
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Federated learning in mobile edge networks : a
comprehensive survey
Lim, Bryan Wei Yang; Luong, Nguyen Cong; Hoang, Dinh Thai; Jiao, Yutao; Liang,
Ying‑Chang; Yang, Qiang; Niyato, Dusit; Miao, Chunyan
2020
Lim, B. W. Y., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.‑C., Yang, Q., ... Miao, C. (2020).
Federated learning in mobile edge networks : a comprehensive survey. IEEE
Communications Surveys and Tutorials, 22(3), 2031‑2063.
doi:10.1109/COMST.2020.2986024
https://hdl.handle.net/10356/144291
https://doi.org/10.1109/COMST.2020.2986024

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/COMST.2020.2986024

Downloaded on 28 Aug 2022 06:12:44 SGT

1

Federated Learning in Mobile Edge Networks: A

Comprehensive Survey
Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Member, IEEE,

Yutao Jiao, Ying-Chang Liang, Fellow, IEEE, Qiang Yang, Fellow, IEEE, Dusit Niyato, Fellow, IEEE, and

Chunyan Miao, Senior Member, IEEE

Abstract—In recent years, mobile devices are equipped with
increasingly advanced sensing and computing capabilities. Cou-
pled with advancements in Deep Learning (DL), this opens
up countless possibilities for meaningful applications, e.g., for
medical purposes and in vehicular networks. Traditional cloud-
based Machine Learning (ML) approaches require the data to be
centralized in a cloud server or data center. However, this results
in critical issues related to unacceptable latency and communi-
cation inefficiency. To this end, Mobile Edge Computing (MEC)
has been proposed to bring intelligence closer to the edge, where
data is produced. However, conventional enabling technologies
for ML at mobile edge networks still require personal data
to be shared with external parties, e.g., edge servers. Recently,
in light of increasingly stringent data privacy legislations and
growing privacy concerns, the concept of Federated Learning
(FL) has been introduced. In FL, end devices use their local
data to train an ML model required by the server. The end
devices then send the model updates rather than raw data to the
server for aggregation. FL can serve as an enabling technology in
mobile edge networks since it enables the collaborative training
of an ML model and also enables DL for mobile edge network
optimization. However, in a large-scale and complex mobile edge
network, heterogeneous devices with varying constraints are
involved. This raises challenges of communication costs, resource
allocation, and privacy and security in the implementation of
FL at scale. In this survey, we begin with an introduction to
the background and fundamentals of FL. Then, we highlight
the aforementioned challenges of FL implementation and review
existing solutions. Furthermore, we present the applications of
FL for mobile edge network optimization. Finally, we discuss the
important challenges and future research directions in FL.

Index Terms—Federated Learning, mobile edge networks, re-
source allocation, communication cost, data privacy, data security

WYB. Lim is with Alibaba Group and the Alibaba-NTU Joint Research
Institute (JRI), Nanyang Technological University (NTU), Singapore. Email:
limw0201@e.ntu.edu.sg. N. C. Luong is with Faculty of Computer Science,
PHENIKAA University, Hanoi 12116, Vietnam, and is with PHENIKAA
Research and Technology Institute (PRATI), A&A Green Phoenix Group
JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet-
nam. Email: luong.nguyencong@phenikaa-uni.edu.vn. D. T. Hoang is with
the School of Electrical and Data Engineering, University of Technology
Sydney, Australia. E-mail: hoang.dinh@uts.edu.au. Y. Jiao and D. Niyato
are with School of Computer Science and Engineering, NTU, Singapore.
E-mails: yjiao001@e.ntu.edu.sg, dniyato@ntu.edu.sg. Y.-C. Liang is with
the Center for Intelligent Networking and Communications, University of
Electronic Science and Technology of China, Chengdu 611731, China. E-
mail: liangyc@ieee.org. Q. Yang is with Hong Kong University of Science
and Technology, Hong Kong, China. Email: qyang@cse.ust.hk. C. Miao
is with SCSE, NTU, Singapore, Alibaba-NTU JRI, and Joint NTU-UBC
Research Centre of Excellence in Active Living for the Elderly, Singapore.
E-mail: ascymiao@ntu.edu.sg. Corresponding author: Nguyen Cong Luong.

I. INTRODUCTION

Currently, there are nearly 7 billion connected Internet of

Things (IoT) devices [1] and 3 billion smartphones around the

world. These devices are equipped with increasingly advanced

sensors, computing, and communication capabilities. As such,

they can potentially be deployed for various crowdsensing

tasks, e.g., for medical purposes [2] and air quality monitoring

[3]. Coupled with the rise of Deep Learning (DL) [4], the

wealth of data collected by end devices opens up countless

possibilities for meaningful research and applications.

In the traditional cloud-centric approach, data collected by

mobile devices is uploaded and processed centrally in a cloud-

based server or data center. In particular, data collected by IoT

devices and smartphones such as measurements [5], photos [6],

videos [7], and location information [8] are aggregated at the

data center [9]. Thereafter, the data is used to provide insights

or produce effective inference models. However, this approach

is no longer sustainable for the following reasons. Firstly, data

owners are increasingly privacy sensitive. Following privacy

concerns among consumers in the age of big data, policy mak-

ers have responded with the implementation of data privacy

legislations such as the European Commission’s General Data

Protection Regulation (GDPR) [10] and Consumer Privacy

Bill of Rights in the US [11]. In particular, the consent

(GDPR Article 6) and data minimalization principle (GDPR

Article 5) limits data collection and storage only to what is

consumer-consented and absolutely necessary for processing.

Secondly, a cloud-centric approach involves long propagation

delays and incurs unacceptable latency [12] for applications in

which real-time decisions have to be made, e.g., in self-driving

car systems [13]. Thirdly, the transfer of data to the cloud

for processing burdens the backbone networks especially in

tasks involving unstructured data, e.g., in video analytics [14].

This is exacerbated by the fact that cloud-centric training is

relatively reliant on wireless communications [15]. As a result,

this can impede the development of new technologies.

With data sources mainly located outside the cloud today

[16], Mobile Edge Computing (MEC) has naturally been

proposed as a solution in which the computing and storage

capabilities [12] of end devices and edge servers are leveraged

on to bring model training closer to where data is produced

[17]. As defined in [15], an end-edge-cloud computing net-

work comprises: (i) end devices, (ii) edge nodes, and (iii) cloud

server. For model training in conventional MEC approaches,

a collaborative paradigm has been proposed in which training

2

Fig. 1: Edge AI approach brings AI processing closer to where data
is produced.

data are first sent to the edge servers for model training up to

lower level DNN layers, before more computation intensive

tasks are offloaded to the cloud [18], [19] (Fig. 1). However,

this arrangement incurs significant communication costs and

is unsuitable especially for applications that require persistent

training [15]. In addition, computation offloading and data

processing at edge servers still involve the transmission of po-

tentially sensitive personal data. This can discourage privacy-

sensitive consumers from taking part in model training, or

even violate increasingly stringent privacy laws [10]. Although

various privacy preservation methods, e.g., differential privacy

(DP) [20], have been proposed, a number of users are still

not willing to expose their private data for fear that their data

may be inspected by external servers. This discourages the

development of technologies and new applications.

To guarantee that training data remains on personal devices

and to facilitate collaborative machine learning of complex

models among distributed devices, a decentralized ML ap-

proach called Federated Learning (FL) is introduced in [21]. In

FL, mobile devices use their local data to cooperatively train

an ML model required by an FL server. They then send the

model updates, i.e., the model’s weights, to the FL server for

aggregation. The steps are repeated in multiple rounds until a

desirable accuracy is achieved. This implies that FL can be an

enabling technology for ML model training at mobile edge

networks. Compared to conventional cloud-centric training

approaches, the implementation of FL for model training at

mobile edge networks features the following advantages.

• Highly efficient use of network bandwidth: Less infor-

mation is required to be transmitted to the cloud. For

example, instead of sending the raw data over for process-

ing, participating devices only send the updated model

parameters for aggregation. As a result, this significantly

reduces costs of data communication and relieves the

burden on backbone networks.

• Privacy: Following the above point, the raw data of users

need not be sent to the cloud. Under the assumption

that FL participants and servers are non-malicious, this

enhances user privacy and reduces the probability of

eavesdropping to a certain extent. In fact, with enhanced

privacy, more users will be willing to take part in col-

laborative model training and so, better inference models

can be built.

• Low latency: With FL, ML models can be consistently

trained and updated. Meanwhile, in the MEC paradigm,

real-time decisions, e.g., event detection [22], can be

made locally at the edge nodes or end devices. Therefore,

the latency is much lower than that when decisions are

made in the cloud before transmitting them to the end

devices. This is vital for time critical applications such

as self-driving car systems in which the slightest delays

can potentially be life threatening [13].

Given the aforementioned advantages, FL has seen recent

successes in several applications. For example, the Federated

Averaging algorithm (FedAvg) proposed in [23] has been ap-

plied to Google’s Gboard [24] to improve next-word prediction

models. In addition, several studies have also explored the use

of FL in a number of scenarios in which data is sensitive

in nature, e.g., to develop predictive models for diagnosis

in health AI [25] and to foster collaboration across multiple

hospitals [26] and Government agencies [27].

Besides being an enabling technology for ML model train-

ing at mobile edge networks, FL has also been increasingly

applied as an enabling technology for mobile edge network

optimization. Given the computation and storage constraints

of increasingly complex mobile edge networks, conventional

network optimization approaches that are built on static models

fare relatively poorly in modelling dynamic networks [15]. As

such, a data-driven Deep Learning (DL) based approach [28]

for optimizing resource allocation is increasingly popular. For

example, DL can be used for representation learning of net-

work conditions [29] whereas Deep Reinforcement Learning

(DRL) can optimize decision making through interactions with

the dynamic environment [30]. However, the aforementioned

approaches require user data as an input and these data may be

sensitive or inaccessible in nature due to regulatory constraints.

As such, in this survey, we also consider FL’s potential to

serve as an enabling technology for optimizing mobile edge

networks, e.g., in cell association [31], computation offloading

[32], and vehicular networks [33].

However, there are several challenges to be solved before

FL can be implemented at scale. Firstly, even though raw data

no longer needs to be sent to the cloud servers, communication

costs remain an issue due to the high dimensonality of model

updates and limited communication bandwith of participating

mobile devices. In particular, state-of-the art DNN model train-

ing can involve the communication of millions of parameters

for aggregation. Secondly, in a large and complex mobile edge

3

network, the heterogeneity of participating devices in terms of

data quality, computation power, and willingness to participate

have to be well managed from the resource allocation perspec-

tive. Thirdly, FL does not guarantee privacy in the presence of

malicious participants or servers. In particular, recent research

works have clearly shown that a malicious participant may

exist in FL and can infer the information of other participants

just from the shared parameters alone. As such, privacy and

security issues in FL still need to be considered.

Although there are surveys on MEC and FL, the existing

studies usually treat the two topics separately. For existing

surveys on FL, the authors in [34] place more emphasis on

discussing the architecture and categorization of different FL

settings to be used for the varying distributions of training data.

The authors in [35] highlight the applications of FL in wireless

communications but do not discuss the issues pertaining to FL

implementation. In addition, the focus of [35] is on cellular

network architecture rather than mobile edge networks. In

contrast, the authors in [36] provide a brief tutorial on FL

and the challenges related to its implementation, but do not

consider the issue of resource allocation in FL, or the potential

applications of FL for mobile edge network optimization. On

the other hand, for surveys in MEC that focus on implementing

ML model training at edge networks, a macroscopic approach

is usually adopted in which FL is briefly mentioned as one of

the enabling technologies in the MEC paradigm, but without

detailed elaboration with regards to its implementation or the

related challenges. In particular, the authors in [14], [37],

and [38] study the architectures and process of training and

inference at edge networks without considering the challenges

to FL implementation. In addition, surveys studying the im-

plementation of DL for mobile edge network optimization

mostly do not focus on FL as a potential solution to preserve

data privacy. For example, the authors in [12], [19], [39]–

[42] discuss strategies for optimizing caching and computation

offloading for mobile edge networks, but do not consider the

use of privacy preserving federated approaches in their studies.

Similarly, [30] considers the use of DRL in communications

and networking but do not include federated DRL approaches.

In summary, most existing surveys on FL do not consider

applications of FL in the context of mobile edge networks,

whereas surveys on MEC do not consider the challenges to

FL implementation, or the potential of FL to be applied in

mobile edge network optimization. This motivates us to have

a comprehensive survey with the following contributions:

• We motivate the importance of FL as an important

paradigm shift towards enabling collaborative ML model

training. Then, we provide a concise tutorial on FL

implementation and present to the reader a list of useful

open-source frameworks that paves the way for future

research on FL and its applications.

• We discuss the unique features of FL relative to a cen-

tralized ML approach and the resulting implementation

challenges. For each of this challenge, we present to the

reader a comprehensive discussion of existing solutions

and approaches explored in the FL literature.

• We discuss FL as an enabling technology for mobile edge

network optimization. In particular, we discuss the current

and potential applications of FL as a privacy-preserving

approach for applications in edge computing.

• We discuss challenges and research directions of FL.

For the reader’s convenience, we classify the related studies

to be discussed in this survey in Fig. 2. The classification

is based on (i) FL at mobile edge network, i.e., studies

that focus on solving the challenges and issues related to

implementing the collaborative training of ML models on end

devices, and (ii) FL for mobile edge network, i.e., studies

that specifically explore the application of FL for mobile

edge network optimization. While the former group of studies

works on addressing the fundamental issues of FL, the latter

group uses FL as an application tool to solve issues in edge

computing. We also present a list of common abbreviations

for reference in Table II.

The rest of this paper is organized as follows. Section II

introduces the background and fundamentals of FL. Section

III reviews solutions provided to reduce communication costs.

Section IV discusses resource allocation approaches in FL.

Section V discusses privacy and security issues. Section VI

discusses applications of FL for mobile edge network op-

timization. Section VII discusses the challenges and future

research directions in FL. Section VIII concludes the paper.

II. BACKGROUND AND FUNDAMENTALS OF FEDERATED

LEARNING

Artificial Intelligence (AI) has become an essential part of

our lives today, following the recent successes and progression

of DL in several domains, e.g., Computer Vision (CV) [43]

and Natural Language Processing (NLP) [44]. In traditional

training of Deep Neural Networks (DNNs), a cloud based

approach is adopted whereby data is centralized and model

training occurs in powerful cloud servers. However, given the

ubiquity of mobile devices that are equipped with increasingly

advanced sensing and computing capabilities, the trend of

migrating intelligence from the cloud to the edge, i.e., in the

MEC paradigm, has naturally arisen. In addition, amid grow-

ing privacy concerns, the concept of FL has been proposed.

FL involves the collaborative training of DNN models on

end devices. There are, in general, two steps in the FL training

process namely (i) local model training on end devices and (ii)

global aggregation of updated parameters in the FL server.

In this section, we first provide a brief introduction to DNN

model training, which generalizes local model training in

FL. Note that while FL can be applied to the training of

ML models in general, we focus specifically on DNN model

training in this section as a majority of the papers that we

subsequently review study the federated training of DNN

models. In addition, the DNN models are easily aggregated

and outperform conventional ML techniques especially when

the data is large. The implementation of FL at mobile edge net-

works can thus naturally leverage on the increasing computing

power and wealth of data collected by distributed end devices,

both of which are driving forces contributing to the rise of

DL [45]. As such, a brief introduction to general DNN model

training will be useful for subsequent sections. Thereafter,

we proceed to provide a tutorial of the FL training process

4

TABLE I: An overview of selected surveys in FL and MEC

Ref. Subject Contribution

[34]
FL

Introductory tutorial on categorization of different FL settings, e.g., vertical FL, horizontal FL, and Federated Transfer Learning
[35] FL in optimizing resource allocation for wireless networks while preserving data privacy
[36] Tutorial on FL and discussions of implementation challenges in FL
[14]

MEC

Computation offloading strategy to optimize DL performance in edge computing
[37] Survey on architectures and frameworks for edge intelligence
[38] ML for IoT management, e.g., network management and security
[19] Survey on computation offloading in MEC
[30] Survey on DRL approaches to address issues in communications and networking
[39] Survey on techniques for computation offloading
[40] Survey on architectures and applications of MEC
[41] Survey on computing, caching, and communication issues at mobile edge networks
[42] Survey on the phases of caching and comparison among the different caching schemes
[12] Survey on joint mobile computing and wireless communication resource management in MEC

Fig. 2: Classification of related studies to be discussed in this survey.

TABLE II: List of common abbreviations.

Abbreviation Description

BAA Broadband Analog Aggregation

CNN Convolutional Neural Network

DDQN Double Deep Q-Network

DL Deep Learning

DNN Deep Neural Network

DQL Deep Q-Learning

DRL Deep Reinforcement Learning

FedAvg Federated Averaging

FL Federated Learning

IID Independent and Identically Distributed

IoT Internet of Things

IoV Internet of Vehicles

LSTM Long Short Term Memory

MEC Mobile Edge Computing

ML Machine Learning

QoE Quality of Experience

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SNR Signal-to-noise ratio

SVM Support Vector Machine

TFF TensorFlow Federated

UE User Equipment

that incorporates both global aggregation and local training.

In addition, we also highlight the statistical challenges of

FL model training and present the protocols and open-source

frameworks of FL.

A. Deep Learning

Conventional ML algorithms rely on hand-engineered fea-

ture extractors to process raw data [46]. As such, domain

expertise is often a prerequisite for building an effective ML

model. In addition, feature selection has to be customized

and reinitiated for each new problem. Otherwise, DNNs are

representation learning based, i.e., DNNs can automatically

discover and learn these features from raw data [4] and thus

often outperform conventional ML algorithms especially when

there is an abundance of data.

DL lies within the domain of the brain-inspired computing

paradigm, of which the neural network is an important part.

The neural network comprises three layers: (i) input layer, (ii)

hidden layer, and (iii) output layer. In a conventional DNN,

a weighted and bias-corrected input value is passed through

a non-linear activation function to derive an output. Some

activation functions include the ReLu and softmax functions

[44]. A typical DNN comprises multiple hidden layers that

map an input to an output. For example, the goal of a DNN

trained for image classification is to produce a vector of scores

as the output, in which the positional index of the highest

score corresponds to the class to which the input image is

classified to belong. As such, the objective of training a DNN

is to optimize the weights of the network such that the loss

function is minimized.

Before training, the dataset is first split into the training and

test dataset. Then, the training dataset is used as input data

for the optimization of weights in the DNN. The weights are

calibrated through stochastic gradient descent (SGD), in which

the weights are updated by the product of (i) the learning rate

lr, i.e., the step size of gradient descent in each iteration, and

(ii) partial derivative of the loss function L with respect to the

weight w. The SGD formula is as follows:

W = W − lr
∂L

∂W
(1)

∂L

∂W
≈

1

m

∑

iǫB

∂l(i)

∂W
(2)

5

Note that the SGD formula presented in (1) is that of a

mini-batch GD. Equation (2) is derived as the average gradient

matrix over the gradient matrices of B batches, in which each

batch is a random subset including m training samples. This

is preferred over the full batch GD, i.e., where the entirety of

the training set is included in computing the partial derivative,

since the full batch GD can lead to slow training and batch

memorization [47]. The gradient matrices are derived through

backpropagation from the input gradient.

The training iterations are then repeated over many epochs,

i.e., full passes over the training set, for loss minimalization. A

well-trained DNN generalizes well, i.e., achieve high inference

accuracy when applied to data that it has not seen before, e.g.,

the test set. There are other alternatives to supervised learn-

ing, e.g., semi-supervised learning [48], unsupervised learning

[49] and reinforcement learning [50]. In addition, there also

exists several DNN networks and architectures tailored to

process the varying natures of input data, e.g., Multilayer

Perceptron (MLP) [51], Convolutional Neural Network (CNN)

[52] typically for CV tasks, and Recurrent Neural Network

(RNN) [53] usually for sequential tasks. However, an in-depth

discussion is out of the scope of this paper. We refer interested

readers to [54]–[59] for comprehensive discussions of DNN

architectures and training strategies. We next focus on FL, an

important paradigm shift towards enabling privacy preserving

and collaborative DL model training.

