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ABSTRACT

We propose a new optimization formulation for training federated learning mod-
els. The standard formulation has the form of an empirical risk minimization
problem constructed to find a single global model trained from the private data
stored across all participating devices. In contrast, our formulation seeks an ex-
plicit trade-off between this traditional global model and the local models, which
can be learned by each device from its own private data without any communi-
cation. Further, we develop several efficient variants of SGD (with and without
partial participation and with and without variance reduction) for solving the new
formulation and prove communication complexity guarantees. Notably, our meth-
ods are similar but not identical to federated averaging / local SGD, thus shedding
some light on the essence of the elusive method. In particular, our methods do not
perform full averaging steps and instead merely take steps towards averaging. We
argue for the benefits of this new paradigm for federated learning.

1 INTRODUCTION

With the proliferation of mobile phones, wearable devices, tablets, and smart home devices comes an
increase in the volume of data captured and stored on them. This data contains a wealth of potentially
useful information to the owners of these devices, and more so if appropriate machine learning
models could be trained on the heterogeneous data stored across the network of such devices. The
traditional approach involves moving the relevant data to a data center where centralized machine
learning techniques can be efficiently applied (Dean et al., 2012; Reddi et al., 2016). However,
this approach is not without issues. First, many device users are increasingly sensitive to privacy
concerns and prefer their data to never leave their devices. Second, moving data from their place of
origin to a centralized location is very inefficient in terms of energy and time.

1.1 FEDERATED LEARNING

Federated learning (FL) (McMahan et al., 2016; Konečný et al., 2016b;a; McMahan et al., 2017) has
emerged as an interdisciplinary field focused on addressing these issues by training machine learning
models directly on edge devices. The currently prevalent paradigm (Li et al., 2019; Kairouz et al.,
2019) casts supervised FL as an empirical risk minimization problem of the form

min
x∈Rd

1
n

n∑

i=1

fi(x), (1)

where n is the number of devices participating in training, x ∈ R
d encodes the d parameters of a

global model (e.g., weights of a neural network) and

fi(x) := Eξ∼Di [f(x, ξ)]

represents the aggregate loss of model x on the local data represented by distribution Di stored on
device i. One of the defining characteristics of FL is that the data distributions Di may possess very
different properties across the devices. Hence, any potential FL method is explicitly required to be
able to work under the heterogeneous data setting.

The most popular method for solving (1) in the context of FL is the FedAvg algorithm (McMahan
et al., 2016). In its most simple form, when one does not employ partial participation, model com-
pression, or stochastic approximation, FedAvg reduces to Local Gradient Descent (LGD) (Khaled
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et al., 2019; 2020), which is an extension of GD performing more than a single gradient step on
each device before aggregation. FedAvg has been shown to work well empirically, particularly
for non-convex problems, but comes with poor convergence guarantees compared to the non-local
counterparts when data are heterogeneous.

Some issues with current approaches to FL

The first motivation for our research comes from the appreciation that data heterogeneity does not
merely present challenges to the design of new provably efficient training methods for solving (1),
but also inevitably raises questions about the utility of such a global solution to individual users.
Indeed, a global model trained across all the data from all devices might be so removed from the
typical data and usage patterns experienced by an individual user as to render it virtually useless.
This issue has been observed before, and various approaches have been proposed to address it. For
instance, the MOCHA (Smith et al., 2017) framework uses a multi-task learning approach to allow
for personalization. Next, (Khodak et al., 2019) propose a generic online algorithm for gradient-
based parameter-transfer meta-learning and demonstrate improved practical performance over Fe-
dAvg (McMahan et al., 2017). Approaches based on variational inference (Corinzia & Buhmann,
2019), cyclic patterns in practical FL data sampling (Eichner et al., 2019) transfer learning (Zhao
et al., 2018) and explicit model mixing (Peterson et al., 2019) have been proposed.

The second motivation for our work is the realization that even very simple variants of FedAvg, such
as LGD, which should be easier to analyze, fail to provide theoretical improvements in communica-
tion complexity over their non-local cousins, in this case, GD (Khaled et al., 2019; 2020).1

This observation is at odds with the practical success of local methods in FL. This leads us to ask
the question: if LGD does not theoretically improve upon GD as a solver for the traditional global
problem (1), perhaps LGD should not be seen as a method for solving (1) at all. In such a case,
what problem does LGD solve? A good answer to this question would shed light on the workings
of LGD, and by analogy, on the role local steps play in more elaborate FL methods such as local
SGD (Stich, 2020; Khaled et al., 2020) and FedAvg.

2 CONTRIBUTIONS

In our work we argue that the two motivations mentioned in the introduction point in the same
direction, i.e., we show that a single solution can be devised addressing both problems at the same
time. Our main contributions are:

⋄ New formulation of FL which seeks an implicit mixture of global and local models. We
propose a new optimization formulation of FL. Instead of learning a single global model by solving
(1), we propose to learn a mixture of the global model and the purely local models which can be
trained by each device i using its data Di only. Our formulation (see Sec. 3) lifts the problem from
R
d to R

nd, allowing each device i to learn a personalized model xi ∈ R
d. These personalized

models are encouraged to not depart too much from their mean by the inclusion of a quadratic
penalty ψ multiplied by a parameter λ ≥ 0. Admittedly, the idea of softly-enforced similarity of the
local models was already introduced in the domain of the multi-task relationship learning (Zhang
& Yeung, 2010; Liu et al., 2017; Wang et al., 2018) and distributed optimization (Lan et al., 2018;
Gorbunov et al., 2019; Zhang et al., 2015). The mixture objective we propose (see (2)) is a special
case of their setup, which justifies our approach from the modeling perspective. Note that Zhang
et al. (2015); Liu et al. (2017); Wang et al. (2018) provide efficient algorithms to solve the mixture
objective already. However, none of the mentioned papers consider the FL application, nor they
shed a light on the communication complexity of LGD algorithms, which we do in our work.

⋄ Theoretical properties of the new formulation. We study the properties of the optimal solution
of our formulation, thus developing an algorithmic-free theory. When the penalty parameter is set to
zero, then obviously, each device is allowed to train their own model without any dependence on the
data stored on other devices. Such purely local models are rarely useful. We prove that the optimal

1After our paper was completed, a lower bound on the performance of local SGD was presented that is worse
than the known minibatch SGD guarantee (Woodworth et al., 2020a), confirming that the local methods do not
outperform their non-local counterparts in the heterogeneous setup. Similarly, the benefit of local methods in
the non-heterogeneous scenario was questioned in (Woodworth et al., 2020b).
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local models converge to the traditional global model characterized by (1) at the rate O(1/λ). We
also show that the total loss evaluated at the local models is never higher than the total loss evaluated
at the global model (see Thm. 3.1). Moreover, we prove an insightful structural result for the optimal
local models: the optimal model learned by device i arises by subtracting the gradient of the loss
function stored on that device evaluated at the same point (i.e., a local model) from the average of the
optimal local models (see Thm. 3.2). As a byproduct, this theoretical result sheds new light on the
key update step in the model agnostic meta-learning (MAML) method (Finn et al., 2017), which has
a similar but subtly different structure.2 The subtle difference is that the MAML update obtains the
local model by subtracting the gradient evaluated at the global model. While MAML was originally
proposed as a heuristic, we provide rigorous theoretical guarantees.

⋄ Loopless LGD: non-uniform SGD applied to our formulation. We then propose a randomized
gradient-based method—Loopless Local Gradient Descent (L2GD)—for solving our new formula-
tion (Algorithm 1). This method is, in fact, a non-standard application of SGD to our problem, and
can be seen as an instance of SGD with non-uniform sampling applied to the problem of minimizing
the sum of two convex functions (Zhao & Zhang, 2015; Gower et al., 2019): the average loss, and
the penalty. When the loss function is selected by the randomness in our SGD method, the stochastic
gradient step can be interpreted as the execution of a single local GD step on each device. Since we
set the probability of the loss being sampled to be high, this step is typically repeated multiple times,
resulting in multiple local GD steps. In contrast to standard LGD, the number of local steps is not
fixed, but random, and follows a geometric distribution. This mechanism is similar in spirit to how
the recently proposed loopless variants of SVRG (Hofmann et al., 2015; Kovalev et al., 2020) work
in comparison with the original SVRG (Johnson & Zhang, 2013a; Xiao & Zhang, 2014). Once the
penalty is sampled by our method, the resultant SGD step can be interpreted as the execution of an
aggregation step. In contrast with standard aggregation, which performs full averaging of the local
models, our method merely takes a step towards averaging. However, the step is relatively large.

⋄ Convergence theory. By adapting the general theory from (Gower et al., 2019) to our setting,
we obtain theoretical convergence guarantees assuming that each fi is L-smooth and µ-strongly
convex (see Thm. 4.2). Interestingly, by optimizing the probability of sampling the penalty (we get
p⋆ = λ

λ+L ), which is an indirect way of fixing the expected number of local steps to 1+ L
λ , we prove

an 2λ
λ+L

L
µ log 1

ε bound on the expected number of communication rounds (see Cor. 4.3). We believe

that this is remarkable in several ways. By choosing λ small, we tilt our goal towards pure local
models: the number of communication rounds is tending to 0 as λ→ 0. If λ→ ∞, the solution our
formulation converges to is the optimal global model, and L2GD obtains the communication bound

O
(
L
µ log 1

ε

)

, which matches the efficiency of GD.

