
Page 1/34

Federated Learning used for predicting outcomes in
SARS-COV-2 patients
Mona Flores  (  m�ores@nvidia.com )

NVIDIA https://orcid.org/0000-0002-7362-3044
Ittai Dayan 

MGH Radiology and Harvard Medical School
Holger Roth 

NVIDIA https://orcid.org/0000-0002-3662-8743
Aoxiao Zhong 

Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
Ahmed Harouni 

NVIDIA
Amilcare Gentili 

San Diego VA Health Care System, San Diego
Anas Abidin 

NVIDIA
Andrew Liu 

andrliu@nvidia.com
Anthony Costa 

Mount Sinai Health System
Bradford Wood 

Radiology & Imaging Sciences / Clinical Center, National Institutes of Health
Chien-Sung Tsai 

Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National
Defense Medical Center, Taipei, Taiwan, R.O.C.
Chih-Hung Wang 

Tri-Service General Hospital, National Defense Medical Center https://orcid.org/0000-0001-5058-4356
Chun-Nan Hsu 

Center for Research in Biological Systems, University of California, San Diego https://orcid.org/0000-
0002-5240-4707
CK Lee 

NVIDIA
Colleen Ruan 

NVIDIA

https://doi.org/10.21203/rs.3.rs-126892/v1
mailto:mflores@nvidia.com
https://orcid.org/0000-0002-7362-3044
https://orcid.org/0000-0002-3662-8743
https://orcid.org/0000-0001-5058-4356
https://orcid.org/0000-0002-5240-4707


Page 2/34

Daguang Xu 
NVIDIA

Dufan Wu 
Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts

General Hospital, Harvard Medical School, Boston, MA
Eddie Huang 

NVIDIA
Felipe Kitamura 

Diagnósticos da América SA (Dasa) https://orcid.org/0000-0002-9992-5630
Gri�n Lacey 

NVIDIA
Gustavo César de Antônio Corradi 

GUSTAVOCORRADI@gmail.com
Hao-Hsin Shin 

Memorial Sloan Kettering Cancer Center
Hirofumi Obinata 

Self-Defense Forces Central Hospital
Hui Ren 

Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
Jason Crane 

Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of
California, San Francisco, California, USA.
Jesse Tetreault 

NVIDIA
Jiahui Guan 

NVIDIA
John Garrett 

The University of Wisconsin-Madison School of Medicine and Public Health https://orcid.org/0000-
0002-8152-736X
Jung Gil Park 

Yeungnam University College of Medicine https://orcid.org/0000-0001-5472-4731
Keith Dreyer 

Center for Clinical Data Science, Massachusetts General Brigham, Boston, MA
Krishna Juluru 

Memorial Sloan Kettering Cancer Center https://orcid.org/0000-0001-8203-8894
Kristopher Kersten 

NVIDIA
Marcio Aloisio Bezerra Cavalcanti Rockenbach 

https://orcid.org/0000-0002-9992-5630
https://orcid.org/0000-0002-8152-736X
https://orcid.org/0000-0001-5472-4731
https://orcid.org/0000-0001-8203-8894


Page 3/34

Center for Clinical Data Science, Massachusetts General Brigham, Boston, MA https://orcid.org/0000-
0003-1783-0441
Marius Linguraru 

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital and School of
Medicine and Health Sciences, George Washington University, Washington, DC
Masoom Haider 

Joint Dept. of Medical Imaging, Sinai Health System, University of Toronto, Toronto, Canada and
Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
Meena AbdelMaseeh 

Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
Nicola Rieke 

NVIDIA
Pablo Damasceno 

Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of
California, San Francisco, California, USA.
Pedro Mario Cruz e Silva 

NVIDIA
Pochuan Wang 

MeDA Lab and Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
https://orcid.org/0000-0002-3856-048X

Sheng Xu 
Center for Interventional Oncology, National Institutes of Health, Bethesda, MD, USA

Shuichi Kawano 
Self-Defense Forces Central Hospital

Sira Sriswasdi 
Chulalongkorn University https://orcid.org/0000-0002-4117-3632

Soo Young Park 
Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South

Korea
Thomas Grist 

University of Wisconsin-Madison
Varun Buch 

Center for Clinical Data Science, Massachusetts General Brigham, Boston, MA
Watsamon Jantarabenjakul 

Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand and Thai
Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bang
Weichung Wang 

National Taiwan University
Won Young Tak 

https://orcid.org/0000-0003-1783-0441
https://orcid.org/0000-0002-3856-048X
https://orcid.org/0000-0002-4117-3632


Page 4/34

Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South
Korea
Xiang Li 

Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
Xihong Lin 

Harvard T.H. Chan School of Public Health https://orcid.org/0000-0001-7067-7752
Fred Kwon 

Mount Sinai Health System
Fiona Gilbert 

University of Cambridge https://orcid.org/0000-0002-0124-9962
Josh Kaggie 

Department of Radiology, NIHR Cambridge Biomedical Resource Centre, University of Cambridge
Quanzheng Li 

Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA
Abood Quraini 

NVIDIA
Andrew Feng 

NVIDIA
Andrew Priest 

Department of Radiology, NIHR Cambridge Biomedical Resource Centre, Cambridge University Hospital
https://orcid.org/0000-0002-9771-4290

Baris Turkbey 
National Institutes of Health https://orcid.org/0000-0003-0853-6494

Benjamin Glicksberg 
Icahn School of Medicine at Mount Sinai https://orcid.org/0000-0003-4515-8090

Bernardo Bizzo 
Center for Clinical Data Science, Massachusetts General Brigham, Boston, MA https://orcid.org/0000-

0002-9686-6751
Byung Seok Kim 

Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
Carlos Tor-Diez 

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital , Washington, DC
https://orcid.org/0000-0003-3339-5777

Chia-Cheng Lee 
Planning and Management O�ce, Tri-Service General Hospital, National Defense Medical Center, Taipei,

Taiwan, R.O.C. and Division of Colorectal Surgery, Department of Surgery, Tri-Service General H
Chia-Jung Hsu 

https://orcid.org/0000-0001-7067-7752
https://orcid.org/0000-0002-0124-9962
https://orcid.org/0000-0002-9771-4290
https://orcid.org/0000-0003-0853-6494
https://orcid.org/0000-0003-4515-8090
https://orcid.org/0000-0002-9686-6751
https://orcid.org/0000-0003-3339-5777


Page 5/34

Planning and Management O�ce, Tri-Service General Hospital, National Defense Medical Center, Taipei,
Taiwan, R.O.C.
Chin Lin 

School of Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C. and School of Public
Health, National Defense Medical Center, Taipei, Taiwan, R.O.C. and Graduate Institute of Life Scienc
Chiu-Ling Lai 

Medical Review and Pharmaceutical Bene�ts Division, National Health Insurance Administration, Taipei.
Taiwan
Christopher Hess 

University of California, San Francisco
Colin Compas 

NVIDIA
Deepi Bhatia 

NVIDIA
Eric Oermann 

NYU Langone
Evan Leibovitz 

The Center for Clinical Data Science, Mass General Brigham.
Hisashi Sasaki 

Self-Defense Forces Central Hospital
Hitoshi Mori 

Self-Defense Forces Central Hospital
Isaac Yang 

NVIDIA
Jae Ho Sohn 

Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of
California, San Francisco, California, USA.
Krishna Nand Keshava Murthy 

Memorial Sloan Kettering Cancer Center
Li-Chen Fu 

MOST/NTU All Vista Healthcare Center, Center for Arti�cial Intelligence and Advanced Robotics,
National Taiwan University, Taipei, Taiwan
Matheus Ribeiro Furtado de Mendonça 

Diagnósticos da América SA (DASA) https://orcid.org/0000-0001-5541-7207
Mike Fralick 

Division of General Internal Medicine and Geriatrics (Fralick), Sinai Health System, Toronto, Canada
Min Kyu Kang 

Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
Mohammad Adil 

https://orcid.org/0000-0001-5541-7207


Page 6/34

NVIDIA
Natalie Gangai 

Memorial Sloan Kettering Cancer Center
Peerapon Vateekul 

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University
https://orcid.org/0000-0001-9718-3592

Pierre Elnajjar 
Memorial Sloan Kettering Cancer Center

Sarah Hickman 
Department of Radiology, NIHR Cambridge Biomedical Resource Centre, University of Cambridge

Sharmila Majumdar 
Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of

California, San Francisco, California, USA.
Shelley McLeod 

Schwartz/Reisman Emergency Medicine Institute, Sinai Health, Toronto, ON, Canada and Department of
Family and Community Medicine, University of Toronto, Toronto, ON, Canada
Sheridan Reed 

Center for Interventional Oncology, National Institutes of Health, Bethesda, MD, USA
Stefan Graf 

University of Cambridge https://orcid.org/0000-0002-1315-8873
Stephanie Harmon 

National Cancer Institute https://orcid.org/0000-0002-2507-2399
Tatsuya Kodama 

Self-Defense Forces Central Hospital
Thanyawee Puthanakit 

Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Center of Excellence in
Pediatric Infectious Diseases and Vaccine, Chulalongkorn University
Tony Mazzulli 

Department of Microbiology, Sinai Health/University Health Network, Toronto, Canada and Department
of Laboratory Medicine and Pathobiology, University of Toronto, Toronto. Canada Public Health Ontar
Vitor de Lima Lavor 

Diagnósticos da América SA (DASA)
Yothin Rakvongthai 

Chulalongkorn University Biomedical Imaging Group and Division of Nuclear Medicine, Department of
Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
Yu Rim Lee 

Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South
Korea
Yuhong Wen 

https://orcid.org/0000-0001-9718-3592
https://orcid.org/0000-0002-1315-8873
https://orcid.org/0000-0002-2507-2399


Page 7/34

NVIDIA

Article

Keywords: federated learning, arti�cial intelligence, SARS-COV-2

Posted Date: January 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-126892/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Nature Medicine on September 15th, 2021.
See the published version at https://doi.org/10.1038/s41591-021-01506-3.

https://doi.org/10.21203/rs.3.rs-126892/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41591-021-01506-3


Page 8/34

Abstract
‘Federated Learning’ (FL) is a method to train Arti�cial Intelligence (AI) models with data from multiple
sources while maintaining anonymity of the data thus removing many barriers to data sharing. During
the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen
requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays,
constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve
(AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local
models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration
without data exchange, resulting in a model that generalised across heterogeneous, unharmonized
datasets. This provided the broader healthcare community with a validated model to respond to COVID-
19 challenges, as well as set the stage for broader use of FL in healthcare.

