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Abstract

We introduce a new and increasingly relevant setting for distributed optimization in machine
learning, where the data defining the optimization are unevenly distributed over an extremely
large number of nodes. The goal is to train a high-quality centralized model. We refer to this
setting as Federated Optimization. In this setting, communication efficiency is of the utmost
importance and minimizing the number of rounds of communication is the principal goal.

A motivating example arises when we keep the training data locally on users’ mobile devices
instead of logging it to a data center for training. In federated optimization, the devices are
used as compute nodes performing computation on their local data in order to update a global
model. We suppose that we have extremely large number of devices in the network — as
many as the number of users of a given service, each of which has only a tiny fraction of the
total data available. In particular, we expect the number of data points available locally to be
much smaller than the number of devices. Additionally, since different users generate data with
different patterns, it is reasonable to assume that no device has a representative sample of the
overall distribution.

We show that existing algorithms are not suitable for this setting, and propose a new al-
gorithm which shows encouraging experimental results for sparse convex problems. This work
also sets a path for future research needed in the context of federated optimization.

1 Introduction

Mobile phones and tablets are now the primary computing devices for many people. In many
cases, these devices are rarely separated from their owners [19], and the combination of rich user
interactions and powerful sensors means they have access to an unprecedented amount of data,
much of it private in nature. Models learned on such data hold the promise of greatly improving
usability by powering more intelligent applications, but the sensitive nature of the data means there
are risks and responsibilities to storing it in a centralized location.

We advocate an alternative — federated learning — that leaves the training data distributed
on the mobile devices, and learns a shared model by aggregating locally computed updates via a
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central coordinating server. This is a direct application of the principle of focused collection or
data minimization proposed by the 2012 White House report on the privacy of consumer data [98].
Since these updates are specific to improving the current model, they can be purely ephemeral —
there is no reason to store them on the server once they have been applied. Further, they will
never contain more information than the raw training data (by the data processing inequality),
and will generally contain much less. A principal advantage of this approach is the decoupling of
model training from the need for direct access to the raw training data. Clearly, some trust of the
server coordinating the training is still required, and depending on the details of the model and
algorithm, the updates may still contain private information. However, for applications where the
training objective can be specified on the basis of data available on each client, federated learning
can significantly reduce privacy and security risks by limiting the attack surface to only the device,
rather than the device and the cloud.

If additional privacy is needed, randomization techniques from differential privacy can be used.
The centralized algorithm could be modified to produce a differentially private model [17, 33, 1],
which allows the model to be released while protecting the privacy of the individuals contributing
updates to the training process. If protection from even a malicious (or compromised) coordinating
server is needed, techniques from local differential privacy can be applied to privatize the individual
updates [32]. Details of this are beyond the scope of the current work, but it is a promising direction
for future research.

A more complete discussion of applications of federated learning as well as privacy ramifications
can be found in [62]. Our focus in this work will be on federated optimization, the optimization
problem that must be solved in order to make federated learning a practical alternative to current
approaches.

1.1 Problem Formulation

The optimization community has seen an explosion of interest in solving problems with finite-sum
structure in recent years. In general, the objective is formulated as

min
w∈Rd

f(w) where f(w)
def
=

1

n

n∑
i=1

fi(w). (1)

The main source of motivation are problems arising in machine learning. The problem structure (1)
covers linear or logistic regressions, support vector machines, but also more complicated models
such as conditional random fields or neural networks.

We suppose we have a set of input-output pairs {xi, yi}ni=1, and a loss function, giving rise to
the functions fi. Typically, xi ∈ Rd and yi ∈ R or yi ∈ {−1, 1}. Simple examples include

• linear regression: fi(w) = 1
2(xTi w − yi)2, yi ∈ R

• logistic regression: fi(w) = − log(1 + exp(−yixTi w)), yi ∈ {−1, 1}

• support vector machines: fi(w) = max{0, 1− yixTi w}, yi ∈ {−1, 1}

More complicated non-convex problems arise in the context of neural networks, where rather
than via the linear-in-the-features mapping xTi w, the network makes prediction through a non-
convex function of the feature vector xi. However, the resulting loss can still be written as fi(w),
and gradients can be computed efficiently using backpropagation.
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The amount of data that businesses, governments and academic projects collect is rapidly
increasing. Consequently, solving problem (1) arising in practice is often impossible on a single
node, as merely storing the whole dataset on a single node becomes infeasible. This necessitates
the use of a distributed computational framework, in which the training data describing the problem
is stored in a distributed fashion across a number of interconnected nodes and the optimization
problem is solved collectively by the cluster of nodes.

Loosely speaking, one can use any network of nodes to simulate a single powerful node, on which
one can run any algorithm. The practical issue is that the time it takes to communicate between
a processor and memory on the same node is normally many orders of magnitude smaller than the
time needed for two nodes to communicate; similar conclusions hold for the energy required [89].
Further, in order to take advantage of parallel computing power on each node, it is necessary to
subdivide the problem into subproblems suitable for independent/parallel computation.

State-of-the-art optimization algorithms are typically inherently sequential. Moreover, they
usually rely on performing a large number of very fast iterations. The problem stems from the fact
that if one needs to perform a round of communication after each iteration, practical performance
drops down dramatically, as the round of communication is much more time-consuming than a
single iteration of the algorithm.