⋄ What problem do local methods solve? Noting that L2GD is a (mildly nonstandard) version of
LGD,3 which is a key method most local methods for FL are based on, and noting that, as we show,
L2GD solves our new formulation of FL, we offer a new and surprising interpretation of the role
of local steps in FL. In particular, the role of local steps in gradient type methods, such as GD, is
not to reduce communication complexity, as is generally believed. Indeed, there is no theoretical
result supporting this claim in the key heterogeneous data regime. Instead, their role is to steer the
method towards finding a mixture of the traditional global and the purely local models. Given that
the stepsize is fixed, the more local steps are taken, the more we bias the method towards the purely
local models. Our new optimization formulation of FL formalizes this as it defines the problem that
local methods, in this case L2GD, solve. There is an added benefit here: the more we want our
formulation to be biased towards purely local models (i.e., the smaller the penalty parameter λ is),
the more local steps does L2GD take, and the better the total communication complexity of L2GD
becomes. Hence, despite a lot of research on this topic, our paper provides the first proof that a
local method (e.g., L2GD) can be better than its non-local counterpart (e.g., GD) in terms of total
communication complexity in the heterogeneous data setting. We are able to do this by noting that
local methods should better be seen as methods for solving the new FL formulation proposed here.

⋄ Generalizations: partial participation, local SGD and variance reduction. We further gener-
alize and improve our method by allowing for (i) stochastic partial participation of devices in each
communication round,(ii) subsampling on each device which means we can perform local SGD steps

2The connection of FL and multi-task meta learning is discussed in (Kairouz et al., 2019), for example.
3To be specific, L2GD is equivalent to Overlap LGD (Wang et al., 2020) with random local loop size.
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instead of local GD steps, and (iii) total variance reduction mechanism to tackle the variance com-
ing from three sources: locality of the updates induced by non-uniform sampling (already present
in L2GD), partial participation and local subsampling. Due to its level of generality, this method,
which we call L2SGD++, is presented in the Appendix only, alongside the associated complexity
results. In the main body of this paper, we instead present a simplified version thereof, which we
call L2SGD+ (Algorithm 3). The convergence theory for it is presented in Thm. 5.1 and Cor. 5.2.

⋄ Heterogeneous data. All our methods and convergence results allow for fully heterogeneous data
and do not depend on any assumptions on data similarity across the devices.

⋄ Superior empirical performance. We show through ample numerical experiments that our theo-
retical predictions can be observed in practice.

3 NEW FORMULATION OF FL

We now introduce our new formulation for training supervised FL models:

min
x1,...,xn∈Rd

{F (x) := f(x) + λψ(x)}

f(x) := 1
n

n∑

i=1

fi(xi), ψ(x) := 1
2n

n∑

i=1

‖xi − x̄‖
2
,

(2)

where λ ≥ 0 is a penalty parameter, x1, . . . , xn ∈ R
d are local models, x := (x1, x2, . . . , xn) ∈ R

nd

and x̄ := 1
n

∑n
i=1 xi is the average of the local models.

Due to the assumptions on fi we will make in Sec. 3.1, F is strongly convex and hence (2) has
a unique solution, which we denote x(λ) := (x1(λ), . . . , xn(λ)) ∈ R

nd. We further let x̄(λ) :=
1
n

∑n
i=1 xi(λ). We now comment on the rationale behind the new formulation.

Local models (λ = 0). Note that for each i, xi(0) solves the local problem minxi∈Rd fi(xi). That
is, xi(0) is the local model based on data Di stored on device i only. This model can be computed
by device i without any communication whatsoever. Typically, Di is not rich enough for this local
model to be useful. In order to learn a better model, one has to take into account the date from other
clients as well. This, however, requires communication.

Mixed models (λ ∈ (0,∞)). As λ increases, the penalty λψ(x) has an increasingly more substantial
effect, and communication is needed to ensure that the models are not too dissimilar, as otherwise
the penalty λψ(x) would be too large.

Global model (λ = ∞). Let us now look at the limit case λ → ∞. Intuitively, this limit case
should force the optimal local models to be mutually identical, while minimizing the loss f . In
particular, this limit case will solve4 min

{
f(x) : x1, . . . , xn ∈ R

d, x1 = x2 = · · · = xn
}
, which

is equivalent to the global formulation (2). Because of this, let us define xi(∞) for each i to be the
optimal global solution of (1), and let x(∞) := (x1(∞), . . . , xn(∞)).

3.1 TECHNICAL PRELIMINARIES

We make the following assumption on the functions fi:

Assumption 3.1 For each i, the function fi : R
d → R is L-smooth and µ-strongly convex.

For xi, yi ∈ R
d, 〈xi, yi〉 denotes the standard inner product and ‖x‖ := 〈xi, xi〉

1/2 is the stan-
dard Euclidean norm. For vectors x = (x1, . . . , xn) ∈ R

nd, y = (y1, . . . , yn) ∈ R
nd we

define the standard inner product and norm via 〈x, y〉 :=
∑n
i=1〈xi, yi〉, ‖x‖

2 :=
∑n
i=1 ‖xi‖

2
.

Note that the separable structure of f implies that (∇f(x))i = 1
n∇fi(xi), i.e., ∇f(x) =

1
n (∇f1(x1),∇f2(x2), . . . ,∇fn(xn)).

Note that Assumption 3.1 implies that f is Lf -smooth with Lf := L
n and µf -strongly convex with

µf := µ
n . Clearly, ψ is convex by construction. It can be shown that ψ is Lψ-smooth with Lψ = 1

n

4If λ = ∞ and x1 = x2 = · · · = xn does not hold, we have F (x) = ∞. Therefore, we can restrict
ourselves on set x1 = x2 = · · · = xn without loss of generality.
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(see Appendix). We can also easily see that (∇ψ(x))i =
1
n (xi − x̄)(see Appendix), which implies

ψ(x) = n
2

n∑

i=1

‖(∇ψ(x))i‖
2
= n

2 ‖∇ψ(x)‖
2
.

3.2 CHARACTERIZATION OF OPTIMAL SOLUTIONS

Our first result describes the behavior of f(x(λ)) and ψ(x(λ)) as a function of λ.

Theorem 3.1 The function λ→ ψ(x(λ)) is non-increasing, and for all λ > 0 we have

ψ(x(λ)) ≤ f(x(∞))−f(x(0))
λ . (3)

Moreover, the function λ→ f(x(λ)) is non-decreasing, and for all λ ≥ 0 we have

f(x(λ)) ≤ f(x(∞)). (4)

Ineq. (3) says that the penalty decreases to zero as λ grows, and hence the optimal local models xi(λ)
are increasingly similar as λ grows. The second statement suggest that the loss f(x(λ)) increases
with λ, but never exceeds the optimal global loss f(x(∞)) of the standard FL formulation (1).

We now characterize the optimal local models which connect our model to the MAML frame-
work (Finn et al., 2017), as mentioned in the introduction.

Theorem 3.2 For each λ > 0 and 1 ≤ i ≤ n we have

xi(λ) = x(λ)− 1
λ∇fi(xi(λ)). (5)

Further, we have
n∑

i=1

∇fi(xi(λ)) = 0 and ψ(x(λ)) = 1
2λ2 ‖∇f(x(λ))‖

2
.

The optimal local models (5) are obtained from the average model by subtracting a multiple of
the local gradient. Observe that the local gradients always sum up to zero at optimality. This is
obviously true for λ = ∞, but it is a bit less obvious that this holds for any λ > 0.

Next, we argue the optimal local models converge to the traditional FL solution at the rate O(1/λ).

Theorem 3.3 Let P (z) := 1
n

∑n
i=1 fi(z). Then, x(∞) is the unique minimizer of P and we have

‖∇P (x̄(λ))‖2 ≤
2L2(f(x(∞))− f(x(0)))

λ
. (6)

4 L2GD: LOOPLESS LOCAL GD

In this section we describe a new randomized method for solving the formulation (2). Our method
is a non-uniform SGD for (2) seen as a 2-sum problem, sampling either ∇f or ∇ψ to estimate ∇F .
Letting 0 < p < 1, we define a stochastic gradient of F at x ∈ R

nd as follows

G(x) :=

{
∇f(x)
1−p with probability 1− p
λ∇ψ(x)

p with probability p
. (7)

Clearly,G(x) is an unbiased estimator of ∇F (x). This leads to the following method for minimizing
F , which we call L2GD: xk+1 = xk − αG(xk). Plugging the formulas for ∇f(x) and ∇ψ(x) into
(7), and writing the resulting method in a distributed manner, we arrive at Algorithm 1. In each
iteration, a coin ξ is tossed and lands 1 with probability p and 0 with probability 1 − p. If ξ = 0,
all Devices perform one local GD step (8), and if ξ = 1, Master shifts each local model towards the
average via (9). As we shall see in Sec. 4.2, our theory limits the value of the stepsize α, which has
the effect that the ratio αλ

np cannot exceed 1
2 . Hence, (9) is a convex combination of xki and x̄k.

Note that Algorithm 1 is only required to communicate when a two consecutive coin tosses land a
different value (see the detailed explanation in Sec. C.1 of the appendix). Consequently, the expected
number of communication rounds in k iterations of L2GD is p(1− p)k.

Remark 4.1 Our algorithm statements do not take the data privacy into the consideration. While
privacy is a very important aspect of FL; in this paper, we tackle different FL challenges and thus we
ignore privacy issues. However, the proposed algorithms can be implemented in a private fashion
as well using tricks that are used in the classical FL scenario (Bonawitz et al., 2017).
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Algorithm 1 L2GD: Loopless Local Gradient Descent

Input: x01 = · · · = x0n ∈ R
d, stepsize α, probability p

for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

All Devices i = 1, . . . , n perform a local GD step:

xk+1
i = xki −

α
n(1−p)∇fi(x

k
i ) (8)

else

Master computes the average x̄k = 1
n

n∑

i=1

xki

Master for each i computes step towards aggregation

xk+1
i =

(

1− αλ
np

)

xki +
αλ
np x̄

k (9)

end if
end for

4.1 THE DYNAMICS OF LOCAL GD AND AVERAGING STEPS

Notice that the average of the local models does not change during an aggregation step. Indeed,

x̄k+1 is equal to 1
n

n∑

i=1

xk+1
i

(9)
= 1

n

n∑

i=1

[(

1− αλ
np

)

xki +
αλ
np x̄

k
]

= x̄k.