B. Federated Learning

Motivated by privacy concerns among data owners, the

concept of FL is introduced in [21]. FL allows users to

collaboratively train a shared model while keeping personal

data on their devices, thus alleviating their privacy concerns.

As such, FL can serve as an enabling technology for ML

model training at mobile edge networks. For an introduction

to the categorizations of different FL settings, e.g., vertical and

horizontal FL, we refer the interested readers to [34].

In general, there are two main entities in the FL system,

i.e., the data owners (viz. participants) and the model owner

(viz. FL server). Let N = {1, . . . , N} denote the set of N

data owners, each of which has a private dataset Di∈N . Each

data owner i uses its dataset Di to train a local model wi

and send only the local model parameters to the FL server.

Then, all collected local models are aggregated w = ∪i∈Nwi

to generate a global model wG. This is different from the

traditional centralized training which uses D = ∪i∈NDi to

train a model wT , i.e., data from each individual source is

aggregated first before model training takes place centrally.

A typical architecture and training process of an FL system

is shown in Fig. 3. In this system, the data owners serve as

the FL participants which collaboratively train an ML model

required by an aggregate server. An underlying assumption is

that the data owners are honest, which means they use their

real private data to do the training and submit the true local

models to the FL server. Of course, this assumption may not

always be realistic [60] and we discuss the proposed solutions

subsequently in Sections IV and V.

In general, the FL training process includes the following

three steps. Note: the local model refers to the model trained

Fig. 3: General FL training process involving N participants.

at each participating device, whereas the global model refers

to the model aggregated by the FL server.

• Step 1 (Task initialization): The server decides the train-

ing task, i.e., the target application, and the corresponding

data requirements. The server also specifies the hyperpa-

rameters of the global model and the training process,

e.g., learning rate. Then, the server broadcasts the initial-

ized global model w0
G and task to selected participants.

• Step 2 (Local model training and update): Based on the

global model wt
G, where t denotes the current iteration

index, each participant respectively uses its local data and

device to update the local model parameters wt
i . The goal

of participant i in iteration t is to find optimal parameters

wt
i that minimize the loss function L(wt

i), i.e.,

wt∗

i = argmin
w

t

i

L(wt
i). (3)

The updated local model parameters are subsequently

sent to the server.

• Step 3 (Global model aggregation and update): The

server aggregates the local models from participants and

then sends the updated global model parameters wt+1
G

back to the data owners.

The server minimizes the global loss function L(wt
G), i.e.,

L(wt
G) =

1

N

N∑

i=1

L(wt
i). (4)

Steps 2-3 are repeated until the global loss function converges

or a desirable training accuracy is achieved.

Note that the FL training process can be used for different

ML models that essentially use the SGD method such as

Support Vector Machines (SVMs) [61], neural networks, and

linear regression [62]. A training dataset usually contains a

set of n data feature vectors x = {x1, . . . ,xn} and a set of

6

corresponding data labels1 y = {y1, . . . , yn}. In addition, let

ŷj = f(xj ;w) denote the predicted result from the model

w updated/trained by data vector xj . Table III summarizes

several loss functions of common ML models [63].

TABLE III: Loss functions of common ML models

Model Loss function L(wt
i)

Neural
network

1

n

∑n
j=1

(yi − f(xj ;w))2

(Mean Squared Error)

Linear
regression

1

2

∥

∥yj −w
T
xj

∥

∥

2

K-means

∑

j ‖xj − f(xj ;w)‖
(f(xj ;w) is the centroid of all objects assigned to xj ’s

class)

Squared-
SVM

[1
n

∑n
j=1

max(0, 1− yj(w
T
xj − bias))]

+λ
∥

∥

w
T
∥

∥

2
(bias is the bias parameter and λ is const.)

Global model aggregation is an integral part of FL. A

straightforward and classical algorithm for aggregating the

local models is the FedAvg algorithm proposed in [23], which

is similar to that of local SGD [64]. The pseudocode for

FedAvg is given in Algorithm 1. As described in Step 1 above,

Algorithm 1 Federated averaging algorithm [23]

Require: Local minibatch size B, number of participants m per iteration, number of

local epochs E, and learning rate η.

Ensure: Global model wG.

1: [Participant i]
2: LocalTraining(i, w):

3: Split local dataset Di to minibatches of size B which are included into the set Bi.

4: for each local epoch j from 1 to E do

5: for each b ∈ Bi do

6: w ← w− η∆L(w; b) (η is the learning rate and ∆L is the gradient

of L on b.)

7: end for

8: end for

9:
10: [Server]

11: Initialize w
0
G

12: for each iteration t from 1 to T do

13: Randomly choose a subset St of m participants from N

14: for each partipant i ∈ St parallely do

15: w
t+1

i
← LocalTraining(i, wt

G
)

16: end for

17: w
t

G
= 1∑

i∈N Di

∑
N

i=1
Diw

t

i
(Averaging aggregation)

18: end for

the server first initializes the task (lines 11-16). Thereafter, in

Step 2, the participant i implements the local training and

optimizes the target in (3) on minibatches from the original

local dataset (lines 2-8). Note that a minibatch refers to a

randomized subset of each participant’s dataset. At the tth

iteration (line 17), the server minimizes the global loss in (4)

by the averaging aggregation which is formally defined as

wt
G =

1∑
i∈N Di

N∑

i=1

Diw
t
i . (5)

The FL training process is iterated till the global loss function

converges, or a desirable accuracy is achieved.

C. Statistical Challenges of FL

In traditional distributed ML, the central server has access

to the whole training dataset. As such, the server can split the

1In the case of unsupervised learning, there is no data label.

dataset into subsets that follow similar distributions. The sub-

sets are subsequently sent to participating nodes for distributed

training. However, this approach is impractical for FL since

the local dataset is only accessible by the data owner.

In the FL setting, the participants may have local datasets

that follow different distributions, i.e., the datasets of partic-

ipants are non-IID. While the authors in [23] show that the

aforementioned FedAvg algorithm is able to achieve desirable

accuracy even when data is non-IID across participants, the

authors in [65] found otherwise. For example, the accuracy

of a FedAvg-trained CNN model has 51% lower accuracy

than centrally-trained CNN model for CIFAR-10 [66]. This

deterioration in accuracy is further shown to be quantified by

the earth mover’s distance (EMD) [67], i.e., difference in FL

participant’s data distribution as compared to the population

distribution. As such, when data is non-IID and highly skewed,

data-sharing is proposed in which a shared dataset with

uniform distribution across all classes is sent by the FL server

to each FL participant. Then, the participant trains its local

model on its private data together with the received data. The

simulation result shows that accuracy can be increased by

30% with 5% shared data due to reduced EMD. However,

a common dataset may not always be available for sharing by

the FL server. An alternative solution is to gather contributions

towards building the common dataset.

The authors in [68] also find that global imbalance, i.e., the

situation in which the collection of data held across all FL par-

ticipants is class imbalanced, leads to a deterioration in model

accuracy. As such, the Astraea framework is proposed. On

initialization, the FL participants send their data distribution

to the server. A rebalancing step is introduced before training

begins in which each participant performs data augmentation

[69] on the minority classes, e.g., through random rotations

and shifts. After training on the augmented data, a mediator

is created to coordinate intermediate aggregation, i.e., before

sending the updated parameters to the FL server for global

aggregation. The mediator selects participants with data dis-

tributions that best contributes to an uniform distribution when

aggregated. This is done through a greedy algorithm approach

to minimize the Kullback-Leibler Divergence [70] between lo-

cal data and uniform distribution. The simulation results show

accuracy improvement when tested on imbalanced datasets.

Given the heterogeneity of data distribution across devices,

there has been an increasing number of studies that borrow

concepts from multi-task learning [71] to learn separate, but

structurally related models for each participant. Instead of

minimizing the conventional loss function presented previ-

ously in Table III, the loss function is modified to model

the relationship amongst tasks. Then, the MOCHA algorithm

is proposed in which an alternating optimization approach

[72] is used to approximately solve the minimization problem.

Interestingly, MOCHA can be calibrated based on the resource

constraints of a participating device. For example, the quality

of approximation can be adaptively adjusted based on network

conditions and CPU states of the devices. However, MOCHA

cannot be applied to non-convex DL models.

Similarly, the authors in [73] borrow concepts from multi-

task learning to deal with the statistical heterogeneity in FL.

7

The FEDPER approach is proposed in which FL participants

share a set of base layers trained using the FedAvg algorithm.

Then, each participant separately trains another set of personal-

ization layers using its local data. In particular, this approach is

suitable for building recommender’s systems given the diverse

preferences of participants. The authors show empirically

using the Flickr-AES dataset [74] that the FEDPER approach

outperforms a pure FedAvg approach since the personalization

layer is able to represent the personal preference of an FL

participant. However, it is worth noting that the collaborative

training of the base layers are important to achieve a high

test accuracy since each participant has insufficient local data

samples for purely personalized model training.

Apart from data heterogeneity, the convergence of a dis-

tributed learning algorithm is always a concern. Higher con-

vergence rate helps to save a large amount of time and

resources for the FL participants, and also significantly in-

creases the success rate of the federated training since fewer

communication rounds imply reduced participant dropouts. To

ensure convergence, the study in [75] propose FedProx, which

modifies the loss function to also include a tunable parameter

that restricts how much local updates can affect the prevailing

model parameters. The FedProx algorithm can be adaptively

tuned, e.g., when training loss is increasing, model updates can

be tuned to affect the current parameters less. Similarly, the

authors in [76] also propose the LoAdaBoost FedAvg algorithm

to complement the aforementioned data-sharing approach [65]

in ML on medical data. In LoAdaBoost FedAvg, participants

train the model on their local data and compare the cross-

entropy loss with the median loss from the previous training

round. If the current cross-entropy loss is higher, the model is

retrained before global aggregation so as to increase learning

efficiency. The simulation results show that faster convergence

is achieved as a result.

In fact, the statistical challenges of FL coexist with other

issues that we explore in subsequent sections. For example,

the communication costs incurred in FL can be reduced by

faster convergence. Similarly, resource allocation policies can

also be designed to solve statistical heterogeneity. As such, we

revisit these concepts in greater detail subsequently.

D. FL protocols and frameworks

To improve scalability, an FL protocol has been proposed in

[77]. This protocol deals with issues regarding unstable device

connectivity and communication security etc. The FL protocol

(Fig. 4) consists of three phases in each training round:

1) Selection: The FL server chooses a subset of connected

devices to participate in a training round. The selection

criteria may subsequently be calibrated to the server’s

needs, e.g., training efficiency [78]. In Section IV, we

further elaborate on participant selection methods.

2) Configuration: The server is configured accordingly to

the aggregation mechanism preferred, e.g. simple or

secure aggregation [79]. Then, the server sends the

training schedule and global model to each participant.

3) Reporting: The server receives updates from partici-

pants. Thereafter, the updates can be aggregated, e.g.,

using the FedAvg algorithm.

In addition, to manage device connections accordingly to

varying FL population size, pace steering is also recom-

mended. Pace steering adaptively manages the optimal time

window for participants to reconnect to the FL server [77].

For example, when the FL population is small, pace steering is

used to ensure that there is a sufficient number of participating

devices that connect to the server simultaneously. In contrast,

when there is a large population, pace steering randomly

chooses devices to participate to prevent the situation in which

too many participating devices are connected at one point.

Apart from communication efficiency, communication se-

curity during local updates transmission is another problem

to be resolved. Specifically, there are mainly two aspects in

communication security:

• Secure aggregation: To prevent local updates from being

traced and utilized to infer the identity of the FL partic-

ipant, a virtual and trusted third party server is deployed

for local model aggregation [79]. The Secret Sharing

mechanism [80] is also used for transmission of local

updates with authenticated encryption.

• Differential privacy: Similar to secure aggregation, dif-

ferential privacy (DP) prevents the FL server from iden-

tifying the owner of a local update. The difference is

that to achieve the goal of privacy preservation, the DP

in FL [81] adds a certain degree of noise in the original

local update while providing theoretical guarantees on the

model quality.

These concepts on privacy and security are presented in detail

in Section V. Recently, some open-source frameworks for FL

have been developed as follows:

• TensorFlow Federated (TFF): TFF [82] is a framework

based on Tensorflow developed by Google for decen-

tralized ML and other distributed computations. TFF

consists of two layers (i) FL and (ii) Federated Core

(FC). The FL layer is a high-level interface that allows the

implementation of FL to existing TF models without the

user having to apply the FL algorithms personally. The

FC layer combines TF with communication operators to

allow users to experiment with customized and newly

designed FL algorithms.

• PySyft: PySyft [83] is a framework based on PyTorch

for performing encrypted, privacy-preserving DL and

implementations of related techniques, such as Secure

Multiparty Computation (SMPC) and DP, in untrusted

environments while protecting data. Pysyft is developed

such that it retains the native Torch interface, i.e., the

ways to execute all tensor operations remain unchanged

from that of Pytorch. When a SyftTensor is created, a

LocalTensor is automatically created to also apply the

input command to the native Pytorch tensor. To simulate

FL, participants are created as Virtual Workers. Data, i.e.,

in the structure of tensors, can be split and distributed

to the Virtual Workers as a simulation of a practical

FL setting. Then, a PointerTensor is created to specify

the data owner and storage location. In addition, model

updates can be fetched from the Virtual Workers for

global aggregation.

8

• LEAF: An open source framework [84] of datasets that

can be used as benchmarks in FL, e.g., Federated Ex-

tended MNIST (FEMNIST), an MNIST [85] dataset

partitioned based on writer of each character, and Sen-

timent140 [86], a dataset partitioned based on different

users. In these datasets, the writer or user is assumed

to be a participant in FL, and their corresponding data

is taken to be the local data held in their devices. The

implementation of newly designed algorithms on these

datasets allow for reliable comparison across studies.

• FATE: Federated AI Technology Enabler (FATE) is an

open-source framework by WeBank [87] that supports

the federated and secure implementation of ML models.

E. Unique characteristics and issues of FL

FL has some unique characteristics and features [88] as

compared to other distributed ML approaches:

1) Slow and unstable communication: In the traditional

distributed training in a data center, the communication

environment can be assumed to be perfect where the

information transmission rate is very high and there is no

packet loss. However, these assumptions are not applica-

ble to the FL environment where heterogeneous devices

are involved in training. For example, the Internet upload

speed is typically much slower than download speed

[89]. Also, some participants with unstable wireless

communication channels may consequently drop out due

to disconnection from the Internet.

2) Heterogeneous devices: FL involves heterogeneous de-

vices with varying resource constraints. For example,

the devices can have different computing capabilities,

i.e., CPU states and battery level. The devices can also

have different levels of willingness to participate, i.e., FL

training is resource consuming and given the distributed

nature of training across numerous devices, there is a

possibility of free ridership.

3) Privacy and security concerns: As we have previously

discussed, data owners are increasingly privacy sensitive.

However, as will be subsequently presented in Section

V, malicious participants are able to infer sensitive

information from shared parameters, which potentially

negates privacy preservation. In addition, we have pre-

viously assumed that all participants and FL servers are

trustful. In reality, they may be malicious.

These unique characteristics of FL lead to several practical

issues in FL implementation mainly in three aspects, i.e., (i)

statistical challenges (ii) communication costs (iii) resource

allocation and (iv) privacy and security. The following sections

review related work that address each of these issues.

III. COMMUNICATION COST

In FL, a number of rounds of communications between the

participants and the FL server may be required to achieve

a target accuracy (Fig. 4). For complex DL model training

involving, e.g. CNN, each update may comprise millions of

parameters [90]. The high dimensionality of the updates can

result in the incurrence of high communication costs and

can lead to a training bottleneck. In addition, the bottleneck

can be worsened due to (i) unreliable network conditions of

participating devices [91] and (ii) the asymmetry in Inter-

net connection speeds in which upload speed is faster than

download speed, resulting in delays in model uploads by

participants [89]. As such, there is a need to improve the

communication efficiency of FL. The following approaches

to reduce communication costs are considered:

• Edge and End Computation: In the FL setup, the com-

munication cost often dominates computation cost [23].

The reason is that on-device dataset is relatively small

whereas mobile devices of participants have increasingly

fast processors. On the other hand, participants may only

be willing to participate in the model training only if they

are connected to Wi-Fi [89]. As such, more computation

can be performed on edge nodes or on end devices before

each global aggregation so as to reduce the number of

communication rounds needed for the model training.

In addition, algorithms to ensure faster convergence can

reduce number of rounds involved, at the expense of more

computation on edge servers and end devices.

• Model Compression: This is a technique commonly used

in distributed learning [92]. Model or gradient compres-

sion involves the communication of an update that is

transformed to be more compact, e.g., through sparsi-

fication, quantization or subsampling [93], rather than

the communication of full update. However, since the

compression may introduce noise, the objective is to

reduce the size of update transferred during each round

while maintaining the quality of trained models [94].

• Importance-based Updating: This strategy involves se-

lective communication such that only the important or

relevant updates [95] are transmitted in each communi-

cation round. In fact, besides saving on communication

costs, omitting some updates from participants can even

improve the global model performance.

A. Edge and End Computation

To decrease the number of communication rounds, addi-

tional computation can be performed on participating end

devices before each iteration of communication for global

aggregation (Fig. 5(a)). The authors in [23] consider two ways

to increase computation on participating devices: (i) increasing

parallelism in which more participants are selected to partic-

ipate in each round of training and (ii) increasing computa-

tion per participant whereby each participant performs more

local updates before communication for global aggregation.

A comparison is conducted for the FederatedSGD (FedSGD)

algorithm and the proposed FedAvg algorithm. For the FedSGD

algorithm, all participants are involved and only one pass

is made per training round in which the minibatch size

comprises of the entirety of the participant’s dataset. This is

similar to the full-batch training in centralized DL frameworks.

For the proposed FedAvg algorithm, the hyperparameters are

tuned such that more local computations are performed by

the participants. For example, the participant can make more

9

Fig. 4: Federated learning protocol [77].

passes over its dataset or use a smaller local minibatch size to

increase computation before each communication round. The

simulation results show that increased parallelism does not

lead to significant improvements in reducing communication

cost, once a certain threshold is reached. As such, more

emphasis is placed on increasing computation per participant

while keeping the fraction of selected participants constant.

For MNIST CNN simulations, increased computation using

the proposed FedAvg algorithm can reduce communication

rounds by more than 30 times when the dataset is IID. For

non-IID dataset, the improvement is less significant (2.8 times)

using the same hyperparameters. However, for Long Short

Term Memory (LSTM) simulations [96], improvements are

more significant even for non-IID data (95.3 times). In ad-

dition, FedAvg increases the accuracy eventually since model

averaging produces regularization effects similar to dropout

[97], which prevents overfitting.

As an extension, the authors in [98] also validate that a

similar concept as that of [23] works for vertical FL. In

vertical FL, collaborative model training is conducted across

the same set of participants with different data features. The

Federated Stochastic Block Coordinate Descent (FedBCD)

algorithm is proposed in which each participating device

performs multiple local updates first before communication

for global aggregation. In addition, convergence guarantee is

also provided with an approximate calibration of the number

of local updates per interval of communication.