These considerations have lead to the development of novel algorithms specialized for distributed
optimization (we defer thorough review until Section 2). For now, we note that most of the results
in literature work in the setting where the data is evenly distributed, and further suppose that
K � n/K where K is the number of nodes. This is indeed often close to reality when data is stored
in a large data center. Additionally, an important subfield of the field of distributed learning relies
on the assumption that each machine has a representative sample of the data available locally. That
is, it is assumed that each machine has an IID sample from the underlying distribution. However,
this assumption is often too strong; in fact, even in the data center paradigm this is often not the
case since the data on a single node can be close to each other on a temporal scale, or clustered
by its geographical origin. Since the patterns in the data can change over time, a feature might be
present frequently on one node, while not appear on another at all.

The federated optimization setting describes a novel optimization scenario where none of the
above assumptions hold. We outline this setting in more detail in the following section.

1.2 The Setting of Federated Optimization

The main purpose of this paper is to bring to the attention of the machine learning and optimization
communities a new and increasingly practically relevant setting for distributed optimization, where
none of the typical assumptions are satisfied, and communication efficiency is of utmost importance.
In particular, algorithms for federated optimization must handle training data with the following
characteristics:

• Massively Distributed: Data points are stored across a large number of nodes K. In
particular, the number of nodes can be much bigger than the average number of training
examples stored on a given node (n/K).

• Non-IID: Data on each node may be drawn from a different distribution; that is, the data
points available locally are far from being a representative sample of the overall distribution.
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• Unbalanced: Different nodes may vary by orders of magnitude in the number of training
examples they hold.

In this work, we are particularly concerned with sparse data, where some features occur on
a small subset of nodes or data points only. Although this is not necessary characteristic of the
setting of federated optimization, we will show that the sparsity structure can be used to develop
an effective algorithm for federated optimization. Note that data arising in the largest machine
learning problems being solved nowadays, ad click-through rate predictions, are extremely sparse.

We are particularly interested in the setting where training data lives on users’ mobile devices
(phones and tablets), and the data may be privacy sensitive. The data {xi, yi} is generated through
device usage, e.g., via interaction with apps. Examples include predicting the next word a user will
type (language modelling for smarter keyboard apps), predicting which photos a user is most likely
to share, or predicting which notifications are most important.

To train such models using traditional distributed learning algorithms, one would collect the
training examples in a centralized location (data center) where it could be shuffled and distributed
evenly over proprietary compute nodes. In this paper we propose and study an alternative model:
the training examples are not sent to a centralized location, potentially saving significant network
bandwidth and providing additional privacy protection. In exchange, users allow some use of their
devices’ computing power, which shall be used to train the model.

In the communication model of this paper, in each round we send an update δ ∈ Rd to a central-
ized server, where d is the dimension of the model being computed/improved. The update δ could
be a gradient vector, for example. While it is certainly possible that in some applications the δ may
encode some private information of the user, it is likely much less sensitive (and orders of magnitude
smaller) than the original data itself. For example, consider the case where the raw training data
is a large collection of video files on a mobile device. The size of the update δ will be independent
of the size of this local training data corpus. We show that a global model can be trained using
a small number of communication rounds, and so this also reduces the network bandwidth needed
for training by orders of magnitude compared to copying the data to the datacenter.

Further, informally, we choose δ to be the minimum piece of information necessary to improve
the global model; its utility for other uses is significantly reduced compared to the original data.
Thus, it is natural to design a system that does not store these δ’s longer than necessary to update
the model, again increasing privacy and reducing liability on the part of the centralized model
trainer. This setting, in which a single vector δ ∈ Rd is communicated in each round, covers most
existing first-order methods, including dual methods such as CoCoA+ [57].

Communication constraints arise naturally in the massively distributed setting, as network
connectivity may be limited (e.g., we may wish to deffer all communication until the mobile device
is charging and connected to a wi-fi network). Thus, in realistic scenarios we may be limited to only
a single round of communication per day. This implies that, within reasonable bounds, we have
access to essentially unlimited local computational power. Consequently, the practical objective is
solely to minimize the number of communication rounds.

The main purpose of this work is initiate research into, and design a first practical implementa-
tion of federated optimization. Our results suggest that with suitable optimization algorithms, very
little is lost by not having an IID sample of the data available, and that even in the presence of a
large number of nodes, we can still achieve convergence in relatively few rounds of communication.
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2 Related Work

In this section we provide a detailed overview of the relevant literature. We particularly focus on
algorithms that can be used to solve problem (1) in various contexts. First, in Sections 2.1 and 2.2
we look at algorithms designed to be run on a single computer. In Section 2.3 we follow with a
discussion of the distributed setting, where no single node has direct access to all data describing f .
We describe a paradigm for measuring the efficiency of distributed methods, followed by overview
of existing methods and commentary on whether they were designed with communication efficiency
in mind or not.

2.1 Baseline Algorithms

In this section we shall describe several fundamental baseline algorithms which can be used to solve
problems of the form (1).

Gradient Descent. A trivial benchmark for solving problems of structure (1) is Gradient Descent
(GD) in the case when functions fi are smooth (or Subgradient Descent for non-smooth functions)
[69]. The GD algorithm performs the iteration

wt+1 = wt − ht∇f(wt),

where ht > 0 is a stepsize parameter. As we mentioned earlier, the number of functions, or equiva-
lently, the number of training data pairs, n, is typically very large. This makes GD impractical, as
it needs to process the whole dataset in order to evaluate a single gradient and update the model.

Gradient descent can be substantially accelerated, in theory and practice, via the addition of
a momentum term. Acceleration ideas for gradient methods in convex optimization can be traced
back to the work of Polyak [73] and Nesterov [68, 69]. While accelerated GD methods have a
substantially better convergence rate, in each iteration they still need to do at least one pass over
all data. As a result, they are not practical for problems where n very large.