If several averaging steps take place in a sequence, the point a = x̄k in (9) remains unchanged, and
each local model xki merely moves along the line joining the initial value of the local model at the

start of the sequence and a, with each step pushing xki closer to the average a.

In summary, the more local GD steps are taken, the closer the local models get to the pure local
models; and the more averaging steps are taken, the closer the local models get to their average
value. The relative number of local GD vs. averaging steps is controlled by the parameter p: the
expected # of local GD steps is 1

p , and the expected number of consecutive aggregation steps is 1
1−p .

4.2 CONVERGENCE THEORY

We now present our convergence result for L2GD.

Theorem 4.2 Let Assumption 3.1 hold. If α ≤ 1
2L , then

E

[∥
∥xk − x(λ)

∥
∥
2
]

≤
(
1− αµ

n

)k ∥
∥x0 − x(λ)

∥
∥
2
+ 2nασ2

µ ,

where L := 1
n max

{
L

1−p ,
λ
p

}

and σ2 := 1
n2

∑n
i=1

(
1

1−p‖∇fi(xi(λ))‖
2 + λ2

p ‖xi(λ)− x(λ)‖2
)

.

Let us find the parameters p, α which lead to the fastest rate, to push the error within
(

O(ε) + 2nασ2

µ

)

-neighborhood of the optimum5, i.e., to achieve

E

[∥
∥xk − x(λ)

∥
∥
2
]

≤ ε
∥
∥x0 − x(λ)

∥
∥
2
+ 2nασ2

µ . (10)

Corollary 4.3 The value p⋆ = λ
L+λ minimizes both the number of iterations and the expected

number of communications for achieving (10). In particular, the optimal number of iterations is
2L+λµ log 1

ε , and the optimal expected number of communications is 2λ
λ+L

L
µ log 1

ε .

If we choose p = p⋆, then αλ
np = 1

2 , and the aggregation rule (9) in Algorithm 1 becomes

xk+1
i = 1

2

(
xki + x̄k

)
(11)

5In Sec. 5 we propose a variance reduced algorithm which removes the ( 2nασ2

µ
)-neighborhood

from Thm. 4.2. In that setting, our goal will be to achieve E

[

∥

∥xk − x(λ)
∥

∥

2
]

≤ ε
∥

∥x0 − x(λ)
∥

∥

2

.
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Figure 1: Distance of solution x(λ) of (2) to
pure local solution x(0) and global solution
x(∞) as a function of λ. Logistic regression
on a1a dataset. See Appendix for the setup.
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Figure 2: Communication rounds to get
F (xk)−F (x∗)
F (x0)−F (x∗) ≤ 10−5 as a function of p with

p∗ ≈ 0.09 (for L2SGD+). Logistic regres-
sion on a1a dataset with λ = 0.1.

while the local GD step (8) becomes xk+1
i = xki −

1
2L∇fi(x

k
i ). Notice that while our method does

not support full averaging as that is too unstable, (11) suggests that one should take a large step
towards averaging. As λ get smaller, the solution to the optimization problem (2) will increasingly
favour pure local models, i.e., xi(λ) → xi(0) := argmin fi for all i as λ → 0. Pure local mod-
els can be computed without any communication whatsoever and Cor. 4.3 confirms this intuition:
the optimal number of communication round decreases to zero as λ → 0. On the other hand, as
λ → ∞, the optimal number of communication rounds converges to 2Lµ log 1

ε , which recovers the

performance of GD for finding the globally optimal model (see Fig. 1).

In summary, we recover the communication efficiency of GD for finding the globally optimal model

as λ → ∞ (ignoring the ( 2nασ
2

µ )-neighborhood). However, for other values of λ, the communi-

cation complexity of L2GD is better and decreases to 0 as λ → 0. Hence, our communication
complexity result interpolates between the communication complexity of GD for finding the global
model and the zero communication complexity for finding the pure local models.

5 LOOPLESS LOCAL SGD WITH VARIANCE REDUCTION

As we have seen in Sec. 4.2, L2GD is a specific instance of SGD, thus only converges linearly to
a neighborhood of the optimum. In this section, we resolve the mentioned issue by incorporating
control variates to the stochastic gradient (Johnson & Zhang, 2013b; Defazio et al., 2014). We
go further: we assume that each local objective has a finite-sum structure and propose an algorithm,
L2SGD+, which takes local stochastic gradient steps, while maintaining (global) linear convergence
rate. As a consequence, L2SGD+ is the first local SGD with linear convergence.6 For convenience,
we present variance reduced local GD (i.e., no local subsampling) in the Appendix.

Assumption 5.1 Assume that fi has a finite-sum structure: fi(xi) =
1
m

∑m
j=1 f

′
i,j(xi). Let f ′i,j be

convex, L′-smooth while fi is µ-strongly convex (for each 1 ≤ j ≤ m, 1 ≤ i ≤ n).

5.1 CONVERGENCE THEORY

We are now ready to present a convergence rate of L2SGD+ (the algorithm, along with the efficient
implementation is presented in Appendix C.4).

Theorem 5.1 Let Assumption 5.1 hold and chooseα = nmin
{

(1−p)
4L′+µm ,

p
4λ+µ

}

. Then the iteration

complexity of Algorithm 3 is max
{

4L′+µm
(1−p)µ ,

4λ+µ
pµ

}

log 1
ε .

Next, we find the value of p that yields both the best iteration and communication complexity.

6We are aware that a linearly converging local SGD (with λ = ∞) can be obtained as a particular instance of
the decoupling method (Mishchenko & Richtárik, 2019). Other variance reduced local SGD algorithms (Liang
et al., 2019; Karimireddy et al., 2019; Wu et al., 2019) do not achieve linear convergence.
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Corollary 5.2 Both communication and iteration complexity of L2SGD+ are minimized for p =
4λ+µ

4λ+4L′+(m+1)µ . The resulting iteration complexity is
(

4λµ + 4L
′

µ +m+ 1
)

log 1
ε , while the com-

munication complexity is
4λ+µ

4L′+4λ+(m+1)µ

(

4L
′

µ +m
)

log 1
ε .

Note that with λ → ∞, the communication complexity of L2SGD+ tends to
(

4L
′

µ +m
)

log 1
ε ,

which is communication complexity of minibatch SAGA to find the globally optimal
model (Hanzely & Richtárik, 2019). On the other hand, in the pure local setting (λ = 0), the
communication complexity becomes log 1

ǫ – this is because the Lyapunov function involves a term
that measures the distance of local models, which requires communication to be estimated.

Remark 5.3 L2SGD+ is the simplest local SGD method with variance reduction. In the Appendix,
we present L2SGD++ which allows for 1) an arbitrary number of data points per client and ar-
bitrary local subsampling, 2) partial participation of clients, and 3) local SVRG-like updates of
control variates (thus better memory). Lastly, L2SGD++ exploits the complex smoothness structure
of the local objectives, resulting in tighter rates.

6 EXPERIMENTS

In this section, we numerically verify the theoretical claims from this paper. We only present a
single experiment here, all remaining ones along with the missing details about the setup are in the
Appendix. In particular, the Appendix includes two more experiments. The first one studies how p
(communication) influences the convergence of L2SGD+. The second experiment aims to examine
the effect of parameter λ on the convergence rate of L2SGD+.

We consider logistic regression problem with LibSVM data (Chang & Lin, 2011). The data were
normalized so that f ′i,j is 1-smooth for each j, while the local objectives are 10−4-strongly convex.
In order to cover a range of possible scenarios, we have chosen a different number of clients for each
dataset (see the Appendix). Lastly, the stepsize was always chosen according to Thm. 5.1.

We compare three different methods: L2SGD+, L2GD with local subsampling (L2SGD in the Ap-
pendix), and L2GD with local subsampling and control variates constructed for ψ only (L2SGD2 in
the Appendix; similar to (Liang et al., 2019)). We expect L2SGD+ to converge to the global opti-
mum linearly, while both L2SGD and L2SGD2 to converge to certain neighborhood. Each method
is applied to two objectives constructed by a different split of the data among the devices. For the
homogeneous split, we randomly reshuffle the data. For heterogeneous split, we first sort the data
based on the labels and then construct the local objectives according to the current order.
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Figure 3: L2SGD+, vs L2SGD vs L2SGD2 with identical stepsize (details in the Appendix).

Fig. 3 demonstrates the importance of variance reduction – it ensures a fast global convergence of
L2SGD+, while the neighborhood is slightly smaller for L2SGD2 compared to L2SGD. As pre-
dicted, data heterogeneity does not affect the convergence speed of the proposed methods.
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Appendix
Federated Learning of a Mixture of Global and Local Models
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A POSSIBLE EXTENSIONS

Our analysis of L2GD can be extended to cover smooth convex and non-convex loss functions fi
(we do not explore these directions). Further, our methods can be extended to a decentralized regime
where the devices correspond to devices of a connected network, and communication is allowed
along the edges of the graph only. This can be achieved by introducing an additional randomization
over the penalty ψ. Further, our approach can be accelerated in the sense of Nesterov (Nesterov,
2004) by adapting the a variant of Katyusha (Allen-Zhu, 2017; Qian et al., 2019a) to our setting,
thus further reducing the number of communication rounds.

B EXPERIMENTAL SETUP AND FURTHER EXPERIMENTS

In all experiments in this paper, we consider a simple binary classification model – logistic regres-
sion. In particular, suppose that device i owns data matrix Ai ∈ R

m×d along with corresponding
labels bi ∈ {−1, 1}m. The local objective for client i is then given as follows

fi(x) :=
1

m

m∑

j=1

f ′i,j(x) +
µ

2
‖x‖2, where f ′im+j(x) = log (1 + exp ((Ai)j,:x · bi)) .

The rows of data matrix A were normalized to have length 4 so that each f ′i,j is 1-smooth for each

j. At the same time, the local objective on each device is 10−4 strongly convex. Next, datasets are
from LibSVM (Chang & Lin, 2011).