Main Text
The scienti�c and academic medical and data science communities have come together in the face of
the pandemic crisis in order to rapidly assess novel paradigms in arti�cial intelligence that are rapid and
secure, and potentially incentivize data sharing and model training and testing without the usual privacy
and data ownership hurdles of conventional collaborations1, 2. Healthcare providers, researchers and
industry have pivoted their focus to address unmet and critical clinical needs created by the crisis, with
remarkable results3–6. Clinical trial recruitment has been expedited and facilitated by national regulatory
bodies and an international cooperative spirit7–9. The data analytics and arti�cial intelligence (AI)
disciplines have always fostered open and collaborative approaches, embracing concepts such as open-
source software, reproducible research, data repositories, and making anonymized datasets publicly
available10,11. The pandemic has emphasized the need to expeditiously conduct data collaborations that
empower the clinical and scienti�c communities when responding to rapidly evolving and widespread
global challenges. Data sharing has ethical, regulatory and legal complexities that are underscored, and
perhaps somewhat complicated by the recent entrance of large tech companies into the healthcare data
world12–15.

A concrete example for these types of collaborations is our recent work on an AI-based SARS-COV-2
Clinical Decision Support (CDS) algorithm. The CDS predicts a risk score that can be used to support
decisions to admit infected patients to the hospital and to help determine the level of hospital care they
will likely require. We re�ned and validated the algorithm across multiple health systems. The CDS was
created at Mass General Brigham (MGB), using chest x-ray (CXR) data, vital signs, demographic data, and
lab values that were shown to be predictive of COVID-19 patient outcomes16–1816−19. The CDS outputs a
score, ‘CORISK’, that predicts oxygen support requirement, and can be used as a decision aid tool for
triaging patients by front-line clinicians20–22.
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Healthcare providers have preferred using algorithms that were validated on their own data23. To date,
most AI algorithms have been trained and validated only on a few datasets that often lacked in
diversity24,25, resulting in less generalisable performance. Even near-perfect peer-reviewed performance
metrics do not guarantee generalisability nor a lack of over-�tting. Our aim was to develop an algorithm
trained on a diverse dataset, making it useful, trusted and generalisable across a large number of
healthcare systems. Accessing diverse data without the requirement of centralised data26 is enabled by
techniques such as Transfer Learning27 and ‘Federated Learning’ (FL)28 for achieving distributed model
training and validation. The authors chose FL due to its ability to rapidly launch centrally orchestrated
experiments with improved traceability of data and assessment of algorithmic changes and impact 29. FL
has shown promise in recent medical imaging applications 30–33, including COVID-19 analysis 34–37,
albeit with limited scale. Governance of data for FL is maintained locally, alleviating privacy concerns,
with only model ‘weights’ or ‘gradients’ transferred between the client-sites and the federated server38,39.

Driven by the pandemic and enabled by the privacy-conserving nature of FL, 20 institutions were
recruited, the majority of which were hospitals. The study named “EXAM” (EMR Chest X-Ray AI Model),
consisted of algorithm development by a Mass General Brigham team during March 2020, and the
recruitment for this FL study that started in June. Between August and October, 140 experiments were
conducted, and by end-October 2020, the re�ned version of the algorithm was made public on NVIDIA
NGC 40.

A global dataset for COVID-19 image analysis
The 20 client-sites prepared 16,148 cases (both positive and negative) for the purpose of training,
validating, and testing the model. Each case included one CXR and the requisite data inputs taken from
the patient’s medical record. A breakdown of the cohort size of the dataset for each client site is shown in
Fig. 1b. The signi�cant diversity of data between sites motivated the researchers in creating the dataset,
since capturing these differences was thought to be needed in order to create a performant CDS. The
distribution and patterns of CXR image intensities (pixel values) varied signi�cantly among the sites due
to a multitude of patient and site-speci�c factors, such as differences in device manufacturers and
imaging protocols, as shown in Fig. 1c. Patient age and EMR data varied for different sites due to the
demographic differences between hospitals located around the globe (Fig. 1d and extended Data Fig. 1).