Stochastic Gradient Descent. At present a basic, albeit in practice extremely popular, alter-
native to GD is Stochastic Gradient Descent (SGD), dating back to the seminal work of Robbins
and Monro [82]. In the context of (1), SGD samples a random function (i.e., a random data-label
pair) it ∈ {1, 2, . . . , n} in iteration t, and performs the update

wt+1 = wt − ht∇fit(wt),

where ht > 0 is a stepsize parameter. Intuitively speaking, this method works because if it is
sampled uniformly at random from indices 1 to n, the update direction is an unbiased estimate
of the gradient — E[∇fit(w)] = ∇f(w). However, noise introduced by sampling slows down
the convergence, and a diminsihing sequence of stepsizes hk is necessary for convergence. For
a theoretical analysis for convex functions we refer the reader to [66, 64, 65] and [87, 93] for
SVM problems. In a recent review [12], the authors outline further research directions. For a
more practically-focused discussion, see [11]. In the context of neural networks, computation of
stochastic gradients is referred to as backpropagation [49]. Instead of specifying the functions fi and
its gradients explicitly, backpropagation is a general way of computing the gradient. Performance
of several competitive algorithms for training deep neural networks has been compared in [70].
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One common trick that has been practically observed to provide superior performance, is to re-
place random sampling in each iteration by going through all the functions in a random order. This
ordering is replaced by another random order after each such cycle [10]. Theoretical understanding
of this phenomenon had been a long standing open problem, understood recently in [40].

The core differences between GD and SGD can be summarized as follows. GD has a fast
convergence rate, but each iteration in the context of (1) is potentially very slow, as it needs to
process the entire dataset in each iteration. On the other hand, SGD has slower convergence rate,
but each iteration is fast, as the work needed is independent of number of data points n. For the
problem structure of (1), SGD is usually better, as for practical purposes relatively low accuracy is
required, which SGD can in extreme cases achieve after single pass through data, while GD would
make just a single update. However, if a high accuracy was needed, GD or its faster variants would
prevail.

2.2 A Novel Breed of Randomized Algorithms

Recent years have seen an explosion of new randomized methods which, in a first approximation,
combine the benefits of cheap iterations of SGD with fast convergence of GD. Most of these methods
can be said to belong to one of two classes — dual methods of the randomized coordinate descent
variety, and primal methods of the stochastic gradient descent with variance reduction variety.

Randomized Coordinate Descent. Although the idea of coordinate descent has been around
for several decades in various contexts (and for quadratic functions dates back even much further, to
works on the Gauss-Seidel methods), it came to prominence in machine learning and optimization
with the work of Nesterov [67] which equipped the method with a randomization strategy. Nes-
terov’s work on Randomized Coordinate Descent (RCD) popularized the method and demonstrated
that randomization can be very useful for problems of structure (1).

The RCD algorithm in each iteration chooses a random coordinate jt ∈ {1, . . . , d} and performs
the update

wt+1 = wt − hjt∇jtf(wt)ejt ,

where hjt > 0 is a stepsize parameter, ∇jf(w) denotes the jth partial derivative of function f ,
and ej is the jth unit standard basis vector in Rd. For the case of generalized linear models,
when the data exhibits certain sparsity structure, it is possible to evaluate the partial derivative
∇jf(w) efficiently, i.e., without need to process the entire dataset, leading to a practically efficient
algorithm, see for instance [79, Section 6].

Numerous follow-up works extended the concept to proximal setting [79], single processor paral-
lelism [15, 80] and develop efficiently implementable acceleration [51]. All of these three properties
were connected in a single algorithm in [35], to which we refer the reader for a review of the early
developments in the area of RCD, particularly to overview in Table 1 therein.

Stochastic Dual Coordinate Ascent. When an explicit strongly convex, but not necessarily
smooth, regularizer is added to the average loss (1), it is possible to write down its (Fenchel) dual
and the dual variables live in n-dimensional space. Applying RCD leads to an algorithm for solving
(1) known under the name Stochastic Dual Coordinate Ascent [88]. This method has gained broad
popularity with practicioners, likely due to the fact that for a number of loss functions, the method
comes without the need to tune any hyper-parameters. The work [88] was first to show that by
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applying RCD [79] to the dual problem, one also solves the primal problem (1). For a theoretical
and computational comparison of applying RCD to the primal versus the dual problems, see [21].

A directly primal-dual randomized coordinate descent method called Quartz, was developed in
[75]. It has been recently shown in SDNA [74] that incorporating curvature information contained
in random low dimensional subspaces spanned by a few coordinates can sometimes lead to dramatic
speedups. Recent works [86, 20] interpret the SDCA method in primal-only setting, shedding light
onto why this method works as a SGD method with a version of variance reduction property.

We now move the the second class of novel randomized algorithms which can be generally
interpreted as variants of SGD, with an attempt to reduce variance inherent in the process of
gradient estimation.

Stochastic Average Gradient. The first notable algorithm from this class is the Stochastic
Average Gradient (SAG) [83, 85]. The SAG algorithm stores an average of n gradients of functions
fi evalueated at different points in the history of the algorithm. In each iteration, the algotithm,
updates randomly chosen gradient out of this average, and makes a step in the direction of the
average. This way, complexity of each iteration is independent of n, and the algorithm enjoys a
fast convergence. The drawback of this algorithm is that it needs to store n gradients in memory
because of the update operation. In the case of generalized linear models, this memory requirement
can be reduced to the need of n scalars, as the gradient is a scalar multiple of the data point. This
methods has been recently extended for use in Conditional Random Fields [84]. Nevertheless, the
memory requirement makes the algorithm infeasible for application even in relatively small neural
networks.