In each case, we consider the simplest locally stochastic algorithm. In particular, each dataset is
evenly split among the clients, while the local stochastic method samples a single data point each
iteration.

We have chosen a different number of clients for each dataset – so that we cover different possible
scenarios. See Table 1 for details (it also includes sizes of the datasets). Lastly, the stepsize was
always chosen according to Thm. 5.1.

Table 1: Setup for the experiments.

Dataset
N

= nm
d n m µ L

p

(Sec. B.1)

λ

(Sec. B.2)

p

(Sec. B.3)

a1a 1 605 123 5 321 10
−4

1 0.1 0.1 0.1

mushrooms 8 124 112 12 677 10
−4

1 0.1 0.05 0.3

phishing 11 055 68 11 1 005 10
−4

1 0.1 0.1 0.001

madelon 2 000 500 50 40 10
−4

1 0.1 0.02 0.05

duke 44 7 129 4 11 10
−4

1 0.1 0.4 0.1

gisette scale 6 000 5 000 100 60 10
−4

1 0.1 0.2 0.003

a8a 22 696 123 8 109 10
−4

1 0.1 0.1 0.1

B.1 COMPARISON OF THE METHODS

In our first experiment, we verify two phenomena:

• The effect of variance reduction on the convergence speed of local methods. We compare
3 different methods: local SGD with full variance reduction (Algorithm 3), shifted local
SGD (Algorithm 7) and local SGD (Algorithm 6). Our theory predicts that a fully vari-
ance reduced algorithm converges to the global optimum linearly, while both shifted local
SGD and local SGD converge to a neighborhood of the optimum. At the same time, the
neighborhood should be smaller for shifted local SGD.

• The claim that heterogeneity of the data does not influence the convergence rate. We con-
sider two splits of the data heterogeneous and homogeneous. For the homogeneous split,
we first randomly reshuffle the data and then construct the local objectives according to the
current order (i.e., the first client owns the first m indices, etc.). For heterogeneous split,
we first sort the data based on the labels and then construct the local objectives accordingly
(thus achieving the worst-case heterogeneity). Note that the overall objective to solve is
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different in homogeneous and heterogeneous case – we thus plot relative suboptimality of

the objective (i.e.,
F (xk)−F (x⋆)
F (x0)−F (x⋆) ) to directly compare the convergence speed.

In each experiment, we choose p = 0.1 and λ = 1
9 – such choice mean that p is very close to

optimal. The other parameters (i.e., number of clients) are provided in Table 1. Fig. 4 presents the
result.
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Figure 4: Variance reduced local SGD (Algorithm 3), shifted local SGD (Algorithm 7) and local
SGD (Algorithm 6) applied on LibSVM problems for both homogeneous split of data and Hetero-
geneous split of the data. Stepsize for non-variance reduced method was chosen the same as for the
analogous variance reduced method.

As expected, Figure 4 clearly demonstrates the following:
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• Full variance reduction always converges to the global optima, methods with partial vari-
ance reduction only converge to a neighborhood of the optimum.

• Partial variance reduction (i.e., shifting the local SGD) is better than not using control
variates at all. Although the improvement in the performance is rather negligible.

• Data heterogeneity does not affect the convergence speed of the proposed methods. There-
fore, unlike standard local SGD, mixing the local and global models does not suffer the
problems with heterogeneity.

B.2 EFFECT OF p

In the second experiment, we study the effect of p on the convergence rate of variance reduced local
SGD. Note that p immediately influences the number of communication rounds – on average, the
clients take (p−1 − 1) local steps in between two consecutive rounds of communication (aggrega-
tion).

In Section 5, we argue that, it is optimal (in terms of the convergence rate) to choose p of order
p⋆ := λ

L′+λ . Figure 5 compares p = p⋆ against other values of p and confirms its optimality (in

terms of optimizing the convergence rate).

While the slower convergence of Algorithm 3 with p < p⋆ is expected (i.e., communicating more
frequently yields a faster convergence), slower convergence for p > p⋆ is rather surprising; in
fact, it means that communicating less frequently yields faster convergence. This effect takes place
due to the specific structure of problem (12); it would be lost when enforcing x1 = · · · = xn
(corresponding to λ = ∞).

B.3 EFFECT OF λ

In this experiment we study how different values of λ influence the convergence rate of Algorithm 3,
given that everything else (i.e., p) is fixed. Note that for each value of λwe get a different instance of
problem (12); thus the optimal solution is different as well. Therefore, in order to make a fair com-

parison between convergence speeds, we plot the relative suboptimality (i.e.,
F (xk)−F (x⋆)
F (x0)−F (x⋆) ) against

the data passes. Figure 6 presents the results.

The complexity of Algorithm 3 is7 O
(

L′

(1−p)µ

)

log 1
ε as soon as λ < λ⋆ := Lp

(1−p) ; otherwise the

complexity is O
(
λ
pµ

)

log 1
ε . This perfectly consistent with what Figure 6 shows – the choice λ < λ⋆

resulted in comparable convergence speed than λ = λ⋆; while the choice λ > λ⋆ yields noticeably
worse rate than λ = λ⋆.

7Given that µ is small.
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Figure 5: Effect of the aggregation probability p (legend of the plots) on the convergence rate of
Algorithm 3. Choice p = p⋆ corresponds to red dotted line with triangle marker. Parameter λ was
chosen in each case as Table 1 indicates.
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Figure 6: Effect of parameter λ (legend of the plot) on the convergence rate of Algorithm 3. The
choice λ = λ⋆ corresponds to borwn dash-dotted line with diamond marker (the third one from the
legend). Aggregation probability p was chosen in each case as Table 1 indicates.
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C REMAINING ALGORITHMS

C.1 UNDERSTANDING COMMUNICATION OF L2GD

Example C.1 In order to better understand when communication takes place in Algorithm 1, con-
sider the following possible sequence of coin tosses: 0, 0, 1, 0, 1, 1, 1, 0. The first two coin tosses
lead to two local GD steps (8) on all devices. The third coin toss lands 1, at which point all local
models xki are communicated to the master, averaged to form x̄k, and the step (9) towards averag-
ing is taken. The fourth coin toss is 0, and at this point, the master communicates the updated local
models back to the devices, which subsequently perform a single local GD step (8). Then come three
consecutive coin tosses landing 1, which means that the local models are again communicated to
the master, which performs three averaging steps (9). Finally, the eighth coin toss lands 0, which
makes the master send the updated local models back to the devices, which subsequently perform a
single local GD step.

This example illustrates that communication needs to take place whenever two consecutive coin
tosses land a different value. If 0 is followed by a 1, all devices communicate to the master, and if 1
is followed by a 0, the master communicates back to the devices. It is standard to count each pair of
communications, Device→Master and the subsequent Master→Device, as a single communication
round.

Lemma C.2 The expected number of communication rounds in k iterations of L2GD is p(1− p)k.

C.2 L2GD AND FULL AVERAGING

Is a setup such that conditions of Thm. 4.2 are satisfied and the aggregation update (9) is identical
to full averaging? This is equivalent requiring 0 < p < 1 such that αλ = np. However, we have
αλ ≤ λ

2L ≤ np, which means that full averaging is not supported by our theory.

C.3 LOCAL GD WITH VARIANCE REDUCTION

In this section, we present variance reduced local gradient descent with partial aggregation. In partic-
ular, the proposed algorithm (Algorithm 2) incorporates control variates to Algorithm 1. Therefore,
the proposed method can be seen as a special case of Algorithm 3 withm = 1. We thus only present
it for pedagogical purposes, as it might shed additional insights into our approach.

In particular, the update rule of proposed method will be xk+1 = xk − αgk where

gk =

{
p−1(λ∇ψ(xk)− n−1Ψk) + n−1Jk + n−1Ψk with probability p

(1− p)−1(∇f(xk)− n−1Jk) + n−1Jk + n−1Ψk with probability 1− p
.

for some control variates vectors Jk,Ψk ∈ R
nd. A quick check gives

E
[
gk |xk

]
= ∇f(xk) + λ∇ψ(xk) = ∇F (xk),

thus the direction we are taking is unbiased regardless of the value of control variates Jk,Ψk. The
goal is to make control variates Jk,Ψk correlated8 with n∇f(xk) and nλ∇ψ(xk). One possible so-
lution to the problem is for Jk,Ψk to track most recently observed values of n∇f(·) and nλ∇ψ(·),
which corresponds to the following update rule

(
Ψk+1,Jk+1

)
=

{(
nλ∇ψ(xk),Jk

)
with probability p

(
Ψk, n∇f(xk)

)
with probability 1− p

.

A specific, distributed implementation of the described method is presented as Algorithm 2. The
only communication between the devices takes place when the average model x̄k is being computed
(with probability p), which is analogous to standard local SGD. Therefore we aim to set p rather
small.

Note that Algorithm 2 is a particular special case of SAGA with importance sampling (Qian et al.,
2019b); thus, we obtain convergence rate of the method for free. We state it as Thm. C.3.

8Specifically we aim to have Corr
[

J
k, n∇f(xk)

]

→ 1 and Corr
[

n−1
Ψ

k, λ∇ψ(xk)
]

→ 1 as xk → x⋆.
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Algorithm 2 Variance reduced local gradient descent

Input: x01 = · · · = x0n ∈ R
d, stepsize α, probability p

J0
1 = · · · = J0

n = Ψ0
1 = · · · = Ψ0

n = 0 ∈ R
d

for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ then

All Devices i = 1, . . . , n:
Compute ∇fi(x

k
i )

xk+1
i = xki − α

(

n−1(1− p)−1∇fi(x
k
i )− n−1 p

1−pJ
k
i + n−1Ψk

i

)

Set Jk+1
i = ∇fi(x

k
i ), Ψ

k+1
i = Ψk

i
else

Master computes the average x̄k = 1
n

∑n
i=1 x

k
i

Master does for all i = 1, . . . , n:

Set xk+1
i = xki − α

(
λ
np (x

k
i − x̄k)− (p−1 − 1)n−1Ψk

i + n−1Jki

)

Set Ψk+1
i = λ(xki − x̄k), Jk+1

i = Jki
end if

end for

Theorem C.3 Let Assumption 3.1 hold. Set α = nmin
(

(1−p)
4L+µ ,

p
4λ+µ

)

. Then, iteration complexity

of Algorithm 2 is

max
(

4L+µ
µ(1−p) ,

4λ+µ
µp

)

log 1
ε .

