzantine Resistant Secure Blockchained Federated Learning at the Edge.
IEEE Netw. 2021, 35, 295–301. [CrossRef]

193. Nguyen, T.D.; Rieger, P.; Miettinen, M.; Sadeghi, A.-R. Poisoning Attacks on Federated Learning-based IoT Intrusion Detection
System. In Proceedings of the Workshop on Decentralized IoT Systems and Security (DISS) 2020, San Diego, CA, USA, 23–26
February 2020.

http://dx.doi.org/10.1073/pnas.2024789118
http://www.ncbi.nlm.nih.gov/pubmed/33888586
http://dx.doi.org/10.1109/JSAC.2021.3126078
http://dx.doi.org/10.1109/TPDS.2020.3009406
http://dx.doi.org/10.1016/j.neucom.2021.07.098
http://dx.doi.org/10.1371/journal.pone.0230706
http://www.ncbi.nlm.nih.gov/pubmed/32302316
http://dx.doi.org/10.1109/MNET.011.2000604


Sensors 2022, 22, 450 44 of 45

194. Zhou, X.; Xu, M.; Wu, Y.; Zheng, N. Deep Model Poisoning Attack on Federated Learning. Future Internet 2021, 13, 73. [CrossRef]
195. Luo, X.; Zhu, X. Exploiting defenses against GAN-based feature inference attacks in federated learning. arXiv 2020,

arXiv:2004.12571.
196. Li, S.; Cheng, Y.; Liu, Y.; Wang, W.; Chen, T. Abnormal client behavior detection in federated learning. arXiv 2019, arXiv:1910.09933.
197. Wan, W.; Lu, J.; Hu, S.; Zhang, L.Y.; Pei, X. Shielding Federated Learning: A New Attack Approach and Its Defense. In Proceedings

of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp.
1–7.

198. Bhagoji, A.N., Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. In Proceedings of the
36th International Conference on Machine Learning. PMLR 2019, 97, 634–643.

199. Fung, C.; Yoon, C.J.; Beschastnikh, I. Mitigating sybils in federated learning poisoning. arXiv 2018, arXiv:1808.04866.
200. Li, S.; Cheng, Y.; Wang, W.; Liu, Y.; Chen, T. Learning to detect malicious clients for robust federated learning. arXiv 2020,

arXiv:2002.00211.
201. Xia, Q.; Ye, W.; Tao, Z.; Wu, J.; Li, Q. A survey of federated learning for edge computing: Research problems and solutions.

High-Confid. Comput. 2021, 1, 100008. [CrossRef]
202. Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Poor, H.V. Federated learning with differential privacy: Algorithms and

performance analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [CrossRef]
203. Fu, Y.; Zhou, Y.; Wu, D.; Yu, S.; Wen, Y.; Li, C. On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration

Times. arXiv 2021, arXiv:2101.04163.
204. Homomorphicencryption Homepage. Available online: https://homomorphicencryption.org/introduction/ (accessed on 3

October 2021).
205. Yehuda, L. Secure Multiparty Computation (MPC). IACR Cryptol. ePrint Arch. 2020, 2020, 300.
206. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14,

352–375. [CrossRef]
207. Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Liu, Y. Privacy-preserving blockchain-based federated learning for IoT

devices. IEEE Internet Things J. 2020, 8, 1817–1829. [CrossRef]
208. Cho, Y.J.; Wang, J.; Joshi, G. Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection

Strategies. arXiv 2020, arXiv:2010.01243.
209. Tang, M.; Ning, X.; Wang, Y.; Wang, Y.; Chen, Y. Fedgp: Correlation-based active client selection for heterogeneous federated

learning. arXiv 2021, arXiv:2103.13822.
210. Wu, H.; Wang, P. Node Selection Toward Faster Convergence for Federated Learning on non-IID Data. arXiv 2021,

arXiv:2105.07066.
211. Xu, B.; Xia, W.; Zhang, J.; Quek, T.Q.S.; Zhu, H. Online Client Scheduling for Fast Federated Learning. IEEE Wirel. Commun. Lett.

2021, 10, 1434–1438. [CrossRef]
212. Song, T.; Tong, Y.; Wei, S. Profit Allocation for Federated Learning. In Proceedings of the 2019 IEEE International Conference on

Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2577–2586.
213. Kang, J.; Xiong, Z.; Niyato, D.; Yu, H.; Liang, Y.-C.; Kim, D.I. Incentive Design for Efficient Federated Learning in Mobile

Networks: A Contract Theory Approach. In Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium
(APWCS), Singapore, 28–30 August 2019; pp. 1–5.

214. Feng, S.; Niyato, D.; Wang, P.; Kim, D.I.; Liang, Y.-C. Joint Service Pricing and Cooperative Relay Communication for Federated
Learning. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Atlanta, GA, USA, 14–17 July 2019; pp. 815–820.