A followup algorithm SAGA [26] and its simplification [25], modifies the SAG algorithm to
achieve unbiased estimate of the gradients. The memory requirement is still present, but the method
significantly simplifies theoretical analysis, and yields a slightly stronger convergence guarantee.

Stochastic Variance Reduced Gradient. Another algorithm from the SGD class of methods
is Stochastic Variance Reduced Gradient1 (SVRG) [43] and [47, 100, 44]. The SVRG algorithm runs
in two nested loops. In the outer loop, it computes full gradient of the whole function, ∇f(wt), the
expensive operation one tries to avoid in general. In the inner loop, the update step is iteratively
computed as

w = w − h[∇fi(w)−∇fi(wt) +∇f(wt)].

The core idea is that the stochastic gradients are used to estimate the change of the gradient
between point wt and w, as opposed to estimating the gradient directly. We return to more
detailed description of this algorithm in Section 3.2.

The SVRG has the advantage that it does not have the additional memory requirements of
SAG/SAGA, but it needs to process the whole dataset every now and then. Indeed, comparing
to SGD, which typically makes significant progress in the first pass through data, SVRG does
not make any update whatsoever, as it needs to compute the full gradient. This and several
other practical issues have been recently addressed in [41], making the algorithm competitive with
SGD early on, and superior in later iterations. Although there is nothing that prevents one from
applying SVRG and its variants in deep learning, we are not aware of any systematic assessment of

1The same algorithm was simultaneously introduced as Semi-Stochastic Gradient Descent (S2GD) [47]. Since the
former work gained more attention, we will for clarity use the name SVRG throughout this paper.
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its performance in this setting. Vanilla experiments in [43, 77] suggest that SVRG matches basic
SGD, and even outperforms in the sense that variance of the iterates seems to be significantly
smaller for SVRG. However, in order to draw any meaningful conclusions, one would need to
perform extensive experiments and compare with state-of-the-art methods usually equipped with
numerous heuristics.

There already exist attempts at combining SVRG type algorithms with randomized coordinate
descent [46, 97]. Although these works highlight some interesting theoretical properties, the algo-
rithms do not seem to be practical at the moment; more work is needed in this area. The first
attempt to unify algorithms such as SVRG and SAG/SAGA already appeared in the SAGA paper
[26], where the authors interpret SAGA as a midpoint between SAG and SVRG. Recent work [76]
presents a general algorithm, which recovers SVRG, SAGA, SAG and GD as special cases, and
obtains an asynchronous variant of these algorithms as a byproduct of the formulation. SVRG
can be equipped with momentum (and negative momentum), leading to a new accelerated SVRG
method known as Katyusha [3]. SVRG can be further accelerated via a raw clustering mechanism
[4].

Stochastic Quasi-Newton Methods. A third class of new algorithms are the Stochastic quasi-
Newton methods [16, 9]. These algorithms in general try to mimic the limited memory BFGS
method (L-BFGS) [54], but model the local curvature information using inexact gradients — coming
from the SGD procedure. A recent attempt at combining these methods with SVRG can be found
in [63]. In [38], the authors utilize recent progress in the area of stochastic matrix inversion [39]
revealing new connections with quasi-Newton methods, and devise a new stochastic limited memory
BFGS method working in tandem with SVRG. The fact that the theoretical understanding of this
branch of research is the least understood and having several details making the implementation
more difficult compared to the methods above may limit its wider use. However, this approach
could be most promising for deep learning once understood better.

One important aspect of machine learning is that the Empirical Risk Minimization problem
(1) we are solving is just a proxy for the Expected Risk we are ultimately interested in. When
one can find exact minimum of the empirical risk, everything reduces to balancing approximation–
estimation tradeoff that is the object of abundant literature — see for instance [96]. An assessment
of asymptotic performance of some optimization algorithms as learning algorithms in large-scale
learning problems2 has been introduced in [13]. Recent extension in [41] has shown that the variance
reduced algorithms (SAG, SVRG, . . . ) can in certain setting be better learning algorithms than
SGD, not just better optimization algorithms.

Further Remarks. A general method, referred to as Universal Catalyst [53, 37], effectively
enables conversion of a number of the algorithms mentioned in the previous sections to their ‘ac-
celerated’ variants. The resulting convergence guarantees nearly match lower bounds in a number
of cases. However, the need to tune additional parameter makes the method rather impractical.

Recently, lower and upper bounds for complexity of stochastic methods on problems of the form
(1) were recently obtained in [99].

2See [13, Section 2.3] for their definition of large scale learning problem.
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2.3 Distributed Setting

In this section we review the literature concerning algorithms for solving (1) in the distributed
setting. When we speak about distributed setting, we refer to the case when the data describing
the functions fi are not stored on any single storage device. This can include setting where one’s
data just don’t fit into a single RAM/computer/node, but two is enough. This also covers the case
where data are distributed across several datacenters around the world, and across many nodes in
those datacenters. The point is that in the system, there is no single processing unit that would
have direct access to all the data. Thus, the distributed setting does not include single processor
parallelism3. Compared with local computation on any single node, the cost of communication
between nodes is much higher both in terms of speed and energy consumption [6, 89], introducing
new computational challenges, not only for optimization procedures.

We first reveiew a theoretical decision rule for determining the practically best algorithm for
a given problem in Section 2.3.1, followed by overview of distributed algorithms in Section 2.3.2,
and communication efficient algorithms in Section 2.3.3. The following paradigm highlights why
the class of communication efficient algorithms are not only preferable choice in the trivial sense.
The communication efficient algorithms provide us with much more flexible tools for designing
overall optimization procedure, which can make the algorithms inherently adaptive to differences
in computing resources and architectures.

