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Abstract: The ubiquity of smartphones equipped with multiple sensors has provided the possibility
of automatically recognizing of human activity, which can benefit intelligent applications such as
smart homes, health monitoring, and aging care. However, there are two major barriers to deploying
an activity recognition model in real-world scenarios. Firstly, deep learning models for activity
recognition use a large amount of sensor data, which are privacy-sensitive and hence cannot be shared
or uploaded to a centralized server. Secondly, divergence in the distribution of sensory data exists
among multiple individuals due to their diverse behavioral patterns and lifestyles, which contributes
to difficulty in recognizing activity for large-scale users or ’cold-starts’ for new users. To address these
problems, we propose DivAR, a diversity-aware activity recognition framework based on a federated
Meta-Learning architecture, which can extract general sensory features shared among individuals
by a centralized embedding network and individual-specific features by attention module in each
decentralized network. Specifically, we first classify individuals into multiple clusters according
to their behavioral patterns and social factors. We then apply meta-learning in the architecture of
federated learning, where a centralized meta-model learns common feature representations that can
be transferred across all clusters of individuals, and multiple decentralized cluster-specific models
are utilized to learn cluster-specific features. For each cluster-specific model, a CNN-based attention
module learns cluster-specific features from the global model. In this way, by training with sensory
data locally, privacy-sensitive information existing in sensory data can be preserved. To evaluate
the model, we conduct two data collection experiments by collecting sensor readings from naturally
used smartphones annotated with activity information in the real-life environment and constructing
two multi-individual heterogeneous datasets. In addition, social characteristics including personality,
mental health state, and behavior patterns are surveyed using questionnaires. Finally, extensive
empirical results demonstrate that the proposed diversity-aware activity recognition model has a
relatively better generalization ability and achieves competitive performance on multi-individual
activity recognition tasks.

Keywords: human activity recognition; federated learning; meta learning

1. Introduction

The task of human activity recognition targets inferring the semantic meaning of the
situation based on the features extracted from sensor or vision signals. In recent years, a rich
body of intelligent applications, including aging care [1,2], smart homes [3], fitness tracking [4],
and sleep monitoring [5], have benefited from the automatic and unobtrusive recognition of
users’ activity. A commonly used approach is sensor-based activity recognition, which utilizes
on-body or ambient sensors to identify an individual’s contextual information details using
machine learning models [6]. Existing implementations are quite diverse, from shallow models
such as k-nearest-neighbors (kNN) [7] to deep neural networks such as multiple-layer perceptron
(MLP) [8,9] and convolutional neural networks (CNN) [10].
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Activity recognition involves collecting and processing personal behavior data for
training purposes, which has important consequences in terms of data privacy. This has
been addressed with Federated Learning (FL), an emerging machine learning technology
that enables distributed learning of a global prediction model without compromising
privacy [11]. Given a group of users, FL approaches [12] make use of local, user-specific
supervision to update a global, high-quality activity predictors meant to be applicable to
all users.

Despite the success of deep learning and federated learning for accurate activity recog-
nition, there is one major limitation to the deployment of context-aware systems in the open
world, which is the distribution discrepancy in sensor data across multiple individuals [13].
In real-world scenarios, sensor data are collected from a group of diverse individuals, and
behavior patterns are person-dependent [14] owing to biological and environmental factors,
meaning that the same activity can be performed differently by different individuals [15].
This presents a challenge for activity recognition tasks. For instance, individuals walk, eat,
or interact with their phones in different manners, owing to psychological and biological
factors. In addition, the diversity of lifestyles is also a major barrier to accurate activity
recognition, which constantly happens in the real world. For instance, some people go to
work by car, and some may prefer to walk to the office. Specifically, for ubiquitous com-
puting systems, it is challenging to apply activity recognition models learned on existing
users for predicting the activity of new-coming users with different characteristics and
behavioral patterns. For machine learning algorithms, the heterogeneity of the sensory
data input into the machine learning model contributes to the fact that training data and
test data are not independent and identically distributed (i.i.d.) [13]. Thus, the performance
of the machine learning model drops due to the heterogeneity of sensor data.

To tackle the heterogeneity challenge in activity recognition, domain adaptation tech-
niques such as transfer learning and multi-task learning have been applied to transfer
knowledge across different individuals. The authors of [16] proposed an HAR model with
a particular layer with few parameters inserted between every two user-dependent layers
of the CNN for personalization. The authors of [17] proposed to personalize their models
with transfer learning. The authors of [18] proposed a personalized HAR model based on
multi-task learning techniques, where each task corresponds to a specific person. However,
this work is limited because it is impractical to train a personalized model for each user in
real life, which is both extremely time- and energy-consuming. Some FL-based approaches
handle cross-individual diversity by learning user-specific models [12,19,20]. Most im-
portantly for our contribution, Meta-HAR [21] trains a shared embedding network in a
federated manner and then adapts the network with an output layer to specific users via
fine-tuning. However, these approaches ignore the problem of feature-level discrepancies.

Moreover, existing approaches tend to personalize a model for each specific individual.
However, there are two main problems with activity recognition in the real world: (i) the
performance of the model drops when the dataset of one single individual is limited
and (ii) it is impractical to train the model for each user for a context-aware application
with a large number of users to recognize their activity, especially for a new user. In
addition, individual characteristics (e.g. personality) contributing to the heterogeneity in
sensory data have never been explored or utilized to improve the generalization ability
of the machine learning model. Previous studies have shown that human behavior has
correlations with personality [22–24] and psychological factors [25,26]. Thus, we take
these characteristics into consideration for clustering individuals to tackle this issue for the
purpose of improving the generalization of the activity recognition model.

In this paper, we address the issue of heterogeneity by proposing DivAR, a federated
meta-learning framework with an attention mechanism to learn a diversity-aware model
adapting to the individuals’ discrepancies. Specifically, (i) we cluster the individuals who
have the same characteristics from multiple aspects, including social factors (e.g. basic
information, personality, and mental state) and behavioral characteristics. (ii) We apply
a federated meta-learning framework to train a diversity-aware model accounting for
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both diversity and similarity for each cluster. Specifically, we train a meta-learning model
in a federated learning manner, where a centralized meta-model learns common feature
representation that can be transferred across all clusters of individuals, and multiple cluster-
specific models stored in decentralized clients are utilized to learn cluster-specific features.
(iii) In order to learn feature-level inter-individual discrepancies, we apply a CNN-based
attention module to extract cluster-specific features from the global model for each client
model. To evaluate the approach, we construct two diversity-aware activity recognition
datasets, including sensor readings from smartphones with activity annotations using the
data collected from multiple individuals in the real-life environment. In addition, the social
characteristics such as personality and psychological factors of multiple individuals are
surveyed by a set of questionnaires. We then explore the impact of the heterogeneity phe-
nomenon in sensory data by setting an empirical experiment and analyzing the distribution
of features. Finally, we conduct experiments on our dataset to evaluate the performance
of the model. The results demonstrate that our diversity-aware model is able to achieve
more accurate multi-individual activity recognition than state-of-the-art approaches, which
indicates the promise of our proposed method. The main contributions of this work are
summarized as follows:

• We propose a federated meta-learning framework for activity recognition, a centralized
embedding network to extract shared sensory features, and specific features for a
certain group of individuals are learned by the attention module in each decentralized
model. In this way, both shared features and distribution discrepancy of sensory
features are considered to handle heterogeneity challenges and ’cold-start’ problems
for context-aware applications.

• The proposed model allows the model to be trained locally, and only the updates of the
parameters are transferred across clients, which provides the ability to preserve privacy for
activity recognition tasks in multi-individual or cross-organization scenarios.

• We explore multiple diversity factors across individuals for the activity recognition
task. Various properties of an individual for clustering are considered, including
characteristics such as personality and mental state in the activity recognition task to
tackle the heterogeneity problem to achieve diversity-aware activity recognition.

• We construct two multi-individual heterogeneous datasets by collecting sensor read-
ings from naturally used smartphones annotated with activity information in a real-life
environment. In addition, social characteristics, including personality, mental health
state, and behavior patterns, are collected for clustering and analyzing individuals
from diverse aspects.

• We conduct experiments on multi-individual heterogeneous datasets. The experi-
mental results indicate that the proposed federated meta-learning activity recognition
model has a relatively competitive performance in terms of both handling heterogene-
ity on existing users and adapting to new users.