Another way to decrease communication cost can also be

through modifying the training algorithm to increase conver-

gence speed, e.g., through the aforementioned LoAdaBoost

FedAvg in [76]. Similarly, the authors in [99] also propose

increased computation on each participating device by adopt-

ing a two-stream model (Fig. 5(b)) commonly used in transfer

learning and domain adaption [101]. During each training

round, the global model is received by the participant and

fixed as a reference in the training process. During training,

the participant learns not just from local data, but also from

other participants with reference to the fixed global model.

F
L
 P

a
rtic

ip
a
n

ts

Edge Aggregation

F
L
 S

e
rv

e
r

Updated

Parameters

Updated

Parameters

Aggregated

Parameters

Global Model Aggregation and Update

More passes over

dataset

Updated

Parameters

(a)

Two stream training

with global model as

reference

E
d

g
e

(b) (c)

Global

Model

Fig. 5: Approaches to increase computation at edge and end

devices include (a) Increased computation at end devices, e.g.,

more passes over dataset before communication [23], [98] (b)

Two-stream training with global model as a reference [99] and

(c) Intermediate edge server aggregation [100].

This is done through the incorporation of Maximum Mean

Discrepancy (MMD) into the loss function. MMD measures

the distance between the means of two data distributions [101],

[102]. Through minimizing MMD loss between the local and

global models, the participant can extract more generalized

features from the global model, thus accelerating the conver-

gence of training process and reducing communication rounds.

The simulation results on the CIFAR-10 and MNIST dataset

10

using DL models such as AlexNet [52] and 2-CNN respec-

tively show that the proposed two-stream FL can reach the

desirable test accuracy in 20% fewer communication rounds

even when data is non-IID. However, while convergence

speed is increased, more computation resources have to be

consumed by end devices for the aforementioned approaches.

Given the energy constraints of participating mobile devices

in particular, this necessitates resource allocation optimization

that we subsequently discuss in Section IV.

While the aforementioned studies consider increasing com-

putation on participating devices, the authors in [100] propose

an edge computing inspired paradigm in which proximate edge

servers can serve as intermediary parameter aggregators given

that the propagation latency from participant to the edge server

is smaller than that of the participant-cloud communication

(Fig. 5(c)). A hierarchical FL (HierFAVG) algorithm is pro-

posed whereby for every few local participant updates, the

edge server aggregates the collected local models. After a

predefined number of edge server aggregations, the edge server

communicates with the cloud for global model aggregation.

As such, the communication between the participants and the

cloud occurs only once after an interval of multiple local

updates. Comparatively, for the FedAvg algorithm proposed in

[23], the global aggregation occurs more frequently since no

intermediate edge server aggregation is involved. The authors

further prove the covergence of HierFAVG for both convex

and non-convex objective functions given non-IID user data.

The simulation results show that for the same number of local

updates between two global aggregations, more intermediate

edge aggregations before each global aggregation can lead to

reduced communication overhead as compared to the FedAvg

algorithm. This result holds for both IID and non-IID data,

implying that intermediate aggregation on edge servers may be

implemented on top of FedAvg so as to reduce communication

costs. However, when applied to non-IID data, the simulation

results show that HierFAVG fails to converge to the desired

accuracy level (90%) in some instances, e.g., when edge-

cloud divergence is large or when there are many edge

servers involved. As such, a further study is required to better

understand the tradeoffs between adjusting local and edge

aggregation intervals, so as to ensure that the parameters of the

HierFAVG algorithm can be optimally calibrated to suit other

settings. Nevertheless, HierFAVG is a promising approach for

the implementation of FL at mobile edge networks, since

it leverages on the proximity of intermediate edge server to

reduce communication costs, and potentially relieve the burden

on the remote cloud.

B. Model Compression

To reduce communication costs, the authors in [89] propose

structured and sketched updates to reduce the size of model

updates sent from participants to the FL server during each

communication round. Structured updates restrict participant

updates to have a pre-specified structure, i.e., low rank and

random mask. For the low rank structure, each update is

enforced to be a low rank matrix expressed as a product of

two matrices. Here, one matrix is generated randomly and

Fig. 6: The compression techniques considered are summarized
above by the diagram from authors in [94]. (i) Federated dropout
to reduce size of model (ii) Lossy compression of model (iii)
Decompression for training (iv) Compression of participant updates
(v) Decompression (vi) Global aggregation

held constant during each communication round whereas the

other is optimized. As such, only the optimized matrix needs

to be sent to the server. For the random mask structure, each

participant update is restricted to be a sparse matrix following

a pre-defined random sparsity pattern generated independently

during each round. As such, only the non-zero entries are

required to be sent to the server.

On the other hand, sketched updates refer to the approach

of encoding the update in a compressed form before com-

munication with the server, which subsequently decodes the

updates before aggregation. One example of sketched update

is the subsampling approach, in which each participant com-

municates only a random subset of the update matrix. The

server then averages the subsampled updates to derive an

unbiased estimate of the true average. Another example is

the probabilistic quantization approach [103], in which the

update matrices are vectorized and quantized for each scalar.

To reduce the error from quantization, a structured random

rotation that is the product of a Walsh-Hadamard matrix and

binary diagonal matrix [104] is applied before quantization.

The simulation results on the CIFAR-10 image classifi-

cation task show that for structured updates, the random

mask performs better than that of the low rank approach.

The random mask approach also achieves higher accuracy

than sketching approaches since the latter involves a removal

of some information obtained during training. However, the

combination of all three sketching tools, i.e., subsampling,

quantization, and rotation, can achieve higher compression

rate and faster convergence, albeit with some sacrifices in

accuracy. For example, by using 2 bits for quantization and

sketching out all but 6.25% of update data, the number of

bits needed to represent updates can be reduced by 256 times

and the accuracy level achieved is 85%. In addition, sketching

updates can achieve higher accuracy in training when there

are more participants trained per round. This suggests that

for practical implementation of FL where there are many

participants available, more participants can be selected for

training per round so that subsampling can be more aggressive

to reduce communication costs.

The authors in [94] extend the studies in [89] by proposing

lossy compression and federated dropout to reduce server-to-

participant communication costs. A summary of the proposed

techniques are adapted from the authors’ work in Fig. 6.

For participant-to-server upload of model parameters that we

11

discuss previously, the decompressions can be averaged over

many updates to receive an unbiased estimate. However, there

is no averaging for server-to-participant communications since

the same global model is sent to all participants during each

round of communication. Similar to [89], subsampling and

probabilistic quantization are considered. For the application

of structured random rotation before subsampling and quanti-

zation, Kashin’s representation [105] is applied instead of the

Hadamard transformation since the former is found to perform

better in terms of accuracy-size tradeoff.

In addition to the subsampling and quantization approaches,

the federated dropout approach is also considered in which a

fixed number of activation functions at each fully-connected

layer is removed to derive a smaller sub-model. The sub-

model is then sent to the participants for training. The updated

submodel can then be mapped back to the global model

to derive a complete DNN model with all weights updated

during subsequent aggregation. This approach reduces the

server-to-participant communication cost, and also the size

of participant-to-server updates. In addition, local computa-

tion is reduced since fewer parameters have to be updated.

The simulations are performed on MNIST, CIFAR-10, and

EMNIST [106] datasets. For the lossy compression, it is

shown that the subsampling approach taken by [89] does

not reach an acceptable level of performance. The reason is

that the update errors can be averaged out for participant-

to-server uploads but not for server-to-participant downloads.

On the other hand, quantization with Kashin’s representation

can achieve the same performance as the baseline without

compression while having communication cost reduced by

nearly 8 times when the model is quantized to 4 bits. For

federated dropout approaches, the results show that a dropout

rate of 25% of weight matrices of fully-connected layers (or

filters in the case of CNN) can achieve acceptable accuracy

in most cases while ensuring around 43% reduction in size

of models communicated. However, if dropout rates are more

aggressive, convergence of the model can be slower.

The aforementioned two studies suggest useful model com-

pression approaches in reducing communication costs for

both server-to-participant and participant-to-server communi-

cations. As one may expect, the reduction in communication

costs come with sacrifices in model accuracy. It will thus

be useful to formalize the compression-accuracy tradeoffs,

especially since this varies for different tasks, or when different

number of FL participants are involved.

C. Importance-based Updating

Based on the observation that most parameter values of a

DNN model are sparsely distributed and close to zero [107],

the authors in [95] propose the edge Stochastic Gradient

Descent (eSGD) algorithm that selects only a small fraction

of important gradients to be communicated to the FL server

for parameter update during each communication round. The

eSGD algorithm keeps track of loss values at two consecutive

training iterations. If the loss value of the current iteration is

smaller than the preceding iteration, this implies that current

training gradients and model parameters are important for

training loss minimalization and thus, their respective hidden

weights are assigned a positive value. In addition, the gradient

is also communicated to the server for parameter update. Once

this does not hold, i.e., the loss increases as compared to

the previous iteration, other parameters are selected to be

updated based on their hidden weight values. A parameter

with larger hidden weight value is more likely to be selected

since it has been labeled as important several times during

training. To account for small gradient values that can delay

convergence if they are ignored and not updated completely

[108], these gradient values are accumulated as residual values.

Since the residuals may arise from different training iterations,

each update to the residual is weighted with a discount factor

using the momentum correction technique [109]. Once the

accumulated residual gradient reaches a threshold, they are

chosen to replace the least important gradient coordinates

according to the hidden weight values. The simulation results

show that eSGD with a 50% drop ratio can achieve higher

accuracy than that of the thresholdSGD algorithm proposed in

[107], which uses a fixed threshold value to determine which

gradient coordinates to drop. eSGD can also save a large

proportion of gradient size communicated. However, eSGD

still suffers from accuracy loss as compared to standard SGD

approaches. For example, when tested on simple classification

tasks using the MNIST dataset, the model accuracy converges

to just 91.22% whereas standard SGD can achieve 99.77%

accuracy. If extended to more sophisticated tasks, the accuracy

can potentially deteriorate to a larger extent. In addition,

the accuracy and convergence speed of the eSGD approach

fluctuates arbitrarily based on hyperparameters used, e.g.,

minibatch size. As such, further studies have to be conducted

to formally balance the tradeoffs between communication costs

and training performance.

While [95] studies the selective communication of gradients,

the authors in [91] propose the Communication-Mitigated

Federated Learning (CMFL) algorithm that uploads only rel-

evant local model updates to reduce communication costs

while guaranteeing global convergence. In each iteration, a

participant’s local update is first compared with the global

update to identify if the update is relevant. A relevance score

is computed where the score equates to percentage of same-

sign parameters in the local and global update. In fact, the

global update is not known in advance before aggregation.

As such, the global update made in the previous iteration

is used as an estimate for comparison since it was found

empirically that more than 99% of the normalized difference

of two sequential global updates are smaller than 0.05 in both

MNIST CNN and Next-Word-Prediction LSTM. An update

is considered to be irrelevant if its relevance score is smaller

than a predefined threshold. The simulation results show that

CMFL requires 3.47 times and 13.97 times fewer commu-

nication rounds to reach 80% accuracy for MNIST CNN and

Next-Word-Prediction LSTM, respectively, as compared to the

benchmark FedAvg algorithm. In addition, CMFL can save sig-

nificantly more communication rounds as compared to Gaia.

Note that Gaia is a geo-distributed ML approach suggested

in [110] which measures relevance based on magnitude of

updates rather than sign of parameters. When applied with the

12

aforementioned MOCHA algorithm II-C, CMFL can reduce

communication rounds by 5.7 times for the Human Activity

Recognition dataset [111] and 3.3 times for the Semeion

Handwritten Digit dataset [112]. In addition, CMFL achieves

slightly higher accuracy since it involves the elimination of

irrelevant updates that are outliers which harm training.

D. Summary and Lessons Learned

In this section, we have reviewed three main approaches

for communication cost reduction in FL. We summarize the

approaches along with references in Table IV. From this

review, we gather the following lessons learned:

• Communication cost is a key issue to be resolved before

we can implement FL at scale. In particular, the state-of-

the-art DL models have high inference accuracy but are

increasingly complex with millions of parameters. The

slow upload speed of mobile devices can thus impede

the implementation of efficient FL.

• This section explores several key approaches to com-

munication cost reduction. However, many of the ap-

proaches, e.g., model compression, result in a deteri-

oration in model accuracy or incur high computation

cost. For example, when too many local updates are

implemented between communication rounds, the com-

munication cost is indeed reduced but the convergence

can be significantly delayed [98]. The tradeoff between

these sacrifices and communication cost reduction thus

has to be well-managed.

• The current studies of this tradeoff are often mainly

empirical in nature, e.g., several experiments have to

be done to find the optimal number of local training

iterations before communication. With more effective op-

timization approaches formalized theoretically and tested

empirically, FL can eventually become more scalable

in nature. For example, the authors in [113] study the

tradeoffs between the completion time of FL training

and energy cost expended. Then, a weighted sum of

completion time and energy consumption is minimized

using an iterative algorithm. For delay-sensitive scenarios,

the weights can be adjusted such that the FL participants

consume more energy for completion time minimization.

• Apart from working to directly reduce the size of model

communicated, studies on FL can draw inspiration from

applications and approaches in the MEC paradigm. For

example, a simple case study introduced in [95] consid-

ers the base station as an intermediate model aggrega-

tor to reduce instances of device-cloud communication.

Unfortunately, there are convergence issues when more

edge servers or mobile devices are considered. This is

exacerbated by the non-IID distribution of data across

different edge nodes. For future works, this statistical

challenge can be met, e.g., through inspirations from

multi-task learning as we have discussed in Section II-C.

In addition, more effective and innovative system models

can be explored such that FL networks can utilize the

wealth of computing and storage resources that are closer

to the data sources to facilitate efficient FL.

• For the studies that we have discussed in this section, the

heterogeneity among mobile devices, e.g., in computing

capabilities, is often not considered. For example, one

of the ways to reduce communication cost is to increase

computation on edge devices, e.g., by performing more

local updates [23] before each communication round. In

fact, this does not merely lead to the expenditure of

greater computation cost. The approach may also not be

feasible for devices with weak processing power, and can

lead to the straggler effect. As such, we further explore

issues on resource allocation in the next section.

IV. RESOURCE ALLOCATION

FL involves the participation of heterogeneous devices that

have different dataset qualities, computation capabilities, en-

ergy states, and willingness to participate. Given the device

heterogeneity and resource constraints, i.e., in device energy

states and communication bandwidth, resource allocation has

to be optimized to maximize the efficiency of the training

process. In particular, the following resource allocation issues

need to be considered:

• Participant Selection: Participant selection refers to the

selection of devices to participate in each training round.

Typically, a set of participants is randomly selected by the

server to participate. Then, the server has to aggregate

parameter updates from all participants in the round

before taking a weighted average of the models [23].

As such, the training progress of FL is limited by the

training time of the slowest participating devices, i.e.,

stragglers [114]. New participant selection protocols are

thus investigated to address the training bottleneck in FL.

• Joint Radio and Computation Resource Management:

Even though computation capabilities of mobile devices

have grown rapidly, many devices still face a scarcity of

radio resources [115]. Given that local model transmis-

sion is an integral part of FL, there has been a growing

number of studies that focus on developing novel wireless

communication techniques for efficient FL.

• Adaptive Aggregation: FL involves global aggregation

in which model parameters are communicated to the

FL server for aggregation. The conventional approach

to global aggregation is a synchronous one, i.e., global

aggregations occur in fixed intervals after all partici-

pants complete a certain number of rounds of local

computation. However, adaptive calibrations of global

aggregation frequency can be investigated to increase

training efficiency subject to resource constraints [114].

• Incentive Mechanism: In the practical implementation

of FL, participants may be reluctant to participate in a

federation without receiving compensation since training

models is resource-consuming. In addition, there exists

information asymmetry between the FL server and par-

ticipants since participants have greater knowledge of

their available computation resources and data quality.

Therefore, incentive mechanisms have to be carefully

designed to both incentivize participation and reduce the

potential adverse impacts of information asymmetry.

13

TABLE IV: Approaches to communication cost reduction in FL.

Approaches Ref. Key Ideas Tradeoffs and Shortcomings

[23]
More local updates in between communication for global
aggregation, to reduce instances of communication

Increased computation cost and poor
performance in non-IID setting

[98] Similar to the ideas of [23], but with convergence guarantees for vertical FL
Increased computation cost and
delayed convergence

[99]
Transfer learning-inspired two-stream model for FL participants to
learn from the fixed global model to accelerate training convergence

Increased computation cost and delayed
convergence

Edge and End
Computation

[100]
MEC-inspired edge server assisted FL that aids in
intermediate parameter aggregation to reduce instances of communication

System model is not scalable when
there are more edge servers

[89]
Structured and sketched updates to compress local models
communicated from participant to FL server

Model accuracy and convergence issues
Model
Compression [94] Similar [89], but for communication from FL server to participants Model accuracy and convergence issues

[95]
Selective communication of gradients that are assigned importance scores,
i.e., to reduce training loss

Only empirically tested on simple datasets
and tasks, with fluctuating results

Importance-
based Updating [91]

Selective communication of local model updates that have
higher relevance scores when compared to previous global model

Difficult to implement when global
aggregations are less frequent

A. Participant Selection

To mitigate the training bottleneck, the authors in [78]

propose a new FL protocol called FedCS. This protocol is

illustrated in Fig. 7. The system model is a MEC framework

in which the operator of the MEC is the FL server that

coordinates training in a cellular network that comprises par-

ticipating mobile devices that have heterogeneous resources.

Accordingly, the FL server first conducts a Resource Request

step to gather information such as wireless channel states and

computing capabilities from a subset of randomly selected

participants. Based on this information, the MEC operator

selects the maximum possible number of participants that

can complete the training within a prespecified deadline for

the subsequent global aggregation phase. By selecting the

maximum possible number of participants in each round,

accuracy and efficiency of training are preserved. To solve the

maximization problem, a greedy algorithm [116] is proposed,

i.e., participants that take the least time for model upload

and update are iteratively selected for training. The simulation

results show that compared with the FL protocol which only

accounts for training deadline without performing participant

selection, FedCS can achieve higher accuracy since FedCS is

able to involve more participants in each training round [23].

However, FedCS has been tested only on simple DNN models.

For more complex models, it may be difficult to estimate

how many participants should be selected. For example, more

training rounds may be needed for the training of complex

models, and the selection of too few participants may lead

to poor performance considering that some participants may

drop out during training. In addition, there is bias towards

selecting participants with devices that have better computing

capabilities. These participants may not hold data that is

representative of the population distribution. In particular, we

revisit the fairness issue [117] subsequently in this section.

While FedCS addresses heterogeneity of resources among

participants in FL, the authors in [118] extend their work

on the FedCS protocol with the Hybrid-FL protocol that

deals with differences in data distributions among participants.

The dataset of participants participating in FL may be non-

IID since it is reflective of each individual user’s specific

characteristics. As we have discussed in Section II-C, the

non-IID dataset may significantly degrade the performance of

F
L
 P

a
rtic

ip
a
n

ts
F
L
 S

e
rv

e
r

Step 2: Willing devices report amount of data for each class

and channel/computation conditions

S
te

p
 1

: R
e

so
u

rce
 R

e
q

u
e

st

S
te

p
 3

: S
e

rv
e

r c
h

o
o

se
s clie

n
ts fo

r tra
in

in
g

a
n

d
 d

a
ta

 u
p

lo
a

d

Step 4: Server updates global model with local trained model

and collected data

Approx. IID

data

Devices with non-IID data

distribution

Devices unwilling to share the

data

Send data

and model

parameters

Fig. 7: Participant selection under FedCS and Hybrid-FL protocols.

the FedAvg algorithm [65]. One proposed measure to address

the non-IID nature of the dataset is to distribute publicly

available data to participants, such that the EMD between

their on-device dataset and the population distance is reduced.

