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Federated Learning in Multi-RIS Aided Systems
Wanli Ni, Yuanwei Liu, Zhaohui Yang, Hui Tian, and Xuemin Shen

Abstract—This paper investigates the problem of model ag-
gregation in federated learning systems aided by multiple recon-
figurable intelligent surfaces (RISs). The effective integration of
computation and communication is achieved by over-the-air com-
putation (AirComp), which can be regarded as one of uplink non-
orthogonal multiple access (NOMA) schemes without individual
information decoding. Since all local parameters are transmitted
over shared wireless channels, the undesirable propagation error
inevitably deteriorates the performance of global aggregation.
The objective of this work is to i) reduce the signal distortion of
AirComp; ii) enhance the convergence rate of federated learning.
Thus, the mean-square-error (MSE) and the device set are
optimized by designing the transmit power, controlling the receive
scalar, tuning the phase shifts, and selecting participants in the
model uploading process. To address this challenging issue, the
formulated mixed-integer non-linear problem (P0) is decomposed
into a non-convex problem (P1) with continuous variables and a
combinatorial problem (P2) with integer variables. In an effort
to solve the MSE minimization problem (P1), the closed-form
expressions for transceivers are first derived, then the multi-
antenna cases are addressed by the semidefinite relaxation. Next,
the problem of phase shifts design is tackled by invoking the
penalty-based successive convex approximation method. In terms
of the combinatorial optimization problem (P2), the difference-
of-convex programming is adopted to optimize the device set
for convergence acceleration, while satisfying the aggregation
error demand. After that, an alternating optimization algorithm
is proposed to find a suboptimal solution for the original non-
convex problem (P0), where the corresponding convergence and
complexity are analyzed. Finally, simulation results demonstrate
that i) the designed algorithm can converge faster and aggregate
model more accurately compared to baselines; ii) the training loss
and prediction accuracy of federated learning can be improved
significantly with the aid of multiple RISs.

Index Terms—Over-the-air federated learning, reconfigurable
intelligent surface, non-orthogonal multiple access, resource al-
location.

I. INTRODUCTION

As one of the most promising frameworks of distributed
machine learning, federated learning enables geo-distributed
Internet-of-Thins (IoT) devices to collaboratively perform
model training while keeping the raw data processed locally
[2], [3]. By doing so, federated learning has its unique ad-
vantages over centralized learning paradigms [4], [5]. Firstly,
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federated learning can effectively avoid the transmission of
privacy-sensitive data over the wireless channels and is able
to keep the collected data stored at different IoT devices,
which is beneficial to preserve user privacy and data security
[5]–[7]. Secondly, due to the fact that learning devices only
need to communicate with the base station (BS) on the up-
to-date model parameters [5], thus the communication over-
head can be significantly reduced in a distributed learning
fashion, which helps to overcome the drawback of excessive
propagation delay caused by the potential network congestion
[6]. Thirdly, exploiting the superposition property of multiple-
access channel (MAC), over-the-air computation (AirComp)
can be adopted to complete the local parameter communication
and global model computation processes via concurrent trans-
mission [8]. Broadly speaking, AirComp without individual
information decoding can be regarded as one of uplink non-
orthogonal multiple access (NOMA) techniques [7], [9], and
thus both the completion time and spectrum efficiency of
the over-the-air federated learning (AirFL) system can be
improved in comparison with the conventional orthogonal
multiple access-based schemes [5], [10]. Lastly, compared
with the conventional cloud learning, federated learning is
inherently conducive to offloading compute-intensive tasks
from the central server to the edge devices [11], [12], which
can speed up the processing of real-time data by making full
use of the dispersed computation resources at the network
edge. However, owing to the resource-limited IoT devices and
the non-uniform fading channels [13], problems such as the
signal distortion and aggregation error will seriously degrade
the convergence rate and prediction accuracy of the federated
learning system. Therefore, it is important to design innova-
tive, spectrum-efficient, and communication-efficient solutions
for the federated learning over IoT networks.

By installing a large number of passive reflecting elements
on the programmable surfaces, reconfigurable intelligent sur-
faces (RISs, also known as intelligent reflecting surfaces, relay
2.0, etc.) have been recognized as a novel technology to
smartly reconfigure the complex propagation environment of
radio signals [14]. Specifically, through judiciously controlling
the amplitude and phase shift of each reflecting element in
real time, RISs are able to proactively modify the wireless
channels between the BS and devices, and there is no need
for complicated interference management even if multiple
RISs are considered [15]. Moreover, although traditional active
relays that support multiple-input multiple-output (MIMO) or
millimeter-wave communication can achieve similar effects,
RISs have better performance in terms of hardware cost and
energy consumption [16]. Thereby, the software-controlled
RISs provide a new paradigm for realizing a smart and
programmable wireless environment and then further improv-
ing the performance of existing networks. Nevertheless, the
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ever-increasing complexity of wireless networks composed
of a set of heterogeneous facilities makes effective model-
ing and networking difficult if not impossible. Hence, the
efficient deployment of RIS-aided intelligent IoT networks
faces challenges from system characterization to performance
optimization [15]–[17].

Sparked by the aforementioned benefits and issues of AirFL
and RISs, it is imperative and valuable to integrate them
together to reduce the propagation error of distributed learning
and accelerate the convergence rate of global aggregation, due
to the following profits and reasons:
• First of all, as an uplink NOMA scheme, the performance

of AirFL can be improved by flexibly designing the phase
shifts of RISs to exploit the superposition property of
MAC channels. Through aligning multiple signals via
RISs, MAC channels can be deemed as a virtual computer
capable of matching the desired aggregation function of
AirFL. The efficient combination of communication and
computation also helps to boost the spectrum utilization
of resource-constrained IoT networks.

• Then, the signal distortion of AirComp can be further
reduced by deploying multiple RISs to merge reflected
signals dexterously, so that the model parameters from
local users can be aggregated more accurately. Another
benefit of RISs is to provide available links for cell-
edge users blocked by obstacles, thereby enhancing the
coverage and connectivity of federated learning. After
all, more learning participants with reliable channels can
speed up the convergence rate of global aggregation.

• Last but not least, compared with conventional active
relays, RISs usually do not require dedicated energy
supplies for operation. Therefore, RISs can be easily in-
tegrated into existing wireless networks without changing
any standard or hardware, so that the energy efficiency of
conventional IoT networks can be enhanced significantly
without increasing extra huge operating expenses.

A. Related Works

Recently, both federated learning and RISs have attracted
remarkable attention and have been implemented separately
in various application scenarios. So far, the majority of pre-
vious works such as [9], [15], [18]–[25] have studied the
implementation of federated learning over wireless networks.
Specifically, by implementing distributed stochastic gradient
descent for parameter updating, Amiri et al. [21] proposed
digital and analog communication schemes for federated
learning over a shared bandwidth-limited fading MAC. In
order to shorten the communication latency, Zhu et al. [9]
proposed a broadband analog aggregation scheme for federated
learning, which outperformed the conventional orthogonal
access. Furthermore, Yang et al. [15] investigated the resource
allocation problem of joint federated learning and wireless
communication to strike a trade-off between completion time
and energy consumption for edge devices. For the purpose
of minimizing the training error of federated learning, Chen
et al. [22] derived a closed-form expression for the expected
convergence rate. Taking both the intra-node interference and

the non-uniform fading into account, the authors in [23]
analyzed the aggregation performance of AirComp and derived
the closed-form expression of the mean-square-error (MSE)
outage, then receive antenna selection was adopted to avoid
massive channel state information (CSI) gathering in the
MIMO networks. Exploiting the superposition property of
MAC and the functional decomposition, Liu et al. [24] focused
on the MSE minimization problem of AirComp by design-
ing the transceiver policy under the power constraint, where
the closed-form expressions for computation-optimal strategy
were derived. With the aim of accelerating model aggregation
and reducing test error, the authors in [25] jointly optimized
the device selection and receive vector to improve convergence
rate and prediction accuracy of federated learning.