The remainder of the paper is structured as follows. The next section introduces the
motivation for our proposed model. Section 2 positions DivAR with respect to existing
approaches. Section 4 introduces DivAR, the proposed federated meta-learning framework
for diversity-aware activity recognition. Then, Section 5 describes the procedure of data
collection, and Section 6 describes and discusses our experimental evaluation of DivAR
on real-world data. Finally, Section 7 presents some concluding remarks and illustrates
promising directions for future work.

2. Related Work
2.1. Activity and Activity Recognition

As a promising research topic, human activity recognition (HAR) has produced exten-
sive research in the areas of ubiquitous computing and machine learning [6]. Generally,
the procedure of human activity recognition can be regarded as a standard time series
classification problem by utilizing machine learning methods. A rich body of research
on HAR has been carried out in simulated and controlled environments. In earlier years,
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shallow machine learning models were applied to activity recognition tasks to extract fea-
tures manually. These models depended on statistical features [27] and distribution-based
features [28] and then inferred the activity using different classification models. The authors
of [29] proposed algorithms to recognize physical activities using the data collected using
wearable sensors worn simultaneously on the body. The work in [30] investigates effec-
tive extractions of universal features from various sensors for HAR methods supporting
context-aware applications.

Recently, deep learning [31] has been extensively applied in HAR [6]. For instance,
CNN has shown great potential for extracting various features from sensory readings.
The work in [10] proposed a CNN-based HAR model to extract the temporal features
and spatial dependency over multiple sensors. The authors of [32] applied deep CNN
to learn the representation of electrocardiogram (ECG) signals for the classification lay-
ers. Furthermore, DeepConvLSTM [33], a model integrating CNN and RNN, has shown
notable performance in capturing spatial-temporal features from the sensor signal data.
DeepSense [34] integrates CNN and RNN, which can not only model temporal dependen-
cies but fuse the features capturing multimodal sensor readings.

However, these HAR algorithms classify sensor data into one certain labeled activity,
which provides limited information about humans for context-aware applications. More-
over, these HAR methods are not suitable for real-world problems since most of them are
implemented in controlled environments. Therefore, the study and recognition of activity
in the open world have drawn extensive attention in the area of ubiquitous computing.
Ref. [35] collect labeled data of natural behavior using smartphone and smartwatch sensors
in real-life settings and then recognize the activity of individuals in the wild. The work
in [36] treats the task of activity recognition as a multi-label classification problem and uses
MLP as the classifier, which improves accurate recognition with fewer parameters. Ref. [37]
proposes a multimodel CNN model for fusing diverse modalities of sensor readings to
learn behavioral activity. DeepContext [38], a CNN-based model for recognizing a user’s
activity, applies an attention mechanism to discover and utilize important features of smart-
phone sensor readings. However, previous work has hardly considered multiple aspects of
activity and studied the correlations between aspects of the activity.

2.2. Handling Heterogeneity of Sensory Data

Many state-of-the-art approaches for human activity recognition assume that the
training data and the test data are independent and identically distributed (i.i.d.). However,
this is impractical since sensory data for activity recognition is heterogeneous. Behavior
patterns are person-dependent [14] owing to biological and environmental factors, which
means that the same activity can be performed differently by different individuals.

In practical human activity recognition scenarios, while a certain number of partici-
pants’ data can be collected and annotated for training, the target users are usually unseen
by the systems [13]. Thus, the distribution divergence between the training data and the
test data appear as a challenge in human activity recognition, especially for the recognition
of complex and multi-aspect activities in the wild. There are some studies focusing on
solving the heterogeneity challenge. The authors of [14] compare the universal and personal
models, and the results indicate that the personal models perform dramatically better than
the universal model. The authors of [39] studies the HAR task in diverse user populations
and proposes a novel scalable activity classification framework to handle the increasing
number of users.

Recently, personalized deep learning models for heterogeneity between users are
widely applied in activity recognition tasks. The authors of [40] proposed a personalized
HAR approach for each individual in a multi-person environment. The work in [16] learned
user-specific parameters of a CNN for each user using a small amount of data. The authors
of [17] proposed to personalize CNN models with transfer learning by training the models
with data collected from a few participants and then only fine-tuning the top layers of
the CNN with a small amount of data for the target users. The authors of [41] defined



Sensors 2023, 23, 1083 5 of 23

and utilized the discrepancy and consistency across individuals on the task of HAR for
mobile sensing applications. However, existing work has hitherto ignored the analysis of
heterogeneous data and the factors contributing to the heterogeneity in sensor data.

Multi-task learning [42] has been used successfully across all applications of machine
learning, from natural language processing [43] and speech recognition [44] to computer
vision [45]. As a classic type of transfer learning, multi-task learning aims to leverage
information contained in several related tasks in order to improve the performance of all
the tasks [42]. Essentially, MTL aims at improving the generalization ability of the model,
when the multiple tasks are sufficiently related [42]. In addition, MTL is applied to solve
the scenario where data are unlabeled. Tang et al. [46] propose a semi-supervised model
that effectively learns to leverage unlabeled mobile sensing datasets to complement small
labeled datasets with multi-task self-supervision.

As mentioned above, machine learning tasks such as activity and activity recognition
are facing a heterogeneity problem. Namely, the one-size-fits-all machine learning models
cannot perform equally well for each user given the cross-individual differences. In recent
years, therefore, a few studies have proven that domain adaptation techniques show
potential in handling heterogeneity problems for sensor-based recognition tasks such as
HAR [47] and wellbeing recognition [48]. By improving the generalization of the estimated
models for multiple related learning tasks via capturing the tasks’ relationships, MTL
has been used for solving the heterogeneity challenges in the ubiquitous computing field.
It has been theoretically and empirically shown to be more effective than learning tasks
individually. In addition, considering privacy issues and annotation costs, Saeed et al. [49]
propose a self-supervised technique for feature learning from sensory data.

The work in [50] proposed a personalized machine learning for robot perception
of affect and engagement in autism therapy, which outperforms one-size-fits-all ML ap-
proaches. The authors of [48] applied a personalized multitask learning technique on three
wellbeing prediction models and proved that the personalization of the model can improve
the performance of both shallow and deep models. In addition, multi-task learning has
also been used to learn models for related tasks in ubiquitous computing areas. Aroma
is proposed in [51] to train a deep multi-task learning model for the joint recognition of
simple and complex human activity.

However, these studies require a large amount of data for a deep learning model, and
the factors contributing to the heterogeneity have never been explored and utilized. While
our work can consider both behavioral diversity and similarity in the activity recognition
model and guarantee that knowledge can be transferred between individuals.

2.3. Federated Learning

Federated learning aims to train a centralized model using the data stored in multiple
distributed nodes in a privacy-aware manner [52]. Federated Averaging [53] combines
local stochastic gradient descent (SGD) on client nodes with model averaging on the server
side and is able to reduce communication rounds between clients and servers. Existing
studies [53,54] have shown that federated learning performs well when clients hold non-IID
data and thus has some potential for addressing cross-individual diversity in HAR [55].
However, although federated learning-based HAR approaches succeed in learning from
different clients, pure FL does not model the similarity and discrepancies of the clients and
thus fails to learn personalized models for all individuals. MTL [42] combines information
from multiple, related learning tasks to improve the prediction performance of all the
tasks simultaneously and represents a natural strategy for dealing with cross-individual
differences, and exploiting cross-individual similarities, in HAR [56]. MOCHA is proposed
as a general federated multi-task learning framework and performs well for HAR tasks.
However, it ignores the case of heterogeneous data distributions. Most closely related to
our approach, Meta-HAR [21] solves personalized HAR by treating each individual as
a separate task and learning both shared and user-specific information. Compared with
learning a one-size-fits-all model, MTL approaches can precisely capture relationships
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among non-IID data and are naturally well-suited for dealing with user heterogeneity
in cross-individual HAR. However, existing works design the MTL model by taking a
feed-forward network and splitting the network at the classification layer, therefore ignoring
the discrepancy at the feature level.