An AI model to predict a ‘CORISK’ score
There is wide variation in the clinical course of patients who present to the hospital with symptoms of
COVID-19, with some experiencing rapid deterioration in respiratory function requiring different
interventions in order to prevent or mitigate hypoxemia41,42. A critical decision made during the
evaluation of a patient at the initial point of care or the ED, is whether the patient is likely to require more
invasive or resource-limited counter-measures or interventions (such as mechanical ventilation or
monoclonal antibodies), and should therefore receive a scarce but effective therapy, a therapy with a
narrow risk-bene�t ratio due to side effects, or a higher level of care, such as admittance to the ICU43,44. In
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contrast, a patient who is at a lower risk of requiring invasive oxygen therapy may be placed in a less
intensive care setting such as a regular ward or even released from the ED for continued self-monitoring
at home45.

Therefore, the model was trained to predict the ‘CORISK’ score corresponding to a patient’s oxygen needs
within two prediction windows, 24 hours and 72 hours after initial presentation to the ED. We set the
outcome labels of patients as 0, 0.25, 0.5, and 0.75 if the most intensive oxygen therapy the patient
received in the prediction window was room air (RA), low-�ow oxygen (LFO), high-�ow oxygen (HFO)/non-
invasive ventilation (NIV), or mechanical ventilation (MV), respectively. If the patient died within the
prediction window, the outcome label was set to 1. This resulted in each case being assigned two labels
in the range of 0 to 1, corresponding to each of the prediction windows. For EMR features, data
preprocessing included de-identi�cation, missing value imputation (using the MissForest algorithm46),
and normalization to zero-mean and unit variance. CXR images were preprocessed to select the right
series and exclude lateral view images, then scaled to a resolution of 224 × 224. As shown in Fig. 2, the
model fuses information from both the EMR features and CXR features (based on a modi�ed ResNet-34
with spatial attention47,48 pre-trained on the CheXpert dataset)49, and Deep & Cross network50. In order to
converge these different data types, a 512-dimensional feature vector was extracted from each CXR
image using a pre-trained ResNet-34, with spatial attention, then concatenated with the EMR features as
the input for the Deep & Cross network (see Methods). The �nal output was a continuous value from 0 to
1 for both the 24 hour and 72-hour predictions, corresponding to the labels described above. We used
binary cross-entropy as the loss function and ‘Adam’ as the optimizer. The model was implemented in
Tensor�ow51 using the NVIDIA Clara Train SDK52. The average AUC for the three prediction tasks (LFO,
HFO/NIV, or MV) was calculated and used as the �nal evaluation metric (see Methods).

Performance boosts through Federated Learning
Arguably, the most established form of FL is implementing the Federated Averaging algorithm proposed
by McMahan et al53, or variations thereof. This algorithm can be realised using a client-server setup,
where each participating site acts as a client. One can think of FL as a method aiming to minimize a
global loss function by reducing a set of local loss functions, which are estimated at each site. By
minimizing each client site's local loss while also synchronizing the learned client site weights on a
centralized aggregation server, one can minimize the global loss without needing to access the entire
dataset in a centralized location. Each client site learns locally, and shares model weight updates with a
central server that aggregates contributions using secure SSL encryption and communication
protocols54. The server then sends an updated set of weights to each client site after the aggregation, and
sites resume training locally. The server and client site iterate back and forth until the model converges
(see Methods section). To analyse the stability of these results, we repeated three runs of local training
and FL on different randomized data splits. Training the model through FL resulted in a signi�cant
performance improvement (p < < 1e-3, Wilcoxon signed-rank test) of 16% (as de�ned by the average-AUC
when running the model on respective local test sets) and a 38% generalisability improvement (as de�ned
by the average-AUC when running the model on all test sets) of the �nal global model for predicting 24 h
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oxygen treatment compared to models trained only on a site’s own data (Fig. 3). The results for predicting
72 h oxygen treatments are shown in Extended Data Fig. 7 and resulted in a performance improvement of
18% compared to locally trained models alone, while generalisability of the global model improved by
34%.

Security Considerations
A primary motivation for healthcare institutes to use FL is to preserve the security and privacy of their
data, as well as adhere to data compliance measures. However, there remains a potential risk of model
‘inversion’55 or even reconstructing training images from the model gradients themselves56. To counter
these risks, there are security-enhancing measures that may be able to mitigate risk in the event of data
‘interception’ during site-server communication57. We investigated a partial weight-sharing scheme58,59

showing that models can reach a comparable performance even when only 25% of the weight updates
are shared (Fig. 4 and Methods section). The weight updates were ranked during each iteration by
magnitude of contribution and only a certain percentage of the largest weight updates were shared with
the server (see Methods). With this, we validated previous �ndings, showing that partial weight sharing,
and other differential privacy techniques can successfully be applied in FL58.

Impact on patient care
To our knowledge, this study features the largest real-world healthcare FL experiment to date in terms of
number of sites and number of data points used. The study encompassed 20 client-sites and included
over 16,000 cases (Extended Data Table 2). We believe that it provides a powerful case study for the
utilization of FL involving multiple sites across 5 continents and under the supervision of different
regulatory bodies. The global algorithm proved to be more robust and achieved better results on
individual sites than any model that was trained on local data. We believe that the consistent
improvement was achieved not only due to a larger, but also a more diverse data set.