Meanwhile, several basic challenges with respect to (w.r.t.)
RIS-aided communications have been solved in a number of
prior works such as [15], [16], [26]–[31]. With the objective
to maximize the energy efficiency in the RIS-incorporated
cellular systems, Huang et al. [26] jointly optimized the
active and passive beamforming in a downlink multi-user
communication network. By deploying RISs to eliminate the
inter-cluster interference in MIMO-NOMA networks for per-
formance enhancement, Hou et al. [27] obtained the minimal
required number of RISs for the signal cancellation demand.
Considering the user fairness in RIS-aided systems, the max-
min problem was optimized in [28] by designing the transmit
power and phase shifts in an iterative manner. Unlike the
alternating optimization, to solve the high-dimension problem
of the sum-rate maximization in RIS-assisted MIMO systems,
Huang et al. [29] leveraged the deep reinforcement learning
(DRL) to obtain the joint design of the transmit beamforming
and the reflection matrix. Similarly, using DRL approaches,
an agent for determining the position and phase shifts of
RIS was trained in [30] to maximize the long-term energy
efficiency of NOMA networks by learning the optimal control
strategy in a trial-and-error manner. Additionally, considering
the problem of resource allocation in the RIS-aided NOMA
networks, our previous work in [31] jointly optimized the
phase shifts, transmit power, user pairing and subchannel
assignment to maximize system throughput. With the aid
of multiple RISs, the work in [15] maximized the energy
efficiency by dynamically controlling the on-off states of RISs
and iteratively optimizing their corresponding phase shifts.

B. Challenges and Contributions
Since artificial intelligence (AI) plays a defining role in the

design of future 6G networks, RIS-aided federated learning
can be deemed as an attractive candidate actualizing the
efficient integration of distributed learning and wireless IoT
networks, which caters to the needs of next-generation wireless
networks supporting massive connectivities of AI. However,
there is still a paucity of research contributions on investigating
AirFL systems aided by intelligent surfaces, especially for the
multi-objective problem w.r.t. aggregation distortion and de-
vice selection in AirFL, thereby motivating this work. Before
exploiting specific techniques to improve federated learning
performance over non-ideal wireless IoT networks, we first
summarize potential challenges as follows:
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• So far, it is a highly challenging issue to minimize MSE
by jointly designing the transmit power, receive scalar,
and reflection coefficients in a communication-efficient
manner, while guaranteeing the global aggregation error
requirements within the available power budget.

• Moreover, one can know that the combinational op-
timization w.r.t. the device selection problem is non-
deterministic polynomial-time (NP) hard. The complexity
of exhaustive search is exponential, so it is non-trivial to
obtain an optimal solution in polynomial time.

In order to reduce propagation error while speeding up
convergence rate, we jointly optimize model synchronization
and device selection problems in AirFL systems using multiple
RISs. Notably, RISs play a vital role in turning the wireless
channels into a functional computer to better match the desired
weighted sum feature of federated learning. More precisely,
multiple geo-distributed RISs are deployed to enhance the pa-
rameter aggregation from IoT devices to the BS in an efficient
manner. Due to the non-convexity of the objective function
and constraints, the formulated problem is difficult to solve
optimally. For the purpose of expanding our contributions,
both single-antenna and multi-antenna cases are considered, in
which the closed-form solutions and iterative algorithms are
developed to obtain solutions with high performance. To the
best of our knowledge, RIS-aided AirFL is still at its nascent
stage and many open issues remain to be addressed such as
the joint design of transmit-reflect-and-receive in multi-RIS
aided IoT networks. The main contributions of this work can
be summarized as follows:

1) We propose a framework of resource allocation and
device selection in the AirFL system for model aggre-
gation with the aid of multiple RISs. Accordingly, we
formulate a bi-criterion problem for aggregation accu-
racy enhancement and convergence rate improvement
by jointly optimizing the transmit power, receive scalar,
phase shifts, and device set, subject to power constraints
of devices and unit-modulus constraints of RISs as well
as the aggregation error requirement. Meanwhile, we
analyze that the original problem is a mixed-integer non-
linear programming (MINLP) problem, which is NP-
hard and is non-trivial to solve directly.

2) In order to tackle the non-convex MSE minimization
problem with continuous variables, we first derive the
closed-form expressions for transceiver designs. Next,
we adopt methods such as semidefinite relaxation (SDR)
and successive convex approximation (SCA) to trans-
form the non-convex subproblems into convex ones, and
then solve them in polynomial time complexity. After-
wards, we invoke difference-of-convex (DC) program-
ming to handle the cardinality maximization problem
with combinatorial features. Subsequently, we propose
an alternating optimization algorithm to solve the orig-
inal MINLP problem and analyze the corresponding
convergence and complexity.

3) We conducts comprehensive simulations on the syn-
thetic and real datasets to validate the effectiveness
of our designed algorithms. Numerical results show

that the proposed communication-efficient solutions for
RIS-aided AirFL systems outperform benchmarks, such
as single-RIS and random-phase schemes. Specifically,
our algorithms can achieve better convergence rate and
lower learning error in the experiments of implementing
AirFL for linear regression and image classification.
Meanwhile, we verify that the deployment of RISs
is beneficial to alleviate propagation error and reduce
signal distortion of AirFL over shared wireless channels.

C. Organization and Notation

The rest of this paper is organized as follows. First, the
system model of multi-RIS aided AirFL is given in Section
II. Then, a bi-criterion optimization problem is formulated in
Section III where the problem decomposition is conducted as
well. Next, an alternating optimization algorithm is proposed
in Section IV. The corresponding convergence and complexity
are analyzed in Section V. Finally, extensive numerical sim-
ulations are presented in Section VI, which is followed by
conclusion in Section VII.

The key notations of this paper are summarized as follows.
Scalars are denoted by italic letters, vectors and matrices
are denoted by bold-face lower-case and uppercase letters,
respectively. The space of m × n complex-valued matrices
is denoted by Cm×n. The distribution of a complex Gaussian
random vector with mean vector µ and covariance matrix σ2

is denoted by CN (µ, σ2), and ∼ stands for ”distributed as”.
For a complex number x, the amplitude is denoted by |x|.
Meanwhile, Re(x) and Im(x) denote the real and imaginary
parts of x, respectively. For a complex vector x, diag(x)
denotes a diagonal matrix with each diagonal element being
the corresponding element in x.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a RIS-aided AirFL
system consisting of one BS, N intelligent IoT devices, and L
RISs. Assume that both the BS and devices are equipped with a
single antenna, and each RIS comprises M reflecting elements.
Instead of aggregating all local parameters, the number of
devices selected to participate in the model uploading process
is K out of N (1 ≤ K ≤ N). The sets of selected devices
and RISs are indexed by K = {1, 2, . . . ,K} and L =
{1, 2, . . . , L}, respectively. Let D = {D1,D2, . . . ,DK} de-
note the dataset collected by all selected devices, where Dk is
the raw data recorded by the k-th device. The diagonal matrix
of the `-th RIS is denoted by Θ` = diag(ejθ

1
` , ejθ

2
` , . . . , ejθ

M
` ),

where θm` ∈ [0, 2π] denotes the phase shift of the m-th
reflecting element on the `-th RIS1.

