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Abstract—Federated learning (FL) is a well established method
for performing machine learning tasks over massively distributed
data. However in settings where data is distributed in a non-
iid (not independent and identically distributed) fashion - as is
typical in real world situations - the joint model produced by
FL suffers in terms of test set accuracy and/or communication
costs compared to training on iid data. We show that learning a
single joint model is often not optimal in the presence of certain
types of non-iid data. In this work we present a modification
to FL by introducing a hierarchical clustering step (FL+HC)
to separate clusters of clients by the similarity of their local
updates to the global joint model. Once separated, the clusters are
trained independently and in parallel on specialised models. We
present a robust empirical analysis of the hyperparameters for
FL+HC for several iid and non-iid settings. We show how FL+HC
allows model training to converge in fewer communication rounds
(significantly so under some non-iid settings) compared to FL
without clustering. Additionally, FL+HC allows for a greater
percentage of clients to reach a target accuracy compared to
standard FL. Finally we make suggestions for good default
hyperparameters to promote superior performing specialised
models without modifying the the underlying federated learning
communication protocol.

Index Terms—federated learning, distributed machine learn-
ing, clustering applications

I. INTRODUCTION & BACKGROUND

The machine learning setting known as federated learning
(FL) [1]–[3] allows for local learners to participate in training
a joint statistical model f(w) on massively distributed data.
This is useful in situations where data cannot be gathered into
a single location for legal or privacy reasons.

The most common setting for FL employs a central entity
for aggregating local learner models from many clients. These
clients are typically mobile and Internet-of-Things devices.
During training, a fraction of the clients are sent the current
state of the global model wt. Using only the data available to
the client, a training procedure (defined by the central entity) is
run locally to work towards minimising some local objective
Fk(wt). For example, training a neural network model for
image classification, the stochastic gradient descent (SGD)
algorithm could be run on the client to iteratively minimise
the classification error over all training images available to
the client.

This work is supported by the SEND project (grant ref. 32R16P00706)
funded by ERDF and BEIS.

wk
t+1 ← wt − η∇Fk(wt). (1)

The resulting model wk
t+1 from each client k ∈ K is sent

back to the central entity where all local models are aggregated
in some fashion. The commonly used FederatedAveraging
algorithm [4] performs a data-weighted average over the
parameters of all models to form a new global model wt+1

ready for the next round of training (nk/n is the number of
samples available to client k versus all samples).

wt+1 ←
K∑

k=1

nk
n
wk

t+1. (2)

Clients can perform one or multiple steps of gradient
descent before sending weight updates as orchestrated by the
federated algorithm.

FL has been shown to work well in situations where the data
is distributed in an independent and identically distributed (iid)
fashion. However, in a typical scenario where data is massively
distributed among clients, that data is likely to be unbalanced
and non-iid. In this work we explore different non-iid data
distributions and apply a hierarchical clustering algorithm to
determine client similarity. In this way we can train multiple
disjoint models that are targeted to clusters of similar clients
with the intention to improve the performance of the training
objective for all clients whilst reducing communication in the
FL protocol.

A. Contributions

Our contributions through this work include:
• A method for training specialised models for subsets of

clients that can increase test set accuracy whilst reducing
the number of communication rounds required to reach
convergence. This is achieved by clustering the clients
by similarity based on their updates to the global joint
model after a set number of communication rounds.

• A full characterisation of how hierarchical clustering
affects test set accuracy when applied during FL training
in iid and various non-iid settings.

• An empirical analysis of the effect that varying hyperpa-
rameters for FL and the hierarchical clustering algorithm



has on forming good specialised models for subsets of
clients.

• Recommendations for good default hyperparameters to
use for training with our method when the non-iid nature
of the data is unknown (as is likely to be the case when
using FL).

B. Client statistical heterogeneity

One of the fundamental challenges for training a single
joint model under FL is the presence of non-iid data. There
should be no assumption that clients have access to data
drawn independently from the same underlying distribution
- Pi 6= Pj for all pairs of clients i and j. Unlike under the iid
assumption the local model Fk, in expectation, trained on its
own data Dk will be an unreliable approximation of the joint
model f :

EDk
[Fk(w)] 6= f(w) (3)

There are a variety of ways in which the data among clients
can be distributed in a non-iid fashion [1]:

• Feature distribution skew*: The Pi(x) marginal distri-
butions vary between clients. This is the case where the
input features are not evenly distributed between clients.

• Label distribution skew*: The Pi(y) marginal distri-
butions vary between clients. This is the case where the
data labels are not evenly distributed between clients. For
example some clients only have access to data from a
subset of all possible labels for a given task.

• Concept shift (same features, different label)*: The
Pi(y|x) conditional distributions vary between clients.
Here different labels are assigned for the same features
across clients. For example, client i labels all cat images
as ’cat’, but client j labels all cat images as ’dog’.

• Concept shift (same label, different features): The
Pi(x|y) conditional distributions vary between clients.
Here different features across clients are labelled with the
same label. For example, client i labels all cat images as
’cat’, but client j labels all dog images as ’cat’.