Proof: Clearly,

F (x) = f(x) + λψ(x) = 1
2




2f(x)
︸ ︷︷ ︸

:=f(x)

+2λψ(x)
︸ ︷︷ ︸

:=ψ(x)




 .

Note that ψ is 2λ
n smooth and f is 2L

n smooth. At the same time, F is µ
n strongly convex. Using

convergence theorem of SAGA with importance sampling from (Qian et al., 2019b; Gazagnadou
et al., 2019), we get

E
[
F (xk) + α

2Υ(Jk,Ψk)
]
≤

(
1− αµn

)k (
F (x0) + α

2Υ(J0,Ψ0)
)
,

where

Υ(Jk,Ψk) := 4
n2

n∑

i=1

(∥
∥Ψk

i − λ(xi(λ)− x̄(λ))
∥
∥
2
+ ‖Jki −∇fi(xi(λ))‖

2
)

and α = nmin
(

(1−p)
4L+µ ,

p
4λ+µ

)

, as desired.

Corollary C.4 Iteration complexity of Algorithm 2 is minimized for p = 4λ+µ
4λ+4L+2µ , which

yields complexity 4
(
λ
µ + L

µ + 1
2

)

log 1
ε . The communication complexity is minimized for any

p ≤ 4λ+µ
4λ+4L+2µ , in which case the total number of communication rounds to reach ε-solution is

(
4λ
µ + 1

)

log 1
ε .

As a direct consequence of Corollary C.4 we see that the optimal choice of p that minimizes both

communication and number of iterations to reach ε solution of problem (17) is p = 4λ+µ
4λ+4L+2µ .

Remark C.5 While both Algorithm 2 and Algorithm 3 are a special case of SAGA, the practical
version of variance reduced local SGD (presented in Section C.5) is not. In particular, we wish
to run the SVRG-like method locally in order to avoid storing the full gradient table.9 Therefore,

9SAGA does not require storing a full gradient table for problems with linear models by memorizing the
residuals. However, in full generality, SVRG-like methods are preferable.
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variance reduced local SGD that will be proposed in Section C.5 is neither a special case of SAGA
nor a special case of SVRG (or a variant of SVRG). However, it is still a special case of a more
general algorithm from (Hanzely & Richtárik, 2019).

As mentioned, Algorithm 3 is a generalization of Algorithm 2 when the local subproblem is a finite
sum. Note that Algorithm 2 constructs a control variates for both local subproblem and aggregation
function ψ and constructs corresponding unbiased gradient estimator. In contrast, Algorithm 3 con-
structs extra control variates within the local subproblem in order to reduce the variance of gradient
estimator coming from the local subsampling.

C.4 L2SGD+: ALGORITHM AND THE EFFICIENT IMPLEMENTATION

Denote 1 ∈ R
m to be vector of ones. We are now ready to state L2SGD+ as Algorithm 3.

Algorithm 3 L2SGD+: Loopless Local SGD with Variance Reduction

Input: x01 = · · · = x0n ∈ R
d, stepsize α, probability p

J0
i = 0 ∈ R

d×m,Ψ0
i = 0 ∈ R

d (for i = 1, . . . , n)
for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

All Devices i = 1, . . . , n:
Sample j ∈ {1, . . . ,m} (uniformly at random)

gki = 1
n(1−p)

(

∇f ′i,j(x
k
i )−

(
Jki

)

:,j

)

+
J
k
i 1

nm +
Ψ
k
i

n

xk+1
i = xki − αgki

Set (Jk+1
i ):,j = ∇f ′i,j(x

k
i ), Ψ

k+1
i = Ψk

i ,

(Jk+1
i ):,l = (Jk+1

i ):,l for all l 6= j
else

Master computes the average x̄k = 1
n

∑n
i=1 x

k
i

Master does for all i = 1, . . . , n:

gki = λ
np (x

k
i − x̄k)− p−1−1

n Ψk
i +

1
nmJki 1

Set xk+1
i = xki − αgki

Set Ψk+1
i = λ(xki − x̄k), Jk+1

i = Jki
end if

end for

L2SGD+ only communicates when a two consecutive coin tosses land a different value, thus, on
average p(1 − p)k times per k iterations. However, L2SGD+ requires communication of control
variates Ji1,Ψi as well – each communication round is thus three times more expensive. In the
Appendix, we provide an implementation of L2SGD+ that does not require the communication of
Ji1,Ψi.

Here we present an efficient implementation of L2SGD+ as Algorithm 4 so that we do not have to
communicate control variates. As a consequence, Algorithm 4 needs to communicate on average
p(1 − p)k times per k iterations, while each communication consists of sending only local models
to the master and back.

C.5 LOCAL SGD WITH VARIANCE REDUCTION – GENERAL METHOD

In this section, we present a fully general variance reduced local SGD. We consider a more general
instance of (2) where each local objective includes a possibly nonsmooth regularizer, which admits
a cheap evaluation of proximal operator. In particular, the objective becomes
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Algorithm 4 L2SGD+: Loopless Local SGD with Variance Reduction (communication-efficient
implementation)

Input: x01 = · · · = x0n = x̃ ∈ R
d, stepsize α, probability p

Initialize control variates J0
i = 0 ∈ R

d×m,Ψ0
i = 0 ∈ R

d (for i = 1, . . . , n), initial coin toss
ξ−1 = 0
for k = 0, 1, . . . do
ξk = 1 with probability p and 0 with probability 1− p
if ξk = 0 then
All Devices i = 1, . . . , n:

if ξk−1 = 1 then
Receive xki , c from Master

Reconstruct x̄k = x̄k−c using xki , x
k−c
i , c

Set xki = xki − cα 1
nmJki 1, Jki = Jk−ci , Ψk

i = λ(xk−ci − x̄k),
end if
Sample j ∈ {1, . . . ,m} (uniformly at random)

gki = 1
n(1−p)

(

∇f ′i,j(x
k
i )−

(
Jki

)

:,j

)

+
J
k
i 1

nm +
Ψ
k
i

n

xk+1
i = xki − αgki

Set (Jk+1
i ):,j = ∇f ′i,j(x

k
i ), Ψ

k+1
i = Ψk

i ,

(Jk+1
i ):,l = (Jk+1

i ):,l for all l 6= j
else
Master does for all i = 1, . . . , n:

if ξk−1 = 0 then
Set c = 0
Receive xki from Device and set x̄ = 1

n

∑n
i=1 x

k
i , xki = xki

end if

Set xk+1
i = xki − α

(
λ
np (x

k
i − x̄)− p−1−1

n λ(x̃− x̄)
)

Set x̃ = xki
Set c = c+ 1

end if
end for

min
x∈Rdn

1
N

n∑

i=1





mi∑

j=1

f ′i,j(xi)





︸ ︷︷ ︸

=
N
n fi(x)

︸ ︷︷ ︸

=f(x)

+λ 1
2n

n∑

i=1

‖xi − x̄‖2

︸ ︷︷ ︸

=ψ(x)

︸ ︷︷ ︸

=F (x)

+

n∑

i=1

Ri(xi)

︸ ︷︷ ︸

:=R(x)

, (12)

where mi is the number of data points owned by client i and N =
∑n
i=1mi.

In order to squeeze a faster convergence rate from minibatch samplings, we will assume that f ′i,j is

smooth with respect to a matrix Mi,j (instead of scalar L′
i,j = λmaxMi,j).

Assumption C.1 Suppose that f ′i,j is Mi,j smooth (Mi,j ∈ R
d×d,Mi,j ≻ 0) and µ strongly convex

for 1 ≤ j ≤ mi, 1 ≤ i ≤ n, i.e.

f ′i,j(y)+
〈
∇f ′i,j(y), x− y

〉
≤ f ′i,j(x) ≤ f ′i,j(y)+

〈
∇f ′i,j(y), x− y

〉
+ 1

2 ‖y − x‖
2
Mi,j

, ∀x, y ∈ R
d.

(13)
Furthermore, assume that Ri is convex for 1 ≤ i ≤ n.

Our method (Algotihm 5) allows for arbitrary aggregation probability (same as Algorithms 2, 3),
arbitrary sampling of clients (to model the inactive clients) and arbitrary structure/sampling of the
local objectives (i.e., arbitrary size of local datasets, arbitrary smoothness structure of each local
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objective and arbitrary subsampling strategy of each client). Moreover, it allows for the SVRG-like
update rule of local control variates Jk, which requires less storage given an efficient implementa-
tion.

To be specific, each device owns a distribution Di over subsets of mi. When the aggrega-
tion is not performed (with probability 1 − p), a subset of active devices S is selected (S fol-
lows arbitrary fixed distribution D). Each of the active clients (i ∈ S) samples a subset of lo-
cal indices Si ∼ Di and observe the corresponding part of local Jacobian Gi(x

k)(:,Si) (where

Gi(x
k) := [∇f ′i,1(x

k),∇f ′i,2(x
k), . . .∇f ′i,mi(x

k)). When the aggregation is performed (with prob-

ability p) we evaluate x̄k and distribute it to each device; using which each device computes a cor-
responding component of λ∇ψ(xk). Those are the key components in constructing the unbiased
gradient estimator (without control variates).