We observed that FL improved the prediction accuracy on all site testing sets, even when sites had
relatively large local training data sets. For sites with small datasets, it was virtually impossible to build a
performant deep learning model using only their local data. Furthermore, sites whose local models were
trained with unbalanced cohorts (e.g., with most subjects experiencing mild cases of COVID-19) markedly
bene�ted from the FL approach (Extended Data Figs. 3 & 4). More importantly, the generalisability of the
FL model increased considerably, over the locally trained model, most likely since a population or an age
group that are under-represented in one hospital/region could be highly represented in another region
(Extended Data Figs. 5 & 6 and Extended Data Table 3). For example, children might be differentially
affected by COVID-19, including their manifestations in lung imaging60.

As seen in Fig. 1c/d and Extended Data Fig. 1, we designed our study to resemble real-life clinical
situations by intentionally not completing a meticulous harmonization of the data inputs. The features
derived from the medical record were carefully de�ned in order to mitigate potential biases (Extended
Data Table 1). Features that were expected to be in�uenced by different clinical practices and standards
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of care were avoided, such as reported symptoms or clinical impressions. We also chose model outputs
that we believed to be objective outcomes which are fairly practical to discern, being low-�ow oxygen
treatment, high-�ow oxygen treatment, mechanical ventilation, and death (Extended Data Fig. 2). We
believe that these design considerations played a signi�cant part in increasing the bene�ts from a FL
approach and its impact on model performance, generalisability, and ultimately, its usability. By
participating in this study, the client-sites received access to an optimized AI model (‘global FL model’),
that can be further validated ahead of introduction into clinical care. The client-sites did not transfer data
to a central repository but rather created a distributed data framework that can facilitate ongoing
collaboration on AI model development and validation. We believe that the preservation of privacy,
afforded by FL, encouraged participation of institutes who recognized the urgency to contribute during
the COVID pandemic, and were not held back by data governance constraints. As mentioned above, we
also experimented with techniques to avoid ‘interception’ of FL data, and found them to be promising
(Fig. 4). This is an added security feature that we believe will encourage more institutions to use FL.

Future development and outlook
In the opinion of this group, the main areas for development arising out of this collaboration will be to
streamline data access, preparation and methods in order to better leverage a network of sites
participating in FL. A system that would allow real-time model inference and processing would also be of
bene�t and would ‘close the loop’ from training to model deployment. Patient cohort identi�cation and
data harmonization are not new issues in research and data science61, but are further complicated given
the lack of visibility on other sites’ data sets associated with FL. There is also a need for evolving our
understanding of architectural considerations that will enable capturing more value out of FL, e.g.,
explicitly addressing the data domain shifts between the different participating sites 62. Hyperparameter
engineering can allow algorithms to ‘learn’ more effectively from larger data batches and adapt model
parameters to a particular site for further personalization. For example, socio-economic status or ethnicity
in an algorithm prototyped on a homogenous population could enable algorithms to capture more
diversity in FL training, despite being less meaningful when only leveraging a single-site data set.
Additionally, there is a need to improve our ability to predict each client-site’s contribution to improving the
global FL model, which will help in client-site selection and prioritizing data acquisition and annotation
efforts in the future. The latter is especially important given the high costs and di�cult logistics of these
large consortia endeavors, and the opportunity to capture diversity rather than sheer quantity of data
samples.
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Methods
Ethics approval                                                          

All procedures were conducted in accordance with principles for human experimentation as de�ned in the
Declaration of Helsinki and International Conference on Harmonization Good Clinical Practice guidelines
and approved by the relevant institutional review boards (e.g., the Mass General Brigham ethics board,
reference # 2020P002673). Since no patient data was transferred between any of the participants and
the study was considered of minimal risk to patients, the requirement of a full IRB process was largely
waived according to the Ethical Principles and Guidelines for the Protection of Human Subjects of
Research (the “Belmont Report”) and the requirements of the Health Insurance Portability and
Accountability Act (HIPAA) of 1996.

Data collection details

The cohorts for this study consisted of patients who presented to the Emergency Department with
symptoms suspicious for COVID at the participating institutions:

Mass Gen Brigham a�liated hospitals (Mass General Hospital, Brigham and Women’s Hospital, Newton-
Wellesley Hospital, North Shore Medical Center, Faulkner Hospital); Children’s National Hospital in
Washington, D.C.; NIHR Cambridge Biomedical Research Centre; The Self-Defense Forces Central Hospital
in Tokyo; National Taiwan University MeDA Lab and MAHC and Taiwan National Health Insurance
Administration; Tri-Service General Hospital in Taiwan; Kyungpook National University Hospital in South
Korea; Faculty of Medicine, Chulalongkorn University in Thailand; Diagnosticos da America SA in Brazil;
University of California, San Francisco; VA San Diego; University of Toronto; National Institutes of Health
in Bethesda, Maryland; University of Wisconsin-Madison School of Medicine and Public Health; Memorial
Sloan Kettering Cancer Center in New York; and Mount Sinai Health System in New York.

