
RESEARCH Open Access

Federated ontology-based queries over cancer
data
Alejandra González-Beltrán1,2*, Ben Tagger2, Anthony Finkelstein2

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS) 2010

Berlin, Germany. 10 December 2010

Abstract

Background: Personalised medicine provides patients with treatments that are specific to their genetic profiles. It

requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular

biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most

effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology,

where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques

(microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better

characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms -

or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult.

Results: Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to

distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is

associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain

metadata. The domain metadata consists of ontology-based annotations associated with the structural information of

each data source. However, caGrid’s current querying functionality is given at the structural metadata level, without

capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for

distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target

query language, where join conditions between multiple data sources are found by exploiting the semantic

annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is

applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-

based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included.

Conclusions: To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular,

pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a

challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides

an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures.

Introduction and background

Personalised medicine provides patients with treatments

that are specific to their genetic profiles. The aim is to

offer the safest and most effective therapeutic strategy

based on the gene variations of each subject. To that

end, it is necessary to interact across a variety of

scientific disciplines, such as molecular biology, pathol-

ogy, radiology and clinical practice. Disparate data types

from these domains need to be shared and integrated

efficiently.

In particular, this is appropriate to oncology, where

knowledge about genetic mutations has already led to

new therapies. Current molecular biology techniques

(microarrays, proteomics, epigenetic technology and

improved DNA sequencing technology) enable better

characterisation of cancer tumours. The vast amounts of

* Correspondence: a.gonzalezbeltran@cs.ucl.ac.uk
1Computational and Systems Medicine, University College London, Gower

Street, London WC1E 6BT, UK

Full list of author information is available at the end of the article

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

© 2011 González-Beltrán et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

mailto:a.gonzalezbeltran@cs.ucl.ac.uk
http://creativecommons.org/licenses/by/2.0

data produced coupled with the use of different terms in

each discipline - referred to as semantic heterogeneity-

make the retrieval and integration of information

difficult.

The UK National Cancer Research Institute (NCRI)

and the US National Cancer Institute (NCI) have imple-

mented programmes focusing on building and deploying

software infrastructures to manage and analyse data

generated from heterogenous data sources. These are

the NCRI Informatics Initiative (NCRI II) [1] and the

cancer Biomedical Informatics Grid® (caBIG®) [2] pro-

gramme. The NCRI II has developed the ONcology

Information eXchange (ONIX [3]) portal, enabling the

discovery and searching of biomedical resources. The

caBIG® programme has developed the caGrid [4] com-

puting infrastructure, and associated tools, supporting a

collaborative information network for sharing cancer

research data. caGrid deals with syntactic and semantic

interoperability of the data resources in a service-

oriented model-driven architecture. Each data source is

represented as an information model [5] in the Unified

Modeling Language (UML) [6], and it is exposed as a

data service. Semantic interoperability is achieved by

using a metadata registry, which maintains the informa-

tion models annotated with concepts from a domain

ontology, namely the NCI thesaurus (NCIt) [7]. The

data services also expose a common query interface

based on the caGrid query language (CQL). CQL

enables to query the data services relying on their indi-

vidual information models, i.e. the UML models. The

query functionality provided in caGrid does not, how-

ever, take into account the existing semantic annota-

tions based on NCIt. While the domain ontology is used

as a global schema for the specification of data sources,

the queries are not written in terms of the global

schema but rather on the structure of the shared data

resources.

In this paper, we provide an analysis of caGrid’s sup-

port for data integration and its querying capabilities.

We extend caGrid with additional services to support

ontology-based queries over the cancer research data

resources, taking advantage of the existing semantic

annotations. The biomedical researchers, as the end-

users of our system, can query the distributed data

resources using queries based on the domain knowledge

(expressed as concepts from the NCIt ontology). Thus,

it is not a requirement to know the underlying models

as for CQL, and the queries are reusable across

resources.

Our approach assumes that all data sources have a

corresponding information model with semantic annota-

tions, where each element in the model (e.g. classes and

properties) is associated with one or more concepts

from a domain ontology. These concepts provide

unambiguous meaning to the model’s elements and

could potentially belong to several ontologies. We

assume there are service-oriented interfaces to access to

the metadata registry, which stores the models and

annotations, and the data sources. While any ontology

could be use for the annotations, NCIt is the primary

ontology in caGrid and all the information models are

annotated with it [4]. Thus, for our implementation we

consider NCIt exclusively. Our evaluation is based on

data services from caGrid: we use data schemas and

annotations available in the caGrid metadata registry.

Our system provides a customised transformation

from the annotated information models to an ontologi-

cal representation using the Web Ontology Language

version 2 (OWL2) [8]. OWL is a recommendation from

the World Wide Web Consortium (W3C). Based on the

ontological representations of the data resources, we

have designed and developed a query reformulation

approach that converts concept-based queries into CQL,

the query language supported by the caGrid infrastruc-

ture. This approach is general and could be used to sup-

port other target query languages, as the only step

dependent on caGrid is the final one. This paper pre-

sents significant improvements over our previous work

[9]. We have extended our earlier work to support fed-

erated queries over the caGrid infrastructure, where the

selection of join conditions is provided by a semantic

analysis of the distributed resources. We present an

exhaustive performance evaluation of the query refor-

mulation for single data resources. We also present a

graphical user interface: the Cancer ONtology QUErying

SysTem (COnQueSt). COnQueSt offers an ontology-

based view of the caGrid data resources, allowing

resource-browsing as well as identifying the concepts

used therein. It also supports a query wizard to build

ontology-based queries, allowing the user selection of

the relevant data sources with respect to the concepts

used in those queries.

Data integration systems

Data integration refers to merging data from indepen-

dent sources and providing access to them through a

unified view [10]. There exist two common approaches

for the integration of data: the data-warehouse approach

and the federated database approach [11].

The warehouse approach collates the data from sev-

eral resources, translates them and combines them into

a single repository. Queries are executed over the aggre-

gated data, rather than the distributed sources of data.

Hence, distribution problems are avoided such as net-

work bottlenecks, the unavailability of sources or slow

response times, are avoided. Moreover, the execution of

queries is very efficient and it is possible to apply opti-

misations over the aggregated data. Having the data in a

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 2 of 24

single repository also permits added value in terms of

validation and annotation. On the other hand, the data

may become stale when the content or structure of data

sources change [11]. Addition of new data sources

requires an expensive process of translating its content

into the repository [11].

The federated databases approach is composed of a

mediator: a run-time component that reformulates

queries written in a global-schema (or mediated schema)

to queries on local schemas for each distributed data

source. In contrast to the warehouse approach, federa-

tion ensures that the latest version of the data and

structures is considered. Additionally, new databases can

be added easily. The distributed nature of the infrastruc-

ture, however, compromises query performance [11].

In the federated approach, there are several ways to

represent the mapping between the global schema and

the set of local schemas for the data sources [10]. Each

mapping associates a query written over the global

schema with a query written over the local schema.

These queries could be written in distinct languages.

The two main methods are called Global-As-View

(GAV) and Local-As-View (LAV) [12]. In GAV, each

element in the global-schema is associated with a

query over a local data source - i.e., each element in

the global schema is characterised as a view over the

data source. On the other hand, in LAV the global-

schema is specified independently from the sources

and each element of the data source is associated with

a query over the global-schema, meaning that the local

sources are characterised as a view over the global-

schema.

Halevy [12] compares the two approaches from the

point of view of query processing. In summary, query

processing in GAV systems is generally based on a sim-

ple unfolding strategy, as the mappings identify the

sources queries corresponding to elements in the global-

schema [10]. But for LAV systems, query processing is

more complex; it is not straightforward to determine

how to use the sources to answer a query over the glo-

bal-schema, as each source maintains only a partial view

of the data [10].

caBIG® semantic infrastructure

caGrid, the computing middleware in caBIG®, is a Grid

[13] extended to support data modelling and semantics

[4]. It follows a service-oriented, model-driven architec-

ture, with a number of core services and corresponding

application programming interfaces (APIs). In this sec-

tion, we present the caBIG® semantic infrastructure as

an analogy with the metadata hierarchy in [9,14] and

analyse the infrastructure in terms of its capabilities as a

data integration system.

caGrid follows a federated database approach, where

each data source is autonomous and its owner is

responsible for providing information about the

resource. Each data source is exposed as a data service,

using common interfaces and metadata at increasing

levels of abstraction, including syntactic, structural,

reference and domain metadata [14] (see Figure 1). Each

data service is an object-oriented virtualisation of the

underlying data [4]. The data types of the data source

are available as eXtensible Markup Language (XML)

schemas, managed by the Global Model Exchange

Figure 1 caBIG® semantic infrastructure core services. Figure 1: caGrid core services, and their corresponding APIs, matched with the

different levelsofthe metadata hierarchy. At the syntactic level, caGrid counts with XML Schemas to indicate the data types shared on the grid.

These schemas are maintained in the Global Model Exchange, a service acting as an XML schema registry. The structural metadata is conformed

by UML models, which can be accessed using the caGrid Discovery API. A metadata registry, based on the ISO/IEC 11179 standard, is used to

manage common data elements (CDEs). The metadata registry, called caDSR, can be accessed with a specific API. A CDE is composed of an

object class, a property and a value domain. These components correspond to a UML class, UML attribute and the attribute’s data type,

respectively, and each of them is associated with a set of concepts from an ontology. These mappings between structural elements and

concepts constitute the reference metadata. The concepts are part of the domain metadata, and in caBIG® mainly belong to the NCI thesaurus

ontology. The LexEVS API allows to access the available terminologies.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 3 of 24

(GME) service [4]. These schemas conform the syntactic

metadata. The object-oriented representation of the data

source is given as UML models, offering structural

metadata about the data source. Each UML model is

associated with semantic metadata, which indicates the

meaning of the objects and associations between them.