2.3.1 A Paradigm for Measuring Distributed Optimization Efficiency

This section reviews a paradigm for comparing efficency of distributed algorithms. Let us suppose
we have many algorithms A readily available to solve the problem (1). The question is: “How do
we decide which algorithm is the best for our purpose?” Initial version of this reasoning already
appeared in [57], and applies also to [78].

First, consider the basic setting on a single machine. Let us define IA(ε) as the number of
iterations algorithm A needs to converge to some fixed ε accuracy. Let TA be the time needed for a
single iteration. Then, in practice, the best algorithm is one that minimizes the following quantity.4

TIME = IA(ε)× TA. (2)

The number of iterations IA(ε) is usually given by theoretical guarantees or observed from
experience. The TA can be empirically observed, or one can have idea of how the time needed per
iteration varies between different algorithms in question. The main point of this simplified setting
is to highlight key issue with extending algorithms to the distributed setting.

The natural extension to distributed setting is the following. Let c be time needed for communi-
cation during a single iteration of the algorithm A. For sake of clarity, we suppose we consider only
algorithms that need to communicate a single vector in Rd per round of communication. Note that
essentially all first-order algorithms fall into this category, so this is not a restrictive assumption,
which effectively sets c to be a constant, given any particular distributed architecture one has at
disposal.

TIME = IA(ε)× (c+ TA) (3)

3It should be noted that some of the works presented in this section were originally presented as parallel algorithms.
We include them anyway as many of the general ideas in carry over to the distributed setting.

4Considering only algorithms that can be run on a given machine.
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The communication cost c does not only consist of actual exchange of the data, but also many
other things like setting up and closing a connection between nodes. Consequently, even if we need
to communicate very small amount of information, c always remains above a nontrivial threshold.

Most, if not all, of the current state-of-the-art algorithms that are the best in setting of (2), are
stochastic and rely on doing very large number (big IA(ε)) of very fast (small TA) iterations. As a
result, even relatively small c can cause the practical performance of those algorithms drop down
dramatically, because c� TA.

This has been indeed observed in practice, and motivated development of new methods, designed
with this fact in mind from scratch, which we review in Section 2.3.2. Although this is a good
development for academia — motivation to explore new setting, it is not necessarily a good news
for the industry.

Many companies have spent significant resources to build excellent algorithms to tackle their
problems of form (1), fine tuned to the specific patterns arising in their data and side applications
required. When the data companies collect grows too large to be processed on a single machine,
it is understandable that they would be reluctant to throw away their fine tuned algorithms. This
issue was first time explicitly addressed in CoCoA [57], which is rather framework than a algorithm,
which works as follows (more detailed description follows in Section 2.3.3).

The CoCoA framework formulates a general way to form a specific subproblem on each node,
based on data available locally and a single shared vector that needs to be distributed to all nodes.
Within a iteration of the framework, each node uses any optimization algorithm A, to reach a
relative Θ accuracy on the local subproblem. Updates from all nodes are then aggregated to form
an update to the global model.

The efficiency paradigm changes as follows:

TIME = I(ε,Θ)× (c+ TA(Θ)) (4)

The number of iterations I(ε,Θ) is independent of choice of the algorithm A used as a local
solver, because there is theory predicting how many iterations of the CoCoA framework are needed
to achieve ε accuracy, if we solve the local subproblems to relative Θ accuracy. Here, Θ = 0 would
mean we require the subproblem to be solved to optimality, and Θ = 1 that we don’t need any
progress whatsoever. The general upper bound on number of iterations of the CoCoA framework
is I(ε,Θ) = O(log(1/ε))

1−Θ [42, 58, 57] for strongly convex objectives. From the inverse dependence
on 1 − Θ, we can see that there is a fundamental limit to the number of communication rounds
needed. Hence, it will probably not be efficient to spend excessive resources to attain very high
local accuracy (small Θ). Time per iteration TA(Θ) denotes the time algorithm A needs to reach
the relative Θ accuracy on the local subproblem.

This efficiency paradigm is more powerful for a number of reasons.

1. It allows practicioners to continue using their fine-tuned solvers, that can run only on single
machine, instead of having to implement completely new algorithms from scratch.

2. The actual performance in terms of number of rounds of communication is independent from
the choice of optimization algorithm, making it much easier to optimize the overall perfor-
mance.

3. Since the constant c is architecture dependent, running optimal algorithm on one node net-
work does not have to be optimal on another. In the setting (3), this could mean moving from
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one cluster to another, a completely different algorithm is optimal, which is a major change.
In the setting (4), this can be improved by simply changing Θ, which is typically implicitly
determined by number of iterations algorithm A runs for.

In this work we propose a different way to formulate the local subproblems, which does not rely
on duality as in the case of CoCoA. We also highlight that some algorithms seem to be particularly
suitable to solve those local subproblems, effectively leading to novel algorithms for distributed
optimization.

2.3.2 Distributed Algorithms

As discussed below in Section 2.3.1, this setting creates unique challenges. Distributed optimization
algorithms typically require a small number (1–4) of communication rounds per iteration. By
communication round we typically understand a single MapReduce operation [24], implemented
efficiently for iterative procedures [36], such as optimization algorithms. Spark [102] has been
established as a popular open source framework for implementing distributed iterative algorithms,
and includes several of the algorithms mentioned in this section.

Optimization in distributed setting has been studied for decades, tracing back to at least works
of Bertsekas and Tsitsiklis [8, 7, 95]. Recent decade has seen an explosion of interest in this area,
greatly motivated by rapid increase of data availability in machine learning applications.