2.4. Meta-Learning

Meta-learning aims to solve the problem of learning to learn on a wide range of learn-
ing tasks [57]. Andrychowicz et al. [58] adopt deep neural networks to train a metalearner
and propose an optimizer–optimizee setup, where each component is learned with an iter-
ative gradient-descent procedure. Model-agnostic meta-learning (MAML) [59] is another
popular approach that does not impose a constraint on the architecture of the learner. Ravi
and Larochelle [60] propose an LSTM meta-learner to learn an optimization procedure
for few-shot image classification. Li et al. [61] develop an SGD-like meta-learning process
and also experiment on few-shot regression and reinforcement learning problems. Rep-
tile [62], i.e., the approach adopted in this paper, simplifies the learning process of MAML
by conducting first-order gradient updates on the meta-learner. Jiang et al. [62] interpreted
federated learning as an MAML algorithm and implement a federated version of the first-
order MAML algorithm, Reptile. However, Jiang et al. [62] focus on parameter tuning
to obtain a global model which is readily personalized. Wijekoon et al. [63] proposed to
learn personalized models for individuals to improve adaptation ability by meta-learning.
Existing studies combine federated learning with meta-learning. Chen et al [64] propose
FedMeta, a Federated Meta-Learning to handle the statistical distribution and systematic
challenge in the real-world application of federated learning. Fallah et al. [65] propose
learning personalized models using meta-learning and federated learning to train models
across multiple computing units. Li et al. [21] introduce Meta-HAR, a federated representa-
tion learning framework treating activity recognition tasks for each individual as a related
task and applying meta-learning to learn personalized models.

3. Motivation

The heterogeneity of data is the major barrier to a high-quality machine learning
model, especially heterogeneity with users will decrease the performance of the model
when applied in the open world [35]. In this section, an empirical experiment is conducted
to prove that heterogeneous sensory data decrease the performance of the machine learning
model for activity recognition using the in-the-wild sensory data to motivate the diversity-
aware activity recognition model.

3.1. Feature Visualization

We firstly explore the distribution of features extracted from in-the-wild sensory
data. The information on datasets will be introduced in Section 5. In order to visualize
the features, a Kernel Density Estimator (KDE) is used to show both the marginal and
conditional distribution of each feature extracted from multi-modal sensor readings. The
KDE function can be formally defined as:

p̂n(x) =
1

nh

n

∑
i=1

K(
xi − x

h
)

where K(x) is the kernel function that is generally a smooth function, the Gaussian kernel
is used in this experiment, and h > 0 is the smoothing bandwidth that controls the amount
of smoothing. Basically, the KDE smoothes each data point Xi into small density bumps
and then sums all these small bumps together to obtain the final density estimate.

Figure 1 shows the distribution of features for all instances of multiple users. Specif-
ically, each subplot in Figure 1 indicates the estimation curves of a single feature, where
each curve refers to one single user. For better visualization, 8 individuals out of 30 are
randomly selected for plotting the distribution. In most of the subplots, features extracted
from different individuals’ sensory data represent remarkably different distributions. The
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discrepancy across individuals is partially caused by the different behavioral styles of
performing one certain activity. For some certain features, such as the variance of rotation
vectors and accelerometers, however, the distributions are quite similar.
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Figure 1. Distribution of each feature across individuals. Each figure refers to the distribution of a
certain feature, and the curves in each subplot are the distribution of the feature estimated by the
KDE of eight randomly selected individuals.

3.2. Impact of Heterogeneous Sensory Data on Activity Recognition

In this subsection, we analyze the inter-individual differences and their impact on
the activity recognition model. Behavioral diversity indicates that each individual has
their own way of behaving and thus the same activity can be performed differently by
different individuals. Essentially, the distribution of features extracted from sensor readings
is different across individuals, which may drop the performance of the model trained with
multiple individuals.

In this experiment, we extract all time-domain features for the machine learning
model following the method [27], including mean, std, etc. We then simply use a Random
Forest (RF) with default settings as the classification algorithm. Three types of models are
designed to compare the performance: the generic model, Transfer model, and personal
model. The different models are described as follows:

Generic model: The data from all individuals are packed into one large dataset, which
is divided into training and test sets. Namely, the model is trained and tested on the dataset
with the data from all of the individuals.

Transfer model: We follow the settings of transfer learning, where the model is trained on
a certain single individual and then tested on the dataset from another individual. Please note
that performance is average by all source individuals and each individual is randomly selected.

Personal model: The data from each individual are divided into training and test sets.
The model is trained using the data from only one single individual and then tested on the
same individual. Note that the performance is averaged across all individuals.

We use the five-fold cross-validation method in parameter searching and while training
the models. We classify the activity annotations into three types, which are activities,
locations, and social relations. The performances of the three types of activity are displayed
in Figure 2, where each set of the bars represents the f1score of recognizing the activity
(blue bar), location (red bar), and social relation (green bar) for each individual. Results



Sensors 2023, 23, 1083 8 of 23

indicate that the personal model performs the best and the transfer model has the worst
performance, which indicates that heterogeneity exists among individuals. This experiment
shows that model personalization improves the performance in the activity recognition
task in an open-world environment. Thus, using federated learning to learn features from
multiple individuals and generating a model for each individual by meta-learning is a
promising approach to account for inter-individual differences.

WA WE WO
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Figure 2. Comparison of the performance of the generic model, personal model, and transfer model.

To conclude, the result of an empirical experiment on the activity recognition model
indicates that distribution discrepancy across individuals should be considered. Thus, we
apply federated learning to learn general features from multiple client users and generate
adaptive models for each type of individual. In addition, the fact that different individuals
have different feature distributions motivates the use of attention mechanisms. However, it
is impractical to train one single model for each individual in the real life. In addition, the
amount of a single individual’s dataset is limited for a machine learning model, especially
for deep neural networks. Therefore, we intuitively account for the heterogeneity of the
features and, meanwhile, utilize the shared knowledge transferred across individuals.

4. Methodology

This section describes the method of the federated meta-learning framework for
diversity-aware activity recognition. Figure 3 illustrated the overall architecture of our
approach. First of all, individuals are clustered according to their characteristics including
basic information, personality, and mental state. Then, an activity recognition model
is trained locally in a federated learning manner. Finally, the diversity-aware activity
recognition model is generated from the central server. In what follows, the detailed
methodology will be introduced.

Modality-Specific Layer Temporal
Feature Learning

…

Modality Fusion Layer Context

…

…

Cluster-Specific Mask

…

CNN CNN

…

…

GRU SoftmaxInput

…

Sensors

OutputCluster-Specific Mask

Figure 3. The architecture of the attention-based meta-learning model for diversity-aware activity
recognition. The CNNs in the modality-specific layer and modality fusion layer are transferred
from the central model and trained locally with the rest components on the client side. The detailed
structure of the attention-based, cluster-specific mask operation is introduced in the next subsection.

4.1. Problem Definition

In order to define our federated meta-learning framework for diversity-aware activity
recognition, we give its definition as follows: The set of multi-modal sensor readings is
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denoted as: x = {Sk}, k ∈ {1, . . . , K}. Each sequence of single-modality sensor data from
the smartphone is defined as: St

k = {s
1
k , s2

K, s3
t , . . . , St

k, }, t ∈ T, where T refers to the length
of the time window of sensory readings. U indicates the set of individuals. For each such
individual u ∈ U , we have access to a corresponding data set Du = {(xi, yi)}nu

i=1, where
xi ∈ Rd are sensor readings and yi are the corresponding ground-truth activity labels.

4.2. Overall Architecture

In the federated learning framework, we aim to train a meta-model with decentralized
data from and under the coordination of a centralized parameter server. In order to achieve
strong generalization across diverse individuals, we consider both heterogeneity and
similarity between individuals by leveraging a Federated meta-learning architecture, as
shown in Figure 4. The proposed architecture consists of a central model, with parameter
Θc, and m decentralized modelsWu, u ∈ {1, 2, · · · , m} that learn cluster-specific features.
The overall goal is to acquire a diversity-aware activity recognition model that generalizes
across multiple clusters of individuals, represented by U . For now, let us focus on the
first desideratum. This can be implemented by minimizing an appropriate loss over the
observed clusters of individuals, as follows:

min
x∈Rd

f (x) :=
1
m

m

∑
u=1

Fu(xu; Θc,Wu) (1)

where Fu(xu; Θc,Wu) , Eξ Du [Fi(xu, ξu)] denotes the loss function of local client model,
which essentially evaluates the average discrepancy between the output of client model
fu(·) and the ground truth corresponding to a random training sample xu that follows a
local data distribution ξu. The parameter d represents the dimensionality of the training
model and fu(·) denotes the activity recognition model in each client that depends on both
the shared parameters Θc and the cluster-specific parametersWu. The architecture of the
model is detailed next.