The semantic annotations come mainly from the NCIt

ontology [7], which can be accessed via the LexEVS API

[15]. NCIt is the primary terminology used in caBIG® ,

but other well-structured ontologies should be suitable

for the annotations. The NCI Enterprise Vocabulary Ser-

vices (EVS) team reviews and approves suitable termi-

nology for use in caGrid.

The ontology-based annotations relate the domain

concepts with the structural information of each data

source, and constitute the domain metadata. The cancer

Data Standards Repository, or caDSR, is a metadata reg-

istry based on the ISO/IEC 11179 standard [16]. caDSR

manages common data elements (CDEs) and exposes

them through the caDSR API. The CDEs provide the

mappings between the ontology concepts (the domain

metadata from the global schema) and the UML models

for each available data service (the local schema). A

CDE is composed of an object class that relates to a

UML class, a property corresponding to a UML attri-

bute, and a value domain corresponding to the data

type of the attribute. The lower part of Figure 2 shows

the different levels of metadata available in the caBIG®

semantic infrastructure. In caDSR, models are annotated

with NCIt and we consider it as the only domain ontol-

ogy for our implementation. As a data integration sys-

tem, caGrid follows a federated approach with Local-As-

View mappings, where the NCIt ontology offers a uni-

fied view of the resources. Each element of the data

source (UML class, attribute and association) is related

with a query (realised as a concept or set of concepts)

over the global-schema (the NCIt ontology). In this way,

the local sources are characterised as a view over the

ontology. As seen before, CDEs offer these mappings

and are maintained in caDSR.

As mentioned above, the data services expose access

to the underlying data with a common interface based

on the object-oriented (UML) model of the resource.

This common interface also exposes a query processor

based on the caGrid or Common Query Language

(CQL) defined for caGrid. CQL is an object-oriented

query language reflecting the underlying object model of

the data resource while abstracting the physical repre-

sentation of the data [4]. CQL allows the definition of

one target object, representing the result of the query.

Additionally, it is possible to add restrictions on associa-

tions or attributes for the classes intervening in the

query. In this way, CQL is a navigational query lan-

guage: it allows the navigation of the UML model

through associations and the specification of conditions

over the attributes of the classes traversed during that

path navigation.

caGrid also supports basic distributed aggregations

and joins of queries over multiple data services by

means of the caGrid Federated Query Infrastructure

[17]. The distributed queries are expressed in the dis-

tributed extension of CQL, called DCQL [18], which is

translated into single resource queries in CQL. The ser-

vice responsible for translating DCQL queries into CQL

queries for the specific resources is the Federated Query

Processor (FQP). Both CQL and DCQL are structural

query languages, and require the user to know about

the underlying object-oriented models of the resources.

The basic constructs for DCQL coincide with those of

CQL, also permitting the navigation of the UML models

through paths of UML associations and the specification

of conditions on the UML attributes across the path. In

addition, aggregated queries allow the same query to be

run over more than one target service and return the

combined results. Distributed joins, on the other hand,

allow the definition of foreign associations. A foreign asso-

ciation element contains a join condition element and a

foreign object element. The join condition element

describes the logic for associating instances of the enclos-

ing class with instances of the class in the remote data

service that is described by the foreign object element.

To sum up, the caGrid infrastructure follows a LAV

federated approach and maintains rich semantic meta-

data in caDSR. NCIt is the primary ontology in use,

offering a unified view of the exposed data sources.

However, the querying capabilities are not based in this

global schema but on the object-oriented representation.

Semantic web/linked data approach for querying and

data integration

The semantic web was proposed as the method to solve

the problem of semantic heterogeneity in the World

Wide Web [19]. The proposal relies on extending the

Web with a semantic layer that makes data not only

human processable but also machine processable [20].

This approach allows the sharing and re-use of data on

the Web, and it is sometimes called the linked data

approach [21].

The semantic web methodologies, representation

mechanisms and logics are largely based on database

theory and practice [20]. However, there are important

differences between database technologies and the

semantic web - for example, databases are closed in nat-

ure (information not explicitly asserted is considered

false) and their objects must be uniquely identified,

while the semantic web assumes that information is

incomplete and it recovers the notion of unique identi-

fiers through Unique Resource Identifiers (URIs) [20].

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 4 of 24

The semantic web relies on a hierarchy of languages

of increasing level of expressivity [20]. The Web Ontol-

ogy Language (OWL) allows for the representation of

classes and relations among them, which are organised

in graph structures called ontologies. Each node repre-

sents a concept or class, and links codify logical rela-

tionships between the two concepts involved [20].

As discussed above, data integration depends on the

mappings between component data schemas, or models,

to a common schema. The semantic web supports the

use of an ontology to integrate different databases

[11,22]. In contrast to data models, ontologies encapsu-

late generic knowledge about a domain that can be

reused across applications [11].

Object-based queries

The concept of model-driven architectures (MDAs) [23],

which was developed by the Object Management Group

(OMG) [24], is based on platform-independent models

and their transformations. The models document busi-

ness functionality and behaviour of an application and

are usually represented in UML. The models decouple

the specification from the implementation that realises

them, allowing for the independent evolution of the

two. The models follow an object-oriented approach to

software development, where the objects represent the

entities in the system.

When database capabilities are combined with object-

based virtualisation of software systems, the result is an

object-oriented database management system. These

systems offer query languages supporting the retrieval of

objects stored in the system. The OMG proposed the

Object Query Language (OQL), which is modelled after

SQL, as a standard for object-oriented databases. As

seen above, the caGrid infrastructure has developed its

own object query language (CQL), based on the

Figure 2 caBIG® semantic infrastructure and semantic layer built in our COnQueST system. Figure 2: Different levels of metadata in the

caBIG® semantic infrastructure shown for two data sources that share a common data element (CDE). The CDE is annotated with concepts from

the NCI thesaurus ontology. The top part of the diagram (above the dotted line) shows the ontologies built in the COnQueST system to

facilitate ontology-based queries over caBIG® data services.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 5 of 24

navigation of UML models [4]. While object-oriented

databases provide powerful data abstractions, they gen-

erally lack a formal framework for query processing and

query optimisation [25]. Fegaras and Maier [25] pro-

posed the monoid comprehension calculus (MCC) as

such formal framework. It is a calculus based on mono-

ids and the homomorphisms between them. We use

MCC for the query reformulation process described in

the Methods section.

Results and discussion

CQL and DCQL analysis

A CQL query is defined by an XML document, which

must comply to a given XML schema [26]. The schema

indicates that a CQL query must specify a 〈Target〉 ele-

ment, which is the data type of the query result. Option-

ally, an 〈Attribute〉 element might indicate a predicate

over an attribute of the object with a 〈Target〉 type and

an 〈Association〉 may specify a link with a related object.

Next, we show how a CQL query is built recursively pre-

senting it as a context-free grammar, where 〈CQLQuery〉

is the start symbol, � is the empty string, 〈xsd:string〉 and

〈xsd:boolean〉 are the non-terminal variables representing

the xsd:string and xsd:string data types, respectively. The

CQL query context-free grammar is:

〈CQLQuery〉 ® 〈Target〉 |

〈Target〉 〈 QueryModifier〉

〈Target〉 ® 〈cqlObject〉

〈cqlObject〉 ® 〈Name〉 |

〈Name〉 〈Attribute〉 |

〈Name〉 〈Association〉 |

〈Name〉 〈Group〉

〈Attribute〉 ® 〈Name〉 〈Predicate〉 〈Value〉

〈Group〉 ® 〈LogicalOp〉 〈Attribute〉 〈Group1〉 |

〈LogicalOp〉 ® 〈Association〉 〈Group1〉

〈Group1〉 ® 〈Attribute〉 〈Group�〉 |

〈Association〉 〈Groupe�〉 |

〈Group〉 〈Groupe�〉

〈Groupe〉 ® 〈Group〉|�

〈Name〉 ® 〈xsd:string〉

〈RoleName〉 ® 〈xsd:string〉

〈LogicalOp〉 ® AND |OR

〈Predicate〉 ® EQUAL_TO |NOT_EQUAL_TO |

LIKE |IS_NULL|

IS_NOT_NULL|LESS_THAN |

LESS_THAN_EQUAL_TO |

GREATER_THAN |

GREATER_THAN_EQUAL_TO

〈Association〉 ® 〈RoleName〉 〈cqlObject〉

〈Value〉 ® 〈xsd:string〉

〈QueryModifier〉 ® 〈countOnly〉 〈DistinctAttribute〉|

〈countOnly〉 〈DistinctAttribute〉

〈AttributeNames〉

〈countOnly〉 ® 〈xsd:boolean〉

So, CQL traverses the UML class diagram graph,

where the 〈Target〉 is the initial class, the 〈Association〉

conditions allow for path navigation by traversing

sequences of consecutive classes and 〈Attribute〉 condi-

tions apply locally to individual classes. The terminal

symbols 〈Group〉 and 〈Group1〉 represent the combina-

tion of two or more constraints over a particular node

in the UML class graph.

Now, we present an example from caBIO, where the

CQLQuery encodes the traversal of the path from

NucleicAcidSequence to Protein (see Figure 3).