The block diagram of AirFL is illustrated in Fig. 2, which
can be deemed as a function-centric uplink NOMA technique
that does not need to decode users’ information one by one. All
devices transmit their up-to-date local models {wk | ∀k ∈ K}

1In practice, each RIS can communicate with the BS via a separate link
connected by a programmable controller that is capable of smartly adjusting
the phase shifts of all reflecting elements in real time [15], [16], [20].
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Fig. 1. An illustration of over-the-air federated learning in multi-RIS aided IoT networks.

simultaneously over the same time-frequency resource2, then
the target function computed at the BS can be written as [24]

ψ (w1,w2, . . . ,wK) = φ

(∑K

k=1
ϕk (wk)

)
, (1)

where wk = fk(Dk) is the updated local model at the k-
th device, ϕk(·) and φ(·) denote the pre-processing function
and the post-processing function, respectively. Before the BS
computes the target function ψ(·), it needs to collect the target-
function variable s, defining as

s =
∑K

k=1
sk and sk = ϕk (wk) , (2)

where sk ∈ C is the transmit symbol after pre-processing at
the k-th device.

Let hk ∈ C, g`k ∈ CM×1, and ḡ` ∈ C1×M denote the
channel responses from the k-th device to the BS, from the
k-th device to the `-th RIS, and from the `-th RIS to the
BS, respectively. Using the AirComp technique, the received
superposition signal at the BS can be given by

y =

K∑
k=1

(
hk +

L∑
`=1

ḡ`Θ`g
`
k

)
pksk + n0, (3)

where pk ∈ C is the transmit power scalar at the k-th
device, n0 ∼ CN (0, σ2) is the additive white Gaussian noise
(AWGN), and σ2 is the noise power.

The transmit symbols are assumed to be independent and
are normalized with unit variance, i.e., E(sH

k sk′) = 0,∀k 6= k′

and E(|sk|2) = 1. Then, the transmit power constraint at the
k-th device can be given by

E(|pksk|2) = |pk|2 ≤ P0, ∀k ∈ K, (4)

2Unlike the conventional communicate-then-compute schemes, AirComp
is capable of harnessing the channel interference to integrate communication
and computation into one concurrent transmission [23]–[25]. Moreover, all
selected devices is assumed to be well synchronized so that the signals
are perfectly aligned [32]–[34], the analysis of asynchronous transmission
is beyond the scope of this paper.

where P0 > 0 is the available maximum transmit power of
each device.

By employing a receive scalar a ∈ C to the received signal
y, the estimation at the BS is thus given by

ŝ =
1
√
η
ay =

a
√
η

K∑
k=1

h̄kpksk +
a
√
η
n0, (5)

where h̄k = hk+
∑L
`=1 ḡ`Θ`g

`
k is the combined channel, and

η > 0 is a normalizing factor.

Comparing the target-function variable s in (2) with the
observed one ŝ in (5), the corresponding error can be cal-
culated by e = ŝ − s. In this paper, the MSE is adopted
as the performance metric of AirFL, which is different from
the rate-centric NOMA transmission in the literature [27]–[31]
that aim to maximize the system throughput or the individual
rate. Specifically, to quantify the performance of AirComp in
global aggregation, the distortion of ŝ w.r.t. s is estimated by
the MSE defined as

MSE(ŝ, s) , E(|ŝ− s|2) =

K∑
k=1

∣∣∣∣ 1
√
η
ah̄kpk − 1

∣∣∣∣2 +
σ2|a|2

η
.

(6)

Note that the first-order Taylor approximation of the com-
puted target function ψ̂ = φ(ŝ) at s can be rewritten by

ψ̂ ≈ φ(s) + φ′(s)(ŝ− s). (7)

Then, with given φ′(s), the equivalent transformation between
the MES of ψ and the MSE of s can be expressed as

MSE(ψ̂, ψ) ≈ |φ′(s)|2 MSE(ŝ, s), (8)

which implies that a minimum MES of ψ also leads to a
minimum MSE of s. At this point, it can be concluded
that the minimization of (6) is a reasonable surrogate of the
minimum MSE(ψ̂, ψ). Thus, MSE(ŝ, s) is regarded as one of
the performance metrics in the rest of this paper.
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Fig. 2. Block diagram of federated learning via over-the-air computation.

III. PROBLEM FORMULATION AND DECOMPOSITION

Given the considered system model of RIS-aided federated
learning, both the aggregation error and convergence rate
depend on resource allocation and device selection schemes.
Therefore, we shall investigate the optimization of transmit
power, receive scalar, phase shifts, and learning participants
to minimize MSE for prediction accuracy improvement, while
selecting as more devices as possible for convergence accel-
erating. To this end, the bi-criterion optimization problem can
be formulated as

(P0) : min
p,a,θ,K

MSE(ŝ, s)− γ |K| (9a)

s.t. |pk|2 ≤ P0, ∀k ∈ K, (9b)
0 ≤ θm` ≤ 2π, ∀`,m, (9c)
MSE(ŝ, s) ≤ ε0, (9d)
1 ≤ |K| ≤ N, (9e)

where p = [p1, p2, . . . , pK ]T is the transmit power vector,
θ =

[
θ1

1, θ
2
1, . . . , θ

M
1 , θ1

2, θ
2
2, . . . , θ

M
L

]T
is the phase shifts

vector, ε0 > 0 is the aggregation error requirement, |K| = K
is the cardinality of set K, and γ > 0 is a problem parameter
to achieve a trade-off between the aggregation error and the
convergence rate. By adjusting the parameter γ, the optimal
trade-off curve between MSE(ŝ, s) and |K| can be swept
out. Additionally, the transmit power constraints are provided
in (9b). The phase shift constraints are given in (9c). The
MSE tolerance of global aggregation is presented in (9d). The
number of learning participants is limited in (9e).

The bi-criterion problem (9) is a MINLP problem due to
the coupling of continuous variables and discrete variables
in both objective function and constraints. More specifically,
the original problem (9) is still intractable even for the case
without RISs, i.e., L = 0, due to the non-convex objective
function and the combinatorial features of device selection.
One can know that it is highly intractable to directly find the
global optimal solution of the NP-hard problem (9). Upon this,
in order to address this MINLP problem (P0) effectively, we
propose to decouple it into two subproblems (P1) and (P2).
Specifically, if the set of selected device K is fixed, problem
(9) becomes subproblem (10) of MSE minimization. If the
transmit power vector p, the receive scalar a and the phase

shifts θ are fixed, problem (9) becomes subproblem (11) of
combinatorial optimization, i.e.,

1) MSE minimization: Given the set of device selection,
the first objective is to minimize MSE by dynamically
controlling the phase shifts of each RIS and optimizing
the transmit power of each selected device as well as
the receive scalar at the BS, subject to power constraints
for devices and unit-modulus constraints for RISs. As a
result, the corresponding MSE minimization subproblem
is given by

(P1) : min
p,a,θ

MSE(ŝ, s) (10a)

s.t. (9b) and (9c). (10b)

2) Combinatorial optimization: Given the transmit power,
receive scalar and phase shifts, the second objective is
to minimize the aggregation error and maximize the
number of selected devices at the same time by solving
the following combinatorial optimization subproblem,
subject to the MSE requirement for global aggregation
and the cardinality constraint for participant number,
which can be formulated as

(P2) : min
K

MSE(ŝ, s)− γ |K| (11a)

s.t. (9d) and (9e). (11b)

The MSE minimization problem (10) is non-linear and non-
convex even for the single-device case with K = 1, due
to the close coupling of p, a and θ in MSE(ŝ, s). Not to
mention that problem (10) is still non-convex even when we
only check the feasibility of phase shifts design. Moreover,
the combinatorial optimization problem (11) with multiple
constraints is NP-hard and is non-trivial to obtain a high-
performance solution as well. Furthermore, problem (10) is
still a challenging issue even when some simplified cases
are considered, while it is also almost impossible to obtain
a closed-form solution to problem (11). Fortunately, some
common relaxation approaches can be adopted to transform
the non-convex subproblems into convex ones, which can
be solved separately and alternatively over iterations. This
motivates us to decompose the original problem into multiple
subproblems. Thus, the alternating optimization method is
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Fig. 3. Roadmap and flowchat: (a) an overview of the problem decomposition and proposed methods to subproblems; (b) a flowchart of the proposed
alternating optimization algorithm.

invoked as an intuitive approach to solve the non-linear and
non-convex problem (9) in an efficient manner, i.e., fix one and
optimize the other, then repeat this in turn until the termination
condition is satisfied.