Additionally, clients might have access to varying numbers
of training examples. In practice, some degree of all of these
non-iid settings may be represented in a given massively dis-
tributed dataset. In this work we explore the effect of different
non-iid distributions on the ability for hierarchical clustering
to determine client similarity from their client updates, namely
the starred (*) non-iid settings above.

Where data is distributed in a highly non-iid fashion, a
single joint model may not be able to meet the objectives of all
clients simultaneously [5]. Instead, multiple models targeted
towards groups of clients with similar data distributions might
be preferred. However in FL, the raw data cannot be inspected
by the central entity. As such, only the local model updates
can be used to judge the direction in which each client wishes
to update the global model. This provides the only proxy for
determining client similarity whilst preserving some level of
privacy over the local data.

C. Hierarchical clustering

Training multiple models for subsets of related clients can
be achieved by clustering the model updates received from
the clients. Many unsupervised clustering algorithms require
an estimation of the number of these clusters a priori. Since we
cannot know how many unique data generating distributions
the client’s datasets are drawn from, a clustering algorithm that
can determine the number of clusters independently must be
employed. However, some clustering methods that determine
the number of clusters automatically fail to assign outlying
samples to a cluster and simply label them as noise (for
example DBSCAN [6]). Hierarchical clustering [7] is a natural
choice for the purpose of clustering where the number of
clusters is unknown and where all examples are assigned to
the most relevant cluster. Another benefit of using hierarchical
clustering is its ability to scale to large numbers of samples
and clusters as well as being reasonably interpretable.

In this work we opt to use an agglomerative hierarchical
clustering method which begins with all samples belonging to
their own singleton cluster. Each sample is simply a vectorised
local model update (the parameters of the local model). At
each step of the clustering, the pairwise distance between
all clusters is calculated to judge their similarity. The two
clusters that are most similar are merged. This continues for a
total of N − 1 steps until a single cluster remains, containing
all the samples. Thus, a hierarchical structure of similarity
between clients is constructed. This structure possesses the
property of monotonicity, such that the dissimilarity of two
clusters involved in merging increases with successive steps.
A distance threshold can act as a hyperparameter to determine
when to stop merging clusters. Intuitively, this acts to limit
how dissimilar two clusters can be before stopping the merging
process.

Two further hyperparameters of the hierarchical clustering
algorithm are of importance to our study. The first is the dis-
tance metric uses to compute the similarity between clusters.
In this work we opt to test L1 (Manhattan), L2 (Euclidean)
and cosine distance metrics. Euclidean distance is a common
metric used to judge similarity between vectors, however the
Manhattan distance works well for sparse vectors and is less
affected by outliers. Finally, the cosine distance metric is
invariant to scaling effects and therefore only indicates how
closely two vectors point in the same direction.

The second important hyperparameter is the linkage mech-
anism for determining how similar two clusters are. Single
linkage determines distance based on the most similar pair
of samples across two clusters. Complete linkage determines
distance based on the most dissimilar pairs of samples across
two clusters. Average linkage averages the samples within
each cluster and compares distances based on these averages.
Finally Ward’s linkage (which can only be combined with the
Euclidean distance metric) seeks to minimise the intra-cluster
variance upon merging two clusters.

Our experiments test the ability of combinations of these
hyperparameters to produce clusters of client updates that,



when averaged, exhibit a higher test set accuracy compared
to training using a single joint model (as in the normal FL
setting).

D. Related work

The FL setting [4] was envisioned with non-iid data in
mind unlike previous works on distributed training [8], [9]
which focused on iid data in a data center environment.
The commonly used FederatedAveraging algorithm [4] makes
no special adjustments when encountering non-iid data and
therefore suffers a penalty in performance and/or communi-
cation costs in such circumstances [10]. Several works have
sought to deal with non-iid data in a FL setting. Zhao et
al. [11] propose sharing a small subset of public data with
heterogenous clients to reduce the weight divergence between
trained local models, thus increasing rubustness and stability
during training. However this relies on a substantial amount
of public data being available for a given task. Li et al. [12],
solve the same problem by adding a regularisation term to the
local optimisation, limiting the weight divergence of the local
and global models. Both of these approaches train a single
joint model and work well to increase overall model accuracy.
However, under some non-iid data distributions (particularly
where clients have competing objectives), a single joint model
cannot perform optimally for all clients simultaneously [5].
For the purpose of improving performance when faced with
client datasets across different timezones, Eichner et al. [13]
propose a semi-cyclic method to train pluralistic models that
perform model averaging over blocks of clients (e.g. clients in
particular timezones). In this work clients are clustered where
they are located in a shared timezone. Our approach does not
require any extra knowledge about the clients (timezones or
otherwise) as only the local updates are observed and used to
form the clusters automatically.