〈CQLQuery〉 ® 〈Target〉

® 〈qlObject〉

® 〈Name〉 〈Association〉

® 〈Name〉 〈RoleName〉 〈cqlObject〉

® 〈Name〉 〈RoleName〉 〈Name〉

〈Association〉

® 〈Name〉 〈RoleName〉 〈Name〉 〈Role-

Name〉 〈Name〉

® NucleicAcidSequence geneCol-

lection Gene proteinCollection Protein

DCQL [18] is an extension of CQL to traverse two or

more UML class graphs. The graphs are connected by

the definition of join conditions, which determine how

to associate instances of the enclosing class with

instances of the class in the remote data service. DCQL

specifies the service to which the query is sent to. This

is a context-free grammar representing DCQL:

〈DCQLQuery〉 ® 〈TargetObject) 〈targetServiceURL1〉

〈targetServiceURL1〉 ® 〈targetServiceURL〉 |

〈targetServiceURL〉

〈targetServiceURL1〉

〈targetServiceURL〉 ® 〈xsd:string〉

〈TargetObject) ® 〈dcqlObject〉

〈dcqlObject〉 ® 〈Name〉

〈Name〉 〈Attribute〉 |

〈Name〉 〈dcqlAssociation〉 |

〈Name〉 〈ForeignAssociation〉 |

〈Name〉 〈dcqlGroup〉 |

〈dcqlAssociation〉 ® 〈RoleName〉 〈dcqlObject〉

〈dcqlGroup〉 ® 〈LogicalOp〉 〈Attribute) 〈dcqlGroup1〉 |

〈LogicalOp〉 〈Association〉

〈dcqlGroup1〉

〈dcqlGroup1〉 ® 〈Attribute〉 〈dcqlGroupe〉 |

〈Association〉 〈dcqlGroupe〉 |

〈ForeignAssociation〉 〈dcqlGroupe〉 |

〈dcqlGroup〉 〈dcqlGroupe〉

〈dcqlGroupe〉 ® 〈dcqlGroup〉 | �

〈ForeignAssociation〉 ® 〈JoinCondition〉 〈ForeignOb-

ject〉 〈targetServiceURL〉

〈JoinCondition〉 ® 〈ForeignPredicate〉 〈localAttribute-

Name〉 〈foreignAttributeName〉

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 6 of 24

〈ForeignPredicate〉 ® EQUAL_TO |NOT_E-

QUAL_TO |

LESS_THAN |

LESS_THAN_EQUAL_TO |

GREATER_THAN |

GREATER_THAN_EQUAL_TO

〈localAttributeName〉 ® 〈xsd:string〉

〈foreignAttributeName〉 ® 〈xsd:string〉

Both CQL and DCQL are declarative, non-procedural

languages.

Ontology-based queries

We propose to exploit the caBIG® semantic infrastruc-

ture as a data integration system following the LAV

approach. This means that the NCI thesaurus ontology

is considered as the global-schema and queries over the

global-schema are reformulated as a set of queries over

the data sources [10].

As a consequence, our system extends the caGrid

querying functionality, which currently relies on the

structure of the underlying data resources, i.e. their

UML models. In caGrid, a biomedical researcher inter-

ested in retrieving data about, for example, a particular

gene of interest needs to explore the UML model of

each relevant data service and build a query considering

the specific attributes and associations of the class main-

taining the Gene objects. The queries can be built pro-

grammatically or also through the caGrid portal [27],

which supports the exploration of the UML models and

provides a query builder based on these models. The

queries are specific for a data source and cannot be re-

used.

On the other hand, users of our system can concen-

trate on the concepts from the domain, as represented

by the NCIt ontology on cancer, and build the ontol-

ogy-based queries which are high-level and descriptive.

By a high-level query, we mean a query that can be

written without specific details about the structure of

the target resource. By a descriptive query, we refer to

queries that provide the criteria for the desired data

rather than the procedure to find the data. Thus, the

ontology-based queries can be applicable to any of the

underlying data resources, and our system reformulates

them according to the specific UML models. The pro-

cess is semi-automatic, in some cases requiring input

from the users to select appropriate paths on the rewrit-

ing or join conditions, as will be explained in detail

below.

Apart from the cancer concepts found in NCIt, the

queries combine elements from an ontology we have

built with metadata on UML models, namely the UML

model ontology, and the list ontology [28], used to

represent combinations of concepts that annotate ele-

ments from the data sources. The UML model ontology

contains OWL classes to represent UML classes and

attributes (UMLClass, UMLAttribute), OWL object

Figure 3 DCQL Use Case. Figure 3: Sections of the UML models of the caBIO and PIR data services showing the classes annotated with

concepts included in the second query use case. This diagram corresponds to a solution of the query reformulation process involving multiple

data services.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 7 of 24

properties to represent UML associations and the rela-

tionship between a UML class and its attributes (hasAs-

sociation, hasAttribute) and a data property to represent

the values of attributes (hasValue). The upper part of

Figure 2 shows the ontologies built in our system in

order to support ontology-based queries over the

caBIG® semantic infrastructure.

The navigational characteristics of the target object-

query languages (CQL and DCQL for the caBIG®

infrastructure) are represented at the ontology level by

the hasAssociation object property. Given two UML

classes, they may have a direct UML association, or

the association may arise by traversing an association

path from the first class to the second one. In order

for our system to deal with those paths of associations,

without the user requiring knowledge of the specific

underlying UML model, we define the hasAssociation

property as transitive and use reasoning to determine

the paths.

In the case of distributed queries, the semantic anno-

tations of the models are leveraged to find the possible

join conditions automatically. The join conditions are

presented to the user, so that they can select the more

biologically-relevant one, depending on the specific

query.

Use cases

In this section, we present two simple but illustrative

use cases, presenting a query for a single resource and a

second query that requires the use of two resources to

provide a result. The first use case will show how our

system exploits the knowledge about the UML seman-

tics. The second use case is based on the query pre-

sented in caBIG® to demonstrate the federated query

capability [29]. We will show the steps of our query

reformulation process in the Methods section, giving

examples based on these use cases. More than a thou-

sand genetic mutations of the BRCA1 gene have been

identified with increased risk of breast cancer in women

[?]. The gene belongs to a class of genes identified as

tumour suppressors, i.e. the protein that they produce

helps prevent cells from growing and dividing too

rapidly or in an uncontrolled way. The BRCA1 gene

gives instructions for producing a protein that is directly

involved in repairing damaged DNA. Additionally, the

BRCA1 protein interacts with many other proteins,

including other tumour suppressors and proteins that

regulate cell division.

Some mutations on the BRCA1 gene can lead to the

production of abnormally short versions of the BRCA1

protein. Other mutations may even prevent the protein

being produced. Other mutations modify single amino

acids in the resulting protein, or delete large segments

of DNA from the BRCA1 gene.

As these mutations alter the normal function of the

BRCA1 gene, their accummulatation can provoke

uncontrolled cell division and growth, causing a tumour.

Taking into account this knowledge about the BRCA1

gene and knowing that its molecular location is at chro-

mosome 17, a biomedical researcher investigating it will

be interested in dealing with the results of the following

queries:

Query 1

Find single nucleotide polymorphisms associated with

the chromosome whose name is 17.

Query 2

Find nucleotide sequences associated with the gene

whose symbol is BCRA1 and whose organism’s scientific

name is homo sapiens.

Using our system, these queries can be written using

concepts from the NCI thesaurus ontology, whose cor-

respondence with the above natural language phrases is

straightforward. Our graphical user interface provides a

Query Builder facilitating the query construction using

concepts from NCIt. Once these queries are expressed

with concepts, the internal representation is as follows

(in Manchester OWL Syntax [30]):

Concept-Based Query 1

Single_Nucleotide_Polymorphisms and hasAssociation

some (Chromosome and hasAttribute some (Name

and hasValue value “17”)).

Concept-Based Query 2

Nucleotide_Sequences and hasAssociation some

(Gene and hasAttribute some (Gene_Symbol and has-

Value value “BCRA1”)) and hasAssociation some

(Organisms and hasAttribute some (Scientific_Name

and hasValue value “homo sapiens”)).

In order to answer these concept-based queries in the

caBIG® infrastructure, the researcher is able to find out

through our interface about these two relevant data ser-

vices:

• the cancer Bioinformatics Infrastructure Objects

(caBIO) [31] data service: a robust resource for

accessing molecular annotations from a variety of

curated data sources, including CGAP, Unigene, the

Cancer Gene Index (CGI) project ands the Pathway

Interaction Database (PID);

• the Protein Information Resource (PIR) data ser-

vice [32]: a data resource for genomic and proteomic

information, which contains rich and high-quality

annotated data on all protein sequences and is sup-

ported by the UniProt Knowledgebase (UniProtKB)

and other relevant protein databases.

For the first query, the user chooses a single data

resource as target, namely caBIO, as it contains data

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 8 of 24

about single nucleotide polymorphisms and chromo-

somes. Figure 4 shows a section of the caBIO UML

model corresponding to a possible path between the

SNP class, corresponding to the concept Single_Nu-

cleotide_Polymorphism, and the Chromosome class,

corresponding to the homonym concept. We note

that our system is able to reason about the structure

of the data resource. Then, it automatically infers,

based on the data service ontology, that the path

between the two classes arises by considering the

hierarchy of location classes (SNPPhysicalLocation,

PhysicalLocation and Location) and that UML associa-

tions (in this case the chromosome association) are

inherited by the sub-classes. The interpretations of

the UML semantics are left to the user in the current

caBIG® infrastructure. Consequently, in caBIG® there

is the assumption that the user will be highly techno-

logically knowledgeable.

For the second query, the user chooses the two data

services as target, caBIO and PIR, in order to build a

distributed query. While caBIO has data about nucleo-

tide sequences and genes, PIR has information about

organisms. Figure 3 shows sections of the two services’

UML models, which refer to the classes annotated with

concepts included in the concept-based query. Using

our system, the researcher is presented with the possible

join conditions for the distributed query. A join condi-

tion is composed of a pair of UML classes and a pair of

UML attributes, corresponding to each of the classes.