However, due to the rapidly-varying CSI, it is impractical
and not cost-effective for the resource-scarce devices to ac-
quire global CSI when they allocate transmit power for model
uploading. To reduce the high signaling overhead of CSI
feedback, it is of significance to develop a communication-
efficient scheme for distributed power allocation. Furthermore,
one straightforward approach to find the optimal set of partici-
pating devices is the exhaustive search, but it inevitably results
in an unacceptable computational complexity, i.e., O(2N ). As
a result, to avoid the exponential complexity, it is imperative
and desirable to design computation-efficient algorithms with
polynomial time complexity.

To illustrate the problem decomposition, we provide a tree
diagram in Fig. 3a to clearly delineate the connections between
the key reformulated subproblems and the corresponding
solutions. Specifically, when the set of selected device is
fixed, the non-convex MSE minimization subproblem (10) is
solved by the derived closed-form solutions and the developed
SCA-based algorithm. When the transceiver and reflection
coefficients are fixed, finding the optimal solution is still
non-trivial due to the combinatorial property of subproblem
(11) in terms of the device selection. Inspired by the DC
representation method described in [35], a natural way to
address it is invoking the DC programming. Additionally,
we provide a flowchart in Fig. 3b to draw the steps of
the proposed alternating optimization algorithm for solving
resource allocation and device selection problems in single-
antenna cases. The flowchart for multi-antenna cases can be
obtained similarly. Our specific solutions to subproblems in
terms of transmit power, receive scalar, phase shifts and device
selection are presented in the following Section IV.

IV. ALTERNATING OPTIMIZATION

A. Transmit Power Allocation

By virtue of the channel estimation methods in [36], [37],
it is assumed that the global CSI is available to the BS, and
each device has the knowledge of the receive scalar a and its
own CSI. Then, with fixed phase shifts θ in problem (10),

the optimal transmit power at the k-th device is given in a
closed-form expression as follows.

In order to minimize the MSE(ŝ, s) in (10a), i.e.,∑K
k=1 |ah̄kpk/

√
η − 1|2 = 0, the optimal transmit power at

the k-th device can be designed as

p∗k =
√
η

(
ah̄k

)H∣∣ah̄k∣∣2 , ∀k ∈ K, (12)

where channel conditions h̄k in (12) can be further tuned by
the multiple geo-distributed RISs, thereby reducing the energy
consumption of transmitters and prolonging network lifetime.
Combining the transmit power constraints for all devices in
(9b), the normalizing factor η can be calculated by

η = P0 min
k

∣∣ah̄k∣∣2 , (13)

which is determined by the maximum transmit power of each
device and the minimum equivalent channel gain

∣∣ah̄k∣∣2 of all
devices. Furthermore, taking the closed-form expression (12)
into accounts, it can be noted that each device only needs its
own CSI h̄k, the normalizing factor η and the receive scalar a
to determine the optimal transmit power pk. More specifically,
h̄k can be estimated with the downlink multicasting pilots, η
and a are calculated at the BS then broadcasted to all devices.
Therefore, one of the key contributions of this work can be
stated in the remark below.

Remark 1: The designs for the transmit power at the
device and the normalizing factor at the BS help a lot to
avoid the massive signaling overhead of global CSI feedback.
Namely, it can work in a communication-efficient manner and
is beneficial to save bandwidth and alleviate congestion for
the resource-limited wireless networks.

Combining (12) and (13), the MSE measurement in (6) is
further rewritten as

MSE(ŝ, s) =
σ2|a|2

P0 min
k

∣∣ah̄k∣∣2 . (14)

Thus, the MSE minimization problem (10) can be reformu-
lated as

min
a,θ

max
k

σ2|a|2

P0

∣∣ah̄k∣∣2 s.t. (9c). (15)

Proposition 1: When the BS is equipped with Nr antennas,
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the receive vector can be denoted by a ∈ CNr×1 and the
combined channel vector becomes h̄k ∈ CNr×1. Then, similar
to the solutions obtained in (12), the optimal transmit power
at the k-th device and the normalizing factor at the BS can
be derived as

p∗k =
√
η

(
aHh̄k

)H∥∥aHh̄k
∥∥2 , ∀k ∈ K, (16)

η = P0 min
k

∥∥aHh̄k
∥∥2
, (17)

where h̄k = hk+
∑L
`=1 Ḡ`Θ`g

`
k, hk ∈ CNr×1 is the channel

vector between the BS and the k-th device, and Ḡ` ∈ CNr×M

is the channel matrix from the `-th RIS to the BS.

B. Receive Scalar Control

To facilitate analysis and derivation, we transform the min-
max problem (15) into a minimization problem with non-
convex quadratic constraints. More precisely, the problem (15)
is equivalent to the following non-linear minimization problem
with non-convex quadratic constraint:

min
a,θ

|a|2 (18a)

s.t.
∣∣ah̄k∣∣2 ≥ 1,∀k ∈ K, (18b)
(9c). (18c)

Then, we provide the closed-form solutions for the optimal re-
ceive scalar and the optimal reflection matrix in the following
theorem.

Theorem 1: The optimal receive scalar a∗ to problem (18)
can be given by

|a∗| = 1

min
k

∣∣h̄k∣∣ . (19)

Meanwhile, the optimal reflection matrix Θ∗` satisfies

arg

(∑L

`=1
ḡ`Θ

∗
`g
`
k

)
= arg (hk) ,∀k ∈ K, (20)

where arg(·) is a function that returns the phase shift of the
input complex number.

Proof: See Appendix A.
It can be noticed that the objective value of problem (18) just

depends on the amplitude of the receive scalar a, we thus only
need to optimize |a| and the phase shift of a can be arbitrary,
which is confirmed by the closed-form solution (19) obtained
in Theorem 1. Furthermore, due to the implicit expression in
(20), one can know that the optimal reflection matrix Θ∗` is not
unique, the approach to find a feasible one will be proposed in
Section IV-C. As an extension, the receiving control problem
in the multi-antenna case at the BS is given below.

Corollary 1: Considering the multi-antenna case with the
solutions derived in Proposition 1, the problem (18) can be
rewritten as

min
a,θ

‖a‖2 (21a)

s.t.
∥∥aHh̄k

∥∥2 ≥ 1,∀k ∈ K, (21b)
(9c). (21c)

According to the problem (21) in Corollary 1, when the
phase shifts θ is fixed, the subproblem of receive vector control
in the multi-antenna case can be written as

min
a
‖a‖2 s.t. (21b). (22)

To address the non-convexity of problem (22), an intuitive
approach is to reformulate it as a semidefinite programming
(SDP) problem using the matrix lifting technique. Specifically,
we first define Hk = h̄kh̄

H
k and A = aaH, while satisfying

A � 0 and rank(A) = 1. Thereby, problem (22) can be
equivalently reformulated as the following matrix optimization
problem with a rank-one constraint:

min
A

tr (A) (23a)

s.t. tr (AHk) ≥ 1,∀k ∈ K, (23b)
A � 0, (23c)
rank(A) = 1. (23d)

By applying the SDR technique to simply drop the non-
convex rank-one constraint (23d), the problem (23) can be
rewritten as

min
A

tr (A) (24a)

s.t. (23b) and (23c), (24b)

which is convex and can be efficiently solved by existing opti-
mization solvers such as CVX [38]. If the obtained optimal so-
lution A∗ satisfies rank(A∗) = 1, the corresponding optimal
receive scaling vector a∗ can be recovered by A∗ = a∗a∗H.
Whereas, it is worth noting that if rank(A∗) 6= 1, a near-
optimal rank-one solution can be calculated by Ã∗ = λuuH

to approximate the optimal higher-rank solution A∗, where u
is the eigenvector of A∗, and λ is the corresponding maximum
eigenvalue. In the sequel, the suboptimal receive scaling vector
ã∗ can be approximately obtained as ã∗ =

√
λu. Alterna-

tively, the Gaussian randomization method [39] can be adopted
as a surrogate approach to similarly obtain a feasible solution
to problem (23), if the higher-rank solution A∗ obtained by
solving (24) fails to be rank-one.