However, such a dataset may not always exist, and participants

may not download them for security reasons. Thus, an alter-

native solution is to construct an approximately IID dataset

using inputs from a limited number of privacy insensitive

participants [118]. In the Hybrid-FL protocol, during the

Resource Request step (Fig. 7), the MEC operator asks random

participants if they permit their data to be uploaded. During the

participant selection phase, apart from selecting participants

based on computing capabilities, participants are selected such

that their uploaded data can form an approximately IID dataset

in the server, i.e., the amount of collected data in each class has

14

close values (Fig. 7). Thereafter, the server trains a model on

the collected IID dataset and merge this model with the global

model trained by participants. The simulation results show that

even with just 1% of participants sharing their data, classifica-

tion accuracy for non-IID data can be significantly improved as

compared to the aforementioned FedCS benchmark where data

is not uploaded at all. However, the recommended protocol

can violate the privacy and security of users, especially if

the FL server is malicious. In the case when participants are

malicious, data can be falsified before uploading. In addition,

the proposed measure can be costly especially in the case of

videos and images. As such, it is unlikely that participants

will volunteer for data uploading when they can free ride on

the efforts of other volunteers. For feasibility, a well-designed

incentive and reputation mechanism is needed to ensure that

only trustworthy participants are allowed to upload their data.

In general, the mobile edge network environment in which

FL is implemented on is dynamic and uncertain with variable

constraints, e.g., wireless network and energy conditions. To

this end, Deep Q-Learning (DQL) can be used to optimize

resource allocation for model training as proposed in [119].

The system model includes participants, i.e., mobile devices,

that collaboratively train DNN models required by a FL server.

The mobile devices are constrained by energy, CPU, and

wireless bandwidth. Thus, the server needs to determine proper

amounts of data, energy, and CPU resources that the mobile

devices use for training to minimize energy consumption and

training time. A stochastic optimization problem is formulated

in which the server is the agent, the state space includes

the CPU and energy states of the mobile devices, and the

action space includes the number of data units and energy

units taken from the mobile devices. The reward is defined

as a function of the accumulated data, energy consumption,

and training latency. The Double Deep Q-Network (DDQN)

[120] is then adopted to solve the server’s problem. The

simulation results show that the proposed scheme can reduce

energy consumption by around 31% compared with the greedy

algorithm, and training latency is reduced up to 55% compared

with the random scheme.

As an extension to [119], the authors in [121] propose

a resource allocation approach using DRL, with the added

uncertainty that FL participants are mobile and so they may

venture out of the network coverage range. Without prior

knowledge of the mobile network, the FL server is able to

optimize resource allocation across participants, e.g., channel

selection and device energy consumption.

The aforementioned resource allocation approaches focus

on improving the training efficiency of FL. However, this may

cause some FL participants to be left out of the aggregation

phase because they are stragglers with limited resources.

One consequence of this unfair resource allocation, a topic

that is commonly explored in resource allocation for wireless

networks [122] and ML [123]. For example, if the participant

selection protocol selects mobile devices with higher comput-

ing capabilities to participate in each training round [78], the

FL model will be overrepresented by the distribution of data

owned by participants with devices that have higher computing

capabilities. Therefore, the authors in [117] and [124] consider

fairness as an additional objective in FL. Fairness is defined

in [124] to be the variance of performance of an FL model

across participants. If the variance of the testing accuracy is

large, this implies the presence of more bias or less fairness,

since the learned model may be highly accurate for certain

participants and less so for other underrepresented participants.

The authors in [124] propose the q-Fair FL (q-FFL) algorithm

that reweighs the objective function in FedAvg to assign higher

weights in the loss function to devices with higher loss. The

modified objective function is as follows:

min
w

Fq(w) =

m∑

k=1

pk

q + 1
F

q+1
k (w) (6)

where Fk refers to the standard loss functions presented in

Table III, q refers to the calibration of fairness in the system

model, i.e., setting q = 0 returns the formulation to the typical

FL objective, and pk refers to ratio of local samples to the total

number of training samples. In fact, this is a generalization

of the Agnostic FL (AFL) algorithm proposed in [117], in

which the device with the highest loss dominates the entire loss

function. The simulation results show that the proposed q-FFL

can achieve lower variance of testing accuracy and converges

more quickly than the AFL algorithm. However, as expected,

for some calibrations of the q-FFL algorithm, there can be

convergence slowdown since stragglers can delay the training

process. As such, an asynchronous aggregation approach can

be considered for use with the q-FFL algorithm.

In contrast, the authors in [125] propose a neural network

based approach to estimate the local models of FL partici-

pants that are left out during training. In the system model,

resource blocks are first allocated by the base station to users

whose models have larger effects on the global FL model.

In particular, one user is selected to always be connected to

the base station. This user’s model parameters are then used

as input to the feedforward neural network to estimate the

model parameters of users who are left out during the training

iteration. This allows the base stations to be able to integrate

more locally trained FL model parameters to each iteration of

global aggregation, thus improving the FL convergence speed.

B. Joint Radio and Computation Resource Management

While most FL studies have previously assumed orthogonal-

access schemes such as Orthogonal Frequency-division Mul-

tiple Access (OFDMA) [126], the authors in [127] pro-

pose a multi-access Broadband Analog Aggregation (BAA)

design for communication-latency reduction in FL. Instead

of performing communication and computation separately

during global aggregation at the server, the BAA scheme

builds on the concept of over-the-air computation [128] to

integrate computation and communication through exploit-

ing the signal superposition property of a multiple-access

channel. The proposed BAA scheme allows the reuse of the

whole bandwidth (Fig. 8(a)) whereas OFDMA orthogonalizes

bandwidth allocation (Fig. 8(b)). As such, for orthogonal-

access schemes, communication latency increases in direct

proportion with the number of participants whereas for multi-

access schemes, latency is independent of the number of

15

participants. The bottleneck of signal-to-noise ratio (SNR)

during BAA transmission is the participating device with

the longest propagation distance given that devices that are

nearer have to lower their transmission power for amplitude

alignment with devices located further. To increase SNR, par-

ticipants with longer propagation distance have to be dropped.

However, this leads to the truncation of model parameters. As

such, to manage the SNR-truncation tradeoff, three scheduling

schemes are considered namely i) Cell-interior scheduling:

participants beyond a distance threshold are not scheduled, ii)

All-inclusive scheduling: all participants are considered, and

iii) Alternating scheduling: edge server alternates between the

two aforementioned schemes. The simulation results show that

the proposed BAA scheme can achieve similar test accuracy as

the OFDMA scheme while achieving latency reduction from

10 times to 1000 times. As a comparison between the three

scheduling schemes, the cell-interior scheme outperforms the

all-inclusive scheme in terms of test accuracy for high mobility

networks where participants have rapidly changing locations.

For low mobility networks, the alternating scheduling scheme

outperforms cell-interior scheduling.

As an extension, the authors in [129] introduce error accu-

mulation and gradient sparsification in addition to over-the-air

computation. In [127], gradient vectors that are not transmitted

as a result of power constraints are completely dropped. To im-

prove the model accuracy, the untransmitted gradient vectors

are first stored in an error accumulation vector. In the next

round, local gradient estimates are then corrected using the

error vector. In addition, when there are bandwidth limitations,

the participating device can apply gradient sparsification to

keep only elements with the highest magnitudes for transmis-

sion. The elements that are not transmitted are subsequently

added on to the error accumulation vector for gradient estimate

correction in the next round. The simulation results show

that the proposed scheme can achieve higher test accuracy

than over-the-air computation without error accumulation or

gradient sparsification since it corrects gradient estimates with

the error accumulation vector and allows for a more efficient

utilization of the bandwidth.

Similar to [129], the authors in [130] propose an inte-

gration of computation and communication via over-the-air

computation. However, it is observed that aggregation error

incurred during over-the-air computation can lead to a drop

in model accuracy [131] as a result of signal distortion. As

such, a participant selection algorithm is proposed in which

the number of devices selected for training is maximized to im-

prove statistical learning performance [23] while keeping the

signal distortion below a threshold. Due to the nonconvexity

of the mean-square-error constraint and intractability of the

optimization problem, a difference-of-convex functions (DC)

algorithm [132] is proposed to solve the maximization prob-

lem. The simulation results show that the proposed algorithm

is scalable and can also achieve near-optimal performance

that is comparable to global optimization, which is non-

scalable due to its exponential time complexity. In comparison

with other state-of-the-art approaches such as the semidefinite

relaxation technique [133], the proposed algorithm can select

more participants, thus achieving higher accuracy.

FL

Server

FL

Server

(a
) A

irC
o

m
p

(b
) O

F
D

M
A

Fig. 8: A comparison [127] between (a) BAA by over-the-air com-
putation which reuses bandwidth (above) and (b) OFDMA (below)
which uses only the allocated bandwidth.

C. Adaptive Aggregation

The proposed FedAvg algorithm synchronously aggregates

parameters as shown in Fig. 9(a) and is thus susceptible to the

straggler effect, i.e., each training round only progresses as fast

as the slowest device since the FL server waits for all devices

to complete local training before global aggregation can take

place [114]. In addition, the model does not account for partic-

ipants that can join halfway when the training round is already

in progress. As such, the asynchronous model is proposed to

improve the scalability and efficiency of FL. For asynchronous

FL, the server updates the global model whenever it receives

a local update (Fig. 9(b)). The authors in [114] find empiri-

cally that an asynchronous approach is robust to participants

joining halfway during a training round, as well as when the

federation involves participating devices with heterogeneous

processing capabilities. However, the model convergence is

found to be significantly delayed when data is non-IID and

unbalanced. As an improvement, [134] propose the FedAsync

algorithm in which each newly received local updates are

adaptively weighted according to staleness, that is defined

as the difference between the current epoch and iteration in

which the received update belongs to. For example, a stale

update from a straggler is outdated since it should have been

received in previous training rounds. As such, it is weighted

less. In addition, the authors prove the convergence guarantee

for a restricted family of non-convex problems. However, the

current hyperparameters of the FedAsync algorithm still have

to be tuned to ensure convergence in different settings. As

such, the algorithm is still unable to generalize to suit the

dynamic computation constraints of heterogeneous devices.

In fact, given the uncertainty surrounding the reliability of

asynchronous FL, synchronous FL remains to be the approach

most commonly used today [77].

16

Fig. 9: A comparison between (a) synchronous and (b) asynchronous
FL.

For most existing implementations of the FedAvg algorithm,

the global aggregation phase occurs after a fixed number of

training rounds. To better manage the dynamic resource con-

straints, the authors in [63] propose an adaptive global aggre-

gation scheme which varies the global aggregation frequency

so as to ensure desirable model performance while ensuring an

efficient use of available resources, e.g., energy, during the FL

training process. In [63], the MEC system model used consists

of (i) the local update phase where the model is trained using

local data, (ii) edge aggregation phase where the intermediate

aggregation occurs and (iii) global aggregation phase where

updated model parameters are received and aggregated by the

FL server. In particular, the authors study how the training loss

is affected when the total number of edge server aggregation

and local updates between global aggregation intervals vary.

For this, a convergence bound of gradient descent with non-

IID data is first derived. Then, a control algorithm is sub-

sequently proposed to adaptively choose the optimal global

aggregation frequency based on the most recent system state.

For example, if global aggregation is too time consuming,

more edge aggregations will take place before communication

with the FL server is initiated. The simulation results show

that the adaptive aggregation scheme outperforms the fixed

aggregation scheme in terms of loss function minimization

and accuracy within the same time budget. However, the

convergence guarantee of the adaptive aggregation scheme is

only considered for convex loss functions currently.

D. Incentive Mechanism

The authors in [135] propose a service pricing scheme in

which participants serve as training service providers for a

model owner. In addition, to overcome energy inefficiency in

the transfer of model updates, a cooperative relay network is

proposed to support model update transfer and trading. The

Fig. 10: Participants with resource constraints maximize their utility
only if they choose the bundle that best reflects their constraints.

interaction between participants and model owner is modelled

as a Stackelberg game [136] in which the model owner is

the buyer and participants are the sellers. The Stackelberg

game is proposed in which each rational participant can non-

cooperatively decide on its own profit maximization price. In

the lower-level subgame, the model owner determines size of

training data to maximize profits with consideration of the in-

creasing concave relationship between learning accuracy of the

model and size of training data. In the upper-level subgame,

the participants decide the price per unit of data to maximize

their individual profits. The simulation results show that the

proposed mechanism can ensure uniqueness of the Stackelberg

equilibrium. For example, model updates that contain valuable

information are priced higher at the Stackelberg equilibrium.

In addition, model updates can be transferred cooperatively,

thus reducing congestion in communication and improving

energy efficiency. However, the simulation environment only

involves relatively few mobile devices.

Similar to [135], the authors in [137] model the interaction

between participants and model owner as a Stackelberg game,

which is well-suited to represent the FL server-participant

interaction involved in FL.

Unlike the aforementioned approaches to solving Stackel-

berg formulations, a DRL-based approach is adopted together

with the Stackelberg game as proposed in [138]. In the DRL

formulation, the FL server acts as an agent that decides a

payment in response to the participation level and payment

history of edge nodes, with the objective of minimizing

incentive expenses. Then, the edge nodes determine an optimal

participation level in response to the payment policy. This

learning based incentive mechanism enables the FL server

to derive an optimal policy in response to its observed state,

without requiring any prior information.

In contrast to [135], [137]–[139], the authors in [140]

propose an incentive design using a contract theoretic [141]

17

approach to attract participants with high-quality data for FL.

In particular, well-designed contracts can reduce information

asymmetry through self-revealing mechanisms in which partic-

ipants select only the contracts specifically designed for their

types. For feasibility, each contract must satisfy the Individual

Rationality (IR) and Incentive Compatibility (IC) constraints.

For IR, each participant is assured of a positive utility when the

participant participates in the federation. For IC, every utility

maximizing participant only chooses the contract designed

for its type. The model owner aims to maximize its own

profits subject to IR and IC constraints. As illustrated in

Fig. 10, the optimal contracts derived are self-revealing such

that each high-type participant with higher data quality only

chooses contracts designed for its type, whereas each low-type

participant with lower data quality does not have the incentive

to imitate high-type participants. The simulation results show

that all types of participants only achieve maximum utility

when they choose the contract that matches their types. In

addition, the contract approach has better performance in terms

of profit for the model owner compared with the Stackelberg

game approach. This is because under the contract theoretic

approach, the model owner can extract more profits from the

participants whereas under the Stackelberg game approach,

the participants can optimize their individual utilities. In fact,

the information asymmetry between FL servers and partici-

pants make contract theory a powerful and efficient tool for

mechanism design in FL. As an extension, the authors in

[142] introduced a multi-dimensional contract in which each

FL participant determines the optimal computation power and

image quality it is willing to contribute for model training, in

exchange for contract rewards in each iteration.

The authors in [140] further introduce reputation as a

metric to measure the reliability of FL participants and design

a reputation-based participant selection scheme for reliable

FL [60]. In this setting, each participant has a reputation

value derived from two sources, (i) direct reputation opinions

from past interactions with the FL server and (ii) indirect

reputation opinions from other task publishers, i.e., other FL

servers. The indirect reputation opinions are stored in an open-

access reputation blockchain [143] to ensure secure reputation

management in a decentralized manner. Before model training,

the participants choose a contract that best fits its dataset

accuracy and resource conditions. Then, the FL server chooses

the participants that have reputation scores larger than a

prespecified threshold. After the FL task is completed, i.e.,

a desirable accuracy is achieved, the FL server updates the

reputation opinions, which are subsequently stored in the

reputation blockchain. The simulation results show that the

proposed scheme can significantly improve the accuracy of

the FL model since unreliable workers are detected and not

selected for FL training.

E. Summary and Lessons Learned

In this section, we have discussed four main issues in

resource allocation. The approaches are summarized in Table

V, and the lessons learned are as follows:

• In heterogeneous mobile networks, the consideration of

resource allocation is important to ensure efficient FL.

For example, each training iteration is only conducted as

quickly as the slowest FL participant, i.e., the straggler ef-

fect. In addition, the model accuracy is highly dependent

on the quality of data used for training by FL participants.

In this section, we have explored different dimensions

of resource heterogeneity for consideration, e.g., varying

computation and communication capabilities, willingness

to participate, and quality of data for local model training.

In addition, we have explored various tools that can be

considered for resource allocation. For example, DRL is

useful given the dynamic and uncertain wireless network

conditions experienced by FL participants, whereas con-

tract theory can serve as a powerful tool in mechanism

design under the context of information asymmetry. Nat-

urally, traditional optimization approaches have also been

well explored in radio resource management for FL, given

the high dependency on communications efficiency in FL.

• In Section III, communication cost reduction comes with

a sacrifice in terms of either higher computation costs

or lower inference accuracy. Similarly, there exist dif-

ferent tradeoffs to be considered in resource allocation.

A scalable model is thus one that enables customization

to suit varying needs. For example, the study of [124]

allows the FL server to calibrate levels of fairness when

allocating training importance, whereas the study in [113]

enables the tradeoffs between training completion time

and energy expense to be calibrated by the FL system.

• In synchronous FL, the FL system is susceptible to the

straggler effect. As such, asynchronous FL has been

proposed as a solution in [114] and [134]. In addition,

asynchronous FL allows participants to join the FL train-

ing halfway even while a training round is in progress.

This is more reflective of practical FL settings and can

be an important contributing factor towards ensuring the

scalability of FL. However, synchronous FL remains to

be the most common approach used due to convergence

guarantees [77]. Given the advantages of asynchronous

FL, new asynchronous algorithms should be investigated.

In particular, for future proposed algorithms, the conver-

gence guarantee in a non-IID setting for non-convex loss

functions needs to be considered.

• The study of incentive mechanism design is a particularly

important aspect of FL. In particular, due to data privacy

concerns, the FL servers are unable to check for training

data quality. With the use of self-revealing mechanisms

in contract theory, or through modeling the interactions

between FL server and participants with game theo-

retic concepts, high quality data can be motivated as

contributions from FL participants. However, existing

studies in [60], [135], and [140] generally assume that a

federation enjoys a monopoly. In particular, each system

model is assumed to only consist of multiple individual

participants collaborating with a sole FL server. There can

be exceptions to this setting as follows: (i) the participants

may be competing data owners who are reluctant to share

their model parameters since the competitors also benefit

from a trained global model and (ii) the FL servers may

compete with other FL servers, i.e., model owners. In this

18

TABLE V: Approaches to resource allocation in FL.

Approaches Ref. Key Ideas Tradeoffs and Shortcomings

[78]
FedCS selects participants based on computation
capabilities to complete FL training before deadline

Difficult to estimate training duration
accurately for complex models

[118]
Following [78], Hybrid-FL selects participants to
accumulate IID, distributable data for FL model training

Request of data sharing may
defeat the original intent of FL

[119] DRL to determine resource consumption by FL participants

[121]
Following [119], DRL for resource allocation with
mobility-aware FL participants

DRL models are difficult to train
with the large number of participants

Participant
Selection

[124] Fair resource allocation to reduce variance of model performance Convergence delays with more fairness

[127]
Integrate computation and communication through exploiting
the signal superposition property of multiple-access channel

[129]
Improves on [127] by accounting for gradient vectors
that are not transmitted due to power constraints

Joint Radio and
Computation Resource
Management [130]

Improves on [127] using the DC algorithm to
minimize aggregation error

Signal distortion can lead to drop
in accuracy, the scalability is also an
issue when large heterogeneous
networks are involved

[114]
Asynchronous FL where model aggregation occurs
whenever local updates are received by FL server

Significant delay in convergence in
non-IID and unbalanced dataset

Adaptive
Aggregation [63] Adaptive global aggregation based on resource constraints

Convergence guarantees are limited
to restrictive assumptions

[135],
[137]–[139]

Stackelberg game for incentivizing higher quantities
of training data or compute resource contributed

FL server derives lower profits.
Only one FL server is considered

[140], [142] Contract theoretic approach to incentivize FL participants
Incentive
Mechanism

[60] Reputation mechanism to select effective workers
Only one FL server is considered

case, the formulation of the incentive mechanism design

will be vastly different from that proposed. A relatively

novel approach has been to model the regret [144] of

each FL participants in joining the various competing

federations for model training. For future works, a sys-

tem model with multiple competing federations can be

considered together with Stackelberg games and contract

theoretic approaches.