For the query to make sense, the join condition must

contain semantically equivalent (or at least semantically

related) classes and attributes. Two UML classes

(attributes) are semantically equivalent if and only if

they are annotated with the same concepts. By using a

merged ontology combining the two data service ontolo-

gies, our system determines the list of possible join con-

ditions. In this case, the join conditions include the pair

of classes (caBIO:Gene, PIR:Gene) and (caBIO:Protein,

PIR:Protein). Each pair of classes are annotated by the

same concept, ncit:Gene and ncit:Protein. In turn, the

semantically equivalent attributes for the pairs of classes

are: (caBIO:Gene_symbol, PIR:Gene_name) and (caBIO:

Protein uniProtCode, PI:Protein_uniprotkbEntryName).

While the gene names (or symbols) are not unique, as

there are several synonyms for each of the existing

genes, the protein codes assigned by the UniProt Knowl-

edge Base are unique. Thus, the biomedical researcher

selects the Protein classes and codes from UniProt as a

suitable join condition.

Software architecture

Figure 5 shows the extension of the caGrid service-

oriented architecture with novel semantic services

(shown in the upper part).

The semantic services are:

OWL generation service. This service generates NCIt

modules for each of the available caGrid data services.

The metadata is retrieved either from the caDSR service

or directly from the individual data service. Additionally,

this service generates OWL ontologies from the infor-

mation models, i.e. the annotated UML models. The

ontologies import the specific NCIt ontology module as

well as the list ontology and the UML model ontology.

The generated ontologies contain concepts and relation-

ships but no data instances (or individuals).

Figure 4 Use Case. Figure 4: Section of the caBIO UML model representing the relationship between the SNP class, corresponding to single

nucletoide polymorphisms and the Chromosome class. This section of the UML model is relevant for the first query use case, where the solution

involves a single target data service.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 9 of 24

Semantic query service. This service is responsible

for rewriting, translating and processing semantic

queries at different levels of abstraction, from ontol-

ogy-based queries to a chosen target language. In the

case of the caBIG® infrastructure, the target languages

are CQL or DCQL, depending on whether the query is

applied to a single or multiple data sources, respec-

tively. The approach utilises the Monoid Comprehen-

sion Calculus as an intermediate language, allowing the

translation to different target languages for other

infrastructures.

More details about these services are given in the

Methods section.

Implementation

We have implemented two modules, with the function-

alities described above. The implementation was done in

Java and uses caGrid version 1.3 [33], the OWLAPI ver-

sion 3.1.0 [34] (after upgrading from OWLAPI version

2), and relies on the reasoners Pellet 2.2.2 [35] and Her-

miT 1.3.0 [36].

OWLGen caGrid analytical service

For the first module, we also produced a caGrid analyti-

cal service called the OWLGenService [37] and it is

accessible through the caGrid portal [27].

The service provides a simple API allowing for:

• extraction of modules from NCIt

• data service ontology generation

Both methods accept a project short name and version

from the caDSR service or the URL of the data service

of interest.

COnQueSt graphical user interface

In order to demonstrate the functionality of the query

rewriting process, we have developed a web-based inter-

face, which we call COnQueSt - Cancer Ontology Query-

ing System, that affords the user several key abilities;

Browser (inFigure 6) The user can browse the pro-

jects available in CaDSR and investigate the NCIt con-

cepts in each project. We provide information such as

definitions and links to the NCIm [38].

Figure 5 System Architecture. Figure 5: The caGrid service-oriented architecture (bottom part) extended with novel semantic services for the

generation of ontologies and querying and a bespoke user interface (shown in the upper part of the diagram)

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 10 of 24

Search Tool (inFigure 7) The user can search for

NCIt concepts, either by matching patterns or exact

searches, returning metadata about the concepts and the

projects that contain those concepts.

Query Builder (inFigure 8) We provide a custom

query-building interface that demands no prior knowl-

edge of description logics or OWL class expressions.

The query builder uses a point-and-click interface with

auto-suggestion concept boxes that force the user to

create syntactically valid, description-logic based

queries.

Query Rewriting Users can interact with the query-

rewriting process, choosing from the available UML

extractions and selecting the appropriate paths during

the path-finding stage. The user is prompted for a

choice when required, the ultimate result of which is a

CQL query that the user can inspect visually to verify

the semantic correctness.

Query Execution (inFigure 9) Users can run the

rewritten query against the service of their choice and

retrieve and save their results in a variety of formats.

The interface has been developed using the Google

Web Toolkit (GWT) with a MySQL Database backend.

Client-server communications employ the Java RPC

implementation1.

Performance evaluation

For an evaluation of the query reformulation process,

our experimental analysis covers the following:

1. We present some metrics to assess the OWL

representation of the information models. In particu-

lar, since an important step in the rewriting process

is the property path finder, we examine the

sequences of concepts linked by object properties

(paths).

2. We provide results of the generation times for the

module extraction, the ontology generation and the

inference of the ontologies using both the Pellet and

HermiT reasoners. These results show that the gen-

eration of the ontologies, which enable our

approach, can be done in a performant manner.

3. We perform an evaluation of the query rewriting

process, showing a breakdown of the constituent

parts of the rewriting algorithm.

4. We compare explanation generation times, simu-

lating the request of 1-5 explanations, demonstrating

the effects on the rewriting process.

The tests were run on a Red Hat Enterprise Linux

Server release 5.3 (Tikanga 64 bit) and 48285 MB of

Figure 6 Screenshot of the browser tool in COnQueSt interface. Figure 6: The browser tool in COnQueSt interface: the upper left panel

shows the list of projects (or information models) available, the bottom left panel shows the concepts used to annotate the selected project,

and the right panel allows to view the concepts definitions, including links to the NCI thesaurus browser. All panels have a searching facility: for

instance, it is possible to search projects by their name.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 11 of 24

Figure 8 Screenshot of the query builder in COnQueSt interface. Figure 8: The COnQueSt query builder tool allows to search available

concepts and to specify an association between them, to indicate that has a property specified by another concept or indicate a specific value.

Figure 7 Screenshot of the search tool in COnQueSt interface. Figure 7: COnQueSt search tool: when searching for a concept, the result

shown includes the projects (or information models) with matching concepts as well as the concepts themselves. While the “search” button

considers all the concepts containing the search criteria, the “I’m feeling lucky” button retrieves the concept that matches exactly the search

criteria.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 12 of 24

RAM. The output files corresponding to the perfor-

mance evaluation are available at [37].

Analysis of the OWL representation of the information

models

Throughout this section, we group caGrid projects into

three distinct subsets: projects available from the caDSR

service, data services that are registered with the caGrid

default index service [39], and Information Models

(those models that are supported by a deployed service

from the caGrid Index Service). It should be noted that

not all caDSR projects are included in the metrics; some

contained errors (their semantic metadata is not com-

plete or refers to an older version of the NCI thesaurus)

and some models are targeted for data modelling, rather

than specifically holding data, making them unrepresen-

tative for our system. Out of the 136 projects in caDSR,

16 were excluded from the analysis for these reasons.

However, none of the excluded projects had an asso-

ciated service. Additionally, the caGrid subset has 63

services and InfoModels has 23 projects. The groups

caGrid and InfoModels are the more relevant for our

system, as it is only possible to execute CQL queries

against projects that have an associated caGrid service.

While InfoModels include a single project from caDSR

for a set of deployed services corresponding to that pro-

ject, caGrid may include the results for several services

that correspond to a single model. Thus, the caGrid

results will be skewed according to the relative weight

of services as opposed to models.

There are several tools for establishing ontological

metrics including ONTOMETRIC, OntoQA and Protégè

as the main available proposals [40]. ONTOMETRIC

[41] is a framework that allows users to measure the

suitability of a particular ontology with respect to the

requirements of their system. ONTOMETRIC provides

a taxonomy of characteristics for each ontology, from

which the user can choose a selection to compare

against another ontology. While Proteégè is primarily a

tool for creating and modifying ontologies, it does pro-

vide a limited selection of metrics for an ontology, but

they are not semantic metrics. There are other ontology

metrics that focus on cohesion, most of which focus on

mining inconsistencies in the ontology [40]. While

ontology metrics have been defined in several of these

tools [40], these have focused on basic metrics (e.g.

number of classes) or semantic-based metrics (e.g. rela-

tionship richness) that allow for the comparison and

quality evaluation of the ontologies. Therefore, we will

focus on the presentation of some bespoke metrics we

developed to measure the proliferation and complexity

of paths within the ontologies, as these will ensure the

viability of our approach.

Our rewriting process seeks to remove the upper-level

and transitive object property hasAssociation and

express the query using only non-transitive properties,

Figure 9 Screenshot of the results panel in COnQueSt interface. Figure 9: The query results panel shows a table listing the properties of

each result object.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 13 of 24

which correspond to the UML associations in the mod-

els. In order to achieve this, we consider the paths

between pairs of concepts from the query connected

through the hasAssociation property. The calculation of

these paths is not trivial; there may be many intermedi-

ate nodes and there may be more than one path for a

given pair of concepts. We define a journey as a traver-

sal from one concept to another. A journey may have

one or many paths, which represent the possible routes

that the traversal can take. Thus, it is important to eval-

uate these aspects of the ontologies in order to assess

the viability of our rewriting tool.

We propose the following metrics as a measure of

complexity in this respect. The Longest Path is the max-

imum path length that may be computed within a given

ontology. Each node in the path can be visited at most

once so as to avoid looping. The longest path length

provides an indication of the worse case for path calcu-

lation times. The Average Paths per Journey reflects the

degree of path expansion within the rewriting algorithm,

as each journey (e.g. from Node A to Node B) may have

many different paths. The rewriting algorithm should be

capable of returning all possible paths as each path may

refer to a different expression of the query. When we

consider that a single query may include multiple inde-

pendent journeys, the possible query rewritings can

become very large. The Average Nodes per Path is the

average number of nodes that must be visited in order

to return a single path. These metrics can affect the

path calculation time as well as the complexity of the

resulting query.