To overcome the limitations brought by dropping the rank-
one constraint directly, and with the aim of alleviating the
performance loss when the SDR is not tight for problem (23),
we instead propose the SCA method to solve problem (22).
First of all, we introduce the following auxiliary variables to
represent the real part and the imaginary part of aHh̄k as

bk = [x̄k, ȳk]T, ∀k ∈ K, (25)

where x̄k = Re(aHh̄k), ȳk = Im(aHh̄k). Then, the non-
convex constraint (21b) becomes

∥∥aHh̄k
∥∥2

= ‖bk‖2 ≥
1, ∀k ∈ K, which is still non-convex. When problem (21) is
solved by the iterative approach, we use the first-order Taylor
expansion to approximate the lower bound of the non-convex
part based on the previous iteration, which is given by

‖bk‖2 ≥
∥∥∥b(z)

k

∥∥∥2

+ 2
(
b

(z)
k

)T (
bk − b

(z)
k

)
≥ 1, ∀k ∈ K,

(26)
where b

(z)
k is one feasible solution at the z-th iteration.
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Algorithm 1 SDR-Based Algorithm for Receiving Control
1: Initialize the tolerance ε, maximum iteration number N1,

and the current iteration n1 = 0.
2: Given p and θ, compute A∗ by solving (24).
3: if rank(A∗) = 1 then
4: Recover a∗ by rank-one decomposition A∗ = a∗a∗H.
5: else
6: Calculate the eigen-decomposition Ã∗ = λuuH.
7: Obtain a(0) = ã∗ =

√
λu.

8: Derive {b(0)
k } =

{[
Re(ã∗Hh̄k), Im(ã∗Hh̄k)

]
|∀k
}

.
9: repeat

10: Compute a(n1+1) and {b(n1+1)
k } by solving (27).

11: Update n1 := n1 + 1.
12: until |a(n1) − a(n1−1)|2 < ε or n1 > N1.
13: end if
14: Output the optimal a∗ or the converged solution a(n1).

Consequently, using the auxiliary variables (25) and replac-
ing (21b) with its approximation (26) during each iteration,
the non-convex problem (22) can be approximated by

min
a,{bk}

‖a‖2 s.t. (25) and (26), (27)

which is convex and can be efficiently solved by CVX as well.
Note that the initial solutions of a(0) and {b(0)

k } are found
by solving the SDP problem (24). Then, the performance
is continuously enhanced by resolving problem (27) in an
iterative fashion. Thus, based on the above analysis for the
multi-antenna case at the BS, the SDR-based algorithm for
receive vector control can be summarized in Algorithm 1.

C. Phase Shifts Design

Although the implicit expression of the optimal reflection
matrix has been given in (20), it is still difficult to search
an optimal solution due to its non-uniqueness and the curse
of dimensionality. Therefore, it is necessary to develop an
efficient method to solve the problem of phase shifts design
suboptimally. Specifically, given the receive scalar a, the
problem (18) is reduced to a feasibility-check problem and
can be reformulated as

find
θ

θ (28a)

s.t. (9c) and (18b). (28b)

Since only a feasible solution of the phase shifts θ can be
obtained by solving problem (28), it remains unknown whether
the objective value of (18) will monotonically decrease or
not over iterations. From the closed-form solution obtained
in (19), one can know that the value of mink

∣∣h̄k∣∣ should be
maximized to enforce the reduction of the receive scalar |a|
over iterations. To this end, we transform the above feasibility-
check problem (28) into a max-min problem with an explicit
objective to enforce the reduction of |a| for achieving better
performance and faster convergence. As a result, the problem
(28) is rewritten as

max
θ

min
k∈K

∣∣h̄k∣∣ s.t. (9c). (29)

Then, we introduce an auxiliary variable β = mink∈K
∣∣h̄k∣∣

to further transform the max-min problem (29) into a joint
maximization problem w.r.t. θ and β, which is given by

max
θ,β

β (30a)

s.t.
∣∣h̄k∣∣2 ≥ β,∀k ∈ K, (30b)
(9c). (30c)

It is obvious that both the objective and constraints are linear
functions for β, but the quadratically constraint (30b) is non-
convex for θ. Additionally, due to the uncertainty of phase
rotation [16], the problem (30) cannot be straightforwardly
transformed into a tractable second-order cone programming
(SOCP) optimization problem. Therefore, we combine the
penalty method and SCA technique to approximately solve
it in the following content.

Let vm` = ejθ
m
` , then the equivalent channel fading after

receiver scaling w.r.t. the `-th RIS for the k-th device can be
denoted as

ḡ`Θ`g
`
k = Φ`

kv`, (31)

where v` = [ejθ
1
` , ejθ

2
` , . . . , ejθ

M
` ]T and Φ`

k = ḡ`diag
(
g`k
)
.

As such, the constraint (30b) is transformed as∣∣∣∣hk +
∑L

`=1
ḡ`Θ`g

`
k

∣∣∣∣2 =

∣∣∣∣hk +
∑L

`=1
Φ`
kv`

∣∣∣∣2 ≥ β, ∀k.
(32)

With the above substitutions (32), the joint maximization
problem (30) can be rewritten as

max
v,β

β (33a)

s.t. |vm` | = 1, ∀`,m, (33b)
|hk + Φkv|2 ≥ β, ∀k, (33c)

where v = [v1,v2, . . . ,vL]H and Φk = [Φ1
k,Φ

2
k, . . . ,Φ

L
k ].

Although the constraints and variables in (33) are changed,
and different from those in (30), it is still difficult to obtain
the global optimum solution due to the non-convex constraints
(33b) and (33c).

To handle the non-convexity of constraint (33b), we use the
penalty function method to reformulate the problem (33) as
follows:

max
v,β

β + ζ

L∑
`=1

M∑
m=1

(
|vm` |2 − 1

)
(34a)

s.t. |vm` | ≤ 1, ∀`,m, (34b)
(33c), (34c)

where ζ > 0 is a positive penalty parameter. Note that an
optimal solution to problem (34) can be obtained when the
punished component

(
|vm` |2 − 1

)
in the objective function

(34a) is enforced to be zero. Otherwise, it can be claimed that
the obtained solution can be further improved over iterations.

By applying the SCA method to deal with the non-convex
problem (34), the objective function (34a) is approximated
by β + 2ζ

∑L
`=1

∑M
m=1 Re((v

m(z)
` )H(vm` − v

m(z)
` )) where

v
m(z)
` is the obtained value of variable v at the z-th iteration.

Meanwhile, the non-convex constraint (33c) can be replaced
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Algorithm 2 SCA-Based Algorithm for Phase Shifts Design

1: Initialize v(0), β(0), the tolerances ε1 and ε2, the max-
imum iteration number N2, and set the current iteration
number as n2 = 1.

2: repeat
3: Compute (v(n2), β(n2)) by solving problem (36).
4: Calculate δ1 = 2ζ

∑
`

∑
m Re((v

m(n2−1)
` )H(v

m(n2)
` −

v
m(n2−1)
` )).

5: Calculate δ2 = β(n2) − β(n2−1).
6: Update n2 := n2 + 1.
7: until (δ2

1 ≤ ε1 and δ2
2 ≤ ε2) or n2 > N2.