• In this section, we have assumed that FL assures the pri-

vacy and security of participants. However, as discussed

in the following section, this assumption may not hold in

the presence of malicious participants or FL server.

V. PRIVACY AND SECURITY ISSUES

One of the main objectives of FL is to protect the privacy of

participants, i.e., the participants only need to share parameters

of the trained model instead of sharing their actual data.

However, some recent research works have shown that privacy

and security concerns may arise when the FL participants or

FL servers are malicious in nature. In particular, this defeats

the purpose of FL since the resulting global model can be

corrupted, or the participants may even have their privacy

compromised during model training. In this section, we discuss

the following issues:

• Privacy: Even though FL does not require the exchange

of data for collaborative model training, a malicious par-

ticipant can still infer sensitive information, e.g., gender,

occupation, and location, from other participants based

on their shared models. For example, in [145], when

training a binary gender classifier on the FaceScrub [146]

dataset, the authors show that they can infer if a certain

participant’s inputs are included in the dataset just from

inspecting the shared model, with a very high accuracy of

up to 90%. Thus, in this section, we discuss privacy issues

related to the shared models in FL and review solutions

proposed to preserve the privacy of participants.

• Security: In FL, the participants locally train the model

and share trained parameters with other participants in

order to improve the accuracy of prediction. However, this

process is susceptible to a variety of attacks, e.g., data and

model poisoning, in which a malicious participant can

send incorrect parameters or corrupted models to falsify

the learning process during global aggregation. Conse-

quently, the global model will be updated incorrectly,

and the whole learning system becomes corrupted. This

section discusses more details on emerging attacks in FL

as well as some recent countermeasures to deal with such

attacks.

A. Privacy Issues

1) Information exploiting attacks in machine learning - A

brief overview: One of the first research works that shows

the possibility of extracting information from a trained model

is [147]. In this paper, the authors show that during the training

phase, the correlations implied in the training samples are

gathered inside the trained model. Thus, if the trained model is

released, it can lead to an unexpected information leakage to

attackers. For example, an adversary can infer the ethnicity or

gender of a user from its trained voice recognition system.

In [148], the authors develop a model-inversion algorithm

which is very effective in exploiting information from decision

tree-based or face recognition trained models. The idea of this

approach is to compare the target feature vector with each

of the possible value and then derive a weighted probability

estimation which is the correct value. The experiment results

reveal that by using this technique, the adversary can recon-

struct an image of the victim’s face from its label with a very

high accuracy.

Recently, the authors in [149] show that it is even possible

for an adversary to infer information of a victim through

queries to the prediction model. In particular, this occurs when

a malicious participant has the access to make prediction

queries on a trained model. Then, the malicious participant

19

can use the prediction queries to extract the trained model

from the data owner. More importantly, the authors point

out that this kind of attack can successfully extract model

information from a wide range of training models such as

decision trees, logistic regressions, SVMs, and even complex

training models including DNNs. Some recent research works

have also demonstrated the vulnerabilities of DNN-based

training models against model extraction attacks [150]–[152].

Therefore, this raises a serious privacy concern for participants

in sharing training models in FL.

2) Differential privacy-based protection solutions for FL

participants: In order to protect the privacy of parameters

trained by DNNs, the authors in [20] introduce a technique,

called differentially private stochastic gradient descent, which

can be effectively implemented on DL algorithms. The key

idea of this technique is to add some “noise” to the trained

parameters by using a differential privacy-preserving random-

ized mechanism [153], e.g., a Gaussian mechanism, before

sending such parameters to the server. In particular, at the

gradient averaging step of a normal FL participant, a Gaussian

distribution is used to approximate the differentially private

stochastic gradient descent. Then, during the training phase,

the participant keeps calculating the probability that malicious

participants can exploit information from its shared parame-

ters. Once a predefined threshold is reached, the participant

will stop its training process. In this way, the participant can

mitigate the risk of revealing private information from its

shared parameters.

Inspired by this idea, the authors in [154] develop an ap-

proach which can achieve a better privacy-protection solution

for participants. In this approach, the authors propose two main

steps to process data before sending trained parameters to the

server. In particular, for each learning round, the aggregate

server first selects a random number of participants to train

the global model. Then, if a participant is selected to train the

global model in a learning round, the participant will adopt the

method proposed in [20], i.e., using a Gaussian distribution

to add noise to the trained model before sending the trained

parameters to the server. In this way, a malicious participant

cannot infer information of other participants by using the

parameters of shared global model as it has no information

regarding who has participated in each training round.

3) Collaborative training solutions: While DP solutions

can protect private information of a honest participant from

other malicious participants in FL, they only work well if

the server is trustful. If the server is malicious, it can result

in a more serious privacy threat to all participants in the

network. Thus, the authors in [155] introduce a collaborative

DL framework to render multiple participants to learn the

global model without uploading their explicit training models

to the server. The key idea of this technique is that instead

of uploading the whole set of trained parameters to the server

and updating the whole global parameters to its local model,

each participant wisely selects the number of gradients to

upload and the number of parameters from the global model

to update as illustrated in Fig. 11. In this way, malicious

participants cannot infer explicit information from the shared

model. One interesting result of this paper is that even when

Global parameters

Local training dataset

Aggregator

SGD

Select parameters
to update

Select parameters
to upload

Server

Participant

Local parameters

Fig. 11: Selective parameters sharing model.

the participants do not share all trained parameters and do not

update all parameters from the shared model, the accuracy of

proposed solution is still close to that of the case when the

server has all dataset to train the global model. For example,

for the MNIST dataset [156], the accuracy of prediction model

when the participants agree to share 10% and 1% of their

parameters are respectively 99.14% and 98.71%, compared

with 99.17% for the centralized solution when the server has

full data to train. However, the approach is yet to be tested on

more complex classification tasks.

Although selective parameter sharing and DP solutions can

make information exploiting attacks more challenging, the

authors in [157] show that these solutions are susceptible to

a new type of attack, called powerful attack, developed based

on Generative Adversarial Networks (GANs) [158]. GANs is

a class of ML technique which uses two neural networks,

namely generator network and discriminator network, that

compete with each other to train data. The generator network

tries to generate the fake data by adding some “noise” to

the real data. Then, the generated fake data is passed to

the discriminator network for classification. After the training

process, the GANs can generate new data with the same

statistics as the training dataset. Inspired by this idea, the

authors in [157] develop a powerful attack which allows a

malicious participant to infer sensitive information from a

victim participant even with just a part of shared parameters

from the victim as illustrated in Fig. 12. To deal with the

GAN attack, the authors in [159] introduce a solution using

secret sharing scheme with extreme boosting algorithm. This

approach executes a lightweight secret sharing protocol before

transmitting the newly trained model in plaintext to the server

at each round. Thereby, other participants in the network

20

cannot infer information from the shared model. However, the

limitation of this approach is the reliance on a trusted third

party to generate signature key pairs.

Different from all aforementioned works, the authors

in [160] introduce a collaborative training model in which all

participants cooperate to train a federated GANs model. The

key idea of this method is that the federated GANs model

can generate artificial data that can replace participants’ real

data, and thus protecting the privacy of real data for the

honest participants. In particular, to guarantee participants’

data privacy while still maintaining flexibility in training

tasks, this approach produces a federated generative model.

This model can output artificial data that does not belong

to any real user in particular, but comes from the common

cross-user data distribution. As a result, this approach can

significantly reduce the possibility of malicious exploitation

of information from real data. However, this approach inherits

existing limitations of GANs, e.g., training instability due to

the generated fake data, which can dramatically reduce the

performance of collaborative learning models.

4) Encryption-based Solutions: Encryption is an effective

way to protect data privacy of the participants when they want

to share the trained parameters in FL. In [161], the homo-

morphic encryption technique is introduced to protect privacy

of participants’ shared parameters from a honest-but-curious

server. A honest-but-curious server is defined to be a user

who wants to extract information from the participants’ shared

parameters, but keeps all operations in FL in proper working

condition. The idea of this solution is that the participants’

trained parameters will be encrypted using the homomorphic

encryption technique before they are sent to the server. This

approach is effective in protecting sensitive information from

the curious server, and also achieves the same accuracy as

that of the centralized DL algorithm. A similar concept is

also presented in [79] with secret sharing mechanism used

to protect information of FL participants.

Although both the encryption techniques presented in [161]

and [79] can prevent the curious server from extracting infor-

mation, they require multi-round communications and cannot

preclude collusions between the server and participants. Thus,

the authors in [162] propose a hybrid solution which integrates

both additively homomorphic encryption and DP in FL. In

particular, before the trained parameters are sent to the server,

they will be encrypted using the additively homomorphic

encryption mechanism together with intentional noises to

perturb the original parameters. As a result, this hybrid scheme

can simultaneously prevent the curious server from exploiting

information as well as solve the collusion problem between

the server and malicious participants. However, the authors do

not compare the accuracy of the proposed approach with the

case without homomorphic encryption and DP.

B. Security Issues

1) Data Poisoning Attacks: In FL, a participant trains its

data and sends the trained model to the server for further

processing. In this case, it is intractable for the server to

check the real training data of a participant. Thus, a malicious

TABLE VI: The accuracy and attack success rates for no-attack
scenario and attacks with 1 and 2 sybils in a FL system with MNIST
dataset [156].

Baseline Attack 1 Attack 2

Number of honest participants 10 10 10
Number of sybil participants 0 1 2
The accuracy (digits: 0, 2-9) 90.2% 89.4% 88.8%

The accuracy (digit: 1) 96.5% 60.7% 0.0%
Attack success rate 0.0% 35.9% 96.2%

participant can poison the global model by creating dirty-label

data to train the global model with the aim of generating

falsified parameters. For example, a malicious participant can

generate a number of samples, e.g., photos, under a designed

label, e.g., a clothing branch, and use them to train the global

model to achieve its business goal, e.g., the prediction model

shows results of the targeted clothing branch. Dirty-label data

poisoning attacks are demonstrated to achieve high misclas-

sifications in DL processes, up to 90%, when a malicious

participant injects relatively few dirty-label samples (around

50) to the training dataset [163]. This calls for urgent solutions

to deal with data poisoning attacks in FL.

In [164], the authors investigate impacts of a sybil-based

data poisoning attack to a FL system. In particular, for the

sybil attack, a malicious participant tries to improve the

effectiveness of data poisoning in training the global model

by creating multiple malicious participants. In Table VI, the

authors show that with only two malicious participants, the

attack success rate can achieve up to 96.2%, and now the FL

model is unable to correctly classify the image of “1” (instead

it always incorrectly predicts them to be the image of “7”).

To mitigate sybil attacks, the authors then propose a defense

strategy, namely FoolsGold. The key idea of this approach

is that honest participants can be distinguished from sybil

participants based on their updated gradients. Specifically, in

the non-IID FL setting, each participant’s training data has

its own particularities, and sybil participants will contribute

gradients that appear more similar to each other than those

of other honest participants. With FoolsGold, the system can

defend the sybil data poisoning attack with minimal changes

to the conventional FL process and without requiring any

auxiliary information outside of the learning process. Through

simulations results on 3 diverse datasets (MNIST [156],

KDDCup [165], Amazon Reviews [165]), the authors show

that FoolsGold can mitigate the attack under a variety of

conditions, including different distributions of participant data,

varying poisoning targets, and various attack strategies.

2) Model Poisoning Attacks: Unlike data poisoning attacks

which aim to generate fake data to cause adverse impacts

to the global model, a model poisoning attack attempts to

directly poison the global model that it sends to the server for

aggregation. As shown in [166] and [167], model poisoning

attacks are much more effective than those of data poisoning

attacks, especially for large-scale FL with many participants.

The reason is that for data poisoning attacks, a malicious

participant’s updates are scaled based on its dataset and the

number of participants in the federation. However, for model

poisoning attacks, a malicious participant can modify the

21

Discriminator D

0.6

0.3

0.1

[User A]

GAN
Generator G

Data Label

[User B]

Is an image of label [User A]?

Copy new parameters to D

Copy new parameters to
Model H

Attacker H Victim V

[User C]

Data Label

[User B]

Download parameters from Server

Server

Upload trained parameters to the server

Fig. 12: GAN Attack on collaborative deep learning.

updated model, which is sent to the server for aggregation,

directly. As a result, even with one single attacker, the whole

global model can be poisoned. The simulation results in [166]

also confirm that even a highly constrained adversary with lim-

ited training data can achieve high success rate in performing

model poisoning attacks. Thus, solutions to protect the global

model from model poisoning attacks have to be developed.

In [166], some solutions are suggested to prevent model

poisoning attacks. Firstly, based on an updated model shared

from a participant, the server can check whether the shared

model can help to improve the global model’s performance or

not. If not, the participant will be marked to be a potential

attacker, and after few rounds of observing the updated model

from this participant, the server can determine whether this

is a malicious participant or not. The second solution is

based on the comparison among the updated models shared

by the participants. In particular, if an updated model from a

participant is too different from the others, the participant can

potentially be a malicious one. Then, the server will continue

observing updates from this participant before it can determine

whether this is a malicious user or not. However, model

poisoning attacks are extremely difficult to prevent because

when training with millions of participants, it is intractable

to evaluate the improvement from every single participant. As

such, more effective solutions need to be further investigated.

In [167], the authors introduce a more effective model

poisoning attack which is demonstrated to achieve 100%

accuracy on the attacker’s task within just a single learning

round. In particular, a malicious participant can share its

poisoned model which not only is trained for its intentional

purpose, but which also contains a backdoor function. In

this paper, the authors consider to use a semantic backdoor

function to inject into the global model. The reason is that this

function can make the global model misclassify even without

a need to modify the input data of the malicious participant.

For example, an image classification backdoor function can

inject an attacker-chosen label to all images with some certain

features, e.g., all dogs with black stripes can be misclassifed

to be cats. The simulations results show that this attack can

(a) Conventional federated learning

Blockchain network

Miner 1

Participant 1

Miner 2

Participant 2 Participant 1 Participant 2

(b) BlockFL

Cross verification

Reward and updated
global model

Server

Fig. 13: An illustration of (a) conventional FL and (b) the proposed
BlockFL architectures.

greatly outperform conventional FL data poisoning attacks.

For example, in a word-prediction task with 80,000 total

participants, compromising just eight of them is enough to

achieve 50% backdoor accuracy, as compared to 400 malicious

participants needed to perform the data-poisoning attack.

3) Free-Riding Attacks: Free-riding is another attack in

FL that occurs when a participant wants to benefit from the

global model without contributing to the learning process.

The malicious participant, i.e., free-rider, can pretend that it

has very small number of samples to train or it can select a

small set of its real dataset to train, e.g., to save its resources.

As a result, the honest participants need to contribute more

resources in the FL training process. To address this problem,

the authors in [168] introduce a blockchain-based FL architec-

ture, called BlockFL, in which the participants’ local learning

model updates are exchanged and verified by leveraging the

blockchain technology. In particular, each participant trains

and sends the trained global model to its associated miner

in the blockchain network and then receives a reward that

22

is proportional to the number of trained data samples as

illustrated in Fig. 13. In this way, this framework can not only

prevent the participants from free-riding, but also incentivize

all participants to contribute to the learning process. A similar

blockchain-based model is also introduced in [169] to provide

data confidentiality, computation auditability, and incentives

for the participants of FL. However, the utilization of the

blockchain technology implies the incurrence of a significant

cost for implementing and maintaining miners to operate the

blockchain network. Furthermore, consensus protocols used in

blockchain networks, e.g., proof-of-work (PoW), can cause a

long delay in information exchange, and thus they may not be

appropriate to implement on FL models.

C. Summary and Lessons Learned

In this section, we have discussed two key issues, i.e.,

privacy and security, when trained models are exchanged

in FL. In general, it is believed that FL is an effective

privacy-preserving learning solution for participants to perform

collaborative model training. However, in this section, we have

shown that a malicious participant can exploit the process

and gain access to sensitive information of other participants.

Furthermore, we have also shown that by using the shared

model in FL, an attacker can perform attacks which can not

only breakdown the whole learning system, but also falsify

the trained model to achieve its malicious goal. In addition,

solutions to deal with these issues have also been reviewed,

which are especially important in order to guide FL system

administrators in designing and implementing the appropri-

ate countermeasures. We summarize the key information of

attacks and their corresponding countermeasures in Table VII.

VI. APPLICATIONS OF FEDERATED LEARNING FOR

MOBILE EDGE COMPUTING

In the aforementioned studies, we have discussed the is-

sues pertaining to the implementation of FL as an enabling

technology that allows collaborative learning at mobile edge

networks. In this section, we focus instead on the applications

of FL for mobile edge network optimization.

As discussed in [35], the increasing complexity and hetero-

geneity of wireless networks enhance the appeal of adopting

a data-driven ML based approach [28] for optimizing system

designs and resource allocation decision making for mobile

edge networks. However, as discussed in previous sections,

the private data of users may be sensitive in nature. As such,

existing learning based approach can be combined with FL for

privacy-preserving applications. In this section, we consider

four applications of FL in edge computing:

• Cyberattack Detection: The ubiquity of IoT devices and

increasing sophistication of cyberattacks [170] imply that

there is a need to improve existing cyberattack detection

tools. Recently, DL has been widely successful in cyber-

attack detection. Coupled with FL, cyberattack detection

models can be learned collaboratively while maintaining

user privacy.

• Edge Caching and Computation Offloading: Given the

computation and storage capacity constraints of edge

servers, some computationally intensive tasks of end

devices have to be offloaded to the remote cloud server

for computation. In addition, commonly requested files

or services should be placed on edge servers for faster

retrieval, i.e., users do not have to communicate with the

remote cloud when they want to access these files or

services. As such, an optimal caching and computation

offloading scheme can be collaboratively learned and

optimized with FL.

• Base Station Association: In a dense network, it is

important to optimize base station association so as to

limit interference faced by users. However, traditional

learning based approaches that utilize user data often

assume that such data is centrally available. Given user

privacy constraints, an FL based approach can be adopted.

• Vehicular Networks: The Internet of Vehicles (IoV) [171]

features smart vehicles with data collection, computation

and communication capabilities for relevant functions,

e.g., navigation and traffic management. However, this

wealth of knowledge is again, private and sensitive in

nature since it can reveal the driver’s location and per-

sonal information. In this section, we discuss the use of

an FL based approach in traffic queue length prediction

and energy demand in electric vehicle charging stations

done at the edge of IoV networks.

A. Cyberattack Detection

Cyberattack detection is one of the most important steps to

promptly prevent and mitigate serious consequences of attacks

in mobile edge networks. Among different approaches to de-

tect cyberattacks, DL is considered to be the most effective tool

to detect a wide range of attacks with high accuracy. In [181],

the authors show that DL can outperform all conventional

ML techniques with very high accuracy in detecting intru-

sions on three datasets, i.e., KDDcup 1999, NSL-KDD [182],

and UNSW-NB15 [183]. However, the detection accuracy of

solutions based on DL depends very much on the available

datasets. Specifically, DL algorithm only can outperform other

ML techniques when given sufficient data to train. However,

this data may be sensitive in nature. Therefore, some FL-based

attack detection models for mobile edge networks have been

introduced recently to address this problem.