Figure 10 illustrates three box plots with the results of

the path metrics for each project subset. We observe

that while the longest path can have up to 36 nodes, for

75% of the projects in each category their length is less

than 17 or 18. The median of the average path length

varies between 4 and 7 nodes over the three subsets,

and for 75% of the Information Models the average path

length is less than 8. The median of the average paths is

around 2 paths per journey, and for 75% of the projects

in each category the average path per journey is less

than 2.5. This indicates that we will be returning a low

number of path combinations as a result. These results,

then, verify that the paths within the ontologies are

manageable and appropriate for our rewriting tool. By

appropriate, we mean that, given that the tools are pre-

sented as part of a web-based interface with the time-

restraints that accompany that implementation, results

can be gathered within an appropriate time frame. By

manageable, we suggest that the returned paths will not

prove too complex for user interpretation. We also note

that in all the metric diagrams, the caGrid subset is

often very densely clustered around the mean. This is

due to the fact that there are often many caGrid services

for the same project that differ to one another very

slightly or even not at all, which can result in multiple

similar or identical results in our analysis.

Ontology generation, module extraction and classification

In order to isolate any overhead caused by variations in

network performance, we extracted the XML corre-

sponding to each project (or information model) in

caDSR. This is a preliminary step so that the perfor-

mance evaluation can be run locally, and we do not

include any data or results of the performance of this

stage. We generate four ontologies for each project: the

NCIt module ontology (incorporating the concepts from

NCIt relevant to the project), the annotated UML ontol-

ogy (including the classes describing the UML model)

and two inferred versions of the UML ontology. We

Figure 10 The path metrics. Figure 10: Three box plot diagrams showing path metrics for each subset of information models: caDSR, caGrid

and Info Models. The path metrics considered are, from left to right: the longest path, the average number of nodes per path and the average

number of paths per journey.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 14 of 24

generate the inferred ontologies by classifying the gener-

ated ontologies using both the HermiT and Pellet rea-

soners. We recorded the time for each generation and

Figure 11 illustrates the times for the four ontologies of

the each project grouped by subset. The times are pre-

sented in a logarithmic scale to enhance readability. We

can see that the vast majority (75%) of NCIt modules

take less than 2 seconds to generate and even less time

for ontology generation. The classification of the gener-

ated ontologies is also timely, with the average inference

of the Pellet and HermiT reasoners never longer than

100 milliseconds. We conclude that the generation and

inference of the ontologies used in our approach does

not present a barrier to the timely execution of the

rewriting process.

Query rewriting evaluation

We have developed a test suite of over one hundred

queries of varying complexity in order to evaluate the

query rewriting. More details on the performance eva-

luation can be found in the ConQueST website [37].

These queries are run over several services, which are

publicly available from caGrid. The test suite currently

queries the following models (available as services):

caBio 4.2, caArray 2.4, caTissue 2.1 and PIR 1.2. The

results are presented in Figure 12, which shows the

times of each stage of the query reformulation process.

These correspond to each stage of query rewriting: par-

sing, UML extraction, path finding, MCC conversion

and CQL conversion. We grouped the test queries by

query path length and these are presented in Figure 12.

The path length refers to the number of intermediate

nodes in the rewritten query. We can see from Figure

12 that, while the path length has an effect on the time

taken at the path finding stage, the other stages of

implementation remain largely unaffected. We therefore

maintain that, given our analysis of paths within our tar-

get ontologies described above, we can provide query

reformulation in a timely and efficient manner.

There are two principal factors that affect the perfor-

mance of the path-finding stage of the query rewriting

process; the length (complexity) of the returned path

and the number of explanations requested to describe

that path. The length of the returned path is the length

(as an indication of complexity) of the path that is

found between two nodes. We have shown in Figure

12 that there is a correlation between the length of the

resulting path and the time taken in generation,

although we accept that the overall effect is minimal.

The path-finding stage makes use of an explanation

generator [42] in order to find paths through the

ontologies. We can ask for a number of explanations

for one particular journey but we have no control over

the order in which they are returned and we can make

no inferences of how long each explanation took. Due

to the black-box nature of the explanation generator, it

is difficult to make any further assumptions of the

internal processes at this stage. Rather, we endeavour

to present a thorough evaluation of the performance of

this stage to ensure the suitability of the method. Dur-

ing the rewriting evaluation described above, the path-

finder was configured to return only a single explana-

tion and, therefore, a single path for each query. The

explanations returned during the path-finding process,

Figure 11 Ontology and modules, generation and inference times. Figure 11: The box plot diagram on the left shows the generation

times for the NCIt module ontology and the annotated UML ontology for the three groups of information models (caDSR, caGrid and Info

Models). The box plot diagram on the left depicts the inference times for the UML ontology using Hermit and Pellet reasoners. Both diagrams

use logarithmic scale.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 15 of 24

while technically correct according to the ontology, are

not necessarily desirable or biologically relevant. It is,

therefore, sometimes necessary to request multiple

explanations in order for the user to choose the

desired path. The number of explanations requested

has a marked influence of the time taken to return the

paths.

Figure 13 shows the time taken during the path-find-

ing stage configured to return various numbers of expla-

nations. Each requested explanation will result in the

return of an additional single path. Looking at Figure

13, two things are clear. Firstly, as more explanations

are requested, the time required for the path-finding

stage increases. In some outlier cases, the path-finding

times are very high (more than 3 minutes). Due to the

the explanation generator being a black-box component

using ontology reasoning, as we have already mentioned,

it is difficult to assess the precise reasons behind these

very long anomalies. Secondly, we can see that despite

the lengthy times of some queries, the average time for

a query remains relatively constant, with only a gentle

correlation as we request more explanations. We there-

fore maintain, based on the average times, that query

rewriting can be provided in a timely manner although

care should be taken when requesting increased num-

bers of alternative paths.

Figure 12 Query rewriting performance. Figure 12: Times taken in each stage of the query reformulation process (parsing, UML extraction,

path finding, MCC conversion and CQL conversion) at varying path lengths.

Figure 13 Path finding performance. Figure 13: Path-finding times for varying numbers of explanations, ranging from 1 to 5. Each

explanation generates a path.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 16 of 24

Conclusions

The realisation of personalised medicine requires the

integration of data from a variety of scientific disciplines,

such as molecular biology, pathology, radiology and clin-

ical practice. Software infrastructures have been devel-

oped to facilitate the discovery and management of

these types of data in oncology, including the NCRI

ONIX system and the NCI caBIG® infrastructure.

The caBIG® infrastructure is based on the caGrid ser-

vice-oriented middleware, which follows a federated

Local-As-View approach to data integration by defining

mappings from distributed data sources to a global-

schema. The global-schema is realised by the NCI the-

saurus ontology describing the cancer domain. The NCI

thesaurus ontology is used to provide unambiguous

meaning to the data sources. However, it is not cur-

rently used to provide a unified view for querying the

data sources. Current querying capabilities in caGrid

rely on the structure of the data sources.

This paper has presented an ontology-based querying

system, which works over service-oriented and model-

driven infrastructures for sharing cancer data. The

design relied on generating ontologies from existing

information models and reformulating ontology queries

into resources’ queries. The implementation was based

on the caGrid infrastructure, but the approach could be

used over similar model-driven software infrastructures.

This work has extended our previous results [9] with

the theory and implementation to handle federated

queries, a more extensive evaluation of the query refor-

mulation process, and the development of a graphical

user interface aimed at cancer researchers. This paper

has described the entire approach in detail, presenting:

a) the generation of customised OWL2 ontologies

from annotated UML models, based on the

ISO11179 standard for metadata registries. This dif-

fers from traditional UML-to-OWL conversions and

it supports annotations with primary concept and

qualifiers;

b) an analysis of the generated ontologies by deter-

mining several relevant ontology metrics, existing

and new metrics that justify the viability of our

rewriting technique;

c) an extended version of the query reformulation

stages (including query rewriting and translation) to

transform a domain ontology-based query into

queries for a single resource or multiple resources;

the latter involves the definition of join conditions,

which can be found automatically by capitalising on

the semantic annotations of the data sources; two

simple use cases to illustrate the reformulation

stages;

d) a caGrid analytical service implementing the

OWL Generation facility;

e) an analysis of the capabilities of the caGrid query

languages, both CQL and DCQL;

f) an extensive performance evaluation of the OWL

generation, module extraction, querying rewriting

and translation process.

Methods

OWL generation

UML is the de-facto visual modelling language for

object-oriented design and the foundation for model-

driven architectures. The ISO/IEC 11179 metadata reg-

istry in caGrid relies on UML class diagrams and their

mappings to the NCIt ontology. In order to manage and

reason about UML models and their annotations, we

engineered OWL ontologies as a unified representation

of the domain and data sources. In the following sec-

tions, we describe the approach for OWL generation, as

outlined in the Ontology-based Queries section. The

generation approach includes OWL models of UML

class diagrams, OWL models of the NCIt-based annota-

tions, and the extraction of modules from the NCIt

ontology so that only the relevant concepts and proper-

ties for each data source are considered.

We observe that the generated ontologies contain only

concepts and properties, i.e. terminological components

or TBoxes. The assertion components, or ABoxes, corre-

spond to the instances in the data sources.

OWL model of UML class diagrams

First, we present our customised UML-to-OWL trans-

formation. This transformation differs from previous

approaches transforming UML to OWL (for more

details see [9,43]). We then describe the transformation

and the use cases presented above to give examples.