Server Model

Client Model …

Central Embedding Network

Local
Network

Personalized
Network

Inputs

Client Model

Local
Network

Personalized
Network

Client Model

Local
Network

Personalized
Network

Parameter Transfer

Model Concatenation

Data Flow

Context Inputs Context Inputs Context

Cluster 1 Cluster 2

…

Cluster 3

Figure 4. Overall architecture of the diversity-aware activity recognition.

4.3. Individual Clustering

We study the factors that impact individuals’ behavior patterns or lifestyles based on
previous work on mobile sensing and sociology analysis. Existing work has proven that
personality [22,24,66] and psychological factors [25,26] have correlations with behavioral
patterns. Based on this observation, we assume that the same activity can be performed
differently by individuals due to their diverse social characteristics such as personalities
and emotional states. Table 1 shows the features for clustering individuals including social
factors and behavioral factors. In addition, we analyze the features of the behavioral
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patterns. Therefore, we cluster individuals based on these factors. In the data collection
procedure, the Big Five trait taxonomy [67] and psychological factors are collected. We then
apply K-means [68] to cluster individuals according to their personality traits and mental
health questionnaires.

Table 1. List of features for clustering individuals. In the Measurement column, pu,a indicates the
probability of activity a.

Feature Type Feature Measurement

Social factors Basic Information Year of birth, dormitory, grade, department
Personality Big Five questionnaires
Mental state PHQ-9 questionnaires

Behavioral factors Behavior type Types and numbers of activity
Diversity Shannon entropy of annotations: −∑a pu,aln(pu,a)

The features in the first group capture information about questionnaires about indi-
viduals as follows:

Basic Information: We leverage basic information of individuals (e.g., age and department
of university) to cluster individuals. Note that the data are anonymized, and informed
consent was signed to inform individuals of privacy and ethics.

Personality: We account for personality to cluster individuals because the research carried
out by researchers [22] indicates that personality traits can reflect the key parts of
how a person thinks, feels, and thus behaves. We applied a Big Five (i.e., extroversion,
agreeableness, openness to experience, conscientiousness, neuroticism) questionnaire,
which is a widely accepted personality measurement tool.

Mental State: We also applied the mental state information of individuals for clustering.
Specifically, we applied the PHQ-9 questionnaire, which is a subset of 9 questions based
on DSM-IV (Diagnostic and Statistical Manual of Mental Disorders) criteria [69]. It is a
simple and effective self-rating scale for depression with high reliability and validity.

The second group of features is concerned with behavioral factors of individuals
as follows:

Behavior type: We account for the types of activity labels to cluster individuals. To be specific,
we cluster individuals who tend to have similar types of activity labels together.

Diversity of behavior pattern: By diversity, we mean the intrinsic heterogeneity in its activ-
ity patterns inspired by the study on human behavior [15]. For each individual u, we
measure this by computing the number of distinct activities that they perform, and the
Shannon entropy of the activity annotations {yi,a} available in the training set. These
meta-features model the intrinsic difficulty of predicting the behavior of an individual u
and are useful for preventing unpredictable individuals to be used as sources.

4.4. Feature Representation Network

The feature representation network learns the features from sensor observations x
using a CNN-RNN architecture, together with a cluster-specific mask based on the attention
mechanism, which is shown in Figure 3. As inputs for the neural networks, the training
instances are partitioned by the fixed-size sliding window into k time intervals of length L.
This results in a data matrix of shape ds × L, where ds is the dimension for each sensor s
(e.g., x, y, and z axes for the accelerometer). We then apply a Fourier transform to compute
frequency-domain information, obtaining a final input tensor Xs of shape ds× 2 f × k, where
f is the dimension of frequency-domain information. The set of tensors for each sensor,
X = {Xs}, is the final input of the embedding network.

The embedding network itself uses two sets of convolutional layers: the first set is
applied to each sensor separately, and the second one is applied to the concatenation of the
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individual sensor embeddings (see Figure 3), so as to fuse their representations and extract
spatial dependencies between them. Within the two CNNs, we apply an attention-based
mask to extract individual-specific features, which will be introduced in Section 4.5. Then,
Gated Recurrent Unit (GRU) layers are used to extract the temporal relevance of the k
CNN outputs. Finally, the embedding vectors output by the GRU layers is fed to a fully
connected output layer that computes the probabilities for each category using a softmax
activation. Note that we generate a fully connected layer adaptively according to the types
of activities performed by the cluster of individuals, considering the fact that different
groups of individuals perform diverse kinds of activity.

4.5. Diversity-Aware Attention-Based Mask

As mentioned above, the recognition of different users’ activities relies on the different
sensor readings. In order to precisely adapt the central model to a specific cluster of
users, we apply the attention-based mask to the feature representation layers, aiming at
extracting user-specific information. Therefore, we train multiple user-specific attention
networks. As such, the attention masks can be considered as feature selectors from the
shared network, while the shared networks can learn shared features across all users. Recall
that our embedding network contains two types of CNN layers: multiple sensor-specific
convolutional layers and a fusion convolutional layer. We apply the attention module to
both of the two types of convolutional layers, as shown in Figure 5.
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Figure 5. Architecture of the attention-based mask for cluster-specific feature extraction.

The detailed structure of the attention-based mask is shown in Figure 5, consisting of
multiple convolutional blocks for extracting task-specific features. Specifically, we refer to
the shared features in the l-th layer of the shared network as el and the learned attention
mask in this layer for individual u as el

u. The task-specific features êl
u in this layer are then

computed by element-wise multiplication of the attention masks with the shared features:

êl
u = Maskl

u � pj (2)

For the first attention module in the convolutional layers, we take as input only
features in the shared network. As for the subsequent attention mask in layer j, the input is
the concatenation of the shared features pj and the task-specific features from the previous
layer âj−1

i :

Maskl
u = h(g([pl ; f (ê(l−1)

u )])), (3)

Here, f , g, h are convolutional layers with batch normalization, following a non-linear
activation ReLu in f , g or Sigmoid in h. Both f and g are composed with a [3× 3] kernel,
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while h has a [1× 1] kernel to match the channels between the concatenated features and the
shared features. Then, the attention masks Maskl

u ∈ [0, 1] is learned with back-propagation,
which can operate as feature selectors from the shared features, while the shared network
learns generalized features across all individuals.

4.6. Implementation for Federated Model Training

Recall that our model is split into shared and cluster-specific parts, which are stored
separately. The central model Θc contains two CNNs that perform single-sensor feature
extraction and multiple sensors feature fusion. As for the decentralized individual models,
Wu = {au, hu, cu}, where au indicates attention-based mask modules for extracting cluster-
specific features, hu indicates a GRU module for extracting temporal features, and cu
refers to output layer for classification. In this way, both user-agnostic and cluster-specific
features can be extracted by the proposed framework. The training procedure is shown
in Algorithm 1. To optimize the parameter and update the model, the parameters are
transferred between the central server and distributed clients. Specifically, each user
with a local dataset Du obtains CNN models Θc from the central server and introduces
their data into the CNNs masked by their local attention module to obtain their specific
feature embeddings. Then, embedding vectors are introduced to GRU to obtain temporal
features and finally obtain the loss via the classification layer. By performing n epochs of
training locally in the clients, the parameters are separately updated to a central server and
decentralized nodes. The central model then averages the updated parameters to update
the shared embedding network in the central model by averaging the models.

Algorithm 1: Federated Multi-Task Attention for Diversity Mental activity recognition.

1: Input: m individual-specific data sets {Du}, one per client.
2: Output: central model Θc, individual-specific models {Wu}.
3: # Training Central Model:
4: Initialize central model Θc ← Θ0
5: for round = 1, 2, . . . do
6: for each u ∈ {1, 2, . . . , m} in parallel do
7: Get central model Θc from the server.
8: Train for n epochs using central model Θc together with local modelWu,

and get locally updated parameters Θu andWu.
9: Push updated parameters Θu to server.