8: Output the converged solutions v(n2) and β(n2).

with its first-order Taylor approximations as follows:

|hk + Φkv|2 ≥ 2Re

((
hk + Φkv

(z)
)H

Φk

(
v − v(z)

))
+
∣∣∣hk + Φkv

(z)
∣∣∣2 ≥ β, ∀k ∈ K, (35)

where v(z) is the converged value at the z-th iteration.
Therefore, when we replace (34a) and (33c) with their

approximations, the problem (34) can be approximated by the
following one:

max
v,β

β + 2ζ

L∑
`=1

M∑
m=1

Re
(

(v
m(z)
` )H(vm` − v

m(z)
` )

)
(36a)

s.t. (34b) and (35). (36b)

Since the objective function (36a) is linear and the feasible
set with constraint (36b) is convex, problem (36) is a jointly
convex optimization problem w.r.t. variables v and β. The
details of using the SCA method to solve problem (36) at
each iteration are summarized in Algorithm 2. Analogous to
the previous analysis, the developed SCA-based algorithm can
be extended to the multi-antenna case without much effort,
thus the details are omitted here for brevity.

D. Device Selection

Substituting (14) into (11), the combinatorial optimization
problem w.r.t. device selection can be rewritten as

min
K

σ2|a|2

P0 min
k

∣∣ah̄k∣∣2 − γ |K| (37a)

s.t. |a|2 − ρ
∣∣ah̄k∣∣2 ≤ 0, ∀k ∈ K, (37b)

1 ≤ |K| ≤ N, (37c)

where ρ = ε0P0/σ
2 is a constant.

The objective function (37a) is not only related to the set
cardinality |K|, but also depends on the minimum equivalent
channel gain. Thus, solving this minimization problem (37)
is highly intractable as it requires a complex combinatorial
optimization where the elements in K directly affects both the
value of mink

∣∣ah̄k∣∣2 and the number of feasible constraints
(37b). To support efficient algorithm design, we propose to
reformulate the problem (37) as a joint optimization problem
presented in the following lemma.

Lemma 1: Let τ = ρ̄

mink|ah̄k|2 , where ρ̄ = σ2|a|2
γP0

. Then,

the problem (37) can be equivalently transformed into the
following joint maximization problem:

max
K,τ

|K| − τ (38a)

s.t. ρ̄− τ
∣∣ah̄k∣∣2 ≤ 0, ∀k ∈ K, (38b)

1− ρ
∣∣h̄k∣∣2 ≤ 0, ∀k ∈ K, (38c)

1 ≤ |K| ≤ N. (38d)

Proof: See Appendix B.
Note that a trade-off relationship between |K| and τ is

formed in problem (38). Specifically, if the number of feasible
constraints is increased (i.e., a larger |K|), then the value
of τ in (38b) shall be larger as well, which may make
the objective value decrease, and vice versa. To solve this
non-trivial problem, we first introduce an auxiliary vector
e = [e1, e2, . . . , eN ] ∈ RN+ , then the problem (37) can be
equivalently reformulated as

min
e∈RN

+ ,τ
‖e‖0 + τ (39a)

s.t. ρ̄− τ
∣∣ah̄k∣∣2 ≤ ek, ∀k ∈ K, (39b)

1− ρ
∣∣h̄k∣∣2 ≤ ek, ∀k ∈ K, (39c)

1 ≤ |K| ≤ N, (39d)

where ‖e‖0 is the `0 norm and is equal to the number of
non-zero elements in e, RN+ denotes the non-negative space
of 1×N real-valued vector

Thus, it can be known from (39) that the n-th device should
be selected to participate in the model uploading process if
en = 0, n = 1, . . . , N . To handle the non-convexity of (39a),
the `0 norm can be rewritten as the difference of two convex
functions, which is given by [35]

‖e‖0 = min {k : ‖e‖1 − |||e|||k = 0, 0 ≤ k ≤ N} , (40)

where ‖e‖1 is the `1 norm and is calculated by the sum of all
absolute values, |||e|||k is the Ky Fan k norm and is obtained
by the sum of largest-k absolute values.

Replacing (39a) with (40), problem (39) is expressed as the
DC programming problem

min
e,τ

‖e‖1 + τ − |||e|||k (41a)

s.t. (39b) and (39c), (41b)
e � 0. (41c)

where e � 0 denotes that all elements in vector e are greater
than or equal to zero.

Although problem (41) is non-convex, it can be solved by
the majorization-minimization algorithm [40] in an iterative
fashion. To ensure a convergent solution, we add quadratic
terms to make both g̃ and h̃ be α-strongly convex functions.
Meanwhile, the indicator function I(e) can be denoted by

I(e) =

{
0, if e � 0,
+∞, otherwise. (42)

Then, the DC objective (41a) is rewritten as the difference
of two strongly convex functions, i.e., g̃ − h̃, which can be
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Algorithm 3 DC-Based Algorithm for Device Selection

1: Initialize e(0), τ (0), the tolerance ε, the maximum itera-
tion number N3, and set n3 = 0.

2: repeat
3: Calculate the subgradient ∂e(n3) h̃.
4: Compute the inner product 〈∂e(n3) h̃, e〉.
5: Obtain (e(n3+1), τ (n3+1) ) by solving problem (44).
6: Update n3 := n3 + 1;
7: until the decrease value of (44a) is below ε or n3 > N3.
8: Output the converged solution (e(n3), τ (n3)).

given by

f̃ = g̃ − h̃ = ‖e‖1 + τ − |||e|||k + I(e), (43)

where g̃ = ‖e‖1 +τ+ α
2 ‖e‖

2
F +I(e) and h̃ = |||e|||k+ α

2 ‖e‖
2
F .

By replacing the non-convex part h̃ with its linear approx-
imation, problem (41) can be reconstructed as the following
jointly convex optimization problem

min
e,τ

g̃ − 〈∂e(z) h̃, e〉 (44a)

s.t. (39b), (39c) and (41c), (44b)

where e(z) is the converged solution at the z-th iteration,
∂e(z) h̃ is the subgradient of h̃ w.r.t. e at e(z), and 〈∂e(z) h̃, e〉
denotes the inner product of two vectors. Specifically, the
subgradient of h̃ w.r.t. e can be given by

∂eh̃ = ∂|||e|||k + αe, (45)

where the n-th entry of ∂|||e|||k can be computed by

∂|||e|||k =

{
sign (en) , |en| ≥ |e(k)|,
0, |en| < |e(k)|.

(46)

The proposed DC-based algorithm for solving problem (44)
is summarized in Algorithm 3. Additionally, the process of
using DC programming to solve the device selection problem
in the multi-antenna case at the BS can be developed similarly,
which is omitted here for brevity. Till now, one can see that
the decoupled subproblems have been transformed into the
solvable range of existing optimization toolkits one by one.

V. CONVERGENCE AND COMPLEXITY

According to the derived closed-form solutions and the
developed iterative algorithms in the previous section, an alter-
nating optimization algorithm is proposed to solve the original
challenging problem (9). The overall algorithm framework for
dealing with the single-antenna case is given in Algorithm
4. In the first step, the transmit power at each device is
performed based on the closed-form solution derived in (12),
and the normalizing factor is calculated by (13). In the second
step, the receive scalar at the BS is controlled by the closed-
form solution obtained in (19). In the third step, the phase
shifts at each RIS is determined according to the SCA-based
reflection design algorithm, i.e., Algorithm 2. In the fourth
step, the devices participating in the model updating process
are selected by the BS based on the DC algorithm, i.e.,
Algorithm 3. Previously, a holistic flowchart of our designed

Algorithm 4 Alternating Optimization Algorithm for Solving
Problem (9)

1: Initialize a feasible solution (p(0), a(0),v(0), e(0)), the
maximum iteration number is denoted by N4, and set the
current iteration number as n4 = 0.