Every UML element is related to its counterpart in the

UML model ontology: all UML classes and attributes are

defined as subclasses of UMLClass and UMLAttribute,

respectively (see equations 1 and 2 below, where the

prefixes are: c: for the caBIO ontology, u: for the UML

model ontology, n: for the NCIt ontology and l: for the

list ontology). We note that the name of an OWL class

corresponding to an attribute includes the class name to

avoid duplications and for associations, it includes its

domain and range. All the UML associations are sub-

properties of hasAssociation (equation 4), and the data-

type property hasValue is used to specify the type of the

attributes (equation 3) as an existential restriction. Con-

trary to other UML-to-OWL transformations, we repre-

sent UML attributes as OWL classes. This is required

so that the ontology-based queries can include the con-

cepts associated with attributes.

c:Chromosome ⊑ u:UMLClass (1)

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 17 of 24

c:Chromosome number ⊑ u:UMLAttribute (2)

c:Chromosome number ⊑ ∃u:hasValue.xsd:string (3)

c:Chromosome locationCollection Location ⊑ u:hasAssociation(4)

UML subclass and superclass relationships are repre-

sented with subsumption (Eq. 5). For each UML class,

existential restrictions are added for its associations (Eq.

6) and attributes (Eq. 7). While UML does not explicitly

represent inherited associations, our OWL representa-

tion makes them explicit, modelling the semantics of

UML. For example, as the UML class Location has an

association chromosome with the class Chromosome, this

association is inherited on the subclass SNPPhysicalLo-

cation (Eq. 8).

c:CytogeneticLocation ⊑ c:Location (5)

c:Chromosome ⊑ ∃c:Chromosome locationCollection Location.

c:Location
(6)

c:Chromosome ⊑ ∃u:hasAttribute.u:Chromosome number (7)

c:SNPPhysicalLocation ⊑ ∃c:Location chromosome Chromosome.

c:Chromosome
(8)

We note that the generated OWL ontologies comply

with OWL2EL [44], an OWL2 profile specifically

designed to allow efficient reasoning of large terminolo-

gies, which is polynomial in the size of the ontology.

While OWL2EL disallows universal quantification on

properties, it does allow the inclusion of transitive prop-

erties. Thus, it is suitable for our UML-to-OWL trans-

formation customised for the rewriting approach already

outlined.

OWL representation of the semantic annotations

Apart from representing the UML model, we also model

its mapping to NCIt, as maintained in caDSR. Through

the CDEs, UML elements are annotated with a primary

concept, which indicates the meaning of the element. In

turn, a list of qualifier concepts may be used to modify

the primary concept, providing a specific meaning [5].

As OWL2 does not natively supports the representation

of lists, we used Drummond et al’s design pattern for

sequences [28] to model primary concepts and qualifier

lists. The following equations give some examples of the

modelling of the semantic annotations of UML classes

(Eq. 9) and attributes (Eq. 10) with a single concept.

Equation 11 models the class cSNPPhysicalLocation as a

n:Location qualified with l:Chromosome_Band and n:Sin-

gle_Nucleotide_Polymorphism.

c:Chromosome ⊑ n:Chromosome (9)

c:Chromosome numer ⊑ n:Name (10)

c:SNPPhysicalLocation ⊑ n:Location ⊓ (1:OWLList⊓

∃1:hasContents.n:Chromosome⊓

∃1:hasNext.(1:OWLList⊓
∃1:hasContents.n:Single Nucleotide Polymorphism))

(11)

Module extraction from NCI thesaurus ontology

The NCIt ontology is very large, as it provides a com-

mon vocabulary for the whole cancer domain [7]. Each

caGrid data service is, in general, concerned with data

pertaining to more specific domains than the whole

NCIt ontology. Thus, for each caGrid data service refer-

ring to a subset Σ of the NCIt vocabulary, there is a

subset of terms and relationships from NCIt that is rele-

vant, called a module from the ontology [45]. The mod-

ule M represents all knowledge about the terms of the

signature Σ. One of the approaches to relevance is logic-

based: the module M is relevant for the terms Σ if all

the consequences of the ontology that can be expressed

over Σ are also consequences of M[45]. We follow that

approach by Sattler et al [45] and extract an NCIt mod-

ule for each of the information models in caGrid. For

succinctness and efficiency, we use this module, as

opposed to the whole NCIt ontology, for the semantic

annotations of UML models and subsequent reasoning.

We observe that we removed the disjoint axioms from

the NCIt modules, as we noted before [43,46] that using

subsumption to represent UML class to concept map-

ping may result in inconsistent ontologies as the annota-

tions for a single class may come from two high-level

branches in NCIt that are declared as disjoint.

Query reformulation

This section describes how an ontology-based query is

rewritten and then translated, first to the intermediate

optimisation language MCC and subsequently to the

target CQL/DCQL languages. While the overall

approach is similar to our previous work [9], we have

comprehensively improved it, including extending the

translation of queries over distributed data sources. In

this section, we describe the query translation steps for

both single and multiple-service queries. In most cases,

the stages are the same (or negligibly different). We

make clear the steps that are significantly different in

the approach. We provide Figure 14 as an illustration of

the query reformulation process. Within the figure, we

make mention of the following;

• The constituent stages of the rewriting, describing

the branching of the process for both single and

multiple services (blue).

• The form of the query at each stage of the process

(yellow).

• The points of user-interaction (red).

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 18 of 24

Parsing

First, the user query is syntactically parsed. The query

uses concepts from the NCIt, the UML model ontology

and the list ontologies [28]. If this stage fails, the user

will be required to correct the query before continuing

the reformulation process.

UML extraction

Initially, we express the query using NCIt concepts with

the benefit that we require no knowledge of the structure

of the underlying UML model and therefore, the query

can be run over all the data services containing the con-

cepts used. Having made this assertion, we must then

translate the concepts to specific UML classes for specific

data sources. This process is facilitated by our generated

ontologies that specify a subclass relationship between a

concept and the corresponding UML classes or UML

attributes, depending on their position in the query.

Therefore, in order to perform UML extraction, we must

look to the relevant concept in the ontology and, using a

reasoner, retrieve the subclasses of that concept that are

also subclasses of the class UMLClass or of the class

UMLAttribute, respectively. This denotes that the OWL

class represents a UML class or UML attribute.

It is often the case that a single NCIt concept will cor-

respond to many UML classes and, in such cases, each

corresponding UML class is returned to form one single

possible query. Therefore, the outcome of the UML

extraction is a combination of possible queries given the

extracted UML classes or attributes. Through the gra-

phical interface, the user will be required to select the

preferred UML extraction. In the second use case pre-

sented above, one possible UML extraction for the Con-

cept-Based Query 2 for services caBIO and PIR is:

cabio:NucleicAcidSequence and (hasAssociation

some (pir:Gene and hasAttribute some pir:Gene_na-

me="BRCA1”)) and (hasAssociation some (pir:Organ-

ism and hasAttribute some pir:

Organism_scientificName="homo sapiens”))

Figure 14 Query reformulation stages. Figure 14: The stages of query rewriting for both single and multiple target data services are depicted

in blue. The form of the query at the different stages is represented in yellow and in red, we show the points of user interaction.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 19 of 24

Data values extraction

As the generated ontologies do not contain instances,

the semantic validation of the query, expressed as an

OWL class expression, must ignore the data expressions.

This step extracts the data expressions, which will be

reinserted later on.

In the Query 2 use case, this step results in:

cabio:NucleicAcidSequence and hasAssociation some

pir:Gene and hasAssociation some pir:Organism

Semantic validation

We use a reasoner to check that the resulting query can

be satisfied. If the query cannot be satisfied, subsequent

reformulation of the query is halted.

Path finder

Single data source path finder This step deals with the

ontology corresponding to the UML model of data

source (the semantic annotations do not need to be

considered further) and aims to find the path of UML

classes related through the transitive property hasAsso-

ciation2. The path finder rewrites the expression using

non-transitive properties, corresponding to UML asso-

ciations, by using an explanation generator [42] that

retrieves the justification for two classes to be connected

via the transitive property, and thus allowing to find the

intermediate classes. The path finder may find more

than one path between a set of nodes and, in such

cases, will return each path as a combination of possible

queries for user selection. In Query 1, the path finder

stage retrieves:

cabio:SNP and hasAssociation some cabio:SNPPhysi-

calLocation and hasAssociation some (cabio:Chromo-

some and hasAttribute some (cabio:

Chromosome_number))

Federated path finder The process of query reformula-

tion differs when translating to single-service CQL

queries and multiple-service DCQL queries. Although

the change is minimal or entirely absent in other stages,

the path-finding stage has required the engineering of a

new component, which we refer to as the federated path

finder. Figure 15 illustrates the processes within the fed-

erated path finder, which again contain similarities to

the single-service approach. The first step is to merge

the UML model ontologies according to the classes pre-

sent within the selected UML extraction. The merging

of two ontologies results in an ontology which simply

contains all the axioms of the two original ontologies.

At this point, we extract the join conditions of the

ontologies within the single merged ontology. Given an

scenario whereby we have no prior knowledge of where

or how to join the ontologies, finding the join condi-

tions between two ontologies is a two-part process. This

process relies on the existing annotations with NCI the-

saurus concepts. Firstly, we find the UML classes in

each ontology that are annotated with the same

concepts, implying that the classes are semantically

equivalent. We then look at the attributes of those

classes, searching for those that are also annotated with

the same concepts. This provides us with the semanti-

cally equivalent attributes of the semantically equivalent

classes. Through the interface, the user selects the pre-

ferred join conditions based on their biological rele-

vance. An Equivalent Class axiom between the

semantically-equivalent UML classes from the join con-

dition is defined in the merged ontology. This new

axiom allows to establish a path that can traverse from

one ontology to another. Additionally, the join condi-

tions are retained for lookup during the MCC transla-

tion. Additionally, we envision storing these join

conditions for later use. These join conditions could be

shared between users together with queries that use

them.