The inclusion criteria were: 1. patient presented to the hospital’s Emergency Department (ED) or
equivalent, 2. patient had a PCR test done during the current hospitalization or had a COVID PCR test with
a positive result prior to hospitalization, 3. patient had a CXR in the ED or during the hospital stay, 4.
Patient’s record had at least 5 of the EMR values (vitals, lab results and outcomes) detailed in Extended
Data Table 1 obtained in the ED or during hospitalization.

The CXR and the EMR features used were the �rst available CXR and EMR values available for each
patient obtained during this hospital stay. The datasets included COVID positive and COVID negative
patients, determined by the PCR test. Client sites included all of their patients with a PCR positive test.
Since most had more COVID negative than positive patients, we limited the number of negative patients
included to at most 95% of the total cases at each client-site. In total, 21 EMR features were used as input
to the model. The outcome (i.e., "ground truth") labels were assigned based on patient requirements after
24- and 72-hour periods from initial admission to the ED. A detailed list of the requested EMR features
and outcomes can be seen in Extended Data Table 1.
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The variation of these features across different client-sites can be appreciated in Extended Data Fig.1.
Data harmonization was not performed between different client-sites in order to train a robust model that
could generalise well to unseen patient populations. 

The distribution of oxygen treatment using different devices at different client-sites is shown in Extended
Data Fig.2, which details the device usage at admission to the Emergency Department (ED), and after 24-
hour and 72-hour periods.

The number of positive COVID-19 cases, con�rmed by a single PCR test, are listed in Extended Data Table
2. Each client-site was asked to randomly split its dataset into 3 parts, 70% for training, 10% for
validation, and 20% for testing. The random splits were generated independently for each of the repeated
three local and FL training and evaluation experiments for both 24h and 72h outcome prediction models.

Feature imputation & normalization

A MissForest algorithm1 was used to impute EMR features, based on the local training dataset. If an EMR
feature was completely missing from a client-site dataset, the mean value of that feature, calculated
exclusively on data from MGB client-sites, was used. Then, EMR features were rescaled to zero-mean and
unit-variance based on statistics calculated on data from the MGB client-sites.

Details of the EMR-CXR data fusion

To model the interactions of features from EMR and CXR data on a case-level, a deep feature scheme
was used, based on Deep & Cross network architecture 2. Binary/categorical features for the EMR inputs,
as well as 512-dimensional image features in the CXR, were transformed into fused dense vectors of real
values by embedding and stacking layers. The transformed dense vectors served as input to the fusion
framework, which speci�cally employed a crossing network to enforce fusion among input from different
sources. The crossing network performed explicit feature crossing within its layers, by conducting inner
products between the original input feature and output from the previous layer, thus increasing the degree
of interaction across features. At the same time, two individual classic deep neural networks with several
stacked fully-connected feed-forward layers were trained. The �nal output of our framework was then
derived from the concatenation of both classic and crossing networks.

CORISK model and derivation of clinical score

Our preliminary, single-site patient outcome prediction model (calculating a risk score termed as
“CORISK”) was trained using the MGB COVID cohort consisting of over 7,000 patients with a positive or
undetermined COVID status (at time of data collection). EMR data and CXR images of these patients
were extracted from the Enterprise Data Warehouse (EDW) and clinical Picture Archiving and
Communication System (PACS) systems during the period extending from March to May 2020. The
CORISK model was validated using data from �ve hospitals within the MGB system, and cross-validated
using different time periods during the study period. It achieved an average prediction accuracy of over

https://paperpile.com/c/3iykLD/juNFG
https://paperpile.com/c/3iykLD/eqwH
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85%. We further derived the clinical scores and the corresponding diagnostic criteria (“CORISK24” and
“CORISK72”, for 24- and 72-hours patient outcome assessment), similar to CORISK model’s predictions.
The clinical scores could be used by clinicians to triage patients into appropriate care settings.

The evaluation of the model is based on the average AUC of three prediction tasks derived from the
CORISK score (LFO, HFO/NIV or MV). To compute it, we generate three sets of labels and predictions L1 =
{Ppred,Pgt} ³ 0.25, L2={Ppred,Pgt} ³ 0.5, and L3 = {Ppred,Pgt} ³ 0.5, where Ppred is the models CORISK
predictions and Pgt is the ground truth CORISK scores representing a speci�c oxygen treatment as
described above for a client-site’s test set. The average AUC was then computed as AUC =1/3 * (auc(L1) +
auc(L2) + auc(L3)).

Federated learning details

A pseudo-algorithm of FL is shown in Extended Data Algorithm 1. In our experiments, we set the number
of federated rounds to be T=200, with one local training epoch per round t at each client. The number of
clients K was up to 20, depending on the network connectivity of clients or available data for a speci�c
targeted outcome period (24h or 72h). The number of local training iterations nk depends on the dataset
size at each client k and is used to weigh each client's contributions when aggregating the model weights
in FederatedAveraging. During FL, each client-site selects its best local model by tracking the model's
performance on its local validation set. At the same time, the server determines the best global model
based on the average validation scores sent from each client-site to the server after each FL round. After
the FL training �nishes, the best local models and best global model are automatically shared with all
client-sites and evaluated on their local test data. 