10: end for
11: Update Θc according to Θc = Θc + λ(Θ̂−Θc), where Θ̂ = 1

m ∑m
u=1 Θu

12: end for
13: return Θc and {W1, . . . ,Wm}
14: # Model Personalization:
15: for user u in all users do
16: Pull parameters of embedding network Θc from FL server.
17: Fine-tune Θc with pairwise loss on the local dataset to obtain local embedding

network Θu.
18: Further fine-tune local classifierWu with cross-entropy loss on local dataset.
19: return personalized classification modelWu for user u.
20: end for

5. Data Collection

To evaluate the effectiveness of the model in the real world, We construct two activity
recognition datasets involving multiple individuals, which aim at studying the behavior
pattern and lifestyle of university students, supported by anonymized projects. The collection
and construction procedure is similar to the anonimized dataset and uses exactly the same
tools and techniques collected as anonymized. During the data collection procedure, a
smartphone app was used to carry out sensor recording (e.g., GPS, accelerometer) and
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administer periodic questionnaires about activity, location, and social activity. All students
signed informed consent forms. The main features of this dataset are that it: (1) contains
annotations for complex activities such as “Housework” and (2) is collected “in the wild” in
an unconstrained setup. In this experiment, the records are annotated with multiple types
of activity, including activities, locations, and social relations. The signals are obtained from
smartphone sensors and include motion-reactive sensors (e.g., accelerometer), location,
phone state, etc. Specifically, the students enrolled in the university who were interested in
the data collection pilot were invited to an introductory presentation where they received
the basic information about the project and the aims of the pilot. Note that informed
consent was signed to inform the students of privacy and ethics. Considering the duration
of the data pilot is two weeks, the participants were allowed to quit at any time during
the pilot.

5.1. Annotated Sensor Data Collection

The pilot relied on a smartphone app which provided sensor data collection and time
diaries. All the participants were required to install the app on their smartphones, which
recorded streaming data from both hardware (e.g., GPS, accelerometer) and software (e.g.,
running applications). The full list of sensors and their sampling rate is shown in Table 2.

Table 2. List of sensors.

Sensor Sampling Rate Unit

Acceleration 20 Hz m/s2

Linear Acceleration 20 Hz m/s2

Gyroscope 20 Hz rad/s
Gravity 20 Hz m/s2

Rotation Vector 20 Hz Unitless
Magnetic Field 20 Hz µT

Orientation 20 Hz Degrees
Temperature 20 Hz °C

Atmospheric Pressure 20 Hz hPa
Humidity 20 Hz %
Proximity On change 0/1
Position Every minute Lat./Lon.

WIFI Network Connected On change Unitless
WIFI Networks Available Every minute Unitless

Running Application Every 5 s Unitless
Screen Status On change 0/1
Flight Mode On change 0/1

Battery Charge On change 0/1
Battery Level On change %

Doze Modality On change 0/1
Headset plugged in On change 0/1

Audio mode On change Unitless
Music Playback On change 0/1

Audio from the internal mic 10 s per minute Unitless
Notifications received On change Unitless

Touch event On change 0/1
Cellular network info Once every minute Unitless

In addition to the sensor data, a self-report time diary composed of three questions
on activities, locations, and social relations was asked by the application every 30 min.
The questions are designed according to [70], which aims at studying where the time of
participants is spent each day. Table 3 shows the questions and their answers generated
during the pilot. Note that only one answer can be selected.
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Table 3. The questionnaire for collecting activity labels.

Q1. What Are You Doing? Q2. Where Are You? Q3. With Whom Are You?

Sleeping Home Apartment Room Alone
Self-care Relatives Home Friend(s)
Eating House (friends others) Relative(s)
Study Classroom / Laboratory Classmate(s)
Lesson Classroom / Study hall Roommate(s)

Social Life University Library Colleague(s)
Watching iQiyi, Youku, Bilibili,

etc. Other university places Partner

Social media (QQ, WeChat, Weibo,
etc.) Canteen Other

Traveling (*) Other Library
Coffee break, cigarette, beer, etc. Gym (*) How are you moving?

Phone calling; in chat QQ or
WeChat Shop, supermarket By subway

Reading a book, listening to music Pizzeria, pub, bar, restaurant By car
Movie Theatre Concert Exhibit Movie Theater, Museum By foot

Housework Work place By bike
Shopping Other place By bus

Sport Outdoors By train
Rest/nap By motorbike
Hobbies Other

Work

5.2. Personality and Mental State Survey

To learn the traits of participants, at the beginning of the pilot, the participants were re-
quired to finish a series of entry questionnaires including the Big Five personality traits [71],
health awareness, and the Patient Health Questionnaire (PHQ-9) [69]. The Big Five (i.e.,
extroversion, agreeableness, openness to experience, conscientiousness, neuroticism) ques-
tionnaire is a widely accepted personality measurement tool that reflects the key parts of
how a person thinks, feels, and behaves. PHQ-9 is a subset of 9 questions based on DSM-IV
(Diagnostic and Statistical Manual of Mental Disorders) criteria [69]. It is a simple and
effective self-rating scale for depression with high reliability and validity.

5.3. Data Exploration

To construct the dataset for machine learning, we extract three annotations about the
activity as labels of the multiple sensor readings as in the settings of the previous research,
anonymized. Specifically, the input data are composed of multiple 30 min sequential data
which include the 15-min periods before and after answering the questions. In order to
utilize more precise information, we use only the central 10 min sequence (5 min before
and 5 min after answering the questions) as the input of the model. We then perform
data segmentation to split the data into 60 10 s windows, following similar settings and
lengths as existing benchmark datasets [72,73]. As for the label, activity labels annotated are
extracted as the ground-truth labels of the sensor sequences. Note that we use only activity-
related labels, considering that these activity labels have stronger correlations with sensory
data and thus are more suitable for the task of activity recognition, following most studies
on Human Activity Recognition (HAR) [34,72,74]. After data cleaning and preprocessing,
dataset1 contains 30 individuals and dataset2 contains 48 individuals. The frequency of
behavioral activity annotations is shown in Figure 6.
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Figure 6. Frequency of activity annotations.

6. Evaluation

In this section, numeric experiments are set up to evaluate our proposed model to
answer the following questions:

• Q1: Does DivAR handle inter-individual heterogeneity effectively for the activity
recognition system?

• Q2: Does DivAR have the ability to adapt the model to new-coming users to address
the “cold-start” problem for the activity recognition system?

• Q3: What features can be used to cluster individuals properly to achieve high-
performance, diversity-aware activity recognition?

• Q4: How does DivAR perform with different hyperparameters and when the compu-
tation is complex?

6.1. Experiment Settings

We use both two datasets to evaluate the effectiveness of our proposed model. In ad-
dition, we create a third dataset by mixing the two datasets, which are more heterogeneous
and contain more individuals. We apply the settings of meta-learning by splitting all users
into meta-train users, which participate in the meta-learning process, and meta-test users,
which serve as new users for testing the generalization ability of the meta-learned model.
To be specific, we randomly select one user as the meta-test user and the rest as meta-train
users to evaluate the performance for the proposed method and all baselines. We repeat
the whole process 10 times and average the performance. To train the model and test the
performance, we further split the dataset of each individual into a training set (80%) and
a test set (20%). Considering that the labels are imbalanced, we use both macro− F1 and
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accuracy as the performance metrics in the evaluation. The number of clusters is selected
as five.

We implemented our model using Python 3.6 and Pytorch 1.8. All experiments
are carried out on a machine with two NVIDIA GeForce RTX 3090 GPUs. The Adam
optimizer [75] with β1 = 0.9, β2 = 0.98, and ε = 10−8 is used to update all network
parameters. In the federated learning procedure, we set λ = 1.0 and perform n = 5 epochs
of local training in each update round. The time window of input for the CNN is selected
as 2 s. Considering that the labeled data are typically imbalanced, we apply both accuracy
and macro-average f1score for evaluation.

6.2. DivAR Can Handle Inter-Individual Heterogeneity Effectively for Existing Users in the
Activity Recognition System

To statistically measure differences in performance, we select the following methods
for comparison. Specifically, the task of activity recognition is essentially the problem of
sensory time series classification; thus, we compare our model with sensory time series
classification models. Considering the fact that most existing work on activity recognition
targets recognizing activity, we compare state-of-the-art models on HAR. In addition,
we take the meta-learning and federated learning model into consideration for fair and
extensive evaluation. The description of baseline models is listed as follows:

• Random Forest [76]: The Random Forests are a type of ensemble classification model
constructing multiple decision trees. Note that we extract features from sensory data
manually for training the Random Forest classifier.

• DeepSense [34]: A state-of-the-art model using CNN-RNN structure for several types
of multimodal sensor series classification.

• AttenSense [74]: An attention-based multimodal neural network model for multi-
modal sensor series classification.

• Meta-HAR [21]: A federated representation learning framework, in which a signal
embedding network is meta-learned in a federated manner and personalized models
are adapted for each user.