The federated path-finder expands paths in the same

way as the single-service path finder, except that expla-

nations are generated from the merged ontology rather

than a single ontology. This allows paths to be found

that traverse more than one service (using the join con-

ditions). When such an event occurs, we split the result

each time we join to another ontology. The result of the

federated path-finder, therefore, is a list of service-speci-

fic queries and the join conditions between them. This

is subsequently passed to the MCC translator, which for

federated queries has been extended to take a list of

queries and, using the defined join conditions, forms the

MCC expression.

In the Query 2 use case, two paths are found (one for

each service):

Path finder result for caBIO

cabio:NucleicAcidSequence and (cabio:geneCollection

some (cabio:Gene and cabio:proteinCollection some

cabio:Protein))

Path finder result for PIR

pir:Protein and (pir:geneCollection some pir:Gene)

and (pir:organismCollection some pir:Organism)

The join condition chosen between these two services

includes the semantically equivalent classes cabio:Protein

and pir:Protein with semantically equivalent attributes

cabio:uniProtCode and pir:uniprotkbEntryName. This

join condition links the two paths above.

Data values addition

At this point, we can retrieve the data expressions

removed earlier and re-insert them into the correspond-

ing OWL classes.

OWL expression to MCC translation

CQL and DCQL are object-oriented query languages,

although no calculus or algebra has been defined for

them. In order to provide a translation with D/CQL as

target languages, we have decided to use the monoid

comprehension calculus (MCC), as it is a formal

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 20 of 24

framework to support object queries optimisations [25].

This formalism allows to manipulate object queries and,

as we mentioned in the Object-based Queries section,

using it as an intermediate language makes our

approach general. Translating the ontology-based query

to other target languages will involve only modifying the

last step, MCC to C/DCQL, which is the only one

dependent on caGrid. Also, adapting the system for

future/modified versions of D/CQL will be simple. Addi-

tionally, the previous steps in the query reformulation

process produce rewritings resulting from reasoning

over the generated ontologies. This step, on the other

hand, translates ontology-based expressions to monoid

comprehensions, meaning that manipulation of the

expressions is based on the calculus from now on. Last

but not least, the use of MCC ensures support for

optimisations.

Our approach is similar to the work by Peim et al

[47], as they map description logics queries into the

MCC. However, the are significant differences with our

reformulation process. First, Peim et al’s solution is for

GAV systems rather than LAV systems. In their system,

each concept in the ontology is viewed as a named per-

sistent set of database objects. Also, they assume that

the data sources are described using the Object Defini-

tion Language (ODL). Moreover, while they use an

expansion algorithm to rewrite an OWL expression

based on a set of acyclic definitions, we follow the speci-

fic steps described in this section. We support query

rewriting from OWL expression to the target languages

using justifications of entailments [42] within the infor-

mation model ontology.

The results of object queries are collections of homo-

geneous objects. The MC calculus offers a uniform

Figure 15 Federated path finder. Figure 15: Processes involved in finding paths in the information models when dealing with queries over

multiple data services.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 21 of 24

notation for types representing collections, such as lists,

bags and sets. The rationale is that the union operation

over sets or bags, and the concatenation operation over

lists are monoid operations. A monoid operation is asso-

ciative and has an identity element. A monoid is an

algebraic structure consisting of a set of elements and a

monoid operation.

Definition 1 (Monoid) A monoid is an algebraic

structure defined by the triple < T⊕, ⊕,Z⊕ >, where T is

a set, ⊕ is a binary associative operation ⊕:

⊕ : T⊕xT⊕ → T⊕ called the merge function for the

monoid, and the identity element Z⊕ is called the zero

element for the monoid.

The basic structure of the MCC is the monoid

comprehension:

Definition 2 (Monoid comprehension) A monoid

comprehension is an expression of the form ⊕{e|q̄} where

⊕ is a monoid operator called the accumulator, e is the

header and q̄ = q1, ...qn, n ≥ 0 is a sequence of qualifiers.

A qualifier can take the form of a generator, v ¬ e’ with

v a range variable and e’ an expression constructing a

collection, or a filter predicate.

For each rewritten query after addition of data values,

given as an OWL expression, we provide a transforma-

tion to MCC such that: the header variable is deter-

mined by the first concept in the query and the

qualifiers are built for each of the remaining expres-

sions. The header variable identifies the instances to be

retrieved by the query, and the qualifiers specify the

conditions that the instances must satisfy. The transla-

tion uses annotation properties included in the gener-

ated ontologies, which provide attributes such as

ClassName for OWL classes representing UML classes,

AttributeName for OWL classes representing UML

attributes and RoleName for the name of the associa-

tions represented by object properties, which are sub-

properties of hasAssociation.

Next, we define the reformulation function ℝ to trans-

late OWL class expressions into MCC. The definition of

ℝ is compositional: it is applied to the whole OWL class

expression representing the query after UML extraction

and data values addition, and subsequently to sub-

expressions. Finally, the translation of sub-expressions is

composed to produce the MCC expression that repre-

sents the overall translation. In the following definitions,

Expri represents a general OWL class expression, A and

B represent OWL classes, C represents a constant and p

represents an object property. The function ℝvar denotes

the assignment of variables, such that ℝvar() creates a

new variable, and ℝvar(A) retrieves the variable assigned

to the OWL class A if it exists, otherwise it creates a

new variable for A. If A is an OWL class representing a

UML attribute, the function C(A) retrieves the UML

class containing the attribute A. The function D(p)

retrieves the domain of the object property p.

R(Expr1 and Expr2) =

⎧

⎨

⎩

⊎{Rvar()|R(A) = C},

if Expr1 = hasAttribute some A and Expr2 = p2value C

⊎{Rvar()|R(Expr1) and R(Expr2), otherwise
(12)

R(A) =

{

⊎{Rvar(A)|Rvar(A) ← R(A)} A represents a UML class

Rvar(C(A)).AttributeName(A) A represents a UML attribute
(13)

R(p some Expr) =

⎧

⎨

⎩

⊎{newVar = Rvar()|newVar ← Rvar(D(p)).RoleName(p), newVar ← R(Expr)}

if p represents a sub-property of hasAssociation

R(Expr), if p represents the object property hasAttribute
(14)

R(Expr1 or Expr2) = or {Rvar()|R(Expr1), R(Expr2)}(15)

When receiving a list of OWL class expressions from

the previous step (federated path finder with data values

reinserted) and the join conditions, the MCC generator

uses the reformulation function above for each of the

OWL class expressions. It then combines them into a

single MCC expression by defining the join condition as

vi.localAttributeName = vj. foreignAttributeName, where

vi and vj correspond to the local and foreign semanti-

cally-equivalent classes, respectively.

Once the algorithm obtains an MCC expression, it is

normalised using the rules described in [25] and simpli-

fied, i.e. the number of variables used is reduced.

In the Query 2 use case, the resulting MCC expression

is:

⊎{v0|

v0 ← gov.nih.nci.cabio.domain.NucleicAcidSequence,

v1 ← v0 · geneCollection,
v1 ← gov.nih.nci.cabio.domain.Gene,

v2 ← v1 · proteinCollection,

v2 ← gov.nih.nci,cabio.domain.Protein
v2.uniProtCode = v3.uniprotkbEntryName

v3 ← edu.georgetown.pir.domain.Protein,

v4 ← v3.geneCollection,
v4 ← edu.georgetown.pir.domain.Gene,

v4.name =′′ BRCA1′′

v5 ← v3.organismCollection,

v5 ← edu.georgetown.pir.domain.Organism

v5.scientificName =′′ homo sapiens”}

(16)

MMC to D/CQL translation

Translating the MCC expression into CQL includes the

following; define as Target the type of the variable that

appears in the header; including an Association per each

pair of generators, one determining the name (the class

to which they belong) and the other identifying the role

name; include an Attribute restriction for each filter.

When the MCC expression contains a sub-expression

corresponding to a join condition, the result will be a

DCQL query. Each MCC expression is translated simi-

larly to the description above, where the overall target is

the TargetObject. Additionally, the expressions of the

join conditions are used to define the ForeignAssociation

(s), where the equivalent attributes are used to define

the JoinCondition and the target from the second MCC

expression is the ForeignObject.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 22 of 24

Foot Note
1Several videos demonstrating the interface can be

found at http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/

conquest/
2We note that the ontology is compliant with the

OWL2 EL profile, as OWL2 EL supports the use of

transitive object properties. For more information, see

http://www.w3.org/TR/owl2-profiles/

Acknowledgements

The authors are grateful to the National Cancer Research Institute

Informatics Initiative for support of their research.

This article has been published as part of BMC Bioinformatics Volume 13

Supplement 1, 2012: Semantic Web Applications and Tools for Life Sciences

(SWAT4LS) 2010. The full contents of the supplement are available online at

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1.

Author details
1Computational and Systems Medicine, University College London, Gower

Street, London WC1E 6BT, UK. 2Department of Computer Science, University

College London, Gower Street, London WC1E 6BT, UK.

Authors’ contributions

AGB designed the approach for ontology-based queries over cancer data,

which included two components: one for the generation of ontologies from

information models and another one for the query reformulation process.

The latter component used the Monoid Comprehension Calculus (MCC) as

intermediate language, and AGB provided the translation rules from OWL

class expressions to MCC. AGB and BT implemented the both components

and designed the evaluation methods. BT compiled the results of the

evaluation. BT wrapped the ontology generation code as a caGrid service

and developed the graphical user interface to expose the query system. AF

provided vision, scope, requirements analysis throughout the project. All

authors participated in revision and have read and approved the manuscript.

Competing interests

The authors declare that they have no competing interests.

Published: 25 January 2012

References

1. NCRI Informatics Initiative. [http://www.cancerinformatics.org.uk/].

2. caBIG® Programme. [https://cabig.nci.nih.gov/].