In [172], the authors propose a cyberattack detection model

for an edge network empowered by FL. In this model, each

edge node operates as a participant who owns a set of data

for intrusion detection. To improve the accuracy in detecting

attacks, after training the global model, each participant will

send its trained model to the FL server. The server will

aggregate all parameters from the participants and send the

updated global model back to all the participants as illustrated

in Fig. 14. In this way, each edge node can learn from other

edge nodes without a need of sharing its real data. As a

result, this method can not only improve accuracy in detecting

attacks, but also enhance the privacy of intrusion data at the

edge nodes and reduce traffic load for the whole network. A

similar idea is also presented in [173] in which IoT gateways

operate as FL participants and an IoT security service provider

23

TABLE VII: A summary of attacks and countermeasures in FL.

Attack Types Attack Method Countermeasures

Information

exploiting

attacks

(privacy

issues)

Attackers try to illegally

exploit information from

the shared model.

• Differentially private stochastic gradient descent: Add “noise” to the trained parameters by using a differential privacy-preserving

randomized mechanism [20].

• Differentially private and selective participants: Add “noise” to the trained parameters and select randomly participants to train global

model in each round [154].

• Selective parameter sharing: Each participant wisely selects the number of gradients to upload and the number of parameters from

the global model to update [155].

• Secrete sharing scheme with extreme boosting algorithm: This approach executes a lightweight secret sharing protocol before

transmitting the newly trained model in plaintext to the server at each round [159].

• GAN model training: All participants are cooperative to train a federated GANs model [160].

Data

poisoning

attacks

Attackers poison the

global model by

creating dirty-label data

and use such data to

train the global model.

• FoolsGoal: Distinguish honest participants based on their updated gradients. It is based on the fact that in the non-IID FL setting, each

participant’s training data has its own particularities, and malicious participants will contribute gradients that appear more similar to

each other than those of the honest participants [164].

Model

poisoning

attacks

Attackers attempt to

poison the global model

that they send to the

server for aggregation.

• Based on an updated model shared from a participant, the server can check whether the shared model can help to improve the global

model’s performance or not. If not, the participant will be marked to be a potential attacker [166].

• Compare among the updated global models shared by the participants, and if an updated global model from a participant is too

different from others, it could be a potential malicious participant [166].

Free-riding

attacks

Attackers benefit from

the global model

without contributing to

the learning process.

• BlockFL: Participants’ local learning model updates are exchanged and verified by leveraging blockchain technology. In particular,

each participant trains and sends the trained global model to its associated miner in the blockchain network and then receives a

reward that is proportional to the number of trained data samples [168].

TABLE VIII: FL based approaches for mobile edge network optimization.

Applications Ref. Description

Cyberattack Detection
[172] Cyberattack detection with edge nodes as participants
[173] Cyberattack detection with IoT gateways as participants
[174] Blockchain to store model updates

Edge caching and computation offloading

[32] DRL for caching and offloading in UEs
[175] DRL for computation offloading in IoT devices
[176] Stacked autoencoder learning for proactive caching
[177] Greedy algorithm to optimize service placement schemes

Base station assoication
[178] Deep echo state networks for VR application
[31] Mean field game with imitation for cell association

Vehicular networks
[179] Extreme value theory for large queue length prediction
[180] Energy demand learning in electric vehicular networks

Edge node 1 Edge node 2

Cloud server

Model exchange

Fig. 14: FL-based attack detection for IoT edge networks.

works as a server node to aggregate trained models shared by

the participants. The authors in [173] show empirically that by

using FL, the system can successfully detect 95.6% of attacks

in approximately 257 ms without raising any false alarm when

evaluated in a real-world smart home deployment setting.

In both [172] and [173], it is assumed that the participants,

i.e., edge nodes and IoT gateways, are honest, and they

are willing to contribute in training their updated model

parameters. However, if some of the participants are malicious,

they can make the whole intrusion detection corrupted. Thus,

the authors in [174] propose to use blockchain technology

in managing data shared by the participants. By using the

blockchain, all incremental updates to the anomaly detection

ML model are stored in the ledger, and thus a malicious

participant can be easily identified. Furthermore, based on

shared models from honest participants stored in the ledger,

the intrusion detection system can easily recover the proper

global model if the current global model is poisoned.

B. Edge Caching and Computation Offloading

To account for the dynamic and time-varying conditions

in a MEC system, the authors in [32] propose the use of

DRL with FL to optimize caching and computation offloading

decisions in an MEC system. The MEC system consists of a

set of user equipments (UEs) covered by base stations. For

caching, the DRL agent makes the decision to cache or not

to cache the downloaded file, and which local file to replace

should caching occur. For computation offloading, the UEs

can choose to either offload computation tasks to the edge

node via wireless channels, or perform the tasks locally. This

24

caching and offloading decision process is illustrated in Fig.

15. The states of the MEC system include wireless network

conditions, UE energy consumption, and task queuing states,

whereas the reward function is defined as quality of experience

(QoE) of the UEs. Given the large state and action space

in the MEC environment, a DDQN approach is adopted. To

protect the privacy of users, an FL approach is proposed in

which training can occur with data remaining on the UEs.

In addition, existing FL algorithms, e.g., FedAvg [23], can

also ensure that training is robust to the unbalanced and non-

IID data of the UEs. The simulation results show that the

DDQN with FL approach achieves similar average utilities

among UEs as compared to the centralized DDQN approach,

while consuming less communication resources and preserving

user privacy. However, the simulations are only performed

with 10 UEs. If the implementation is expanded to target a

larger number of heterogeneous UEs, there can be significant

delays in the training process especially since the training of

a DRL model is computationally intensive. As an extension,

transfer learning [184] can be used to increase the efficiency

of training, i.e., training is not initialized from scratch.

Similar to [32], the authors in [175] propose the use of DRL

in optimizing computation offloading decisions in IoT systems.

The system model consists of IoT devices and edge nodes.

The IoT devices can harvest energy units [185] from the edge

nodes to be stored in the energy queue. In addition, an IoT

device also maintains a local task queue with unprocessed and

unsuccessfully processed tasks. These tasks can be processed

locally or offloaded to the edge nodes for processing, in a

First In First Out (FIFO) order [14]. In the DRL problem

formulation, the network states are defined to be a function

of energy queue length, task execution delay, task handover

delay from edge node association, and channel gain between

the IoT device and edge nodes. A task can fail to be executed,

e.g., when there is insufficient energy units or communication

bandwidth for computation offloading. The utility considered

is a function of task execution delay, task queuing delay, num-

ber of failed tasks and penalty of execution failure. The DRL

agent makes the decision to either offload computation to the

edge nodes or perform computation locally. To ensure privacy

of users, the agent is trained without users having to upload

their own data to a centralized server. In each training round, a

random set of IoT devices are selected to download the model

parameters of the DRL agent from the edge networks. The

model parameters are then updated using their own data, e.g.,

energy resource level, channel gain, and local sensing data.

Then, the updated parameters of the DRL agent are sent to

the edge nodes for model aggregation. The simulation results

show that the FL based approach can achieve same levels of

total utility as the centralized DRL approach. This is robust to

varying task generation probabilities. In addition, when task

generation probabilities are higher, i.e., there are more tasks

for computation in the IoT device, the FL based scheme can

achieve a lower number of dropped tasks and shorter queuing

delay than the centralized DRL scheme. However, the simula-

tion only involves 15 IoT devices serviced by relatively many

edge nodes. To better reflect practical scenarios where fewer

edge nodes have to cover several IoT devices, further studies

F
L
 P

a
rtic

ip
a
n

ts

Offload for Edge

Computation

C
lo

u
d

Cache update

DRL Training for caching and offloading decisions

(a)

E
d

g
e

(b)

Caching Decision: Replace less

popular file

C
a
c
h

e
 M

iss

Offload for cloud

computation

Less popular files and applications

Fig. 15: FL-based (a) caching and (b) computation offloading.

can be conducted on optimizing the edge-IoT collaboration.

For example, the limited communication bandwidth can cause

significant task handover delay during computation offloading.

In addition, with more IoT devices, the DRL training will take

a longer time to converge especially since the devices have

heterogeneous computation capabilities.

Instead of using a DRL approach, the authors in [176]

propose the use of an FL based stacked autoencoder learn-

ing model, i.e., FL based proactive content caching scheme

(FPCC), to predict content popularity for optimized caching

while protecting user privacy. In the system model, each user

is equipped with a mobile device that connects to the base

station that covers its geographical location. Using a stacked

autoencoder learning model, the latent representation of a

user’s information, e.g., location, and file rating, i.e., content

request history, is learned. Then, a similarity matrix between

the user and its historically requested files is obtained in which

each element of the matrix represents the distance between the

user and the file. Based on this similarity matrix, the K nearest

neighbours of each user are determined, and the similarity

between the user’s historical watch list and the neighbours’ are

computed. An aggregation approach is then used to predict the

most popular files for caching, i.e., files with highest similarity

scores across all users. Being the most popular files across

users that are most frequently retrieved, the cached files need

not be re-downloaded from its source server everytime it is

demanded. To protect the privacy of users, FL is adopted to

learn the parameters of the stacked autoencoder without the

user having to reveal its personal information or its content

request history to the FL server. In each training round, the

25

user first downloads a global model from the FL server. Then,

the model is trained and updated using their local data. The

updated models are subsequently uploaded to the FL server

and aggregated using the FedAvg algorithm. The simulation

results show that the proposed FPCC scheme could achieve the

highest cache efficiency, i.e, the ratio of cached files matching

user requests, as compared to other caching methods such as

the Thompson sampling methods [186]. In addition, privacy

of the user is preserved.

The authors in [177] introduce a privacy-aware service

placement scheme to deploy user-preferred services on edge

servers with consideration for resource constraints in the edge

cloud. The system model consists of a mobile edge cloud

serving various mobile devices. The user’s preference model

is first built based on information such as number of times of

requests for a service, and other user context information, e.g.,

ages and locations. However, since this can involve sensitive

personal information, an FL based approach is proposed to

train the preference model while keeping users’ data on their

personal devices. Then, an optimization problem is formulated

in which the objective is to maximize quantity of services

demanded from the edge based on user preferences, subject to

constraints of storage capacity, computation capability, uplink

and downloading bandwidth. The optimization problem is then

solved using a greedy algorithm, i.e., the service which most

improves the objective function is added till resource con-

straints are met. The simulation results show that the proposed

scheme can outperform the popular service placement scheme,

i.e., where only the most popular services are placed on the

edge cloud, in terms of number of requests processed on edge

clouds since it also considers the aforementioned resource

constraints in maximizing quantity of services.

C. Base Station Association

The authors in [178] propose an FL based deep echo state

networks (ESNs) approach to minimize breaks in presence

(BIPs) [187] for users of virtual reality (VR) applications. A

BIP event can be a result of delay in information transmission

which can be caused when the user’s body movements obstruct

the wireless link. BIPs cause the user to be aware that they are

in a virtual environment, thus reducing their quality of expe-

rience. As such, a user association policy has to be designed

such that BIPs are minimized. The system model consists of

base stations that cover a set of VR users. The base stations

receive uploaded tracking information from each associated

user, e.g., physical location and orientation, while the users

download VR videos for their use in the VR application.

For data transmission, the VR users have to associate with

one of the base stations. As such, a minimization problem

is formulated where BIPs are minimized with respect to

expected locations and orientations of the VR user. To derive a

prediction of user locations and orientations, the base station

has to rely on the historical information of users. However,

the historical information stored at each base station only

collects partial data from each user, i.e., a user connects to

multiple base stations and its data is distributed across them.

As such, an FL based approach is implemented whereby each

base station first trains a local model using its partial data.

Then, the local models are aggregated to form a global model

capable of generalization, i.e., comprehensively predicting a

user’s mobility and orientations. The simulation results show

that the federated ESN algorithm can achieve lower BIPs

experienced by users as compared to the centralized ESN

algorithm proposed in [188], since a centralized approach only

makes partial prediction with the incomplete data from sole

base stations, whereas the federated ESN approach can make

predictions based on a model learned collaboratively from

more complete data.

Following the ubiquity of IoT devices, the traditional cloud-

based approach may no longer be sufficient to cater to dense

cellular networks. As computation and storage moves to the

edge of networks, the association of users to base stations are

increasingly important to facilitate efficient ML model training

among the end users. To this end, the authors in [31] consider

solving the problem of cell association in dense wireless

networks with a collaborative learning approach. In the system

model, the base stations cover a set of users in an LTE cellular

system. In a cellular system, users are likely to face similar

channel conditions as their neighbors and thus can benefit

from learning from their neighbours that are already associated

with base stations. As such, the cell association problem

is formulated as a mean-field game (MFG) with imitation

[189] in which each user maximizes its own throughput while

minimizing the cost of imitation. The MFG is further reduced

into a single-user Markov decision process that is then solved

by a neural Q-learning algorithm. In most other proposed

solution for cell association, it is assumed that all information

is known to the base stations and users. However, given privacy

concerns, the assumption of information sharing may not be

practical. As such, a collaborative learning approach can be

considered where only the outcome of the learning algorithm

is exchanged during the learning process whereas usage data is

kept locally in each user’s own device. The simulation results

show that imitating users can attain higher utility within a

shorter training duration as compared to non-imitating users.

D. Vehicular Networks

Ultra reliable low latency communication (URLLC) in

vehicular networks is an essential prerequisite towards de-

veloping an intelligent transport system. However, existing

radio resource management techniques do not account for rare

events such as large queue lengths at the tail-end distribution.

To model the occurrence of such low probability events, the

authors in [179] propose the use of extreme value theory

(EVT) [190]. The approach requires sufficient samples of

queue state information (QSI) and data exchange among

vehicles. As such, an FL approach is proposed in which

vehicular users (VUEs) train the learning model with data

kept locally and upload only their updated model parameters

to the roadside units (RSU). The RSU then averages out

the model parameters and return an updated global model

to the VUEs. In a synchronous approach, all VUEs upload

their models at the end of a prespecified interval. However,

the simultaneous uploading by multiple vehicles can lead to

26

delays in communication. In contrast for an asynchronous

approach, each VUE only evaluates and uploads their model

parameters after a predefined number of QSI samples are

collected. The global model is also updated whenever a local

update is received, thus reducing communication delays. To

further reduce overhead, Lyapunov optimization [191] for

power allocation is also utilized. The simulation results show

that under this framework, there is a reduction of the number

of vehicles experiencing large queue lengths whereas FL

can ensure minimal data exchange relative to a centralized

approach.

Apart from QSI, the vehicles in vehicular networks are

also exposed to a wealth of useful captured images that can

be adopted to build better inference models, e.g., for traffic

optimization. However, these images are sensitive in nature

since they can give away the location information of vehicular

clients. As such, an FL approach can be used to facilitate

collaborative ML while ensuring privacy preservation. How-

ever, the images captured by vehicles are often varying in

quality due to motion blurs. In addition, another source of

heterogeneity is the difference in computing capabilities of ve-

hicles. Given the information asymmetry involved, the authors

in [142] propose a multi-dimensional contract design in which

the FL server designs contract bundles comprising varying

levels of data quality, compute resources, and contractual

payoffs. Then, the vehicular client chooses the contract bundle

that maximizes its utility, in accordance to its hidden type.

Similar to the results in [140], the simulation results show

that the FL server derives greatest utility under the proposed

contract theoretic approach, in contrast to the linear pricing or

Stackelberg game approach.

The authors in [180] propose a federated energy demand

learning (FEDL) approach to manage energy resources in

charging stations (CSs) for electric vehicles (EVs). When a

large number of EVs congregate at a CS, this can lead to

energy transfer congestion. To resolve this, energy is supplied

from the power grids and reserved in advance to meet the

real-time demands from the EVs [192], rather than having

the CSs request for energy from the power grid only upon

receiving charging requests. As such, there is a need to forecast

energy demand for EV networks using historical charging

data. However, this data is usually stored separately at each

of the CS that the EVs utilize and is private in nature.

As such, an FEDL approach is adopted in which each CS

trains the demand prediction model on its own dataset before

sending only the gradient information to the charging station

provider (CSP). Then, the gradient information from the CS

is aggregated for global model training. To further improve

model accuracy, the CSs are clustered using the constrained K-

means algorithm [193] based on their physical locations. The

clustering-based FEDL reduces the cost of biased prediction

[194]. The simulation results show that the root mean squared

error of a clustered FEDL model is lower than conventional

ML algorithms, e.g., multi-layer perceptron regressor [195].

However, the privacy of user data is still not protected by

this approach, since user data is stored in each of the CS.

As an extension, the user data can possibly be stored in each

EVs separately, and model training can be conducted in the

EVs rather than the CSs. This can allow more user features

to be considered to enhance the accuracy of EDL, e.g., user

consumption habits.

Summary: In this section, we discuss that FL can also be

used for mobile edge network optimization. In particular, DL

and DRL approaches are suitable for modelling the dynamic

environment of increasingly complex edge networks but re-

quire sufficient data for training. With FL, model training

can be carried out while preserving the privacy of users. A

summary of the approaches are presented in Table VIII.

VII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Apart from the aforementioned issues, there are still chal-

lenges new research directions in deploying FL at scale to be

discussed as follows.

• Dropped participants: The approaches discussed in Sec-

tion IV, e.g., [78], [118], and [119], propose new algo-

rithms for participant selection and resource allocation

to address the training bottleneck and resource hetero-

geneity. In these approaches, the wireless connections of

participants are assumed to be always available. However,

in practice, participating mobile devices may go offline

and can drop out from the FL system due to connectivity

or energy constraints. A large number of dropped devices

from the training participation can significantly degrade

the performance [23], e.g., accuracy and convergence

speed, of the FL system. New FL algorithms need to

be robust to device drop out in the networks and an-

ticipate the scenarios in which only a small number of

participants are left connected to participate in a training

round. One potential solution is that the FL model owner

provides free dedicated/special connection, e.g., cellular

connections, as an incentive to the participants to avoid

drop out.

• Privacy concerns: FL is able to protect the privacy of

each participants since the model training may be con-

ducted locally, with just the model parameters exchanged

with the FL server. However, as specified in [147], [148],

and [149], communicating the model updates during the

training process can still reveal sensitive information to

an adversary or a third-party. The current approaches pro-

pose security solutions such as DP, e.g., [20], [154], and

[196], and collaborative training, e.g., [155] and [157].

However, the adoption of these approaches sacrifices

the performance, i.e., model accuracy. They also require

significant computation on participating mobile devices.

Thus, the tradeoff between privacy guarantee and system

performance has to be well balanced when implementing

the FL system.

• Unlabeled data: It is important to note that the ap-

proaches reviewed in the survey are proposed for su-

pervised learning tasks. This means that the approaches

assume that labels exist for all of the data in the federated

network. However, in practice, the data generated in the

network may be unlabeled or mislabeled [197]. This

poses a big challenge to the server to find participants

with appropriate data for model training. Tackling this

27

challenge may require the challenges of scalability, het-

erogeneity, and privacy in the FL systems to be addressed.

One possible solution is to enable mobile devices to

construct their labeled data by learning the “labeled data”

from each other. Emerging studies have also considered

the use of semi-supervised learning inspired techniques

[198].

• Interference among mobile devices: The existing resource

allocation approaches, e.g., [78] and [119], address the

participant selection based on the resource states of their

mobile devices. In fact, these mobile devices may be

geographically close to each other, i.e., in the same cell.

This introduces an interference issue when they update

local models to the server. As such, channel allocation

policies may need to be combined with the resource allo-

cation approaches to address the interference issue. While

studies in [127], [129], and [130] consider multi-access

schemes and over-the-air computation, it remains to be

seen if such approaches are scalable, i.e., able to support

a large federation of many participants. To this end, data

driven learning based solutions, e.g., federated DRL, can

be considered to model the dynamic environment of edge

networks and make optimized decisions.