• DivAR-individual: Our proposed federated meta-learning model without individual
clustering, training personalized models for individuals.

• DivAR-cluster: Our proposed federated meta-learning model with individual cluster-
ing according to different features, training a cluster-specific model for each cluster
of individuals.

We first evaluate the effectiveness of generalizing within existing users in an activity
recognition system. Table 4 shows the performance attained by our proposed DivAR and
other activity and activity recognition algorithms on both of the target datasets and on the
mixing dataset over ten independent runs. As reported in Table 4, our proposed DivAR
consistently outperformed the baseline activity and activity recognition model both in
mocro− F1 score and accuracy on the three datasets, averaged by ten independent runs.
The improvements are statistically consistent and significant on the three datasets with
performance gain up to 6.87% in accuracy and 8.44% in mocro− F1 between DivAR and
baseline models.

Table 4. Performance (Accuracy and F1score) on generalizing within existing individuals of the
baseline method and DivAR on three datasets.

Model
Dataset1 Dataset2 DatasetMix

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Random Forest 0.6814 0.6523 0.6428 0.5971 0.5385 0.5246
DeepSense 0.8141 0.7879 0.8136 0.7405 0.7123 0.6430
AttenSense 0.8369 0.8194 0.8014 0.7580 0.7321 0.7088
Meta-HAR 0.8661 0.8193 0.8424 0.8186 0.8021 0.6989
DivAR-individual (ours) 0.9021 0.8780 0.8711 0.8017 0.7848 0.6995
DivAR-cluster (ours) 0.9348 0.9037 0.8955 0.8319 0.8395 0.7836
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DivAR is better than AttenSense, which shows that the attention weights on multi-
modal sensors cannot be shared among all individuals and that each individual should
be allocated different attention because of the diverse behavior patterns. DivAR performs
better than Meta-HAR, which shows that heterogeneity should not only be considered
in the classification layer as it also exists in the feature extraction procedure. Comparing
the performance between the two versions of our proposed model, DivAR-cluster outper-
forms DivAR-individual consistently on the three datasets and significantly on the mixing
dataset, with performance gains up to 5.50% in accuracy and 9.61% in mocro− F1. This
indicates that clustering individuals can enhance the generalization ability by considering
individuals’ characteristics. For detailed performance on each label, the confusion matrix
on each cluster is shown in Figure 7.
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6.3. DivAR Can Be Adapted to New Users Effectively

In order to address the ‘cold-start’ problem for the activity recognition system, we
simulate the situation when a new user comes to the system with a few labeled data. Namely,
we generate a new model for the new user, with a central embedding network and multiple
existing cluster-specific models. The results are analyzed and discussed as follows.

Table 5 shows the performance attained by our proposed DivAR and other activity
and activity recognition algorithms on all three target datasets. We randomly select ten
individuals and use the mixing dataset over ten independent runs. As indicated in the
Table, DivAR generally outperforms other methods on four datasets, which means that
it can handle datasets with high heterogeneity effectively and can easily adapt to new
individuals. Generally, the deep learning model can extract features and generalize to
new users better than conventional shallow models. The fact that DivAR performs better
than Meta-HAR shows that new individuals tend to have discrepancies with existing
users in terms of feature representation and that user-specific attention modules can learn
diverse features better. Comparing the performance between DivAR-cluster and DivAR-
individual, in most of cases, DivAR-cluster outperforms DivAR-individual on the three
datasets. However, the performance gain of the clustering version is not as significant as
the one featuring existing individuals (in Table 4). This indicates that clustering individuals
can enhance the generalization ability by considering individuals’ characteristics, but it is
not always necessary.

Table 5. Performance (Accuracy and F1score) of baseline method and DivAR on adapting to a new
user on three datasets.

Model
Dataset1 Dataset2 DatasetMix

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Random Forest 0.6128 0.5785 0.6421 0.5972 0.5122 0.4319
DeepSense 0.6523 0.5107 0.6881 0.800 0.6231 0.813
AttenSense 0.7062 0.6492 0.7012 0.6082 0.5832 0.5481
Meta-HAR 0.7319 0.709 0.7379 0.6618 0.6227 0.5740
DivAR-individual (ours) 0.8093 0.7205 0.7835 0.7602 0.7098 0.6811
DivAR-cluster (ours) 0.8247 0.7479 0.7901 0.7519 0.7308 0.7092

6.4. Evaluation on Features for Clustering

To understand the contribution of the proposed attention modules, we visualize
the attention masks of the sensor fusion layer for each sensor across multiple clusters of
individuals. As shown in Figure 8, the different weights of various sensors are learned
by our proposed approach. In particular, the attention masks have strong diversity across
clusters of individuals, which validates the argument of the motivating example in Section 3.
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Figure 8. Weight visualization of diverse clusters.

We then evaluate the performance of the models using different features to cluster
individuals. As shown in Table 6, we evaluate the two types of clustering methods: using
extra information and using labeled data. Note that model generalization indicates the
task of generalizing the model to existing individuals, while model adaptation refers to
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adapting the model to new users. Generally speaking, the performances of using each kind
of feature are relatively stable. Surprisingly, clustering individuals using their behavior type
information performs the best. We assume that using label information, such as behavior
type, works because individuals who have the same types of activities tend to have similar
marginal and conditional distributions of their sensory features. However, it is difficult and
expensive to acquire label information from new users; thus, more distribution features
from sensory data should be explored for the model’s deployment in real-world scenarios.

Table 6. Performance (Accuracy and F1score) on two tasks using different features to cluster on
Dataset1. MG indicates model generalization and MA represents model adaptation

Tasks All Features Basic Info Personality Mental State Behavior Type Diversity

MG (Acc) 0.9348 0.9216 0.9198 0.9273 0.9421 0.9012
MG (F1) 0.9037 0.8723 0.9012 0.8927 0.9176 0.8628

MA (Acc) 0.8247 0.8128 0.8091 0.8201 0.8201 0.8172
MA (F1) 0.7479 0.7311 0.7190 0.7201 0.7589 0.7077

6.5. Computational Complex Analysis

In this subsection, we analyze the computational complex analysis by comparing
DivAR-cluster and DivAR-individual. Specifically, we check how accuracy changes when
we increase the number of client training epochs from 5 to 25. The results, illustrated in
Figure 9, verify that DivAR-cluster consistently outperforms DivAR-individual on both
datasets. The performances of both DivAR-cluster and DivAR-individual are relatively
stable with the change in training epochs. Moreover, DivAR generally takes fewer epochs to
achieve its best performance. This further stresses the effectiveness of our approach. In ad-
dition, we compute the number of parameters. DivAR model contains 300 k parameters for
each cluster, which does not cost much time to run on mobile devices.
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Figure 9. Evaluation on local train epochs.

6.6. Discussion

Compared to recent popular deep learning methods for human activity recognition,
DivAR is a meta-learning approach with a federated learning architecture, and it can
improve the performance on HAR compared to state-of-the-art traditional methods. The
DivAR model can extract features and be generalized to new users better than the state-of-
the-art models. In addition, clustering individuals can enhance the generalization ability
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by considering individuals’ characteristics. As for computation cost, DivAR generally takes
fewer epochs to achieve its best performance.

One possible limitation of DivAR may be that it relies on deploying deep learning
models on devices such as smartphones and wearables, which requires large computational
resources from edge devices. Thus, deep learning methods often must be compressed
manually for small devices. In addition, more unsupervised methods for clustering users
should be applied to avoid collecting information from users.

7. Conclusions

To address privacy issues and distribution divergence in activity recognition in real-
world scenarios, we propose DivAR, a diversity-aware activity recognition framework
based on a federated Meta-Learning model which can extract individual-agnostic sensory
features using a centralized embedding network and individual-specific features using
a attention module embedded in each decentralized model. Our proposed framework
first classifies individuals into multiple clusters according to their behavioral patterns and
social factors. We then apply meta-learning in the architecture of federated learning, where
a centralized meta-model learns common feature representation that can be transferred
across all clusters of individuals and multiple decentralized cluster-specific models are
utilized to learn cluster-specific features. For each cluster-specific model, a CNN-based
attention module learns cluster-specific features from the global model. In this way, by
training the model with sensory data locally, privacy-sensitive information existing in the
sensory data can be preserved. Finally, to evaluate the model, we conducted experiments
on the two datasets, which are collected from multiple individuals in real-world scenarios.
The results show that the proposed diversity-aware activity recognition model has a relatively
better generalization ability than other models and achieves competitive performance in multi-
individual activity recognition tasks. As for future work, more social factors will be explored to
improve the performance of our model; meanwhile, correlation analysis will be carried out to
enhance the explainability of the model.