By considering each local learning objective as a task,
multi-task learning [14] has been employed in the distributed
learning setting in multiple works [15]–[17]. Another multi-
task learning setup considers the learning objectives of a
subset of related clients as a single task. Ghosh et al. [18]
use K-means to cluster client updates for the purpose of
identifying and isolating byzantine clusters of clients prior
to the averaging step. Our work most closely resembles
that of Sattler et al. [5] who develop a clustered federated
learning (CFL) procedure. This uses an optimal bipartitioning
algorithm to separate clients based on cosine similarity for the
purpose of producing specialised models for each cluster of
clients. In contrast, our work covers a wider range of non-iid
settings, similarity measures and allows for training on only
a fraction of clients per round of communication. We also
employ a single clustering step compared to possibly many
in CFL, reducing the load of the clustering procedure on the
aggregation server.

II. FEDERATED LEARNING WITH HIERARCHICAL
CLUSTERING

Under the FL setting, the assumption is that the objectives
for all clients approximate the global objective. However, in
the presence of non-iid data, this is not the case. As such,
we propose a federated learning with hierarchical clustering
(FL+HC) setting. During the FL procedure, a clustering step
at communication round n is introduced. At the clustering step,
we perform a communication round involving all the clients on
the global joint model trained up to round n. The updated local
model from all clients is used to judge the similarity between
clients and the hierarchical clustering algorithm is employed
to iteratively merge the most similar clusters of clients up
to a given distance threshold T . Once merging is halted, the
determined clusters of clients C are trained independently but
simultaneously, initialised with the joint model at its current
state. This algorithm is detailed in algorithm 1. If a good
clustering has been achieved, the average test set accuracy
over all clients should outperform that of training a single joint
model under FL. Under FL+HC we are training a specialised
model fc(w) for every cluster of similar clients c, each of
which have different objectives such that:

∀c ∈ C,EDk
[Fk(w)] = fc(w) where k ∈ c (4)

The operation required to perform the hierarchical clustering
runs in O(n3) time. As the operation occurs on the server
which is assumed to be large enough to aggregate the updates
from many clients, and only occurs once during training, the
impact on the overall training operation is not significant.

A. Experiment setup

Our work focuses on the computer vision image classifi-
cation problem of identifying handwritten digits from pixel
data. The well-known MNIST dataset [19] was chosen for this
purpose as it has been studied by various FL researchers [4],
[5], [12] and provides a simple enough task to test various
clustered settings and data partitions. The MNIST dataset
contains 60,000 training examples and 10,000 test examples.

The data partitions were designed specifically to target
various ways in which data distributions might differ between
clients. The iid setting shuffles all the data and divides it
among 100 clients evenly (600 training examples each). In this
scenario, Pi = Pj for all pairs of clients i and j. The first non-
iid setting, referred to as pathological non-iid (as described
in [4]) partitions the data such that clients receive digits
corresponding to only 2 labels. For example the first client
might receive 300 examples labelled as 2 and 300 examples
labelled as 7. Subsequent clients might receive different labels.
Again all clients have 600 examples to perform local learning
on. In this setting, we test how the FL model performs with
label distribution skew, as P(y) varies across clients.

The next non-iid setting, referred to as label-swapped non-
iid (described in [5]) first shuffles the data and then partitions
the data into four groups. For each group two digit labels are
swapped. For example one group might swap all digits labelled



Algorithm 1 FEDERATED LEARNING WITH HIERARCHICAL
CLUSTERING (FL+HC). n is the number of rounds of FL prior
to clustering, α is the fraction of clients selected to participate
in each round of FL and P is the set of hyperparameters for the
hierarchical clustering algorithm. The K clients are indexed
by k and C discovered clusters are indexed by c. Kc is the set
of clients in cluster c. On the client, B is the local mini-batch
size, Pk is the dataset available to client k, E is the number
of local epochs, and η is the learning rate

1: procedure FL+HC . On server
2: Initialise w0

3: for each round t ∈ [1, n] do
4: wt+1 ← FEDERATEDLEARNING(wt,K)
5: end for
6: w ← wt+1

7: for each client k ∈ K do . In parallel
8: ∆wk ← CLIENTUPDATE(k,w)
9: end for

10: C ← HierarchicalClusteringAlgorithm(∆w,P )
11: for c ∈ C do . In parallel
12: wc,0 ← w
13: for each round t = 1, 2, . . . do
14: wc,t+1 ← FEDERATEDLEARNING(wc,t,Kc)
15: end for
16: end for
17: end procedure

18: procedure FEDERATEDLEARNING(wt,K) . On server
19: m← max (α ·K, 1)
20: St ← (random set of m clients)
21: for each client k ∈ St do . In parallel
22: wk

t+1 ← CLIENTUPDATE(k,wt)
23: end for
24: wt+1 ←

∑K
k=1

nk

n w
k
t+1

25: end procedure

26: procedure CLIENTUPDATE(k,w) . On client k
27: B ← (Split Pk into batches of size B)
28: for each local epoch i from 1 to E do
29: for batch b ∈ B do
30: w ← w − η∇L(w; b)
31: end for
32: end for
33: return w to server
34: end procedure

as 3 to 9 and vice versa. Each group is then evenly distributed
to 25 clients, resulting in 100 clients each with 600 training
examples. This way the clients naturally form 4 clusters and
allow us to test FL’s ability to train models in the presence of
concept shift (P(y|x) varies between clients).