It remains to construct control variates and unbiased gradient estimator. If the aggregation is done,
we just simply replace the last column of the gradient table. If the aggregation is not done, we have
two options – either keep replacing the columns of the Jacobian table (in such case, we obtain a
particular case of SAGA (Defazio et al., 2014)) or do LSVRG-like replacement (Hofmann et al.,
2015; Kovalev et al., 2020) (in such case, the algorithm is a particular case of GJS (Hanzely &
Richtárik, 2019), but is not a special case of neither SAGA nor LSVRG. Note that LSVRG-like
replacement is preferrable in practice due to a better memory efficiency (one does not need to store
the whole gradient table) for the models other than linear.

In order to keep the gradient estimate unbiased, it will be convenient to define vector pi ∈ R
mi such

that for each j ∈ {1, . . . ,mi} we have P (j ∈ Si) = pi,j .

Next, to give a tight rate for any given pair of smoothness structure and sampling strategy, we use a
standard tool first proposed for the analysis of randomized coordinate descent methods (Richtárik &
Takáč, 2016; Qu & Richtárik, 2016) called Expected Separable Overapproximation (ESO) assump-
tion. ESO provides us with smoothness parameters of the objective which “account” for the given
sampling strategy.

Assumption C.2 Suppose that there is vi ∈ R
mi such for each client we have:

E






∥
∥
∥
∥
∥
∥

∑

j∈Si

M
1
2
i,jhi,j

∥
∥
∥
∥
∥
∥

2



 ≤

mi∑

j=1

pi,jvi,j ‖hi,j‖
2
, ∀ 1 ≤ i ≤ n, ∀hi,j ∈ R

mi , j ∈ {1, . . . ,mi}.

(14)

Lastly, denote pi to be the probability that worker i is active and 1(mi) ∈ R
mi to be the vector of

ones. The resulting algorithm is stated as Algorithm 5.

Next, Theorems C.6 and C.7 present convergence rate of Algorithm 5 (SAGA and SVRG variant,
respectively).

Theorem C.6 Suppose that Assumptions C.1 and C.2 hold. Let

α = min

{

min
j∈{1,...,mi},1≤i≤n

N(1−p)pi,jpi

4vj+N
µ
n

, np
4λ+µ

}

.

Then the iteration complexity of Algorithm 5 (SAGA option) is

max

{

max
j∈{1,...,mi},1≤i≤n

(
4vj

n
N +µ

µ(1−p)pi,jpi

)

, 4λ+µpµ

}

log 1
ε .

Theorem C.7 Suppose that Assumptions C.1 and C.2 hold. Let

α = min

{

min
j∈{1,...,mi},1≤i≤n

N(1−p)pi

4
vj
pi,j

+N
µ
np

−1
i

, pn
4λ+µ

}

.

Then the iteration complexity of Algorithm 5 (LSVRG option) is

max

{

max
j∈{1,...,mi},1≤i≤n

(
4vj

n
Npi,j

+µp−1
i

piµ(1−p)

)

, 4λ+µpµ

}

log 1
ε .
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Algorithm 5 L2SGD++: Loopless Local SGD with Variance Reduction and Partial Participation

Input: x01, . . . x
0
n ∈ R

d, # parallel units n, each of them owns mi data points (for 1 ≤ i ≤
n), distributions Dt over subsets of {1, . . . ,mi}, distribution D over subsets of {1, 2, . . . n},
aggregation probability p, stepsize α
J0
i = 0 ∈ R

d×mi ,Ψ0
i = 0 ∈ R

d (for i = 1, . . . , n)
for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

Sample S ∼ D
All Devices i ∈ S:

Sample Si ∼ Di; Si ⊆ {1, . . . ,mi} (independently on each machine)
Observe ∇f ′i,j(x

k
i ) for all j ∈ Si

gki = 1
N(1−p)pi

(
∑

j∈Si
p−1
i,j

(

∇f ′i,j(x
k
i )−

(
Jki

)

:,j

))

+ 1
N Jki 1

(mi) + n−1Ψk
i

xk+1
i = proxαRi(x

k
i − αgki )

For all j ∈ {1, . . . ,mi} set Jk+1
:,j =







{
∇f ′i,j(x

k
i ) if j ∈ Si

Jk:,j otherwise
if SAGA

{
∇f ′i,j(x

k
i ); w. p. pi

Jk:,j otherwise
if L− SVRG

Set Ψk+1
i = Ψk

i
All Devices i 6∈ S:
gki = 1

N Jki 1
(mi) + n−1Ψk

i

xk+1
i = proxαRi(x

k
i − αgki )

Set Jk+1
i = Jki ,Ψ

k+1
i = Ψk

i
else

Master computes the average x̄k = 1
n

∑n
i=1 x

k
i

Master does for all i = 1, . . . , n:
gki = p−1λ(xki − x̄k)− (p−1 − 1)n−1Ψk

i +
1
N Jki 1

(mi)

Set xk+1
i = proxαRi

(
xki − αgki

)

Set Ψk+1
i = λ(xki − x̄k), Jk+1

i = Jki
end if

end for

Remark C.8 Algotihm 2 is a special case of Algorithm 3 which is in turn special case of Algo-
rithm 5. Similarly, Theorem 2 is a special case of Theorem 5.1 which is again special case of
Theorem C.6.

C.6 LOCAL STOCHASTIC ALGORITHMS

In this section, we present two more algorithms – Local SGD with partial variance reduction (Al-
gorithm 7) and Local SGD without variance reduction (Algorithm 6). While Algorithm 6 uses no
control variates at all (thus is essentially Algorithm 1 where local gradient descent steps are replaced
with local SGD steps), Algorithm 7 constructs control variates for ψ only, resulting in locally drifted
SGD algorithm (with the constant drift between each consecutive rounds of communication). While
we do not present the convergence rates of the methods here, we shall notice they can be easily
obtained using the framework from (Gorbunov et al., 2020).
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Algorithm 6 Loopless Local SGD (L2SGD)

Input: x01 = · · · = x0n ∈ R
d, stepsize α, probability p

for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

All Devices i = 1, . . . , n:
Sample j ∈ {1, . . . ,m} (uniformly at random)

gki = 1
n(1−p)

(
∇f ′i,j(x

k
i )
)

xk+1
i = xki − αgki

else
Master computes the average x̄k = 1

n

∑n
i=1 x

k
i

Master does for all i = 1, . . . , n:
gki = λ

np (x
k
i − x̄k)

Set xk+1
i = xki − αgki

end if
end for

Algorithm 7 Loopless Local SGD with partial variance reduction (L2SGD2)

Input: x01 = · · · = x0n ∈ R
d, stepsize α, probability p

Ψ0
i = 0 ∈ R

d (for i = 1, . . . , n)
for k = 0, 1, . . . do
ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

All Devices i = 1, . . . , n:
Sample j ∈ {1, . . . ,m} (uniformly at random)

gki = 1
n(1−p)

(
∇f ′i,j(x

k
i )
)
+ 1

nΨ
k
i

xk+1
i = xki − αgki

Set Ψk+1
i = Ψk

i
else

Master computes the average x̄k = 1
n

∑n
i=1 x

k
i

Master does for all i = 1, . . . , n:

gki = λ
np (x

k
i − x̄k)− p−1−1

n Ψk
i

Set xk+1
i = xki − αgki

Set Ψk+1
i = λ(xki − x̄k)

end if
end for
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D MISSING LEMMAS AND PROOFS

D.1 GRADIENT AND HESSIAN OF ψ

Lemma D.1 Let I be the d× d identity matrix and In be n× n identity matrix. Then, we have

∇2ψ(x) = 1
n

(
In − 1

nee
⊤
)
⊗ I and ∇ψ(x) = 1

n














x−














x̄
...
x̄
x̄
x̄
...
x̄



























.

Furthermore, Lψ = 1
n .

Proof:

Let O the d× d zero matrix and let

Qi := [O, . . . ,O
︸ ︷︷ ︸

i−1

, I,O, . . . ,O
︸ ︷︷ ︸

n−i

] ∈ R
d×dn

and Q := [I, . . . , I] ∈ R
d×dn. Note that xi = Qix, and x̄ = 1

nQx. So,

ψ(x) = 1
2n

n∑

i=1

∥
∥Qix− 1

nQx
∥
∥
2
= 1

2n

n∑

i=1

∥
∥
(
Qi −

1
nQ

)
x
∥
∥
2
.

The Hessian of ψ is

∇2ψ(x) = 1
n

n∑

i=1

(
Qi −

1
nQ

)⊤ (
Qi −

1
nQ

)

= 1
n

n∑

i=1

(
Q⊤
i Qi −

1
nQ

⊤
i Q− 1

nQ
⊤Qi +

1
n2Q

⊤Q
)

= 1
n

n∑

i=1

Q⊤
i Qi −

1
n

n∑

i=1

1
nQ

⊤
i Q− 1

n

n∑

i=1

1
nQ

⊤Qi +
1
n

n∑

i=1

1
n2Q

⊤Q

= 1
n

n∑

i=1

Q⊤
i Qi −

1
n2Q

⊤Q

and by plugging in for Q and Qi, we get

∇2ψ(x) = 1
n










(
1− 1

n

)
I − 1

nI − 1
nI · · · − 1

nI

− 1
nI

(
1− 1

n

)
I − 1

nI · · · − 1
nI

− 1
nI − 1

nI
(
1− 1

n

)
I · · · − 1

nI
...

...
...

...

− 1
nI − 1

nI − 1
nI · · ·

(
1− 1

n

)
I










= 1
n










(
1− 1

n

)
− 1
n − 1

n · · · − 1
n

− 1
n

(
1− 1

n

)
− 1
n · · · − 1

n
− 1
n − 1

n

(
1− 1

n

)
· · · − 1

n
...

...
...

...

− 1
n − 1

n − 1
n · · ·

(
1− 1

n

)










⊗ I

= 1
n

(
In − 1

nee
⊤
)
⊗ I.