Author Contributions: Conceptualization, Q.S., R.S., and H.F.; methodology, Q.S. and H.F.; software,
H.F., and R.S.; validation, Q.S., H.F., and D.S.; formal analysis, Q.S., H.F., and R.S.; investigation, D.S.
and H.X.; resources, Q.S. and D.S.; data curation, D.S. and Q.S.; writing—original draft preparation,
H.F., and R.S.; writing—review and editing, Q.S., R.S., and H.X.; visualization, H.X., Q.S., and D.S.;
supervision, H.X.; project administration, H.X.; funding acquisition, H.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (62077027);
the Ministry of Science and Technology of the People’s Republic of China (2018YFC2002500); the Jilin
Province Development and Reform Commission, China (2019C053-1); the Education Department of
Jilin Province, China (JJKH20200993K); the Department of Science and Technology of Jilin Province,
China (20200801002GH); and the European Union’s Horizon 2020 FET Proactive project “WeNet-The
Internet of us” (No. 823783).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Jilin University.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Intille, S. The Precision Medicine Initiative and Pervasive Health Research. IEEE Pervasive Comput. 2016, 15, 88–91. [CrossRef]
2. Nahum-Shani, I.; Smith, S.N.; Tewari, A.; Witkiewitz, K.; Collins, L.; Spring, B.; Murphy, S. Just-in-Time Adaptive Interventions

(JITAIs): An Organizing Framework for Ongoing Health Behavior Support. Methodol. Cent. Tech. Rep. 2014, 2014, 14–126.
3. Rashidi, P.; Cook, D.J. Keeping the Resident in the Loop: Adapting the Smart Home to the User. IEEE Trans. Syst. Man Cybern.

Part A Syst. Hum. 2009, 39, 949–959. [CrossRef]

http://doi.org/10.1109/MPRV.2016.2
http://dx.doi.org/10.1109/TSMCA.2009.2025137


Sensors 2023, 23, 1083 21 of 23

4. Rabbi, M.; Min, H.A.; Mi, Z.; Choudhury, T. MyBehavior: Automatic personalized health feedback from user behaviors and
preferences using smartphones. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Osaka, Japan, 7–11 September 2015.

5. Mu, L.; Lane, N.D.; Mohammod, M.; Yang, X.; Hong, L.; Cardone, G.; Ali, S.; Doryab, A.; Berke, E.; Campbell, A.T. BeWell+:
Multi-dimensional wellbeing monitoring with community-guided user feedback and energy optimization. In Proceedings of the
Conference on Wireless Health, San Diego, CA, USA, 23–25 October 2012.

6. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.
2019, 119, 3–11. [CrossRef]

7. Pirttikangas, S.; Fujinami, K.; Nakajima, T. Feature Selection and Activity Recognition from Wearable Sensors. In Proceedings of
the International Conference on Ubiquitous Computing Systems, Seoul, Republic of Korea, 1–4 August 2006.

8. Mantyjarvi, J.; Himberg, J.; Seppanen, T. Recognizing human motion with multiple acceleration sensors. In Proceedings of the
2001 IEEE International Conference on Systems Man and Cybernetics (Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001.

9. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 2011,
12, 74–82. [CrossRef]

10. Ha, S.; Yun, J.M.; Choi, S. Multi-modal Convolutional Neural Networks for Activity Recognition. In Proceedings of the 2015 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Hong Kong, China, 9–12 October 2016.

11. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

12. Tu, L.; Ouyang, X.; Zhou, J.; He, Y.; Xing, G. FedDL: Federated Learning via Dynamic Layer Sharing for Human Activity
Recognition. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra, Portugal, 15–17
November 2021; pp. 15–28.

13. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-Based Human Activity Recognition: Overview,
Challenges and Opportunities. Available online: http://xxx.lanl.gov/abs/2001.07416 (accessed on 8 December 2022).

14. Weiss, G.M.; Lockhart, J.W. The Impact of Personalization on Smartphone-Based Activity Recognition. In Proceedings of the
Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; p. 7.

15. Zhang, W.; Shen, Q.; Teso, S.; Lepri, B.; Passerini, A.; Bison, I.; Giunchiglia, F. Putting human behavior predictability in context.
EPJ Data Sci. 2021, 10, 42. [CrossRef]

16. Matsui, S.; Inoue, N.; Akagi, Y.; Nagino, G.; Shinoda, K. User adaptation of convolutional neural network for human activity
recognition. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2
September 2017; pp. 753–757.

17. Rokni, S.A.; Nourollahi, M.; Ghasemzadeh, H. Personalized human activity recognition using convolutional neural networks.
arXiv 2018, arXiv:1801.08252.

18. Sun, X.; Kashima, H.; Ueda, N. Large-Scale Personalized Human Activity Recognition Using Online Multitask Learning. IEEE
Trans. Knowl. Data Eng. 2013, 25, 2551–2563. [CrossRef]

19. Arivazhagan, M.G.; Aggarwal, V.; Singh, A.K.; Choudhary, S. Federated learning with personalization layers. arXiv 2019,
arXiv:1912.00818.

20. Bettini, C.; Civitarese, G.; Presotto, R. Personalized Semi-Supervised Federated Learning for Human Activity Recognition. arXiv
2021, arXiv:2104.08094.

21. Li, C.; Niu, D.; Jiang, B.; Zuo, X.; Yang, J. Meta-HAR: Federated Representation Learning for Human Activity Recognition. In
Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 912–922.

22. Wang, W.; Harari, G.M.; Wang, R.; Müller, S.; Mirjafari, S.; Masaba, K.; Campbell, A.T. Sensing Behavioral Change over Time:
Using Within-Person Variability Features from Mobile Sensing to Predict Personality Traits. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2018, 2, 1–21. [CrossRef]

23. Harari, G.M.; Müller, S.R.; Stachl, C.; Wang, R.; Wang, W.; Bühner, M.; Gosling, S.D. Sensing sociability: Individual differences
in young adults’ conversation, calling, texting, and app use behaviors in daily life. J. Personal. Soc. Psychol. 2020, 1, 204–228.
[CrossRef]

24. Butt, S.; Phillips, J.G. Personality and self reported mobile phone use. Comput. Hum. Behav. 2008, 24, 346–360. [CrossRef]
25. Rabbi, M.; Ali, S.; Choudhury, T.; Berke, E. Passive and In-Situ assessment of mental and physical well-being using mobile

sensors. In Proceedings of the Ubicomp: Ubiquitous Computing, International Conference, Beijing, China, 17–21 September 2011.
26. Moturu, S.T.; Khayal, I.; Aharony, N.; Wei, P.; Pentl, Y. Using Social Sensing to Understand the Links between Sleep, Mood, and

Sociability. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011.

27. Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing techniques for context recognition from accelerometer data. Pers.
Ubiquitous Comput. 2010, 14, 645–662. [CrossRef]

28. Hammerla, N.Y.; Kirkham, R.; Andras, P.; Ploetz, T. On preserving statistical characteristics of accelerometry data using
their empirical cumulative distribution. In Proceedings of the 2013 International Symposium on Wearable Computers, Zurich,
Switzerland, 8–12 September 2013; pp. 65–68.

29. Ling, B.; Intille, S. Activity Recognition from User-Annotated Acceleration Data. In Proceedings of the Pervasive Computing,
Vienna, Austria, 21–23 April 2004.

http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1109/MSP.2020.2975749
http://xxx.lanl.gov/abs/2001.07416
http://dx.doi.org/10.1140/epjds/s13688-021-00299-2
http://dx.doi.org/10.1109/TKDE.2012.246
http://dx.doi.org/10.1145/3264951
http://dx.doi.org/10.1037/pspp0000245
http://dx.doi.org/10.1016/j.chb.2007.01.019
http://dx.doi.org/10.1007/s00779-010-0293-9


Sensors 2023, 23, 1083 22 of 23

30. Plötz, T.; Hammerla, N.Y.; Olivier, P. Feature Learning for Activity Recognition in Ubiquitous Computing. In Proceedings of the
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.