The final non-iid setting represents a slightly more challeng-
ing task, but a more realistic setting. The FEMNIST dataset
[20] is used to classify not only 10 handwritten digits but also
26 uppercase and 26 lowercase letters and is pre-partitioned

according to the person who wrote the characters. From the
original 3500 users in the dataset, 367 users were randomly
selected to form the dataset for each of 367 clients. Each
client has access to an uneven number of samples (between
12 and 386 samples). This scenario tests FL in the presence
of feature distribution skew, where P(x) varies over the
clients as different users write characters in subtly different
ways. Additionally, due to the uneven sample sizes, P(y) will
also vary to some degree between clients. The conditional
distributions are expected to remain the same in FEMNIST.

The test dataset that each client has access to is always
drawn from the same distribution as the training data in all
partitioning schemes described above.

To perform machine learning on this dataset, a simple con-
volutional neural network was designed taking single channel,
28 x 28 pixel images and passing these through two 5x5
convolutional layers (32 and 64 channels respectively) with
Relu activations. Each convolutional layer is followed by a 2x2
max pooling layer. Finally the network passes data through a
fully connected dense layer with 512 units and Relu activations
and provides output via a softmax classification over the 10
possible digit labels (62 in the case of FEMNIST).

FederatedAveraging [4] is used to train a global model
over 50 training rounds for each data partitioning scheme
described above. This is repeated using varying client fractions
(0.1, 0.2, 0.5 and 1.0) for each round of training. In these
experiments (and all subsequent ones), we use mini-batch
stochastic gradient descent on the client with a batch size of 10
over 3 epochs per communication round and set the learning
rate to 0.1. The results from these experiments form a baseline
against which we compare FL+HC.

For our experiments with applying hierarchical clustering to
FL in order to provide better, personalised models targeted to
clients with similar updates, we first train a global model for n
communication rounds. This global model is then trained for
a further 3 epochs on all clients to produce ∆w (the difference
between the global model and local model parameters). The
model parameters are reshaped to form a vector and used as
feature inputs to the agglomerative hierarchical clustering al-
gorithm. The clustering algorithm returns a number of clusters
each containing subsets of clients that are most similar to one
another. FL then proceeds for each cluster independently for
a total of 50 communication rounds.

III. RESULTS & DISCUSSION

In all our experiments we report the average test set accu-
racy over all clients in the round directly after the clustering
step and at round 50 (where training accuracy begins to plateau
using FederatedAveraging with no clustering). At round 50
the model is expected to be close to a stationary solution
to the global objective under all settings. We also report the
percentage of clients who reach a target of 99% test set
accuracy (80% for the FEMNIST non-iid setting) in the round
after the clustering step and at round 50. Finally, we report the
increase/decrease in all these statistics compared to ordinary
federated learning with no clustering step. These statistics



provide evidence that clustering clients by similarity has a
beneficial effect on both the average test set accuracy over all
clients and the percentage of clients that perform well at the
given task, in most circumstances.

A. Effect of varying client fraction and number of rounds prior
to clustering

In the following experiments we use Ward’s linkage mecha-
nism, Euclidean distance metric and fix the distance threshold
to 3.0 (10.0 for FEMNIST) to determine when to halt merging
of clusters. We varied the fraction of clients participating in
each round of training and the number of rounds prior to
clustering to see the effect that more rounds of training has on
the ability to find good clusters of similar clients. Specifically,
the client fraction was tested for 0.1x, 0.2x, 0.5x and 1.0x
clients and the number of rounds prior to clustering was tested
for 1, 3, 5 and 10 rounds.

In the iid setting, hierarchical clustering was unable to
separate clients into clusters for most experiments, instead
falling back on the single joint model. This is to be expected as
clients with iid partitioned data should return similar updates.
However, where the number of rounds prior to clustering
was set to just 1 (regardless of client fraction), clusters were
identified resulting in a very slightly reduced average test
accuracy compared to using the single joint model. This
indicates that the stochastic nature of the optimisation on the
clients hinders the ability to determine client update similarity
until more training iterations have been performed.

Under the pathological non-iid setting, there are no strictly
pre-defined clusters of similar clients due to the way the
data is partitioned. Despite this, we would expect that groups
of clients that have access to the same digit labels might
produce similar client updates and therefore, some clustering
of these updates to produce specialised models may benefit
these clients. Table I shows the results of varying client
fraction and the number of rounds prior to clustering for the
pathological non-iid setting. In all these results FL+HC outper-
forms ordinary federated learning. The greatest improvement
compared to FL appears to occur where the number of rounds
prior to the clustering step is set to 1, resulting in a jump in test
set accuracy in the 2nd round of between 1.3x and 1.9x. The
final test set accuracy (at round 50) remains the same under
FL and FL+HC, but FL+HC asymptotes much more quickly.
Similarly, the percentage of clients reaching the target test
set accuracy (99%) exhibits this same jump directly after the
clustering step. The percentage of clients reaching the target
accuracy is also greatly improved at round 50 compared to FL
(1.2x to 2.0x). Figure 1 and Figure 2 show how test accuracy
and the number of client reaching the target accuracy evolves
over communication rounds compared to FL. In general, we
see a greater improvement in the metrics we are measuring
for client fractions <1.0.