2: repeat
3: Step 1: transmit power allocation
4: Given (a(n4),v(n4), e(n4)), calculate p(n4+1) and

η(n4+1) by using the derived closed-form expressions
in (12) and (13).

5: Step 2: receive scalar control
6: Given (p(n4+1),v(n4), e(n4)), calculate a(n4+1) by us-

ing the closed-form solution in (19).
7: Step 3: phase shifts design
8: Given (p(n4+1), a(n4+1), e(n4)), solve the reflection

design subproblem (36) to obtain v(n4+1) by using
Algorithm 2.

9: Step 4: device selection
10: Given (p(n4+1), a(n4+1),v(n4+1)), solve the device se-

lection subproblem (44) to obtain e(n4+1) by using
Algorithm 3.

11: Update n4 := n4 + 1.
12: until the objective value of (9) converges or n4 > N4.
13: Output the converged solution (p(n4), a(n4),v(n4), e(n4)).

alternating optimization algorithm has been given in Fig. 3b.
In addition, the alternating optimization algorithm for solving
the problems in the multi-antenna case is analogous to the
processes of Algorithm 4, the main differences are i) replacing
the closed-form expressions (12) and (13) with the solutions
obtained in Proposition 1; ii) solving the subproblem (22)
to obtain a using Algorithm 1; iii) extending Algorithm 2
and Algorithm 3 to the multi-antenna cases. In the following
context, the convergence and complexity of our proposed four-
step Algorithm 4 are analyzed.

A. Convergence

In Algorithm 4, we denote (p(z), a(z),v(z), e(z)) as the
solution to problem (9) obtained at the z-th iteration, where
the objective value is defined as

U (z) = U
(
p(z), a(z),v(z), e(z)

)
. (47)

Substituting (p(z), a(z),v(z), e(z)) into (10), and executing
Step 1-2-3-4 once again, we have

U
(
p(z), a(z),v(z), e(z)

)
(48a)

(a)

≥ U
(
p(z+1), a(z),v(z), e(z)

)
(48b)

(b)

≥ U
(
p(z+1), a(z+1),v(z), e(z)

)
(48c)

(c)
= U

(
p(z+1), a(z+1),v(z+1), e(z)

)
(48d)

(d)

≥ U
(
p(z+1), a(z+1),v(z+1), e(z+1)

)
, (48e)
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where the inequality (a) comes from the fact that the transmit
power p(z+1) obtained in Step 1 enforces |ah̄kpk/

√
η− 1| to

be zero, which can be confirmed in (12). The inequality (b)
holds since a(z+1) is obtained by solving (18) in Step 2, which
further minimizes the MSE value. Afterwards, the equality (c)
is satisfied by finding a feasible solution of phase shifts v(z+1)

in Step 3, it can be noticed from (18) that the value of v(z+1)

is not related to the objective function (18a) when the receive
scalar a(z+1) is obtained. But, solving problem (30) in the
third step is conducive to continuously reducing the value of
|a| over iterations. Similarly, the inequality (d) is owing to the
continuous refinement of the number of selected devices in
Step 4, which makes the objective value smaller and smaller.

Therefore, combining (47) and (48a), one can observe that
the objective value of problem (9) is monotonically non-
increasing over iterations, which can be expressed as

U (z) = U
(
p(z), a(z),θ(z), e(z)

)
(49a)

≥ U
(
p(z+1), a(z+1),θ(z+1), e(z+1)

)
= U (z+1). (49b)

Finally, due to the fact that the MSE value is lower bounded
by zero and the number of device is upper bounded by N ,
thus the sequence U (z) is lower bounded and is capable to
at least converge to a locally optimal solution of the original
MINLP problem (9), if not an optimal solution. Namely, it can
be concluded that Algorithm 4 is guaranteed to converge as
long as the value of N4 is set large enough.

B. Complexity

When the reformulated subproblems are solved by CVX, the
interior point method is considered, unless otherwise stated.
For Algorithm 4, the main complexity of solving problem
(9) lies in tackling the reflection design subproblem (36)
with Algorithm 2 (i.e., Step 3) as well as dealing with
the device selection subproblem (44) with Algorithm 3 (i.e.,
Step 4). When it comes to Algorithm 2 for solving the
subproblem of phase shifts design, the dimension of variables
to be solved is LM +1. Hence, the complexity is bounded by
O
(
N2(LM + 1)3

)
, where N2 is the maximum iteration num-

ber for checking the feasibility of phase shifts. To solve the
DC programming problem (41), the second-order interior point
method [41] is adopted by Algorithm 3, and then the compu-
tational cost can be given as O(N3(N+1)2), where N3 is the
maximum iteration number before the decrease of the objective
value in (44a) is below the preset threshold. As a result, the
total complexity of solving the MINLP problem (10) with Al-
gorithm 4 is O1 = O

(
N2N4(LM + 1)3 +N3N4(N + 1)2

)
,

where N4 is the maximum iteration number for finding the
converged objective value.

Regarding the complexity of solving problems in the
multi-antenna cases, it mainly depends on Step 2-3-4. In
the second step, the complexity of Algorithm 1 consists of
two parts: the initial process of solving the SDR problem
(24) and the iterative process of solving the convex problem
(27). Specifically, the worst-case complexity of solving the
SDR problem (24) during the initialization in Algorithm
1 is O

(
(N2

r +K)3.5
)

[39], and the complexity of solving

the convex problem (27) at each iteration in Algorithm
1 is O

(
(Nr + 2K)3

)
. Thus, the overall complexity of

solving problem (22) with Algorithm 1 can be represented
as O

(
(N2

r +K)3.5 +N1(Nr + 2K)3
)
, where N1 is the

maximum iteration number for finding the converged
receive scaling factor. Consequently, the complexity
of using alternating optimization techniques to solve
problems in the multi-antenna case can be given by O2 =
O
(
N4(N2

r +K)3.5 +N1N4(Nr + 2K)3 +N2N4(LM + 1)3

+N3N4(N + 1)2
)
.

VI. EXPERIMENTAL SETTINGS AND RESULTS

A. Simulation Settings

As shown in Fig. 4, we consider that there are N = 6
IoT devices, L = 3 RISs and one BS in the AirFL system,
where all devices are uniformly distributed in a square area
of size 100 × 100 (in meters) with the BS located at its
center [15]. In the three-dimensional (3D) Cartesian coordi-
nates, the location of the `-th RIS is given by (x`, y`, z`) =
(50 cos( 2π`

L ), 50 sin(2π`
L ), 20), and each RIS is equipped with

M = 60 reflecting elements. It is assumed that all devices are
on the horizontal plane, and the BS is located at (0, 0, 25).
Moreover, the maximum transmit power at each device is set
as P0 = 23 dBm, and the noise power is σ2 = −80 dBm.
Other parameters are set to γ = 0.2 and ε0 = 0.01. The
channel gain equals to the small-scale fading multiplied by the
square root of the path loss, please refer to [31] for specific
settings of the channel model.

In order to validate the effectiveness of our proposed algo-
rithms for the multi-RIS aided federated leaning (labeled ‘FL
with multi-RIS’), the FL is used to train a linear regression
model to predict the relationship between x and y [22]. The
input x and output y follow the function y = −3x+2+0.5×n0

where the input data x is randomly generated from [0, 1],
and the Gaussian noise n0 follows N (0, 1). Specifically, the
regress function in the MATLAB is invoked to fit 30 on-device
samples for linear regression at each iteration. Moreover, the
proposed FL framework is also adopted to train a 7-layered
convolutional neural network (CNN) for image classification
on the MNIST dataset, and a 50-layered residual network
(ResNet) on the CIFAR-10 dataset. For comparison purposes,
the following four schemes are considered as benchmarks in
our experiments.

i. FL without RIS: There is only one BS and N devices
in the federated learning system, where AirComp is
adopted to compute specific functions via concurrent
transmission over multi-access channels.

ii. FL with single-RIS: Compared with scheme 1, one
central RIS is deployed at (50, 0, 20) to assist the model
uploading from devices to the BS. For the fairness of
comparison, the number of reflecting elements for the
central RIS equals to L×M .

iii. FL with random-RIS: The single RIS with random phase
shifts is also considered as one benchmark. Note that the
elements in θ are randomly chosen from [0, 2π], while
other variables are solved by our proposed algorithms.
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Fig. 4. Simulation setup of multi-RIS aided AirFL
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iv. FL with multi-AF: The deployment of multiple amplify-
and-forward (AF) relays is the same as that of FL with
multi-RIS scheme. Namely, there are three active AF
relays that work in half-duplex mode, and each consists
of M antennas.