Notice that In − 1
nee

⊤ is a circulant matrix, with eigenvalues 1 (multiplicity n − 1) and 0 (multi-
plicity 1). Since the eigenvalues of a Kronecker product of two matrices are the products of pairs of
eigenvalues of the these matrices, we have

λmax(∇
2ψ(x)) = λmax

(
1
n

(
In − 1

nee
⊤
)
⊗ I

)
= 1

nλmax

(
In − 1

nee
⊤
)
= 1

n .

26



Under review as a conference paper at ICLR 2021

So, Lψ = 1
n .

The gradient of ψ is given by

∇ψ(x) = 1
n

n∑

i=1

(
Qi −

1
nQ

)⊤ (
Qi −

1
nQ

)
x

= 1
n

n∑

i=1

(
Q⊤
i Qi −

1
nQ

⊤
i Q− 1

nQ
⊤Qi +

1
n2Q

⊤Q
)
x

= 1
n

n∑

i=1



























0
...
0
xi
0
...
0














−














0
...
0
x̄
0
...
0














−














xi/n
...

xi/n
xi/n
xi/n

...
xi/n














+














x̄/n
...

x̄/n
x̄/n
x̄/n

...
x̄/n



























= 1
n














n∑

i=1














0
...
0
xi
0
...
0














−

n∑

i=1














0
...
0
x̄
0
...
0














−

n∑

i=1














xi/n
...

xi/n
xi/n
xi/n

...
xi/n














+
n∑

i=1














x̄/n
...

x̄/n
x̄/n
x̄/n

...
x̄/n



























= 1
n














x−














x̄
...
x̄
x̄
x̄
...
x̄














−














x̄
...
x̄
x̄
x̄
...
x̄














+














x̄
...
x̄
x̄
x̄
...
x̄



























= 1
n














x−














x̄
...
x̄
x̄
x̄
...
x̄



























.

D.2 PROOF OF THEOREM 3.1

For any λ, θ ≥ 0 we have

f(x(λ)) + λψ(x(λ)) ≤ f(x(θ)) + λψ(x(θ)) (15)

f(x(θ)) + θψ(x(θ)) ≤ f(x(λ)) + θψ(x(λ)). (16)

By adding inequalities (15) and (16), we get

(θ − λ)(ψ(x(λ))− ψ(x(θ))) ≥ 0,

which means that ψ(x(λ)) is decreasing in λ. Assume λ ≥ θ. From the (16) we get

f(x(λ)) ≥ f(x(θ)) + θ(ψ(x(θ))− ψ(x(λ))) ≥ f(x(θ)),

where the last inequality follows since θ ≥ 0 and since ψ(x(θ)) ≥ ψ(x(λ)). So, f(x(λ)) is
increasing.

27



Under review as a conference paper at ICLR 2021

Notice that since ψ is a non-negative function and since x(λ) minimizes F and ψ(x(∞)) = 0, we
have

f(x(0)) ≤ f(x(λ)) ≤ f(x(λ)) + λψ(x(λ)) ≤ f(x(∞)),

which implies (3) and (4).

D.3 PROOF OF THEOREM 3.2

The equation ∇F (x(λ)) = 0 can be equivalently written as

∇fi(xi(λ)) + λ(xi(λ)− x(λ)) = 0, i = 1, 2, . . . , n,

which is identical to (5). Averaging these identities over i, we get

x(λ) = x(λ)− 1
λ

1
n

n∑

i=1

∇fi(xi(λ)),

which implies
n∑

i=1

∇fi(xi(λ)) = 0.

Further, we have

ψ(x(λ)) = 1
2n

n∑

i=1

‖xi(λ)− x(λ)‖
2
= 1

2nλ2

n∑

i=1

‖∇fi(xi(λ))‖
2
= 1

2λ2 ‖∇f(x(λ))‖
2
,

as desired.

D.4 PROOF OF THEOREM 3.3

First, observe that

||∇P (x̄(λ))||2 =

∥
∥
∥
∥
∥

1

n

∑

i

∇fi(x̄(λ))

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

1

n

∑

i

∇fi(x̄(λ))−
1

n

∑

i

∇fi(xi(λ))

∥
∥
∥
∥
∥

2

,

where the second identity is due to Theorem 3.2 which says that 1
n

∑

i∇fi(xi(λ)) = 0. By applying
Jensen’s inequality and Lipschitz continuity of functions fi, we get

||∇P (x̄(λ))||2 ≤
1

n

∑

i

||∇fi(x̄(λ))−∇fi(xi(λ))||
2 ≤

L2

n

∑

i

||x̄(λ)− xi(λ)||
2 = 2L2ψ(x(λ)).

It remains to apply (3) and notice that P is strongly convex and thus x(∞) is indeed the unique
minimizer.

D.5 PROOF OF THEOREM 4.2

We first show that our gradient estimator G(x) satisfies the expected smoothness property (Gower
et al., 2018; 2019).

Lemma D.2 Let L := 1
n max

{
L

1−p ,
λ
p

}

and σ2 := 1
n2

∑n
i=1

(
1

1−p‖∇fi(xi(λ))‖
2 + λ2

p ‖xi(λ)− x(λ)‖2
)

.

Then for all x ∈ R
d we have the inequalities E

[

‖G(x)−G(x(λ))‖
2
]

≤ 2L (F (x)− F (x(λ)))

and

E

[

‖G(x)‖
2
]

≤ 4L(F (x)− F (x(λ))) + 2σ2.

Next, Theorem 4.2 from Lemma D.2 by applying Theorem 3.1 from (Gower et al., 2019).
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D.6 PROOF OF LEMMA D.2

We first have

E

[

‖G(x)−G(x(λ))‖
2
]

= (1− p)
∥
∥
∥
∇f(x)
1−p − ∇f(x(λ))

1−p

∥
∥
∥

2

+ p
∥
∥
∥λ

∇ψ(x)
p − λ∇ψ(x(λ))

p

∥
∥
∥

2

= 1
1−p ‖∇f(x)−∇f(x(λ))‖

2
+ λ2

p ‖∇ψ(x)−∇ψ(x(λ))‖
2

≤
2Lf
1−pDf (x, x(λ)) +

2λ2Lψ
p Dψ(x, x(λ))

= 2L
n(1−p)Df (x, x(λ)) +

2λ2

np Dψ(x, x(λ)).

Since Df + λDψ = DF and ∇F (x(λ)) = 0, we can continue:

E

[

‖G(x)−G(x(λ))‖
2
]

≤ 2
n max

{
L

1−p ,
λ
p

}

DF (x, x(λ))

= 2
n max

{
L

1−p ,
λ
p

}

(F (x)− F (x(λ))) .

Next, note that

σ2 = 1
n2

n∑

i=1

(
1

1−p‖∇fi(xi(λ))‖
2 + λ2

p ‖xi(λ)− x(λ)‖2
)

= 1
1−p ‖∇f(x(λ))‖

2
+ λ2

p ‖∇ψ(x(λ))‖
2

= (1− p)
∥
∥
∥
∇f(x(λ))

1−p

∥
∥
∥

2

+ p
∥
∥
∥
λ∇ψ(x(λ))

p

∥
∥
∥

2

= E

[

‖G(x(λ))‖
2
]

.

Therefore, we have

E

[

‖G(x)‖
2
]

≤ E

[

‖G(x)−G(x(λ))‖
2
]

+ 2E
[

‖G(x(λ))‖
2
]

Lemma D.2+(17)

≤ 4L(F (x)− F (x(λ))) + 2σ2,

as desired.

D.7 PROOF OF COROLLARY 4.3

Firstly, to minimize the total number of iterations, it suffices to minimize L which is achieved with
p⋆ = λ

L+λ . Let us look at the communication. Fix ε > 0, choose α = 1
2L and let k = 2nL

µ log 1
ε , so

that
(
1− µ

2nL

)k
≤ ε.

The expected number of communications to achieve this goal is equal to

Commp := p(1− p)k

= p(1− p)
2max

{

L
1−p ,

λ
p

}

µ log 1
ε

= 2max{pL,(1−p)λ}
µ log 1

ε .

The quantity Commp is minimized by choosing any p such that pL = (1−p)λ, i.e., for p = λ
λ+L =

p⋆, as desired. The optimal expected number of communications is therefore equal to

Commp⋆ = 2λ
λ+L

L
µ log 1

ε .
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D.8 PROOF OF COROLLARY 5.2

Firstly, to minimize the total number of iterations, it suffices to solve

minmax
{

4L′+µm
(1−p)µ ,

4λ+µ
pµ

}

,

which is achieved with p = p⋆ = 4λ+µ
4L′+4λ+(m+1)µ .

The expected number of communications to reach ε-solution is

Commp = p(1− p)max
{

4L′+µm
(1−p)µ ,

4λ+µ
pµ

}

log 1
ε

=
max{p(4L′+µm),(1−p)(4λ+µ)}

µ log 1
ε .

Minimizing the above in p yield p = p⋆ = 4λ+µ
4L′+4λ+(m+1)µ , as desired. The optimal expected

number of communications is therefore equal to

Commp⋆ = 4λ+µ
4L′+4λ+(m+1)µ

(

4L
′

µ +m
)

log 1
ε .

D.9 PROOF OF THEOREMS 5.1, C.6, AND C.7

Note first that Algorithm 3 is a special case of Algorithm 5, and Theorem 5.1 immediately follows
from Theorem C.6. Therefore it suffices to show Theorems C.6, and C.7. In order to do so, we will
cast Algorithm 5 as a special case of GJS from (Hanzely & Richtárik, 2019). As a consequence,
Theorem C.6 will be a special cases of Theorem 5.2 from (Hanzely & Richtárik, 2019).

D.9.1 GJS

In this section, we quickly summarize results from (Hanzely & Richtárik, 2019), which we cast
to sho convergence rate of Algorithm 3. GJS (Hanzely & Richtárik, 2019) is a method to solve
regularized empirical risk minimization objective, i.e.,

min
x∈Rd

1
n

n∑

j=1

fj(x) +R(x). (17)

Defining G(x) := [∇f1(x), . . . ,∇fn(x)], we observe SG(x),UG(x) every iteration where S is
random linear projection operator and U is random linear operator which is identity on expectation.
Based on this random gradient information, GJS (Algorithm 8) constructs variance reduced gradient
estimator g and takes a proximal step in that direction.