In the label-swapped non-iid setting, we know how the
client datasets are clustered due to the way the data has been
partitioned. We therefore expect FL+HC to find the 4 clusters
during the cluster step and produce a specialised model for

TABLE I
FL+HC PATHOLOGICAL NON-IID SETTING - CF IS THE FRACTION OF

CLIENTS PARTICIPATING IN EACH ROUND OF FL, N IS THE NUMBER OF
ROUNDS OF FL PRIOR TO CLUSTERING. WE REPORT THE MEAN TEST

ACCURACY PERCENTAGE AND THE PERCENTAGE OF CLIENTS REACHING
THE TARGET ACCURACY OF 99% DIRECTLY AFTER THE CLUSTERING STEP

AND AT ROUND 50. WE ALSO REPORT, IN BRACKETS, THE
INCREASE/DECREASE IN EACH STATISTIC COMPARED TO FL). VALUES IN

BOLD SIGNIFY THE BEST PERFORMANCE COMPARED TO FL IN EACH
COLUMN.

test acc % clients
cf n post cluster 50 post cluster 50

0.1

1 91.1 (1.9x) 98.5 (1.0x) 62.0 (20.7x) 83.0 (1.8x)
3 80.4 (1.7x) 97.1 (1.0x) 46.0 (46.0x) 67.0 (1.5x)
5 89.3 (1.1x) 97.9 (1.0x) 45.0 (7.5x) 74.0 (1.6x)
10 92.0 (1.1x) 98.2 (1.0x) 40.0 (2.9x) 77.0 (1.7x)

0.2

1 91.4 (1.6x) 98.7 (1.0x) 63.0 (31.5x) 87.0 (2.0x)
3 92.5 (1.6x) 98.3 (1.0x) 58.0 (14.5x) 73.0 (1.7x)
5 90.2 (1.0x) 98.4 (1.0x) 49.0 (5.4x) 74.0 (1.7x)
10 93.6 (1.0x) 98.3 (1.0x) 55.0 (3.9x) 71.0 (1.6x)

0.5

1 91.9 (1.5x) 98.7 (1.0x) 68.0 (68.0x) 89.0 (1.7x)
3 94.6 (1.1x) 98.8 (1.0x) 67.0 (16.8x) 83.0 (1.6x)
5 93.6 (1.0x) 98.3 (1.0x) 61.0 (7.6x) 78.0 (1.5x)
10 93.8 (1.0x) 98.0 (1.0x) 39.0 (2.0x) 63.0 (1.2x)

1.0

1 94.1 (1.3x) 98.6 (1.0x) 64.0 (32.0x) 77.0 (1.6x)
3 94.3 (1.1x) 98.5 (1.0x) 64.0 (8.0x) 81.0 (1.7x)
5 93.6 (1.0x) 99.1 (1.0x) 61.0 (5.1x) 82.0 (1.7x)
10 95.6 (1.0x) 98.8 (1.0x) 48.0 (2.8x) 70.0 (1.4x)

Fig. 1. Pathological non-iid setting, using client fraction = 0.2 and number of
rounds prior to clustering = 1. The black vertical lines show the round where
the clustering step occurs in FL+HC.

Fig. 2. Pathological non-iid setting, using client fraction = 0.2 and number
of rounds prior to clustering = 10.



TABLE II
FL+HC LABEL-SWAPPED NON-IID SETTING - EMPTY VALUES ARE DUE TO

0 CLIENTS REACHING TARGET ACCURACY OF 80% IN FL COMPARISON.

test acc % clients
cf n post cluster 50 post cluster 50

0.1

1 98.2 (1.3x) 98.7 (1.3x) 49.0 (–) 61.0 (–)
3 98.1 (1.3x) 99.0 (1.3x) 46.0 (–) 74.0 (–)
5 98.4 (1.3x) 99.0 (1.3x) 48.0 (–) 73.0 (–)

10 98.6 (1.4x) 99.0 (1.3x) 63.0 (5.3x) 75.0 (–)

0.2

1 98.2 (1.3x) 98.6 (1.2x) 48.0 (–) 64.0 (–)
3 98.2 (1.3x) 99.1 (1.3x) 43.0 (–) 77.0 (–)
5 98.4 (1.3x) 99.1 (1.3x) 52.0 (–) 80.0 (–)

10 98.6 (1.2x) 99.0 (1.3x) 57.0 (–) 77.0 (–)

0.5

1 98.1 (1.3x) 98.5 (1.2x) 49.0 (–) 54.0 (–)
3 98.3 (1.3x) 99.0 (1.2x) 51.0 (–) 73.0 (–)
5 98.5 (1.3x) 99.1 (1.2x) 54.0 (–) 76.0 (–)

10 98.6 (1.2x) 99.2 (1.2x) 61.0 (–) 79.0 (–)

1.0

1 98.3 (1.3x) 98.4 (1.2x) 53.0 (–) 56.0 (–)
3 98.3 (1.3x) 99.0 (1.2x) 54.0 (–) 74.0 (–)
5 98.5 (1.3x) 99.0 (1.2x) 59.0 (–) 76.0 (–)