• Communication security: The privacy and security threats

studied in Section V-B revolve mainly around data-related

compromises, e.g., data and model poisoning. Due to

the exposed nature of the wireless medium, FL is also

vulnerable to communication security issues such as Dis-

tributed Denial-of-Service (DoS) [199] and jamming at-

tacks [200]. In particular, for jamming attacks, an attacker

can transmit radio frequency jamming signals with high

power to disrupt or cause interference to the communica-

tions between the mobile devices and the server. Such an

attack can cause errors to the model uploads/downloads

and consequently degrade the performance, i.e., accuracy,

of the FL systems. Anti-jamming schemes [201] such as

frequency hopping, e.g., sending one more copy of the

model update over different frequencies, can be adopted

to address the issue.

• Asynchronous FL: In synchronous FL, each training

round only progresses as quickly as the slowest device,

i.e., the FL system is susceptible to the straggler effect. As

such, asynchronous FL has been proposed as a solution

in [114] and [134]. In addition, asynchronous FL also

allows participants to join the FL training halfway even

while a training round is in progress. This is more

reflective of practical FL settings and can be an important

contributing factor towards ensuring the scalability of

FL. However, synchronous FL remains to be the most

common approach used due to convergence guarantees

[77]. Given the many advantages of asynchronous FL,

new asynchronous algorithms should be explored. In

particular, for future proposed algorithms, the conver-

gence guarantee in a non-IID setting for non-convex

loss functions need to be considered. An approach to be

considered is the possibile inclusion of backup workers

following the studies of [108].

• Comparisons with other distributed learning methods:

Following the increased scrutiny on data privacy, there

has been a growing effort on developing new privacy

preserving distributed learning algorithms. One study

proposes split learning [202], which also enables collab-

orative ML without requiring the exchange of raw data

with an external server. In split learning, each participant

first trains the neural network up to a cut layer. Then, the

outputs from training are transmitted to an external server

that completes the other layers of training. The resultant

gradients are then back propagated up to the cut layer,

and eventually returned to the participants to complete

the local training. In contrast, FL typically involves the

communication of full model parameters. The authors

in [203] conduct an empirical comparison between the

communication efficiencies of split learning and FL. The

simulation results show that split learning performs well

when the model size involved is larger, or when there are

more participants involved, since the participants do not

have to transmit the weights to an aggregating server.

However, FL is much easier to implement since the

participants and FL server are running the same global

model, i.e., the FL server is just in charge of aggregation

and thus FL can work with one of the participants serving

as the master node. As such, more research efforts can be

directed towards guiding system administrators to make

an informed decision as to which scenario warrants the

use of either learning methods.

• Further studies on learning convergence: One of the

essential considerations of FL is the convergence of the

algorithm. FL finds weights to minimize the global model

aggregation. This is actually a distributed optimization

problem, and the convergence is not always guaranteed.

Theoretical analysis and evaluations on the convergence

bounds of the gradient descent based FL for convex

and non-convex loss functions are important research

directions. While existing studies have covered this topic,

many of the guarantees are limited to restrictions, e.g.,

convexity of the loss function.

• Usage of tools to quantify statistical heterogeneity: Mo-

bile devices typically generate and collect data in a non-

IID manner across the network. Moreover, the number

of data samples among the mobile devices may vary

significantly. To improve the convergence of FL algo-

rithm, the statistical heterogeneity of the data needs to

be quantified. Recent works, e.g., [204], have developed

tools for quantifying statistical heterogeneity through

metrics such as local dissimilarity. However, these metrics

cannot be easily calculated over the federated network

before training begins. The importance of these metrics

motivates future directions such as the development of

efficient algorithms to quickly determine the level of

heterogeneity in federated networks.

• Combined algorithms for communication reduction: Cur-

rently, there are three common techniques of commu-

nication reduction in FL as discussed in Section III.

It is important to study how these techniques can be

combined with each other to improve the performance

further. For example, the model compression technique

28

can be combined with the edge server-assisted FL. The

combination is able to significantly reduce the size of

model updates, as well as the instances of communication

with the FL server. However, the feasibility of this com-

bination has not been explored. In addition, the tradeoff

between accuracy and communication overhead for the

combination technique needs to be further evaluated. In

particular, for simulation results we discuss in Section

III, the accuracy-communication cost reduction tradeoff

is difficult to manage since it varies for different settings,

e.g., data distribution, quantity, number of edge servers,

and number of participants.

• Cooperative mobile crowd ML: In the existing ap-

proaches, mobile devices need to communicate with the

server directly and this may increase the energy consump-

tion. In fact, mobile devices nearby can be grouped in a

cluster, and the model downloading/uploading between

the server and the mobile devices can be facilitated

by a “cluster head” that serves as a relay node [205].

The model exchange between the mobile devices and

the cluster head can then be done in Device-to-Device

(D2D) connections. Such a model can improve the energy

efficiency significantly. Efficient coordination schemes

for the cluster head can thus be designed to further

improve the energy efficiency of a FL system.

• Applications of FL: Given the advantages of guaranteeing

data privacy, FL has an increasingly important role to

play in many applications, e.g., healthcare, finance and

transport systems. For most current studies on FL appli-

cations, the focus mainly lies in the federated training of

the learning model, with the implementation challenges

neglected. For future studies on the applications of FL,

besides a need to consider the aforementioned issues in

the survey, i.e., communication costs, resource allocation,

and privacy and security, there is also a need to consider

the specific issues related to the system model in which

FL will be adopted in. For example, for delay critical

applications, there will be more emphasis on training

efficiency and less on energy expense.

VIII. CONCLUSION

This paper has presented a tutorial of FL and a compre-

hensive survey on the issues regarding FL implementation.

Firstly, we begin with an introduction to the motivation for

MEC, and how FL can serve as an enabling technology for

collaborative model training at mobile edge networks. Then,

we describe the fundamentals of DNN model training, FL, and

system design towards FL at scale. Afterwards, we provide

detailed reviews, analyses, and comparisons of approaches for

emerging implementation challenges in FL. The issues include

communication cost, resource allocation, data privacy and data

security. Furthermore, we also discuss the implementation of

FL for privacy-preserving mobile edge network optimization.

Finally, we discuss challenges and future research directions.

ACKNOWLEDGMENT

This research is supported, in part, by the National Re-

search Foundation (NRF), Singapore, under Singapore Energy

Market Authority (EMA), Energy Resilience, NRF2017EWT-

EP003-041, Singapore NRF2015-NRF-ISF001-2277, Singa-

pore NRF National Satellite of Excellence, Design Science

and Technology for Secure Critical Infrastructure NSoE DeST-

SCI2019-0007, A*STAR-NTU-SUTD Joint Research Grant

Call on Artificial Intelligence for the Future of Manufac-

turing RGANS1906, WASP/NTU M4082187 (4080), Sin-

gapore MOE Tier 2 MOE2014-T2-2-015 ARC4/15, MOE

Tier 1 2017-T1-002-007 RG122/17, AI Singapore Programme

AISG-GC-2019-003, NRF-NRFI05-2019-0002. This research

is also supported, in part, by the Alibaba-NTU Singapore

Joint Research Institute (Alibaba-NTU-AIR2019B1), Nanyang

Technological University, Singapore. In addition, this research

is funded by Vietnam National Foundation for Science and

Technology Development (NAFOSTED) under grant number

102.02-2019.305. The work of Y.-C. Liang was supported

by the National Natural Science Foundation of China under

Grants 61631005 and U1801261, the National Key R&D

Program of China under Grant 2018YFB1801105, and the

111 Project under Grant B20064. Qiang Yang also thanks the

support of Hong Kong CERG grants 16209715 and 16244616.

REFERENCES

[1] K. L. Lueth, “State of the iot 2018: Number of iot devices now at 7b
Ð market accelerating,” IOT Analytics, 2018.

[2] R. Pryss, M. Reichert, J. Herrmann, B. Langguth, and W. Schlee,
“Mobile crowd sensing in clinical and psychological trials–a case
study,” in IEEE International Symposium on Computer-Based Medical

Systems, 2015, pp. 23–24.
[3] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and

future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, 2011.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[5] D. Oletic and V. Bilas, “Design of sensor node for air quality crowd-
sensing,” in IEEE Sensors Applications Symposium, 2015, pp. 1–5.

[6] Y. Jing, B. Guo, Z. Wang, V. O. Li, J. C. Lam, and Z. Yu, “Crowd-
tracker: Optimized urban moving object tracking using mobile crowd
sensing,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3452–3463,
2017.

[7] H.-J. Hong, C.-L. Fan, Y.-C. Lin, and C.-H. Hsu, “Optimizing cloud-
based video crowdsensing,” IEEE Internet of Things Journal, vol. 3,
no. 3, pp. 299–313, 2016.

[8] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud
services in the iot environment,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 2, pp. 1587–1595, 2014.
[9] P. Li, J. Li, Z. Huang, T. Li, C.-Z. Gao, S.-M. Yiu, and K. Chen, “Multi-

key privacy-preserving deep learning in cloud computing,” Future

Generation Computer Systems, vol. 74, pp. 76–85, 2017.
[10] B. Custers, A. Sears, F. Dechesne, I. Georgieva, T. Tani, and S. van der

Hof, EU Personal Data Protection in Policy and Practice. Springer,
2019.

[11] B. M. Gaff, H. E. Sussman, and J. Geetter, “Privacy and big data,”
Computer, vol. 47, no. 6, pp. 7–9, 2014.

[12] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[13] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[14] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[15] Y. Han, X. Wang, V. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” arXiv preprint arXiv:1907.08349, 2019.

[16] Cisco, “Cisco global cloud index: Forecast and methodology,
2016Ð2021 white paper.”

29

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[18] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.
[19] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-

tecture and computation offloading,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.
[20] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,

K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 308–318.

[21] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” 2016.

[22] F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, O. Briante, A. Iera,
and G. Ruggeri, “Edge computing and social internet of things for
large-scale smart environments development,” IEEE Internet of Things

Journal, vol. 5, no. 4, pp. 2557–2571, 2017.
[23] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,

“Communication-efficient learning of deep networks from decentral-
ized data,” arXiv preprint arXiv:1602.05629, 2016.

[24] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[25] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis,
and W. Shi, “Federated learning of predictive models from federated
electronic health records,” International journal of medical informatics,
vol. 112, pp. 59–67, 2018.

[26] K. Powell, “Nvidia clara federated learning to de-
liver ai to hospitals while protecting patient data,”
https://blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/,
2019.

[27] D. Verma, S. Julier, and G. Cirincione, “Federated ai for building ai
solutions across multiple agencies,” arXiv preprint arXiv:1809.10036,
2018.

[28] O. Simeone, “A very brief introduction to machine learning with appli-
cations to communication systems,” IEEE Transactions on Cognitive

Communications and Networking, vol. 4, no. 4, pp. 648–664, 2018.
[29] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and

wireless networking: A survey,” IEEE Communications Surveys &

Tutorials, 2019.
[30] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.

Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications

Surveys & Tutorials, 2019.
[31] K. Hamidouche, A. T. Z. Kasgari, W. Saad, M. Bennis, and M. Debbah,

“Collaborative artificial intelligence (ai) for user-cell association in
ultra-dense cellular systems,” in IEEE ICC Workshops), 2018, pp. 1–6.

[32] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” arXiv preprint arXiv:1809.07857, 2018.

[33] S. Samarakoon, M. Bennis, W. Saady, and M. Debbah, “Distributed
federated learning for ultra-reliable low-latency vehicular communica-
tions,” arXiv preprint arXiv:1807.08127, 2018.

[34] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems

and Technology (TIST), vol. 10, no. 2, p. 12, 2019.
[35] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for

wireless communications: Motivation, opportunities and challenges,”
arXiv preprint arXiv:1908.06847, 2019.

[36] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learn-
ing: Challenges, methods, and future directions,” arXiv preprint

arXiv:1908.07873, 2019.
[37] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge

intelligence: Paving the last mile of artificial intelligence with edge
computing,” arXiv preprint arXiv:1905.10083, 2019.

[38] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on
application of machine learning for internet of things,” International

Journal of Machine Learning and Cybernetics, vol. 9, no. 8, pp. 1399–
1417, 2018.

[39] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[40] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[41] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[42] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE

Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525–2553,
2019.

[43] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolu-
tional network for image super-resolution,” in European conference on

computer vision. Springer, 2014, pp. 184–199.

[44] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[45] X.-W. Chen and X. Lin, “Big data deep learning: challenges and
perspectives,” IEEE access, vol. 2, pp. 514–525, 2014.

[46] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou,
B. Schuller, and S. Zafeiriou, “Adieu features? end-to-end speech
emotion recognition using a deep convolutional recurrent network,”
in IEEE ICASSP, 2016, pp. 5200–5204.

[47] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent,”
Cited on, vol. 14, p. 8, 2012.

[48] X. J. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2005.

[49] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[51] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological cybernetics, vol. 59, no.
4-5, pp. 291–294, 1988.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.

[53] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual

conference of the international speech communication association,
2010.

[54] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning
for big data,” Information Fusion, vol. 42, pp. 146–157, 2018.

[55] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint

arXiv:1708.05866, 2017.

[56] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection:
a survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84–
100, 2018.

[57] B. Zhao, J. Feng, X. Wu, and S. Yan, “A survey on deep learning-
based fine-grained object classification and semantic segmentation,”
International Journal of Automation and Computing, vol. 14, no. 2,
pp. 119–135, 2017.

[58] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning
for sensor-based activity recognition: A survey,” Pattern Recognition

Letters, vol. 119, pp. 3–11, 2019.

[59] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing

Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[60] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach to
combining reputation and contract theory,” 09 2019.

[61] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp.
121–167, 1998.

[62] R. H. Myers and R. H. Myers, Classical and modern regression with

applications. Duxbury press Belmont, CA, 1990, vol. 2.

[63] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Communica-

tions, 2019.

[64] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-
batches, use local sgd,” arXiv preprint arXiv:1808.07217, 2018.

[65] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[66] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

30

[67] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International journal of computer vision,
vol. 40, no. 2, pp. 99–121, 2000.

[68] M. Duan, “Astraea: Self-balancing federated learning for improving
classification accuracy of mobile deep learning applications,” arXiv

preprint arXiv:1907.01132, 2019.

[69] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Un-
derstanding data augmentation for classification: when to warp?” in
International conference on digital image computing: techniques and

applications, 2016, pp. 1–6.

[70] J. M. Joyce, “Kullback-leibler divergence,” International encyclopedia

of statistical science, pp. 720–722, 2011.

[71] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann,
and M. I. Jordan, “Communication-efficient distributed dual coordinate
ascent,” in Advances in neural information processing systems, 2014,
pp. 3068–3076.

[72] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating opti-
mization,” Neural, Parallel & Scientific Computations, vol. 11, no. 4,
pp. 351–368, 2003.

[73] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint

arXiv:1912.00818, 2019.

[74] J. Ren, X. Shen, Z. Lin, R. Mech, and D. J. Foran, “Personalized image
aesthetics,” in IEEE International Conference on Computer Vision,
2017, pp. 638–647.

[75] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189,
2019.

[76] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu, “Loadaboost:
Loss-based adaboost federated machine learning on medical data,”
arXiv preprint arXiv:1811.12629, 2018.

[77] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint

arXiv:1902.01046, 2019.

[78] T. Nishio and R. Yonetani, “Client selection for federated learn-
ing with heterogeneous resources in mobile edge,” arXiv preprint

arXiv:1804.08333, 2018.

[79] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure ag-
gregation for privacy-preserving machine learning,” in ACM SIGSAC

Conference on Computer and Communications Security, 2017, pp.
1175–1191.

[80] J. Bloemer, “How to share a secret,” Communications of the Acm,
vol. 22, no. 22, pp. 612–613, 2011.

[81] H. B. Mcmahan, D. Ramage, K. Talwar, and L. Zhang, “Learning dif-
ferentially private recurrent language models,” international conference

on learning representations, 2018.

[82] Google, “Tensorflow federated: Machine learning on decentralized
data.”

[83] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert,
and J. Passerat-Palmbach, “A generic framework for privacy preserving
deep learning,” arXiv preprint arXiv:1811.04017, 2018.

[84] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith,
and A. Talwalkar, “Leaf: A benchmark for federated settings,” arXiv

preprint arXiv:1812.01097, 2018.

[85] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit
database,” AT&T Labs [Online]. Available: http://yann. lecun.

com/exdb/mnist, vol. 2, p. 18, 2010.

[86] A. Go, R. Bhayani, and L. Huang, “Sentiment140,” Site Functionality,

2013c. URL http://help. sentiment140. com/site-functionality. Abruf am,
vol. 20, 2016.

[87] WeBank, “Fate: An industrial grade federated learning framework.”
https://fate.fedai.org,2018.

[88] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[89] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[90] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[91] L. Wang, W. Wang, and B. Li, “Cmfl: Mitigating communication
overhead for federated learning.”

[92] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “Atomo: Communication-efficient learning via atomic spar-
sification,” in Advances in Neural Information Processing Systems,
2018, pp. 9850–9861.

[93] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with
memory,” in Advances in Neural Information Processing Systems,
2018, pp. 4447–4458.

[94] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[95] Z. Tao and Q. Li, “esgd: Communication efficient distributed deep
learning on the edge,” in {USENIX} Workshop on Hot Topics in Edge

Computing (HotEdge 18), 2018.

[96] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[97] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[98] Y. Liu, Y. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong,
and Q. Yang, “A communication efficient vertical federated learning
framework,” arXiv preprint arXiv:1912.11187, 2019.

[99] X. Yao, C. Huang, and L. Sun, “Two-stream federated learning: Reduce
the communication costs,” in IEEE Visual Communications and Image

Processing (VCIP), 2018, pp. 1–4.

[100] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Edge-assisted hierarchical
federated learning with non-iid data,” arXiv preprint arXiv:1905.06641,
2019.

[101] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” in International Conference

on International Conference on Machine Learning, 2015, pp. 97–105.

[102] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature
learning with joint distribution adaptation,” in IEEE international

conference on computer vision, 2013, pp. 2200–2207.

[103] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[104] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in International Con-

ference on Machine Learning, 2017, pp. 3329–3337.

[105] B. S. Kashin, “Diameters of some finite-dimensional sets and classes
of smooth functions,” Izvestiya Rossiiskoi Akademii Nauk. Seriya

Matematicheskaya, vol. 41, no. 2, pp. 334–351, 1977.

[106] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an exten-
sion of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373,
2017.

[107] N. Strom, “Scalable distributed dnn training using commodity gpu
cloud computing,” in Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

[108] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[109] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[110] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching {LAN} speeds,” in Symposium on Networked Systems

Design and Implementation, 2017, pp. 629–647.

[111] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A pub-
lic domain dataset for human activity recognition using smartphones.”
in Esann, 2013.

[112] M. Buscema and S. Terzi, “Semeion handwritten digit data set,” Center

for Machine Learning and Intelligent Systems, California, USA, 2009.

[113] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
arXiv preprint arXiv:1911.02417, 2019.

[114] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, 2018, pp. 21–28.

[115] M. I. Jordan, J. D. Lee, and Y. Yang, “Communication-efficient
distributed statistical inference,” Journal of the American Statistical

Association, vol. 114, no. 526, pp. 668–681, 2019.

[116] M. Sviridenko, “A note on maximizing a submodular set function
subject to a knapsack constraint,” Operations Research Letters, vol. 32,
no. 1, pp. 41–43, 2004.

31

[117] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
arXiv preprint arXiv:1902.00146, 2019.

[118] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl: Cooperative learning mechanism using non-iid data in
wireless networks,” arXiv preprint arXiv:1905.07210, 2019.

[119] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L.-C. Wang, “Effi-
cient training management for mobile crowd-machine learning: A deep
reinforcement learning approach,” arXiv preprint arXiv:1812.03633,
2018.