B. Performance Evaluation

1) Implementing FL for linear regression: In Fig. 5, the
‘optimal FL’ is an ideal scheme that the communication noise
between the BS and devices is zero, and the relationship
between x and y can be perfectly modeled. It can be observed
that the proposed ‘FL with multi-RIS’ scheme is able to train a
near-optimal linear regression model close to the ‘optimal FL’
scheme, and can fit data samples more accurately than other
benchmarks (‘FL with single/random-RIS’ and ‘FL without
RIS’). This is because the proposed algorithms for model
aggregation not only jointly consider the learning and wireless
factors, but also optimize the phase shifts of distributed
multiple RISs to suppress noise. Then, Fig. 6 shows that the
proposed scheme can converge faster to a smaller training loss,
similar to the active scheme of ‘FL with multi-AF’. This is
due to the fact that a lower signal distortion can be achieved
by judiciously reconfiguring the wireless environment with
multiple distributed RISs. In Fig. 7, it can be observed that
as the number of selected devices increases, the test error of
global model on the testing dataset decreases. This comes
from that the global model will become more accurate if
much more data samples are learned for aggregation. Thereby,
the test error of all schemes decrease owing to the improved
prediction accuracy. One can observe from Fig. 8 that the test
error decreases with the number of reflecting elements (or the
number of antennas of each AF). This is due to the fact that
a larger number of reflecting elements can lead to a smarter
wireless environment and the propagation error induced from
the channel noise can be suppressed more effectively. At last,
Fig. 9 illustrates that the number of iterations decreases as the
number of devices increases. When the network size becomes
larger, more devices can be selected to participate learning pro-
cess, which accelerates the convergence of federated learning.
Compared with RIS-related benchmarks, the proposed scheme
can work more efficiently and spend fewer communication
rounds with the aided of multiple RISs.

2) Implementing FL for image classification: In Fig. 10
and Fig. 11, we evaluate the learning performance for image
classification on real data in terms of training loss and pre-
diction accuracy. Both the MNIST and CIFAR-10 datasets are
divided into five training batches and one test batch, each with
10,000 images. The on-device CNN or ResNet is trained in
parallel using randomly sampled images. To minimize loss, the
stochastic gradient descent solver with an initial learning rate
of 0.01 is adopted as an optimizer to update parameters at each
iteration, where the size of each mini-batch is specified as 128.
Compared to benchmarks, it is noted that the proposed scheme
can achieve lower training loss and higher prediction accuracy
on both real datasets thanks to the reduced aggregation error
with the aid of multiple RISs.

3) Network lifetime of the considered FL system: In Fig. 12,
the impact of various K and N values on the network lifetime
is demonstrated. In our simulation, if one device is selected
to transmit its local parameters to the BS, it will spend 1 unit
energy for data sensing, local computing, and communication
processes, during which time the percentage of total energy
consumption for communications is denoted by λc. Thus, the
remaining processes require 1 − λc unit energy regardless of
whether the device communicates with the BS. Moreover, it
is assumed that each device has δ = 100 units energy, and
the time until the first device dies is defined as the network
lifetime, which can be given by bNδ/(N − λcN + λcK)c,
and b·c is the floor function. It can be seen from this figure
that a higher λc leads to a longer network lifetime, i.e., more
energy consumption for sensing and computing will shorten
the network lifetime. Additionally, one can observe that the
performance of network lifetime is positively proportional
to N and is also inversely proportional to K. Namely, if
more devices are deployed and less devices are selected, a
longer network lifetime can be achieved. Therefore, the trade-
off between learning performance and network lifetime is an
interesting research direction in the future work.

VII. CONCLUSION

In this paper, we investigated the model aggregation and
device selection problems of federated learning in multi-RIS
assisted systems by jointly optimizing the transmit power, re-
ceive scalar, phase shifts, and learning participants to minimize
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the aggregation error while accelerating the convergence rate
of AirFL. To solve the formulated challenging bi-criterion
problem, we derived closed-form expressions for transceivers
and proposed an alternating optimization algorithm to tackle
the non-linear and non-convex subproblems by invoking re-
laxation methods such as SDR, SCA and DC programming.
Simulation results demonstrated that i) the aggregation distor-
tion can be effectively reduced by leveraging geo-distributed
intelligent surfaces to reconfigure the wireless channels, ii)
the learning behavior of AirFL can be improved by the
designed resource allocation and device selection algorithms,
and iii) our alternating optimization algorithm is also capable
of reducing energy consumption and prolonging network life-
time. Despite that this paper focuses on anti-noise techniques,
wireless noise is not always an obstacle and can even be
regulated to enhance the generalization ability of machine
learning models. Also, the noise can be utilized to strengthen
the secure communication in the parameter exchange process
and reduce the privacy leakage of federated learning, which
are research opportunities worthy of further exploration.

APPENDIX A
PROOF OF THEOREM 1

Due to the fact that
∣∣ah̄k∣∣2 = |a|2

∣∣h̄k∣∣2 , ∀k, the constraints
(18b) in problem (18) can be rewritten as |a|2 ≥

∣∣h̄k∣∣−2
, ∀k.

Thus, the problem (18) is reformulated as

min
a,θ

|a|2 (50a)

s.t. |a|2 ≥
∣∣h̄k∣∣−2

,∀k ∈ K, (50b)
(9c). (50c)

It can be easily verified that at the optimal solution to
problem (50), all the constraints in (50) should be met, i.e.,

|a∗| = 1

min
k

∣∣h̄k∣∣ = max
k

∣∣∣∣∣hk +

L∑
`=1

ḡ`Θ`g
`
k

∣∣∣∣∣
−1

. (51)

Furthermore, it can be observed from (51) that the value
of |a∗| decreases as the value of

∣∣h̄k∣∣ increases. As a result,
the phase shifts of RISs should be finely tuned to render the
phase shift of

∑L
`=1 ḡ`Θ`g

`
k the same as that of hk for all

users, which can be expressed as arg
(∑L

`=1 ḡ`Θ
∗
`g
`
k

)
=

arg (hk) ,∀k ∈ K. This completes the proof of Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

According to the definitions of τ and ρ̄ in Lemma 1, it holds
that

τ = max
k

ρ̄∣∣ah̄k∣∣2 . (52)

Hence, it can be observed that the value of τ should be no
less than ρ̄/

∣∣ah̄k∣∣2 for all users, i.e., τ ≥ ρ̄/
∣∣ah̄k∣∣2,∀k ∈ K.

Then, problem (37) can be equivalently reformulated as

min
K,τ

τ − |K| (53a)

s.t. τ ≥ ρ̄∣∣ah̄k∣∣2 ,∀k ∈ K, (53b)

|a|2 − ρ
∣∣ah̄k∣∣2 ≤ 0, ∀k ∈ K, (53c)

1 ≤ |K| ≤ N, (53d)
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where the objective and constraints in (53) is obviously
equivalent to those in (38), and thus the proof of Lemma 1 is
completed. Note that constraint (53b) holds with equality for
at least one k of the optimal solution.
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