10 98.6 (1.2x) 99.0 (1.2x) 59.0 (–) 74.0 (–)

Fig. 3. Label-swapped non-iid setting, using client fraction = 0.2 and number
of rounds prior to clustering = 10.

each. Additionally, due to the way the data is partitioned, FL
can only achieve a maximum test set accuracy of 80% in this
setting due to the conflicting training objectives of each cluster.
Table II shows that for all combinations of client fraction
and number of rounds prior to clustering, FL+HC performs
significantly better than FL on this data. In fact, the average
test set accuracy directly after the clustering step is within
1% of that of the iid setting and by round 50, is within 0.1%
in most cases (iid test set accuracy at round 50 is 99.1%
for all client fractions under FL). As FL can only achieve an
average test set accuracy of 80%, in most cases under the label-
swapped non-iid setting, the percentage of clients achieving
the target accuracy of 99% was 0. FL+HC was able to train
up to 80% of clients to 99% test set accuracy. Figure 3 shows
how training evolves with increasing communication round
for this non-iid setting. Increasing the number of rounds prior
to clustering, results in improving numbers of clients reaching
the target accuracy. Varying the client fraction appears to have
a negligible effect on any of the metrics we recorded.

The FEMNIST non-iid setting represents a more difficult
challenge in that there is an expanded label set to classify and
an uneven number of samples on each client. Additionally,
the number of samples available to each client is significantly

TABLE III
FL+HC FEMNIST NON-IID SETTING - CF=1, N=3 FAILED TO COMPLETE

IN THE TIME ALLOWED.

test acc % clients
cf n post cluster post cluster 50

0.1

1 30.7 (2.8x) 74.3 (1.0x) 14.2 (–) 44.4 (0.9x)
3 51.4 (1.4x) 73.6 (0.9x) 15.0 (27.5x) 42.2 (0.9x)
5 69.6 (1.4x) 77.6 (1.0x) 29.7 (6.4x) 51.2 (1.1x)
10 71.0 (1.1x) 76.3 (1.0x) 32.4 (2.0x) 47.1 (1.0x)

0.2

1 12.7 (0.6x) 32.3 (0.4x) 0.5 (–) 19.6 (0.4x)
3 71.2 (1.9x) 77.1 (1.0x) 38.7 (28.4x) 48.8 (1.0x)
5 69.4 (1.3x) 77.4 (1.0x) 31.3 (4.8x) 49.3 (1.0x)
10 6.3 (0.1x) 5.1 (0.1x) 0.0 (–) 0.0 (–)

0.5

1 43.5 (2.2x) 75.2 (1.0x) 15.0 (–) 46.0 (0.9x)
3 57.6 (1.5x) 17.2 (0.2x) 28.9 (15.1x) 8.2 (0.2x)
5 69.3 (1.3x) 77.7 (1.0x) 28.1 (4.7x) 51.5 (1.0x)
10 69.3 (1.0x) 75.5 (1.0x) 29.7 (1.4x) 45.5 (0.9x)

1

1 72.3 (2.9x) 77.7 (1.0x) 39.2 (0.0x) 52.0 (1.0x)
3 – – – –
5 70.7 (1.3x) 77.9 (1.0x) 31.1 (4.8x) 51.2 (1.0x)
10 69.6 (1.0x) 75.4 (1.0x) 33.5 (1.4x) 45.0 (0.9x)

fewer than in the MNIST experiments. Table III details the
experimental results for varying client fraction and number of
rounds prior to the clustering step for this non-iid setting.

Fig. 4. FEMNIST non-iid setting, using client fraction = 0.1 and number of
rounds prior to clustering = 5.

In most of the experiments, the clustering step has a slightly
negative effect on the test accuracy and the percentage of
clients reaching the target accuracy compared to FL. However
in some cases there is a drastic reduction in these metrics,
where the clustering step is clearly creating clusters of dissim-
ilar clients. In general, increasing client fraction has a positive
effect on the final test accuracy, indicating that FL+HC benefits
from clustering on a joint model that has been trained on more
data. Clustering after more rounds of FL, also seems to be
beneficial in this setting.

Overall, varying the client fraction seems to have only
a small (but positive) effect on test set accuracy or the
percentage of clients reaching the target test set accuracy
under FL+HC. However there is evidence that increasing the
number of rounds prior to the clustering step can result in
greater gains over FL. This is most clear in the label-swapped
non-iid setting. Additionally, as shown in the figures for
the pathological and label-swapped non-iid settings, FL+HC
allows more clients to reach the target accuracy in any given
communication round.