215. Filho, G.P.R.; Villas, L.; Freitas, H.; Valejo, A.; Guidoni, D.L.; Ueyama, J. ResiDI: Towards a smarter smart home system for
decision-making using wireless sensors and actuators. Comput. Netw. 2018, 135, 54–69. [CrossRef]

216. Filho, G.P.R.; Meneguette, R.I.; Maiac, G.; Pessind, G.; Gonçalves, V.P.; Weiganga, L.; Ueyama, J.; Villas, L.A. A fog-enabled smart
home solution for decision-making using smart objects. Future Gener. Comput. Syst. 2020, 103, 18–27. [CrossRef]

217. Rocha Filho, G.P.; Mano, L.Y.; Valejo, A.D.B.; Villas, L.A.; Ueyama, J. A low-cost smart home automation to enhance decision-
making based on fog computing and computational intelligence. IEEE Lat. Am. Trans. 2018, 16, 186–191. [CrossRef]

218. Filho, G.; Ueyama, J.; Villas, L.; Pinto, A.; Gonçalves, V.; Pessin, G.; Pazzi, R.; Braun, T. NodePM: A Remote Monitoring Alert
System for Energy Consumption Using Probabilistic Techniques. Sensors 2014, 14, 848–867. [CrossRef]

219. Aivodji, U.M.; Gambs, S.; Martin, A. IOTFLA: A Secured and Privacy-Preserving Smart Home Architecture Implementing
Federated Learning. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 19–23
May 2019; pp. 175–180.

220. Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-
Preserving Federated Brain Tumour Segmentation. In Machine Learning in Medical Imaging; Springer: Berlin/Heidelberg, Germany,
2019; pp. 133–141.

221. Lee, G.H.; Shin, S.-Y. Federated Learning on Clinical Benchmark Data: Performance Assessment. J. Med. Internet Res. 2020, 22,
e20891. [CrossRef]

http://dx.doi.org/10.3390/fi13030073
http://dx.doi.org/10.1016/j.hcc.2021.100008
http://dx.doi.org/10.1109/TIFS.2020.2988575
https://homomorphicencryption.org/introduction/
http://dx.doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1109/JIOT.2020.3017377
http://dx.doi.org/10.1109/LWC.2021.3069541
http://dx.doi.org/10.1016/j.comnet.2018.02.009
http://dx.doi.org/10.1016/j.future.2019.09.045
http://dx.doi.org/10.1109/TLA.2018.8291472
http://dx.doi.org/10.3390/s140100848
http://dx.doi.org/10.2196/20891


Sensors 2022, 22, 450 45 of 45

222. Yang, H.; Zhao, J.; Xiong, Z.; Lam, K.Y.; Sun, S.; Xiao, L. Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management. IEEE J. Sel. Areas Commun. 2021, 39, 3144—3159. [CrossRef]

223. Zhang, H.; Hanzo, L. Federated Learning Assisted Multi-UAV Networks. IEEE Trans. Veh. Technol. 2020, 69, 14104–14109.
[CrossRef]

http://dx.doi.org/10.1109/JSAC.2021.3088655
http://dx.doi.org/10.1109/TVT.2020.3028011

	Introduction
	Fundamentals of Edge Computing and Federated Learning 
	 Edge Computing
	Deep Learning
	Enabling Deep Learning at the Edge
	Federated Learning

	Literature Review
	Related Works on Federated Learning in Edge Computing
	Contributions

	Research Methodology 
	 Research Question Formulation (Stage I)
	 Source Selection and Strategy (Stage II)
	 Inclusion and Exclusion Methods (Stage III)
	 Analysis and Synthesis (Stage IV)
	Reporting and Utilization of the Findings (Stage V)

	Review and Analysis of Federated Learning Implementation in Edge Computing
	Federated Learning in Edge Computing: Protocols, Architectures, and Frameworks
	Architecture of Participating Device
	Architecture of the Federated Learning Server
	Open-Source Federated Learning Frameworks
	Proprietary Federated Learning Frameworks

	Hardware Requirements for Implementing Federated Learning in an Edge Computing Environment
	Federated Learning Applications in an Edge Computing Environment
	Computation Offloading and Content Caching
	Malware and Anomaly Detection
	Task Scheduling and Resource Allocation

	Implementing Federated Learning in an Edge Computing Environment: Challenges and Solutions 
	Communication and Computation Efficiency
	Heterogeneity Management
	Privacy and Security Preservation
	Client Selection and Resource Allocation
	Service Pricing


	Federated Learning in Edge Computing: Case Studies
	Smart Healthcare
	 Unmanned Aerial Vehicles 

	Open Issues and Future Research Directions 
	Conclusions
	References