Much of the recent effort was focused on creating new optimization algorithms, by building
variants of popular algorithms suitable for running on a single processor (See Section 2.1). A
relatively common feature of many of these efforts is a) The computation overhead in the case
of synchronous algorithms, and b) The difficulty of analysing asynchronous algorithms without
restrictive assumptions. By computation overhead we mean that if optimization program runs
in a compute-communicate-update cycle, the update part cannot start until all nodes finish their
computation. This causes some of the nodes be idle, while remaining nodes finish their part of
computation, clearly an inefficient use of computational resources. This pattern often diminishes or
completely reverts potential speed-ups from distributed computation. In the asynchronous setting
in general, an update can be applied to a parameter vector, followed by computation done based
on a now-outdated version of that parameter vector. Formally grasping this pattern, while keeping
the setting realistic is often quite challenging. Consequently, this is very open area, and optimal
choice of algorithm in any particular case is often heavily dependent on the problem size, details
in its structure, computing architecture available, and above all, expertise of the practitioner.

This general issue is best exhibited with numerous attempts at parallelizing the Stochastic
Gradient Descent and its variants. As an example, [27, 29] provide theoretically linear speedup
with number of nodes, but are difficult to implement efficiently, as the nodes need to synchronize
frequently in order to compute reasonable gradient averages. As an alternative, no synchronization
between workers is assumed in [71, 2, 31]. Consequently, each worker reads wt from memory,
parameter vector w at time point t, computes a stochastic gradient ∇fi(wt) and applies it to
already changed state of the parameter vector wt+τ . The above mentioned methods assume that
the delay τ is bounded by a constant, which is not necessarily realistic assumption5. Some of the

5A bound on the delay τ can be deterministic or probabilistic. However, in practice, the delays are mostly about
the number of nodes in the network, and there rare very long delays, when a variety of operating system-related events
can temporarily postpone computation of a single node. To the best of our knowledge, no formal assumptions reflect
this setting well. In fact, two recent works [60, 48] highlight subtle but important issue with labelling of iterates in the
presence of asynchrony, rendering most of the existing analyses of asynchronous optimization algorithms incorrect.
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works also introduce assumptions on the sparsity structures or conditioning of the Hessian of f .
Asymptotically optimal convergent rates were proven in [30] with considerably milder assumptions.
Improved analysis of asynchronous SGD was also presented in [22], simultaneously with a version
that uses lower-precision arithmetic was introduced without sacrificing performance, which is a
trend that might find use in other parts of machine learning in the following years.

The negative effect of asynchronous distributed implementations of SGD seem to be negligible,
when applied to the task of training very large deep networks — which is the ultimate industrial
application of today. The practical usefulness has been demonstrated for instance by Google’s
Downpour SGD [23] and Microsoft’s Project Adam [18].

The first distributed versions of Coordinate Descent algorithms were the Hydra and its accel-
erated variant, Hydra2, [81, 34], which has been demonstrated to be very efficient on large sparse
problems implemented on a computing cluster. An extended version with description of implemen-
tation details is presented in [61]. Effect of asynchrony has been explored and partially theoretically
understood in the works of [56, 55]. Another asynchronous, rather framework than an algorithm,
for coordinate updates, applicable to wider class of objectives is presented in [72].

The data are assumed to be partitioned to nodes by features/coordinates in the above algo-
rithms. This setting can be restrictive if one is not able to distribute the data beforehand, but
instead the data are distributed “as is” — in which case the data are most commonly distributed
by data points. This does not need to be an issue, if a dual version of coordinate descent is used —
in which the distribution is done by data points [94] followed by works on Communication Efficient
Dual Cooridante Ascent, described in next section. The use of duality however requires usage of
additional explicit strongly convex regularization term, hence can be used to solve smaller class of
problems. Despite the apparent practical disadvantages, variants of distributed coordinate descent
algorithms are among the most widely used methods in practice.

Moving to variance reduced methods, distributed versions of SAG/SAGA algorithms have not
been proposed yet. However, several distributed versions of the SVRG algorithm already exist. A
scheme for replicating data to simulate iid sampling in distributed environment was proposed in
[50]. Although the performance is well analysed, the setting requires significantly stronger control
of data distribution which is rarely practicaly feasible. A relatively similar method to Algorithm 3
presented here has been proposed in [78], which was analysed, and in [59], a largely experimental
work that can be also cast as communication efficient — described in detail in Section 2.3.3.

Another class of algorithms relevant for this work is Alternating Direction Method of Multipliers
(ADMM) [14, 28]. These algorithms are in general applicable to much broader class of problems,
and hasn’t been observed to perform better than other algorithms presented in this section, in the
machine learning setting of (1).

2.3.3 Communication-Efficient Algorithms

In this Section, we describe algorithms that can be cast as “communication efficient”. The common
theme of the algorithms presented here, is that in order to perform better in the sense of (3), one
should design algorithms with high TA, in order to make the cost of communcation c negligible.

Before moving onto specific methods, it is worth the noting some of the core limits concerning
the problem we are trying to solve in distributed setting. Fundamental limitations of stochastic
versions of the problem (1) in terms of runtime, communication costs and number of samples used
are studied in [90]. Efficient algorithms and lower bounds for distributed statistical estimation are
established in [104, 103].
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However, these works do not fit into our framework, because they assume that each node has
access to data generated IID from a single distribution. In the case of [104, 103] also K � n/K,
that the number of nodes K is much smaller than the number of data point on each node is also
assumed. As we stress in the Introduction, these assumptions are far from being satisfied in our
setting. Intuitively, relaxing these assumptions should make the problem harder. However, it is
not as straightforward to conclude this, as there are certainly particular non-iid data distributions
that simplify the problem — for instance if data are distributed according to separability structure
of the objective. Lower bounds on communication complexity of distributed convex optimization
of (1) are presented in [5], concluding that for IID data distributions, existing algorithms already
achieve optimal complexity in specific settings.