When training on local data only (the baseline), we set the epoch number to 200. The Adam optimizer
was used for both local training and FL with an initial learning rate of 5e-5 and a stepwise learning rate
decay with a factor 0.5 after every 40 epochs, which is important for the convergence of
FederatedAveraging 3. Random a�ne transformations, including rotation, translations, shear, scaling, and
random intensity noise and shifts were applied to the images for data augmentation during training.

Due to the sensitivity of batch normalization (BN) layers 4 when dealing with different clients in a non-
independent and identically distributed (non-IID) setting 5, we found the best model performance to occur
when keeping the pre-trained ResNet34 with spatial attention6 parameters �xed during FL (i.e. using a
learning rate of zero for those layers). The Deep & Cross network that combines image features with the
EMR features does not contain BN layers and hence was not affected by BN's instability issues. 

In this study, we investigated a privacy-preserving scheme that shares only partial model updates
between server and client-sites. To be exact, the weight updates (aka. gradients) were shared only if their
absolute value was above a certain percentile threshold tk

(t) (Fig. 4), which was computed from all non-
zero gradients DWk(t) and could be different for each client k in each FL round t. Variations of this

https://paperpile.com/c/3iykLD/NzMkj
https://paperpile.com/c/3iykLD/hI3iy
https://paperpile.com/c/3iykLD/1MyRx
https://paperpile.com/c/3iykLD/RgoNX
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scheme could include additional clipping of large gradients or differential privacy schemes 7 that add
random noise to the gradients or even to the raw data before feeding it to the network 7,8. 

Statistical analysis

We conducted a Wilcoxon signed-rank test to con�rm the signi�cance of the observed improvement in
performance between the locally trained model and the FL model for the 24 and 72 hr time point (see Fig.
3 and Extended Data Fig. 6). The null hypothesis was rejected with a one-sided p-value << 1e-3 in both
cases.

A Pearson's correlation was used to assess the generalisability (robustness to other client-sites' test data)
of locally trained models in relation to respective local dataset size. Only a moderate correlation was
observed (r=0.43, p=0.035, df = 17 for the 24h model and r=0.62, p=0.003, df=16 for the 72h model). This
indicates that dataset size alone is not the only factor in determining a model's robustness to unseen
data.

To compare the ROC curves from different sites and FL global one (shown in Fig. 5), we bootstrapped
1000 replicates from the data and computed their AUCs. We standardized the difference D=(AUC1-
AUC2)/s, where s is the standard deviation of the bootstrap differences and AUC1 and AUC2 the AUC of
the two (original) ROC curves. By comparing D with normal distribution, we obtained the signi�cance p-
values illustrated in Table 4. With alternative hypotheses to be FL greater than the compared one, most of
the p-values give very small values, indicating the statistical signi�cance of FL outcomes. Computation
of p-values was conducted in R with the pROC library9.

Bene�ts to client-sites with small datasets

We compared locally trained models with the global FL model on each client’s test data. For a client-site
with a relatively small dataset, there are two typical ways to get a model: one is to train locally with its
own data, the other is to apply a model trained on a larger dataset. It is shown in Extended Data Fig. 5
that these two ways are outperformed on all three tasks by the FL model signi�cantly, indicating that the
bene�t for client-sites with small datasets is huge. 

Another particular site (client-site 16) had an unbalanced dataset, with most subjects being of mild
disease severity and with only a few severe cases. Thus, the improvement in prediction accuracy for the
category with few cases was substantial; see Extended Data Fig. 3, t >= 0.5 (categories >= high-�ow
oxygen device). The FL model achieved a higher true positive rate for the two positive (severe) cases at a
markedly lower false positive rate compared to the local model, both shown in the receiver operating
characteristic (ROC) plots and confusion matrices. The difference in dataset distribution for the two
compared client-sites can be seen in Extended Data Fig. 4.

Effect of different demographics

https://paperpile.com/c/3iykLD/odVP8
https://paperpile.com/c/3iykLD/odVP8+pBbwa
https://paperpile.com/c/3iykLD/nIwn5
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To investigate the effectiveness of our model on patients with different demographics, especially with
different races, we test our model on the test set of 5 client-sites in the Boston area and show results for
different race populations accordingly. The results of Black or African American and White or Caucasian
population (We don’t show results for other races here due to the limited sample sizes) is shown in the
Extended Data Table 3. We show the mean and the standard deviation of AUCs of the 5 local models and
the AUC for the federated trained model on 3 tasks for both 24- and 72-h prediction. We can see that the
improvement brought by federated training is consistent across different races.