TABLE IV
FL+HC PATHOLOGICAL NON-IID SETTING - DIST IS THE DISTANCE

METRIC USED JUDGE SIMILARITY BETWEEN CLIENT CLUSTERS, LINK IS
THE LINKAGE METHOD USED TO DETERMINE HOW CLIENTS IN EACH

CLUSTER ARE USED IN THE SIMILARITY JUDGEMENT.

test acc % clients
dist link post cluster 50 post cluster 50

cos.
ave. 89.3 (1.0x) 97.8 (1.0x) 12.0 (0.9x) 55.0 (1.3x)
comp. 91.3 (1.0x) 97.8 (1.0x) 23.0 (1.6x) 56.0 (1.3x)
sing. 92.0 (1.0x) 97.7 (1.0x) 19.0 (1.4x) 51.0 (1.2x)

L2

ave. 95.5 (1.0x) 98.9 (1.0x) 69.0 (4.9x) 86.0 (2.0x)
comp. 96.6 (1.0x) 98.8 (1.0x) 72.0 (5.1x) 84.0 (1.9x)
sing. 93.6 (1.0x) 98.1 (1.0x) 44.0 (3.1x) 67.0 (1.5x)
ward 97.3 (1.1x) 99.5 (1.0x) 79.0 (5.6x) 89.0 (2.0x)

L1
ave. 99.4 (1.1x) 99.4 (1.0x) 89.0 (6.4x) 91.0 (2.1x)
comp. 99.2 (1.1x) 99.3 (1.0x) 91.0 (6.5x) 92.0 (2.1x)
sing. 99.4 (1.1x) 99.4 (1.0x) 87.0 (6.2x) 91.0 (2.1x)

B. Effect of varying hierarchical clustering hyperparameters

The following experiments fix the number of communica-
tion rounds prior to clustering at 10 and the fraction of clients
participating in each round of FL at 0.2. In this section, we
discuss how varying the hyperparameters of the hierarchical
clustering algorithm affects our metrics. We also experiment
with a range of distance thresholds and report the best per-
forming result for each combination of hyperparameters on
each data partitioning scheme.

In the iid setting, the Euclidean and cosine distance metrics
correctly failed to split the clients during the clustering step,
resulting in a single cluster representing all the clients. As
training continues, the end result is identical to federated learn-
ing. The Manhattan distance metric does cluster the clients
into subgroups, resulting in reduced overall test accuracy and
percentage of clients reaching the target accuracy. However,
data stored across clients in the real world is unlikely to be
perfectly iid.

In the pathological non-iid setting (Table IV), all combi-
nations of hyperparameters yield a final test accuracy similar
to, or better than training a single joint model. By round 50,
the number of clients reaching the target test accuracy of 99%
is significantly better in FL+HC than FL (1.2x to 2.1x). The
Manhattan distance metric performs the best overall, followed
by the Euclidean distance and finally the cosine distance.
Using the Manhattan distance metric, the test accuracy on this
pathological non-iid setting directly after the clustering step
(round 10) exceeds FL at round 50 on iid data. This represents
a vast reduction (>5x) in communication rounds for this type
of non-iid data as shown in Figure 5. Similarly, the number
of clients reaching the target accuracy is greatest under the
Manhattan distance metric. As the Manhattan distance metric
is preferable for measuring distances between sparse high
dimensional vectors [21], this clearly produces good clusters
to train further specialised models from. The linkage method
used with each distance metric appears to have a negligible
effect on performance under this non-iid setting.

Under the label-swapped non-iid setting (Table V), FL+HC

Fig. 5. Pathological non-iid setting, using client fraction = 0.2 and number
of rounds prior to clustering = 10, Manhattan distance metric and complete
linkage.

TABLE V
FL+HC LABEL-SWAPPED NON-IID SETTING - DIST=COSINE,

LINKAGE=SINGLE FAILED TO COMPLETE IN THE TIME ALLOWED.

test acc % clients
dist link post cluster 50 post cluster 50

cos.
ave. 98.7 (1.3x) 99.1 (1.3x) 62.0 (–) 79.0 (–)
comp. 98.5 (1.2x) 99.1 (1.3x) 56.0 (–) 78.0 (–)
sing. – – – –

L2

ave. 98.2 (1.2x) 98.3 (1.2x) 50.0 (–) 53.0 (–)
comp. 98.4 (1.2x) 99.1 (1.3x) 53.0 (–) 76.0 (–)
sing. 98.2 (1.2x) 98.3 (1.2x) 47.0 (–) 51.0 (–)
ward 98.5 (1.2x) 99.1 (1.3x) 57.0 (–) 77.0 (–)

L1
ave. 98.3 (1.2x) 98.3 (1.2x) 51.0 (–) 50.0 (–)
comp. 98.5 (1.2x) 98.6 (1.2x) 58.0 (–) 59.0 (–)
sing. 98.3 (1.2x) 98.4 (1.2x) 48.0 (–) 53.0 (–)

outperforms FL as expected when encountering clients with
competing optimisation objectives. In this setting, experiments
using the cosine distance outperform those using Euclidean
and Manhattan distance metrics. This shows that the magni-
tude of the client update vectors has less of an effect than their
direction in determining the correct clusters in this setting. As
there are clear real clusters of clients in this non-iid setting
(clients who have the same labels swapped), this poses a very
different task to the pathological non-iid setting. Under all
these experiments FL+HC discovers clusters of clients such
that the test accuracy approaches that of FL on iid data,
but only those experiments using the cosine distance metric
reach the same performance. Again, in this non-iid setting,
the linkage method has much less of an effect on the metrics
we measure. The evolution of test accuracy and number of
clients reaching the test accuracy are very similar to Figure 3
under this non-iid setting.