31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
32. Pourbabaee, B.; Roshtkhari, M.J.; Khorasani, K. Deep Convolutional Neural Networks and Learning ECG Features for Screening

Paroxysmal Atrial Fibrillation Patients. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2095–2104. [CrossRef]
33. Francisco, O.; Daniel, R. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity

Recognition. Sensors 2016, 16, 115.
34. Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; Abdelzaher, T. Deepsense: A unified deep learning framework for time-series mobile sensing

data processing. In Proceedings of the 26th International Conference on World Wide Web, Perth, WA, Australia, 3–7 May 2017;
pp. 351–360.

35. Vaizman, Y.; Ellis, K.; Lanckriet, G. Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE
Pervasive Comput. 2017, 16, 62–74. [CrossRef]

36. Vaizman, Y.; Weibel, N.; Lanckriet, G. Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label
classification. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–22. [CrossRef]

37. Saeed, A.; Ozcelebi, T.; Trajanovski, S.; Lukkien, J. Learning behavioral context recognition with multi-stream temporal
convolutional networks. arXiv 2018, arXiv:1808.08766.

38. Alajaji, A.; Gerych, W.; Chandrasekaran, K.; Buquicchio, L.; Agu, E.; Rundensteiner, E. Deepcontext: Parameterized compatibility-
based attention CNN for human context recognition. In Proceedings of the 2020 IEEE 14th International Conference on Semantic
Computing (ICSC), San Diego, CA, USA, 3–5 February 2020; pp. 53–60.

39. Abdullah, S.; Lane, N.; Choudhury, T. Towards population scale activity recognition: A framework for handling data diversity.
Proc. AAAI Conf. Artif. Intell. 2012, 26, 851–857. [CrossRef]

40. Woo, S.; Byun, J.; Kim, S.; Nguyen, H.M.; Im, J.; Kim, D. RNN-Based Personalized Activity Recognition in Multi-person
Environment Using RFID. In Proceedings of the 2016 IEEE International Conference on Computer and Information Technology
(CIT), Nadi, Fiji, 8–10 December 2016; pp. 708–715.

41. Chen, K.; Yao, L.; Zhang, D.; Chang, X.; Long, G.; Wang, S. Distributionally robust semi-supervised learning for people-centric
sensing. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 3321–3328.

42. Zhang, Y.; Yang, Q. A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 2021, 34, 5586–5609. [CrossRef]
43. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.

In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.
44. Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning for speech recognition and related applications:

An overview. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 8599–8603.

45. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

46. Tang, C.I.; Perez-Pozuelo, I.; Spathis, D.; Brage, S.; Wareham, N.; Mascolo, C. SelfHAR: Improving Human Activity Recognition
through Self-training with Unlabeled Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–30. [CrossRef]

47. Buffelli, D.; Vandin, F. Attention-Based Deep Learning Framework for Human Activity Recognition with User Adaptation. IEEE
Sens. J. 2021, 21, 13474–13483. [CrossRef]

48. Jaques, N.; Rudovic, O.; Taylor, S.; Sano, A.; Picard, R. Predicting tomorrow’s mood, health, and stress level using personalized
multitask learning and domain adaptation. In Proceedings of the IJCAI 2017 Workshop on Artificial Intelligence in Affective
Computing, Melbourne, Australia, 19–25 August 2017; pp. 17–33.

49. Saeed, A.; Ozcelebi, T.; Lukkien, J. Multi-task self-supervised learning for human activity detection. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2019, 3, 1–30. [CrossRef]

50. Rudovic, O.; Lee, J.; Dai, M.; Schuller, B.; Picard, R.W. Personalized machine learning for robot perception of affect and
engagement in autism therapy. Sci. Robot. 2018, 3, eaao6760. [CrossRef]

51. Peng, L.; Chen, L.; Ye, Z.; Zhang, Y. Aroma: A deep multi-task learning based simple and complex human activity recognition
method using wearable sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–16. [CrossRef]

52. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.
53. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decen-

tralized data. In Proceedings of the Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282.
54. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
55. Ouyang, X.; Xie, Z.; Zhou, J.; Huang, J.; Xing, G. ClusterFL: A similarity-aware federated learning system for human activity

recognition. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, Online,
24 June–2 July 2021; pp. 54–66.

56. Smith, V.; Chiang, C.K.; Sanjabi, M.; Talwalkar, A. Federated multi-task learning. arXiv 2017, arXiv:1705.10467.
57. Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.

http://dx.doi.org/10.1109/TSMC.2017.2705582
http://dx.doi.org/10.1109/MPRV.2017.3971131
http://dx.doi.org/10.1145/3161192
http://dx.doi.org/10.1609/aaai.v26i1.8323
http://dx.doi.org/10.1109/TKDE.2021.3070203
http://dx.doi.org/10.1145/3448112
http://dx.doi.org/10.1109/JSEN.2021.3067690
http://dx.doi.org/10.1145/3328932
http://dx.doi.org/10.1126/scirobotics.aao6760
http://dx.doi.org/10.1145/3214277


Sensors 2023, 23, 1083 23 of 23

58. Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M.W.; Pfau, D.; Schaul, T.; Shillingford, B.; De Freitas, N. Learning to learn by
gradient descent by gradient descent. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; Volume 29.

59. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

60. Ravi, S.; Larochelle, H. Optimization as a Model for Few-Shot Learning. 2016.Available online: https://openreview.net/forum?
id=rJY0-Kcll (accessed on 8 December 2022).

61. Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835.
62. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
63. Wijekoon, A.; Wiratunga, N. Learning-to-Learn Personalised Human Activity Recognition Models. Available online: http:

//xxx.lanl.gov/abs/2006.07472 (accessed on 8 December 2022).
64. Chen, F.; Luo, M.; Dong, Z.; Li, Z.; He, X. Federated meta-learning with fast convergence and efficient communication. arXiv

2018, arXiv:1802.07876.
65. Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized federated learning: A meta-learning approach. arXiv 2020, arXiv:2002.07948.
66. Chittaranjan, G.; Blom, J.; Gatica-Perez, D. Mining Large-Scale Smartphone Data for Personality Studies. Pers. Ubiquitous Comput.

2013, 17, 433–450. [CrossRef]
67. John, O.P.; Srivastava, S. The Big Five trait Taxonomy: History, Measurement, and Theoretical Perspectives. 1999. Available

online: https://personality-project.org/revelle/syllabi/classreadings/john.pdf (accessed on 8 December 2022).
68. Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [CrossRef]
69. Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001,

16, 606–613. [CrossRef]
70. Sorokin, P.A.; Berger, C.Q. Time-Budgets of Human Behavior; Harvard University Press: Cambridge, MA, USA, 1939; Volume 2.
71. Goldberg, L.R. The structure of phenotypic personality traits. Am. Psychol. 1993, 48, 26. [CrossRef]
72. Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Sonne, T.; Jensen, M.M. Smart devices are

different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems, Seoul, Republic of Korea, 1–4 November 2015; pp. 127–140.

73. Reiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 2012 16th
International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 108–109.

74. Ma, H.; Li, W.; Zhang, X.; Gao, S.; Lu, S. AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity
Recognition. In Proceedings of the International Joint Conferences on Artificial Intelligence, Macao, China, 10–16 August 2019;
pp. 3109–3115.

75. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
76. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
http://xxx.lanl.gov/abs/2006.07472
http://xxx.lanl.gov/abs/2006.07472
http://dx.doi.org/10.1007/s00779-011-0490-1
https://personality-project.org/revelle/syllabi/classreadings/john.pdf
http://dx.doi.org/10.1109/3477.764879
http://dx.doi.org/10.1046/j.1525-1497.2001.016009606.x
http://dx.doi.org/10.1037/0003-066X.48.1.26

	Introduction
	Related Work
	Activity and Activity Recognition
	Handling Heterogeneity of Sensory Data
	Federated Learning
	Meta-Learning

	Motivation
	Feature Visualization
	Impact of Heterogeneous Sensory Data on Activity Recognition

	Methodology
	Problem Definition
	Overall Architecture
	Individual Clustering
	 Feature Representation Network 
	Diversity-Aware Attention-Based Mask
	Implementation for Federated Model Training

	Data Collection
	Annotated Sensor Data Collection
	Personality and Mental State Survey
	Data Exploration

	Evaluation
	Experiment Settings
	 DivAR Can Handle Inter-Individual Heterogeneity Effectively for Existing Users in the Activity Recognition System
	 DivAR Can Be Adapted to New Users Effectively
	 Evaluation on Features for Clustering 
	 Computational Complex Analysis
	Discussion

	Conclusions
	References