Effect of different COVID-19 status

Extended Data Fig. 6 shows the performance of our model in predicting oxygen treatment in 24/72h for
COVID positive/negative patients respectively. The COVID status is determined by the PCR tests
performed at the visit of ED. It can be shown that our model is robust to both COVID positive and negative
patients. This is crucial for our model to be applied on all the patients to support their triage since the
PCR test results are usually not available at the time of ED disposition. 

Limitations and areas for future research

The study found the global models (see under ‘Federated Learning Details’) to be more robust compared
to locally trained models when assessed across all client-sites' test data. Locally optimized models might
provide improved performance on a client-site's own test data, but usually resulted in a loss of
generalisability. Local model selection always depends on the local validation set's quality and how well
it represents the real test data's characteristics. In contrast, the global model selected based on the
averaged validation scores from each client-site turns out to have better generalisability.

It is possible to achieve higher-performing models on a local dataset when tuning the training strategies
more exhaustively 10, such as varying data augmentation, learning rate schedule, and data sampling
methods. However, generalisability to other sites' data is still expected to be limited due to the lack of
representative training data. Future approaches may incorporate automated hyperparameter searching 10,
neural architecture search 11, and other automated machine learning (AutoML)12 approaches to �nd the
optimal training parameters for each client-site more e�ciently.

Slow or interrupted internet connectivity sometimes caused some clients’ model updates to be not
included in each round of FL training. Such clients are commonly known as “stragglers” 13. Future
implementations of FL might speci�cally address this issue by allowing asynchronous updates 14.

Known issues of BN in FL4 motivated us to �x our base model for image feature extraction6 in order to
reduce the divergence between unbalanced client-sites. Future work might explore different types of
normalization techniques in order to allow the training of AI models in FL more effectively when the
clients’ data is non-IID.

https://paperpile.com/c/3iykLD/sOM71
https://paperpile.com/c/3iykLD/sOM71
https://paperpile.com/c/3iykLD/lPMLO
https://paperpile.com/c/3iykLD/3I8PI
https://paperpile.com/c/3iykLD/Yuv7f
https://paperpile.com/c/3iykLD/ygQsm
https://paperpile.com/c/3iykLD/hI3iy
https://paperpile.com/c/3iykLD/RgoNX
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Although privacy is a key concern for participants of FL, the actual quanti�cation of data leakage during
model training is still rather unexplored as most efforts revolve around IT security for the communication
between participants and server. Future work could aim to quantify the amount of data leakage that is
still recoverable by model inversion methods or attacks on the gradients. A quanti�able way to measure
privacy would allow better choices for deciding the minimal privacy parameters necessary while
maintaining clinically acceptable performance 7,8,15.

A �nal, but important limitation to all machine learning models is that they are limited by the quality of
the training data. Institutions interested in deploying these algorithms for clinical care need to understand
the inherent biases in the training. For example, the ground truth data used in the training of the EXAM
model was 24- and 72- hour oxygen consumption in the patient. It is assumed that the oxygen
consumption is the oxygen need. However, in the early period of the COVID-19 pandemic, many patients
were provided high �ow oxygen prophylactically, regardless of their oxygen need. Such clinical practice
could skew the oxygen need predictions made by this model.
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Figure 1

Data used in the EXAM Federated Learning study. a, EXAM included 20 different sites from around the
globe. b, Number of cases that each institution or site contributed (client 1 being the largest site) c, CXR
intensity distributions at each client site d, Age of patients included at each client-site showing the min.
and max. ages (asterisks) and mean and standard deviation (length of bars). Note: The designations
employed and the presentation of the material on this map do not imply the expression of any opinion
whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.



Page 32/34

Figure 2

Description of the EXAM Federated Learning study. a, Proposed model to predict a COVID risk score. b,
Histogram of CORISK results at MGB, with an illustration of how the score can be used for patient triage,
in which ‘A’ is an example threshold for safe discharge that has 99.5% negative predictive value, and ‘B’ is
an example threshold for Intensive Care Unit (ICU) admission that has 50.3% positive predictive value. c,
Federated Learning using a client-server setup.
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Figure 3

Federated Learning vs. local training performance. a, Test performance of models predicting 24h oxygen
treatment trained on local data only (Local) versus the performance of the best global model available on
the server (FL (gl. best)). b, Generalisability (average performance on other sites’ test data) as a function
of a client’s dataset size (# cases). The average performance improved by 16% compared to locally
trained models alone, while average generalisability of the global model improved by 38%. Note, we show
the performance for 18 of 20 clients here as client 12 had only outcomes for 72 hours (see Extended Data
Fig. 7) and client 14 only cases with room air treatment, resulting in the evaluation metric (avg. AUC)
being not applicable (see Methods).
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Figure 4

Safety enhancing features used in EXAM. Additional data-safety-enhancing features were assessed by
only sharing a certain percentage of weight updates with the largest magnitudes before sending them to
the server after each round of learning58. The �gure shows that by using partial weight updates during
FL, models can be trained that reach a performance comparable to training while sharing the full
information. This differential privacy technique decreases the risk for model inversion or reconstruction
of the training image data through gradient interception.
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