Probably first, rather extreme, work [107] proposed to parallelize SGD in a single round of
communication. Each node simply runs SGD on the data available locally, and their outputs are
averaged to form a final result. This approach is however not very robust to differences in data
distributions available locally, and it has been shown [91, Appendix A] that in general it cannot
perform better than using output of a single machine, ignoring all the other data.

Shamir et al. proposed the DANE algorithm, Distributed Approximate Newton [91], to exactly
solve a general subproblem available locally, before averaging their solutions. The method relies
on similarity of Hessians of local objectives, representing their iterations as an average of inexact
Newton steps. We describe the algorithm in greater detail in Section 3.4 as our proposed work
builds on it. A quite similar approach was proposed in [59], with richer class class of subproblems
that can be formulated locally, and solved approximately. An analysis of inexact version of DANE
and its accelerated variant, AIDE, appeared recently in [78]. Inexact DANE is closely related to
the algorithms presented in this paper. We, however, continue in different direction shaped by the
setting of federated optimization.

The DiSCO algorithm [105] of Zhang and Xiao is based on inexact damped Newton method. The
core idea is that the inexact Newton steps are computed by distributed preconditioned conjugate
gradient, which can be very fast, if the data are distributed in an IID fashion, enabling a good
preconditioner to be computed locally. The theoretical upper bound on number of rounds of
communication improves upon DANE and other methods, and in certain settings matches the
lower bound presented in [5]. The DiSCO algorithm is related to [52, 106], a distributed truncated
Newton method. Although it was reported to perform well in practice, the total number of conjugate
gradient iterations may still be high to be considered a communication efficient algorithm.

Common to the above algorithms is the assumption that each node has access to data points
sampled IID from the same distribution. This assumption is not required only in theory, but can
cause the algorithms to converge significantly slower or even diverge (as reported for instance in
[91, Table 3]). Thus, these algorithms, at least in their default form, are not suitable for the setting
of Federated Optimization presented here.

An algorithm that bypasses the need for IID data assumption is CoCoA, which provably con-
verges under any distribution of the data, while the convergence rate does depend on properties
of the data distribution. The first version of the algorithm was proposed as DisDCA in [101],
without convergence guarantees. First analysis was introduced in [42], with further improvements
in [58], and a more general version in [57]. Recently, its variant for L1-regularized objectives was
introduced in [92].

The CoCoA framework formulates general local subproblems based on the dual form of (1)
(See for instance [57, Eq. (2)]). Data points are distributed to nodes, along with corresponding
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dual variables. Arbitrary optimization algorithm is used to attain a relative Θ accuracy on the
local subproblem — by changing only local dual variables. These updates have their corresponding
updates to primal variable w, which are synchronously aggregated (could be averaging, adding up,
or anything in between; depending on the local subproblem formulation).

From the description in this section it appears that the CoCoA framework is the only usable tool
for the setting of Federated Optimization. However, the theoretical bound on number of rounds
of communications for ill-conditioned problems scales with the number of nodes K. Indeed, as we
will show in Section 4 on real data, CoCoA framework does converge very slowly.

3 Algorithms for Federated Optimization

In this section we introduce the first algorithm that was designed with the unique challenges of fed-
erated optimization in mind. Before proceeding with the explanation, we first revisit two important
and at first sight unrelated algorithms. The connection between these algorithms helped to moti-
vate our research. Namely, the algorithms are the Stochastic Variance Reduced Gradient (SVRG)
[43, 47], a stochastic method with explicit variance reduction, and the Distributed Approximate
Newton (DANE) [91] for distributed optimization.

The descriptions are followed by their connection, giving rise to a new distributed optimization
algorithm, at first sight almost identical to the SVRG algorithm, which we call Federated SVRG
(FSVRG).

Although this algorithm seems to work well in practice in simple circumstances, its performance
is still unsatisfactory in the general setting we specify in Section 3.3. We proceed by making the
FSVRG algorithm adaptive to different local data sizes, general sparsity patterns and significant
differences in patterns in data available locally, and those present in the entire data set.

3.1 Desirable Algorithmic Properties

It is a useful thought experiment to consider the properties one would hope to find in an algorithm
for the non-IID, unbalanced, and massively-distributed setting we consider. In particular:

(A) If the algorithm is initialized to the optimal solution, it stays there.

(B) If all the data is on a single node, the algorithm should converge in O(1) rounds of commu-
nication.

(C) If each feature occurs on a single node, so the problems are fully decomposable (each machine
is essentially learning a disjoint block of parameters), then the algorithm should converge in
O(1) rounds of communication6.

(D) If each node contains an identical dataset, then the algorithm should converge in O(1) rounds
of communication.

For convex problems, “converges” has the usual technical meaning of finding a solution sufficiently
close to the global minimum, but these properties also make sense for non-convex problems where
“converge” can be read as “finds a solution of sufficient quality”. In these statements, O(1) round
is ideally exactly one round of communication.

6This is valid only for generalized linear models.
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Property (A) is valuable in any optimization setting. Properties (B) and (C) are extreme cases
of the federated optimization setting (non-IID, unbalanced, and sparse), whereas (D) is an extreme
case of the classic distributed optimization setting (large amounts of IID data per machine). Thus,
(D) is the least important property for algorithms in the federated optimization setting.