Algorithm 8 Generalized JacSketch (GJS) (Hanzely & Richtárik, 2019)

1: Parameters: Stepsize α > 0, random projector S and unbiased sketch U
2: Initialization: Choose solution estimate x0 ∈ R

d and Jacobian estimate J0 ∈ R
d×n

3: for k = 0, 1, . . . do
4: Sample realizations of S and U , and perform sketches SG(xk) and UG(xk)
5: Jk+1 = Jk − S(Jk −G(xk)) update the Jacobian estimate

6: gk = 1
nJ

ke+ 1
nU

(
G(xk)− Jk

)
e construct the gradient estimator

7: xk+1 = proxαR(x
k − αgk) perform the proximal SGD step

8: end for

Next we quickly summarize theory of GJS.

Assumption D.1 Problem (17) has a unique minimizer x⋆, and f is µ-quasi strongly convex, i.e.,

f(x⋆) ≥ f(y) + 〈∇f(y), x⋆ − y〉+ µ
2 ‖y − x⋆‖

2
, ∀y ∈ R

d, (18)

Functions fj are convex and Mj-smooth for some Mj � 0, i.e.,

fj(y)+〈∇fj(y), x− y〉 ≤ fj(x) ≤ fj(y)+〈∇fj(y), x− y〉+ 1
2 ‖y − x‖

2
Mj

, ∀x, y ∈ R
d. (19)
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Theorem D.3 (Slight simplification of Theorem 5.2 from (Hanzely & Richtárik, 2019)) Let As-
sumption D.1 hold. Define M(X) := [M1X:,1, . . . ,MnX:,n] Let B be any linear operator com-

muting with S , and assume M†
1
2 commutes with S . Define the Lyapunov function

Ψk :=
∥
∥xk − x⋆

∥
∥
2
+ α

∥
∥
∥
∥
BM†

1
2
(
Jk −G(x⋆)

)
∥
∥
∥
∥

2

, (20)

where {xk} and {Jk} are the random iterates produced by Algorithm 8 with stepsizeα > 0. Suppose
that α and B are chosen so that

2α
n2E

[

‖UXe‖
2
]

+

∥
∥
∥
∥
(I − E [S])

1
2 BM†

1
2X

∥
∥
∥
∥

2

≤ (1− αµ)

∥
∥
∥
∥
BM†

1
2X

∥
∥
∥
∥

2

(21)

and

2α
n2E

[

‖UXe‖
2
]

+

∥
∥
∥
∥
(E [S])

1
2 BM†

1
2X

∥
∥
∥
∥

2

≤ 1
n

∥
∥
∥
∥
M†

1
2X

∥
∥
∥
∥

2

. (22)

for all X ∈ R
d×n. Then for all k ≥ 0, we have E

[
Ψk

]
≤ (1− αµ)

k
Ψ0.

D.9.2 VARIANCE REDUCED LOCAL SGD AS SPECIAL CASE OF GJS

Let Ω(i, j) := j+
∑i−1
l=1 mi In order to case problem (12) as a special case of 17, denote n := N+1,

fΩ(i,j)(x) :=
N+1
N f ′i,j(xi) and fn := (N + 1)ψ. Therefore the objective (12) becomes

min
x∈RNd

Υ(x) := 1
n

n∑

j=1

f j(x) +R(x). (23)

Let v ∈ R
n−1 be such that vΩ(i,j) =

N+1
N vi,j and as a consequence of (14) we have

E






∥
∥
∥
∥
∥
∥

∑

j∈Si

M
1
2
i,jhi,j

∥
∥
∥
∥
∥
∥

2



 ≤

mi∑

j=1

pi,jvΩ(i,j) ‖hi,j‖
2
, ∀ 1 ≤ i ≤ n, ∀hi,j ∈ R

d, j ∈ {1, . . . ,mi}.

(24)
At the same time, Υ is µ := µ

n strongly convex.

D.9.3 PROOF OF THEOREM C.6 AND THEOREM C.7

Let e ∈ R
d be a vector of ones and pi ∈ R

N is such that pij = pi,j if j ∈ {1, . . . ,mi}, otherwise

pij = 0. Given the notation, random operator U is chosen as

UX =







(1− p)−1
∑n
i=1

(

p−1
i e

((
pi
)−1

)⊤
)

◦
(

X:mi

(
∑

j∈Si
ejej

⊤
))

w.p. (1− p)

p−1X:,n w.p. p

We next give two options on how to update Jacobian – first one is SAGA-like, second one is SVRG
like.

SAGA-like: (SX):,mi =

{

X:,Si = X:mi

(
∑

j∈Si
ejej

⊤
)

, w.p. (1− p)pi,

0 w.p. (1− p)(1− pi) + p

(SX):,n =

{
X:,n w.p. p

0 w.p. 1− p

SVRG-like: (SX):,mi =







X:mibi; bi =

{
1 w.p. pi
0 w.p. 1− pi

w.p. (1− p)pi

0 w.p. (1− p)(1− pi) + p

(SX):,n =

{
X:,n w.p. p

0 w.p. 1− p .
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We can now proceed with the proof of Theorem C.6 and Theorem C.7. As ∇fi(x) − ∇fi(y) ∈
Range (Mi), we must have

G(xk)−G(x⋆) = M†M
(
G(xk)−G(x⋆)

)
(25)

and
Jk −G(x⋆) = M†M

(
Jk −G(x⋆)

)
. (26)

Due to (26), (25), inequalities (21) and (22) with choice Y = M†
1
2X become respectively:

2α
n2 p

−1‖M
1
2
nY:,n‖

2 + 2α2

n2 (1− p)−1
n∑

i=1

E






∥
∥
∥
∥
∥
∥

p−1
i

∑

j∈Si

p−1
i,jM

1
2
i,jY:j

∥
∥
∥
∥
∥
∥

2



+

∥
∥
∥
∥
(I − E [S])

1
2 B(Y)

∥
∥
∥
∥

2

≤ (1− αµ)‖B(Y)‖2 (27)

2α
n2 p

−1‖M
1
2
nY:,n‖

2+ 2α2

n2 (1−p)−1
n∑

i=1

E






∥
∥
∥
∥
∥
∥

p−1
i

∑

j∈Si

p−1
i,jM

1
2
i,jY:j

∥
∥
∥
∥
∥
∥

2



+

∥
∥
∥
∥
(E [S])

1
2 B(Y)

∥
∥
∥
∥

2

≤ 1
n‖Y‖2

(28)

Above, we have used

E‖UXe‖2 = E

[

‖UM
1
2Ye‖2

]

= p−1‖M
1
2
nY:,n‖

2+(1−p)−1
n∑

i=1

E






∥
∥
∥
∥
∥
∥

p−1
i

∑

j∈Si

p−1
i,jM

1
2
i,jY:j

∥
∥
∥
∥
∥
∥

2



 .

Note that E [S(X)] = X · Diag ((1− p)(p ◦ p), p) where p ∈ R
n−1 such that pΩ(i,j) = pi,j .

Using (24), setting B to be right multiplication with Diag(b) and noticing that λmaxMn = nλ it
suffices to have

2α
n p

−1λ+ (1− p)b2n ≤ (1− αµ)b2n
2α
n2 (1− p)−1p−1

i,j p
−1
i vΩ(i,j) + (1− (1− p)pi,jpi)b

2
j ≤ (1− αµ)b2j ∀j ∈ {1, . . . ,mi}, i ≤ n

2α
n p

−1λ+ pb2n ≤ 1
n

2α
n2 (1− p)−1p−1

i,j p
−1
i vΩ(i,j) + (1− p)pi,jpib

2
j ≤

1
n ∀j ∈ {1, . . . ,mi}, i ≤ n

for SAGA case and
2α
n p

−1λ+ (1− p)b2n ≤ (1− αµ)b2n
2α
n2 (1− p)−1p−1

i,j p
−1
i vΩ(i,j) + (1− (1− p)pipi)b

2
j ≤ (1− αµ)b2j ∀j ∈ {1, . . . ,mi}, i ≤ n

2α
n p

−1λ+ pb2n ≤ 1
n

2α
n2 (1− p)−1p−1

i,j p
−1
i vΩ(i,j) + (1− p)pipib

2
j ≤

1
n ∀j ∈ {1, . . . ,mi}, i ≤ n

for LSVRG case.

It remains to notice that to satisfy the SAGA case, it suffices to set b2n = 1
2np , b

2
Ω(i,j) =

1
2n(1−p)pi,jpi

(for j ∈ {1, . . . ,mi}, i ≤ n) and α = min
{

minj∈{1,...,mi},1≤i≤n
n(1−p)pi,jpi
4vΩ(i,j)+nµ

, p
4λ+µ

}

.

To satisfy LSVRG case, it remains to set b2n = 1
2np , b

2
Ω(i,j) =

1
2n(1−p)pipi

(for j ∈ {1, . . . ,mi}, i ≤

n) and α = min

{

minj∈{1,...,mi},1≤i≤n
n(1−p)pi

4
vΩ(i,j)

pi,j
+nµp−1

i

, p
4λ+µ

}

.

The last step to establish is to recall that n = N + 1, vΩ(i,j) = N+1
N vi,j and µ = µ

n and note that

the iteration complexity is 1
αµ log 1

ε = n
αµ log 1

ε .
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D.9.4 PROOF OF THEOREM 5.1

To obtain convergence rate of Theorem 5.1, it remains to use Theorem C.6 with pi = 1,mi = m
(∀i ≤ n), where each machine samples (when the aggregation is not performed) individual data
points with probability 1

m and thus pj = 1
m (for all j ≤ N ). The last remaining thing is to realize

that vj = L′ for all j ≤ N .
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