[120] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial

intelligence, 2016.
[121] H. T. Nguyen, N. C. Luong, J. Zhao, C. Yuen, and D. Niyato, “Resource

allocation in mobility-aware federated learning networks: A deep
reinforcement learning approach,” arXiv preprint arXiv:1910.09172,
2019.

[122] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Transactions On

Networking, vol. 16, no. 2, pp. 396–409, 2008.
[123] M. Feldman, “Computational fairness: Preventing machine-learned

discrimination,” 2015.
[124] T. Li, M. Sanjabi, and V. Smith, “Fair resource allocation in federated

learning,” arXiv preprint arXiv:1905.10497, 2019.
[125] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time

optimization for federated learning over wireless networks,” arXiv

preprint arXiv:2001.07845, 2020.
[126] D. López-Pérez, A. Valcarce, G. De La Roche, and J. Zhang, “Ofdma

femtocells: A roadmap on interference avoidance,” IEEE Communica-

tions Magazine, vol. 47, no. 9, pp. 41–48, 2009.
[127] G. Zhu, Y. Wang, and K. Huang, “Low-latency broadband

analog aggregation for federated edge learning,” arXiv preprint

arXiv:1812.11494, 2018.
[128] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing inter-

ference through structured codes,” IEEE Transactions on Information

Theory, vol. 57, no. 10, pp. 6463–6486, 2011.
[129] M. M. Amiri and D. Gunduz, “Federated learning over wireless fading

channels,” arXiv preprint arXiv:1907.09769, 2019.
[130] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-

the-air computation,” arXiv preprint arXiv:1812.11750, 2018.
[131] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.

Tang, “On large-batch training for deep learning: Generalization gap
and sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[132] P. D. Tao et al., “The dc (difference of convex functions) programming
and dca revisited with dc models of real world nonconvex optimization
problems,” Annals of operations research, vol. 133, no. 1-4, pp. 23–46,
2005.

[133] Z.-Q. Luo, N. D. Sidiropoulos, P. Tseng, and S. Zhang, “Approxima-
tion bounds for quadratic optimization with homogeneous quadratic
constraints,” SIAM Journal on optimization, vol. 18, no. 1, pp. 1–28,
2007.

[134] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimiza-
tion,” arXiv preprint arXiv:1903.03934, 2019.

[135] S. Feng, D. Niyato, P. Wang, D. I. Kim, and Y.-C. Liang, “Joint service
pricing and cooperative relay communication for federated learning,”
arXiv preprint arXiv:1811.12082, 2018.

[136] M. J. Osborne et al., An introduction to game theory. Oxford university
press New York, 2004, vol. 3, no. 3.

[137] Y. Sarikaya and O. Ercetin, “Motivating workers in federated learning:
A stackelberg game perspective,” arXiv preprint arXiv:1908.03092,
2019.

[138] Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based incentive
mechanism for federated learning,” IEEE Internet of Things Journal,
2020.

[139] L. U. Khan, N. H. Tran, S. R. Pandey, W. Saad, Z. Han, M. N. Nguyen,
and C. S. Hong, “Federated learning for edge networks: Resource opti-
mization and incentive mechanism,” arXiv preprint arXiv:1911.05642,
2019.

[140] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim,
“Incentive design for efficient federated learning in mobile networks:
A contract theory approach,” arXiv preprint arXiv:1905.07479, 2019.

[141] P. Bolton, M. Dewatripont et al., Contract theory. MIT press, 2005.
[142] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular edge

computing: A selective model aggregation approach,” IEEE Access,
2020.

[143] R. Dennis and G. Owen, “Rep on the block: A next generation reputa-
tion system based on the blockchain,” in International Conference for

Internet Technology and Secured Transactions, 2015, pp. 131–138.

[144] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and
Q. Yang, “A fairness-aware incentive scheme for federated learning,”
AAAI/ACM Conference on AI, Ethics, and Society, 2020.

[145] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning.” IEEE, 2019.

[146] H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large
face datasets,” in IEEE ICIP, 2014, pp. 343–347.

[147] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to ex-
tract meaningful data from machine learning classifiers,” International

Journal of Security, vol. 10, no. 3, pp. 137–150, 2015.

[148] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in ACM

SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1322–1333.

[149] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in Security Symposium,
2016, pp. 601–618.

[150] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership in-
ference attacks against machine learning models,” in IEEE Symposium

on Security and Privacy, 2017, pp. 3–18.

[151] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[152] P. Laskov et al., “Practical evasion of a learning-based classifier: A
case study,” in IEEE symposium on security and privacy, 2014, pp.
197–211.

[153] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography

conference. Springer, 2006, pp. 265–284.

[154] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[155] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
ACM SIGSAC conference on computer and communications security,
2015, pp. 1310–1321.

[156] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[157] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the
gan: information leakage from collaborative deep learning,” in ACM

SIGSAC Conference on Computer and Communications Security, 2017,
pp. 603–618.

[158] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[159] Y. Liu, Z. Ma, S. Ma, S. Nepal, and R. Deng, “Boosting privately:
Privacy-preserving federated extreme boosting for mobile crowdsens-
ing,” https://arxiv.org/pdf/1907.10218.pdf, 2019.

[160] A. Triastcyn and B. Faltings, “Federated generative privacy,” arXiv

preprint arXiv:1910.08385, 2019.

[161] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Transac-

tions on Information Forensics and Security, vol. 13, no. 5, pp. 1333–
1345, 2017.

[162] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and
privacy-preseving federated deep learning,” in IEEE ICC, 2019, pp.
1–6.

[163] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint

arXiv:1712.05526, 2017.

[164] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

[165] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[166] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyz-
ing federated learning through an adversarial lens,” arXiv preprint

arXiv:1811.12470, 2018.

[167] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” arXiv preprint arXiv:1807.00459, 2018.

[168] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “On-device federated
learning via blockchain and its latency analysis,” arXiv preprint

arXiv:1808.03949, 2018.

[169] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” Cryptology ePrint Archive, Report 2018/679, 2018.

32

[170] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of
fog computing and its security issues,” Concurrency and Computation:

Practice and Experience, vol. 28, no. 10, pp. 2991–3005, 2016.
[171] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From

intelligent grid to autonomous cars and vehicular clouds,” in IEEE

world forum on internet of things (WF-IoT), 2014, pp. 241–246.
[172] A. Abeshu and N. Chilamkurti, “Deep learning: the frontier for

distributed attack detection in fog-to-things computing,” IEEE Com-

munications Magazine, vol. 56, no. 2, pp. 169–175, 2018.
[173] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and

A.-R. Sadeghi, “D\" iot: A crowdsourced self-learning approach for
detecting compromised iot devices,” arXiv preprint arXiv:1804.07474,
2018.

[174] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen,
and E. Ilie-Zudor, “Chained anomaly detection models for federated
learning: An intrusion detection case study,” Applied Sciences, vol. 8,
no. 12, p. 2663, 2018.

[175] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated
learning-based computation offloading optimization in edge computing-
supported internet of things,” IEEE Access, vol. 7, pp. 69 194–69 201,
2019.

[176] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas,
“Federated learning based proactive content caching in edge comput-
ing,” in IEEE GLOBECOM, 2018, pp. 1–6.

[177] Y. Qian, L. Hu, J. Chen, X. Guan, M. M. Hassan, and A. Alelaiwi,
“Privacy-aware service placement for mobile edge computing via
federated learning,” Information Sciences, vol. 505, pp. 562–570, 2019.

[178] M. Chen, O. Semiari, W. Saad, X. Liu, and C. Yin, “Federated echo
state learning for minimizing breaks in presence in wireless virtual
reality networks,” arXiv preprint arXiv:1812.01202, 2018.

[179] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency v2v communications,” in IEEE

GLOBECOM, 2018, pp. 1–7.
[180] Y. Saputra, H. Dinh, D. Nguyen, E. Dutkiewicz, M. Mueck, and

S. Srikanteswara, “Energy demand prediction with federated learning
for electric vehicle networks,” in IEEE GLOBECOM, 2019.

[181] K. K. Nguyen, D. T. Hoang, D. Niyato, P. Wang, D. Nguyen, and
E. Dutkiewicz, “Cyberattack detection in mobile cloud computing: A
deep learning approach,” in IEEE WCNC, 2018, pp. 1–6.

[182] T. U. of New Brunswick, “Nsl-kdd
https://www.unb.ca/cic/datasets/nsl.html.”

[183] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
Military communications and information systems conference, 2015,
pp. 1–6.

[184] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-

tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[185] S. Priya and D. J. Inman, Energy harvesting technologies. Springer,
2009, vol. 21.

[186] O. Chapelle and L. Li, “An empirical evaluation of thompson sam-
pling,” in Advances in neural information processing systems, 2011,
pp. 2249–2257.

[187] J. Chung, H.-J. Yoon, and H. J. Gardner, “Analysis of break in presence
during game play using a linear mixed model,” ETRI journal, vol. 32,
no. 5, pp. 687–694, 2010.

[188] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong,
“Caching in the sky: Proactive deployment of cache-enabled unmanned
aerial vehicles for optimized quality-of-experience,” IEEE Journal on

Selected Areas in Communications, vol. 35, no. 5, pp. 1046–1061,
2017.

[189] O. Guéant, J.-M. Lasry, and P.-L. Lions, “Mean field games and
applications,” in Paris-Princeton lectures on mathematical finance

2010. Springer, 2011, pp. 205–266.
[190] L. De Haan and A. Ferreira, Extreme value theory: an introduction.

Springer Science & Business Media, 2007.
[191] M. J. Neely, “Stochastic network optimization with application to

communication and queueing systems,” Synthesis Lectures on Com-

munication Networks, vol. 3, no. 1, pp. 1–211, 2010.
[192] P. You and Z. Yang, “Efficient optimal scheduling of charging station

with multiple electric vehicles via v2v,” in IEEE International Confer-

ence on Smart Grid Communications, 2014, pp. 716–721.
[193] P. Bradley, K. Bennett, and A. Demiriz, “Constrained k-means cluster-

ing,” Microsoft Research, Redmond, vol. 20, no. 0, p. 0, 2000.
[194] W. Li, T. Logenthiran, V.-T. Phan, and W. L. Woo, “Implemented iot-

based self-learning home management system (shms) for singapore,”
IEEE IoT Journal, vol. 5, no. 3, pp. 2212–2219, 2018.

[195] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[196] L. Jiang, R. Tan, X. Lou, and G. Lin, “On lightweight privacy-
preserving collaborative learning for internet-of-things objects,” 2019.

[197] Z. Gu, H. Jamjoom, D. Su, H. Huang, J. Zhang, T. Ma, D. Pendarakis,
and I. Molloy, “Reaching data confidentiality and model accountability
on the caltrain,” in International Conference on Dependable Systems

and Networks, 2019, pp. 336–348.
[198] A. Albaseer, B. S. Ciftler, M. Abdallah, and A. Al-Fuqaha, “Exploiting

unlabeled data in smart cities using federated learning,” arXiv preprint

arXiv:2001.04030, 2020.
[199] F. Lau, S. H. Rubin, M. H. Smith, and L. Trajkovic, “Distributed denial

of service attacks,” in IEEE international conference on systems, man

and cybernetics, vol. 3, Nashville, TN, Oct. 2000, pp. 2275–2280.
[200] W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor networks:

attack and defense strategies,” IEEE network, vol. 20, no. 3, pp. 41–47,
2006.

[201] M. Strasser, C. Popper, S. Capkun, and M. Cagalj, “Jamming-resistant
key establishment using uncoordinated frequency hopping,” in IEEE

Symposium on Security and Privacy, 2008, pp. 64–78.
[202] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning

for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[203] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed com-
parison of communication efficiency of split learning and federated
learning,” arXiv preprint arXiv:1909.09145, 2019.

[204] I. I. Eliazar and I. M. Sokolov, “Measuring statistical heterogeneity:
The pietra index,” Physica A: Statistical Mechanics and its Applica-

tions, vol. 389, no. 1, pp. 117–125, 2010.
[205] J.-S. Leu, T.-H. Chiang, M.-C. Yu, and K.-W. Su, “Energy efficient

clustering scheme for prolonging the lifetime of wireless sensor net-
work with isolated nodes,” IEEE communications letters, vol. 19, no. 2,
pp. 259–262, 2014.

Wei Yang Bryan Lim graduated with double First
Class Honours in Economics and Business Admin-
istration (Finance) from the National University of
Singapore (NUS) in 2018. He is currently an Alibaba
PhD candidate with the Alibaba Group and Alibaba-
NTU Joint Research Institute, Nanyang Technolog-
ical University, Singapore. His research interests
include Federated Learning and Edge Intelligence.

Nguyen Cong Luong is currently a lecturer in the
Faculty of Computer Science, PHENIKAA Univer-
sity, Hanoi, Vietnam. He is also a researcher in
the PHENIKAA Research and Technology Institute
(PRATI), Hanoi, Vietnam. His research interests
include signal processing and resource management
in wireless networks.

Dinh Thai Hoang (M’16) is currently a faculty
member at the School of Electrical and Data En-
gineering, University of Technology Sydney, Aus-
tralia. He received his Ph.D. in Computer Science
and Engineering from the Nanyang Technological
University, Singapore, in 2016. His research interests
include emerging topics in wireless communications
and networking such as ambient backscatter commu-
nications, vehicular communications, cybersecurity,
IoT, and 5G networks. Currently, he is an Editor of
IEEE Wireless Communications Letters and IEEE

Transactions on Cognitive Communications and Networking.

33

Yutao Jiao is currently a Ph.D. student in the School
of Computer Science and Engineering, Nanyang
Technological University (NTU), Singapore. His re-
search interests are mainly in resource allocation and
mechanism design in various topics including big
data analysis, machine learning and blockchain.

Ying-Chang Liang (Fellow, IEEE) was a Professor
with The University of Sydney, Australia, a Principal
Scientist and a Technical Advisor with the Institute
for Infocomm Research, Singapore, and a Visiting
Scholar with Stanford University, USA. He is cur-
rently a Professor with the University of Electronic
Science and Technology of China, China, where
he leads the Center for Intelligent Networking and
Communications. He serves as the Deputy Director
of the Artificial Intelligence Research Institute. His
research interests include wireless networking and

communications, cognitive radio, symbiotic networks, dynamic spectrum ac-
cess, the Internet of Things, artificial intelligence, and machine learning tech-
niques. Dr. Liang is a Foreign Member of Academia Europaea. He has been
recognized by Thomson Reuters (now Clarivate Analytics) as a Highly Cited
Researcher, since 2014. He received the Prestigious Engineering Achievement
Award from the Institution of Engineers, Singapore, in 2007, the Outstanding
Contribution Appreciation Award from the IEEE Standards Association, in
2011, and the Recognition Award from the IEEE Communications Society
Technical Committee on Cognitive Networks, in 2018. He was a recipient
of numerous paper awards, including the IEEE Jack Neubauer Memorial
Award, in 2014, and the IEEE Communications Society APB Outstanding
Paper Award, in 2012. He was the Chair of the IEEE Communications Society
Technical Committee on Cognitive Networks, and served as the TPC Chair
and Executive Co-Chair for the IEEE Globecom’17. He was also an Associate
Editor-in-Chief of the World Scientific Journal on Random Matrices: Theory
and Applications. He is the Founding Editor-in-Chief of the IEEE Journal
on Selected Areas in Communications: Cognitive Radio Series, and the Key
Founder and the Editor-in-Chief of the IEEE Transactions on Cognitive
Communications and Networking. He is also serving as the Associate Editor-
in-Chief for China Communications. He served as the Guest/Associate Editor
of the IEEE Transactions on Wireless Communications, the IEEE Journal of
Selected Areas in Communications, the IEEE Signal Processing Magazine, the
IEEE Transactions on Vehicular Technology, and the IEEE Transactions on
Signal and Information Processing Over Network. He was a Distinguished
Lecturer of the IEEE Communications Society and the IEEE Vehicular
Technology Society.

Qiang Yang (F’09) is the head of AI at WeBank
(Chief AI Officer) and Chair Professor at the Com-
puter Science and Engineering (CSE) Department of
Hong Kong University of Science and Technology
(HKUST), where he was a former head of CSE
Department and founding director of the Big Data
Institute (2015-2018). His research interests include
artificial intelligence, machine learning and data
mining, especially in transfer learning, automated
planning, federated learning and case-based reason-
ing. He is a fellow of several international societies,

including ACM, AAAI, IEEE, IAPR and AAAS. He received his PhD from
the Computer Science Department in 1989 and MSc in Astrophysics in
1985, both from the University of Maryland, College Park. He obtained
his BSc in Astrophysics from Peking University in 1982. He had been
a faculty member at the University of Waterloo (1989-1995) and Simon
Fraser University (1995-2001). He was the founding Editor in Chief of the
ACM Transactions on Intelligent Systems and Technology (ACM TIST) and
IEEE Transactions on Big Data (IEEE TBD). He served as the President of
International Joint Conference on AI (IJCAI, 2017-2019) and an executive
council member of Association for the Advancement of AI (AAAI, 2016 -
2020). Qiang Yang is a recipient of several awards, including the 2004/2005
ACM KDDCUP Championship, the ACM SIGKDD Distinguished Service
Award (2017) and AAAI Innovative AI Applications Award (2016, 2019). He
was the founding director of Huawei’s Noah’s Ark Lab (2012-2014) and a
co-founder of 4Paradigm Corp, an AI platform company. He is an author of
several books including Transfer Learning (Cambridge Press), Federated

Learning (Morgan Claypool), textbfIntelligent Planning (Springer), Crafting

Your Research Future (Morgan Claypool) and Constraint-based Design

Recovery for Software Engineering (Springer).

Dusit Niyato (M’09-SM’15-F’17) is currently a
professor in the School of Computer Science and
Engineering and, by courtesy, School of Physical
& Mathematical Sciences, at the Nanyang Tech-
nological University, Singapore. He received B.E.
from King Mongkuk’s Institute of Technology Lad-
krabang (KMITL), Thailand in 1999 and Ph.D.
in Electrical and Computer Engineering from the
University of Manitoba, Canada in 2008. He has
published more than 380 technical papers in the
area of wireless and mobile networking, and is an

inventor of four US and German patents. He has authored four books
including “Game Theory in Wireless and Communication Networks: Theory,
Models, and Applications” with Cambridge University Press. He won the
Best Young Researcher Award of IEEE Communications Society (ComSoc)
Asia Pacific (AP) and The 2011 IEEE Communications Society Fred W.
Ellersick Prize Paper Award. Currently, he is serving as a senior editor of
IEEE Wireless Communications Letter, an area editor of IEEE Transactions
on Wireless Communications (Radio Management and Multiple Access),
an area editor of IEEE Communications Surveys and Tutorials (Network
and Service Management and Green Communication), an editor of IEEE
Transactions on Communications, an associate editor of IEEE Transactions on
Mobile Computing, IEEE Transactions on Vehicular Technology, and IEEE
Transactions on Cognitive Communications and Networking. He was a guest
editor of IEEE Journal on Selected Areas on Communications. He was a
Distinguished Lecturer of the IEEE Communications Society for 2016-2017.
He was named the 2017, 2018, 2019 highly cited researcher in computer
science. He is a Fellow of IEEE.

Chunyan Miao received the BS degree from Shan-
dong University, Jinan, China, in 1988, and the
MS and PhD degrees from Nanyang Technological
University, Singapore, in 1998 and 2003, respec-
tively. She is currently a professor in the School
of Computer Science and Engineering, Nanyang
Technological University (NTU), and the director of
the Joint NTU-UBC Research Centre of Excellence
in Active Living for the Elderly (LILY). Her research
focus on infusing intelligent agents into interactive
new media (virtual, mixed, mobile, and pervasive

media) to create novel experiences and dimensions in game design, interactive
narrative, and other real world agent systems.