3. ONIX. [http://www.ncri-onix.org.uk/].

4. Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W, Kher M,

Manisundaram A, Shanbhag K, Covitz P: caGrid: design and

implementation of the core architecture of the cancer biomedical

informatics grid. Bioinformatics 2006, 22:1910-1916.

5. Tobias J, Chilukuri R, Komatsoulis GA, Mohanty S, Sioutos N, Warzel DB,

Wright LW, Crowley RS: The CAP cancer protocols-a case study of

caCORE based data standards implementation to integrate with the

Cancer Biomedical Informatics Grid. BMC Med Inform Decis Mak 2006,

6:25-25.

6. UML. [http://www.uml.org].

7. Hartel FW, de Coronado S, Dionne R, Fragoso G, Golbeck J: Modeling a

description logic vocabulary for cancer research. Journal of Biomedical

Informatics 2005, 38:114-129.

8. OWL2 language overview. [http://www.w3.org/TR/owl2-overview/].

9. González-Beltrán A, Tagger B, Finkelstein A: Ontology-based Queries Over

Cancer Data. In Proceedings of the Workshop on Semantic Web Applications

and Tools for Life Sciences (SWAT4LS 2010, Berlin, Germany). CEUR Workshop

Proceedings;Burger A, Marshall MS, Romano P, Paschke A, Splendiani A

2010:[http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-

698/].

10. Lenzerini M: Data integration: a theoretical perspective. PODS ‘02:

Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems New York, NY, USA: ACM; 2002, 233-246.

11. Cheung KH, Smith AK, Yip KY, Baker CJ, Gerstein MB: Revolutionizing

Knowledge Discovery in the Life Sciences, Springer 2007 chap. Semantic Web

Approach to Database Integration in the Life Sciences .

12. Halevy AY: Answering queries using views: a survey. The VLDB Journal

2001, 10:270-294.

13. Foster I: The anatomy of the grid: enabling scalable virtual organizations.

Cluster Computing and the Grid (CCGRID) Brisbane, Qld., Australia: First IEEE/

ACM International Symposium; 2001, 6-7.

14. Pollock JT, Hodgson R: Adaptive Information: Improving Business Through

Semantic Interoperability, Grid Computing and Enterprise Integration Wiley-

Interscience; 2004.

15. EVS. [https://cabig.nci.nih.gov/concepts/EVS/].

16. ISO/IEC 11179. [http://metadata-stds.org/11179/].

17. FQP. [http://cagrid.org/display/fqp/Home].

18. DCQL. [http://cagrid.org/display/fqp/DCQL].

19. Berners-Lee T, Hendler J, Lassila JA: The Semantic Web. Scientific American

2001, 284:34-43.

20. Giunchiglia F, Farasi F, Tanca L, Virgilio RD: Semantic Web Information

Management, Springer 2010 chap. Chapter 3: The Semantic Web Languages .

21. Heath T, Bizer C: Linked Data - Evolving the Web into a Global Data Space

Morgan & Claypool Publishers; 2011.

22. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R, Ruzzi M:

Semantic Web Information Management, Springer 2010 chap. Using OWL in

Data Integration .

23. Model-Driven Architecture. [http://www.omg.org/mda/].

24. Object Management Group. [http://www.omg.org/].

25. Fegaras L, Maier D: Optimizing object queries using an effective calculus.

ACM Trans Database Syst 2000, 25:457-516.

26. CQL XML schema. [http://cagrid.org/display/dataservices/CQL+Schemas].

27. caGrid portal. [http://cagrid-portal.nci.nih.gov].

28. Drummond N, Rector A, Stevens R, Moulton G, Horridge M, Wang H,

Sedenberg J: Putting OWL in order: Patterns for sequences in OWL. OWL

Experiencies and Directions (OWLEd 2006), Volume 216 of CEUR Workshop

Proceedings, Athens, Georgia, USA: CEUR-WS.org 2006.

29. caBIG® Annual Meeting 2008. [http://cagrid.org/display/fqp/CaBIG+Annual

+Meeting+2008+FQP+Demo+-+Live+API+Demo].

30. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H: The

Manchester OWL Syntax. In Proc. of the 2006 OWL Experiences and

Directions Workshop (OWL-ED2006), Volume 216 of CEUR Workshop

Proceedings, Athens, Georgia, USA: CEUR-WS.org; 2006, 10-11.

31. caBIO. [https://wiki.nci.nih.gov/display/caBIO/caBIO+Wiki+Home+Page].

32. PIR. [https://cabig.nci.nih.gov/tools/PIR].

33. caGrid 1.3. [http://wiki.cagrid.org/display/caGrid13/Home].

34. OWLAPI. [http://owlapi.sourceforge.net/].

35. Pellet reasoner. [http://clarkparsia.com/pellet/].

36. HermiT reasoner. [http://hermit-reasoner.com].

37. ConQueST. [http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/].

38. NCI meta-thesaurus. [http://ncimeta.nci.nih.gov/].

39. [http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService].

40. García J, García-Peñalvo FJ, Therón R: A Survey on Ontology Metrics. In

Knowledge Management, Information Systems, E-Learning, and Sustainability

Research, Volume 111 of Communications in Computer and Information

Science. Springer Berlin Heidelberg;Lytras MD, Ordonez De Pablos P,

Ziderman A, Roulstone A, Maurer H, Imber JB 2010:22-27.

41. Lozano-Tello A, Gómez-Pérez A: ONTOMETRIC: A Method to Choose the

Appropriate Ontology. Journal of Database Management 2004, 15:1-18.

42. Kalyanpur A, Parsia B, Horridge M, Sirin E: Finding All Justifications of OWL

DL Entailments. Proceedings of the 6th international The semantic web and

2nd Asian conference on Asian semantic web conference, ISWC’07/ASWC’07

Berlin, Heidelberg, Germany: Springer-Verlag; 2007, 267-280.

43. González-Beltrán A, Finkelstein A, Wilkinson JM, Kramer J: Domain Concept-

Based Queries for Cancer Research Data Sources. 22nd IEEE International

Symposium on Computer-Based Medical Systems (CBMS’ 09), Volume 0

Albuquerque, New Mexico, USA: IEEE Computer Society; 2009, 1-8.

44. Cuenca-Grau B, Horrocks I, Motik B, Parsia B, Patel-Schneider PF, Sattler U:

OWL 2: The next step for OWL. J of Web Semantics 2008, 6:309-322,

[download/2008/CHMP+08.pdf].

45. Sattler U, Schneider T, Zakharyaschev M: Which kind of module should I

extract? In Description Logics. Volume 477. Oxford, UK: DL Home 22nd

International Workshop on Description Logics; 2009.

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 23 of 24

http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://www.w3.org/TR/owl2-profiles/
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1
http://www.cancerinformatics.org.uk/
https://cabig.nci.nih.gov/
http://www.ncri-onix.org.uk/
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.uml.org
http://www.ncbi.nlm.nih.gov/pubmed/15797001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797001?dopt=Abstract
http://www.w3.org/TR/owl2-overview/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-698/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-698/
http://www.ncbi.nlm.nih.gov/pubmed/22145036?dopt=Abstract
https://cabig.nci.nih.gov/concepts/EVS/
http://metadata-stds.org/11179/
http://cagrid.org/display/fqp/Home
http://cagrid.org/display/fqp/DCQL
http://www.ncbi.nlm.nih.gov/pubmed/11396337?dopt=Abstract
http://www.omg.org/mda/
http://www.omg.org/
http://cagrid.org/display/dataservices/CQL+Schemas
http://cagrid-portal.nci.nih.gov
http://cagrid.org/display/fqp/CaBIG+Annual+Meeting+2008+FQP+Demo+-+Live+API+Demo
http://cagrid.org/display/fqp/CaBIG+Annual+Meeting+2008+FQP+Demo+-+Live+API+Demo
https://wiki.nci.nih.gov/display/caBIO/caBIO+Wiki+Home+Page
https://cabig.nci.nih.gov/tools/PIR
http://wiki.cagrid.org/display/caGrid13/Home
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com
http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://ncimeta.nci.nih.gov/
http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService

46. McCusker JP, Phillips JA, González Beltrán A, Finkelstein A, Krauthammer M:

Semantic web data warehousing for caGrid. BMC Bioinformatics 2009,

10(Suppl 10):S2.

47. Peim M, Franconi E, Paton NW, Goble CA: Query Processing with

Description Logic Ontologies Over Object-Wrapped Databases. SSDBM

‘02: Proceedings of the 14th International Conference on Scientific and

Statistical Database Management Washington, DC, USA: IEEE Computer

Society; 2002, 27-36.

doi:10.1186/1471-2105-13-S1-S9
Cite this article as: González-Beltrán et al.: Federated ontology-based
queries over cancer data. BMC Bioinformatics 2011 13(Suppl 1):S9.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

González-Beltrán et al. BMC Bioinformatics 2011, 13(Suppl 1):S9

http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 24 of 24

http://www.ncbi.nlm.nih.gov/pubmed/19958512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502534?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction and background
	Data integration systems
	caBIG® semantic infrastructure
	Semantic web/linked data approach for querying and data integration
	Object-based queries

	Results and discussion
	CQL and DCQL analysis
	Ontology-based queries
	Use cases
	Software architecture

	Implementation
	OWLGen caGrid analytical service
	COnQueSt graphical user interface

	Performance evaluation
	Analysis of the OWL representation of the information models
	Ontology generation, module extraction and classification
	Query rewriting evaluation

	Conclusions
	Methods
	OWL generation
	OWL model of UML class diagrams
	OWL representation of the semantic annotations
	Module extraction from NCI thesaurus ontology

	Query reformulation
	Parsing
	UML extraction
	Data values extraction
	Semantic validation
	Path finder
	Data values addition
	OWL expression to MCC translation
	MMC to D/CQL translation

	Foot Note
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