Our final batch of experiments tests the effect of varying
the distance metric and the linkage mechanism in the FEM-
NIST non-iid setting. The results of these experiments are
listed in Table VI. We see very little improvement in test
accuracy or number of clients reaching the target accuracy
by using FL+HC over FL. Where the cosine distance metric
is employed, we see a degradation in performance. In this
non-iid setting, the Euclidean distance metric produces the
best final test accuracy when combined with complete linkage.
The Manhattan distance metric combined with the complete



TABLE VI
FL+HC FEMNIST NON-IID SETTING

test acc % clients
dist linkage post clus-

ter
50 post clus-

ter
50

cos.
ave. 64.2 (1.0x) 66.3 (0.8x) 19.6 (0.9x) 20.2 (0.4x)
comp. 62.6 (1.0x) 64.3 (0.8x) 19.3 (0.9x) 24.5 (0.5x)
sing. 65.4 (1.0x) 74.2 (0.9x) 19.1 (0.9x) 40.1 (0.8x)

L2

ave. 67.0 (1.0x) 78.2 (1.0x) 22.3 (1.0x) 48.2 (1.0x)
comp. 66.8 (1.0x) 78.7 (1.0x) 23.4 (1.1x) 52.3 (1.0x)
sing. 66.4 (1.0x) 77.0 (1.0x) 22.1 (1.0x) 47.7 (1.0x)
ward 72.2 (1.1x) 77.4 (1.0x) 34.6 (1.6x) 48.8 (1.0x)

L1
ave. 66.5 (1.0x) 77.4 (1.0x) 22.9 (1.1x) 48.0 (1.0x)
com. 69.9 (1.1x) 76.5 (1.0x) 36.0 (1.7x) 54.0 (1.1x)
sing. 66.9 (1.0x) 78.7 (1.0x) 23.4 (1.1x) 51.2 (1.0x)

Fig. 6. FEMNIST non-iid setting, using client fraction = 0.2 and number
of rounds prior to clustering = 10, Manhattan distance metric and complete
linkage.

distance metric (Figure 6) allows for the most clients to reach
the target accuracy (1.1x more than FL by round 50). Once
again, the choice of linkage mechanism has less of an effect
on performance compared to the choice of distance metric.

Overall, by adjusting the hyperparameters of the hierarchical
clustering algorithm, we are able to achieve greater test
accuracy and an increase in the number of clients reaching
a given test accuracy. Where the non-iid setting is defined
by differing conditional distributions among clients (as in
the label-swapped non-iid setting) the cosine distance metric
performs marginally better than other distance metrics. A more
natural partitioning of data (by that of the user who wrote the
character in the FEMNIST non-iid setting) presents a more
difficult challenge and FL+HC provides little advantage over
ordinary FL. A good default setting for cases where the nature
of how data is distributed among clients is unknown is to use
the Manhattan distance metric, combined with the complete
linkage method.

C. Future work

We have shown how adding a clustering step into the FL
process can help to increase performance in some non-iid
settings by inspecting the full and clean weight updates from
individual clients. However, popular methods for increasing
privacy (e.g. differential privacy) use noisy client updates.
Future work might look at the effect of this noise on the ability
of FL+HC to find good clusterings of clients. Additionally,
future work might explore the effect of compression methods

(designed to reduce the payload of client updates) on FL+HC.
In this work, we have shown that FL+HC works well for non-
iid clients using a simple CNN to classify handwritten digits.
Although we are confident this method will scale to larger
networks and datasets, further work is required to confirm
this. Finally, an area we did not cover is FL in the presence
of adversaries. A investigation of how FL+HC could used
to identify malicious clients could be a promising avenue of
research.

IV. CONCLUSION

In this work we have presented federated learning with
hierarchical clustering (FL+HC) - a novel method for training
specialised machine learning models over distributed datasets.
This is achieved by introducing a clustering step in the FL
protocol which clusters clients according to the similarity of
their model weight updates.

We have shown results for an image classification problem
using a CNN trained on simulated distributed data partitioned
in a variety of iid and non-iid settings. These results show
the efficacy of our approach compared to FL alone. Our first
experiments varied the fraction of clients (cf) participating in
each round of training and the number of rounds prior to
the clustering step (n) of FL+HC. FL+HC provides results
identical to FL under iid data for all but n=1. In 2 of 3
of our non-iid settings, FL+HC allows learning to converge
more quickly and allows for more clients (up to 2x) to reach
a target accuracy at the end of training. A second range of
experiments tested the effect of varying the hyperparameters
of the hierarchical clustering algorithm. Results among the
non-iid settings show that FL+HC can result in a reduction
in communication rounds by >5x when using the manhattan
distance metric. Different distance metrics result in better
performance depending the non-iid nature of the data. Finally
we presented a recommendation for the best default settings
when training on non-iid data with FL+HC.
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