3.2 SVRG

The SVRG algorithm [43, 47] is a stochastic method designed to solve problem (1) on a single node.
We present it as Algorithm 1 in a slightly simplified form.

Algorithm 1 SVRG

1: parameters: m = number of stochastic steps per epoch, h = stepsize
2: for s = 0, 1, 2, . . . do
3: Compute and store ∇f(wt) = 1

n

∑n
i=1∇fi(wt) . Full pass through data

4: Set w = wt

5: for t = 1 to m do
6: Pick i ∈ {1, 2, . . . , n}, uniformly at random
7: w = w − h

(
∇fi(w)−∇fi(wt) +∇f(wt)

)
. Stochastic update

8: end for
9: wt+1 = w

10: end for

The algorithm runs in two nested loops. In the outer loop, it computes gradient of the entire
function f (Line 3). This constitutes for a full pass through data — in general expensive operation
one tries to avoid unless necessary. This is followed by an inner loop, where m fast stochastic
updates are performed. In practice, m is typically set to be a small multiple (1–5) of n. Although
the theoretically optimal choice for m is a small multiple of a condition number [47, Theorem 6],
this is often of the same order as n in practice.

The central idea of the algorithm is to avoid using the stochastic gradients to estimate the
entire gradient ∇f(w) directly. Instead, in the stochastic update in Line 7, the algorithm evaluates
two stochastic gradients, ∇fi(w) and ∇fi(wt). These gradients are used to estimate the change
of the gradient of the entire function between points wt and w, namely ∇f(w) − ∇f(wt). Using
this estimate together with ∇f(wt) pre-computed in the outer loop, yields an unbiased estimate of
∇f(w).

Apart from being an unbiased estimate, it could be intuitively clear that if w and wt are close to
each other, the variance of the estimate ∇fi(w)−∇fi(wt) should be small, resulting in estimate of
∇f(w) with small variance. As the inner iterate w goes further, variance grows, and the algorithm
starts a new outer loop to compute new full gradient ∇f(wt+1) and reset the variance.

The performance is well understood in theory. For λ-strongly convex f and L-smooth functions
fi, convergence results are in the form

E[f(wt)− f(w∗)] ≤ ct[f(w0)− f(w∗)], (5)

where w∗ is the optimal solution, and c = Θ
(

1
mh

)
+ Θ(h).7

7See [47, Theorem 4] and [43, Theorem 1] for details.
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It is possible to show [47, Theorem 6] that for appropriate choice of parameters m and h, the
convergence rate (5) translates to the need of

(n+O(L/λ)) log(1/ε)

evaluations of ∇fi for some i to achieve E[f(w)− f(w∗)] < ε.

3.3 Distributed Problem Formulation

In this section, we introduce notation and specify the structure of the distributed version of the
problem we consider (1), focusing on the case where the fi are convex. We assume the data
{xi, yi}ni=1, describing functions fi are stored across a large number of nodes.

Let K be the number of nodes. Let Pk for k ∈ {1, . . . ,K} denote a partition of data point
indices {1, . . . , n}, so Pk is the set stored on node k, and define nk = |Pk|. That is, we assume that
Pk ∩ Pl = ∅ whenever k 6= l, and

∑K
k=1 nk = n. We then define local empirical loss as

Fk(w)
def
=

1

nk

∑
i∈Pk

fi(w), (6)

which is the local objective based on the data stored on machine k. We can then rephrase the
objective (1) as

f(w) =
K∑
k=1

nk
n
Fk(w) =

K∑
k=1

nk
n
· 1

nk

∑
i∈Pk

fi(w). (7)

The way to interpret this structure is to see the empirical loss f(w) = 1
n

∑n
i=1 fi(w) as a convex

combination of the local empirical losses Fk(w), available locally to node k. Problem (1) then takes
the simplified form

min
w∈Rd

f(w) ≡
K∑
k=1

nk
n
Fk(w). (8)

3.4 DANE

In this section, we introduce a general reasoning providing stronger intuitive support for the DANE
algorithm [91], which we describe in detail below. We will follow up on this reasoning in Appendix A
and draw a connection between two existing methods that was not known in the literature.

If we wanted to design a distributed algorithm for solving the above problem (8), where node
k contains the data describing function Fk. The first, and as we shall see, a rather naive idea is
to ask each node to minimize their local functions, and average the results (a variant of this idea
appeared in [107]):

wt+1
k = arg min

w∈Rd
Fk(w), wt+1 =

K∑
k=1

nk
n
wt+1
k .

Clearly, it does not make sense to run this algorithm for more than one iteration as the output
w will always be the same. This is simply because wt+1

k does not depend on t. In other words,
this method effectively performs just a single round of communication. While the simplicity is
appealing, the drawback of this method is that it can’t work. Indeed, there is no reason to expect
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that in general the solution of (8) will be a weighted average of the local solutions, unless the local
functions are all the same — in which case we do not need a distributed algorithm in the first place
and can instead solve the much simpler problem minw∈Rd F1(w). This intuitive reasoning can be
also formally supported, see for instance [91, Appendix A].

One remedy to the above issue is to modify the local problems before each aggregation step.
One of the simplest strategies would be to perturb the local function Fk in iteration t by a quadratic
term of the form: −(atk)

Tw + µ
2‖w − w

t‖2 and to ask each node to solve the perturbed problem
instead. With this change, the improved method then takes the form

wt+1
k = arg min

w∈Rd
Fk(w)− (atk)

Tw +
µ

2
‖w − wt‖2, wt+1 =

1

K

K∑
k=1

wt+1
k . (9)

The idea behind iterations of this form is the following. We would like each node k ∈ [K] to
use as much curvature information stored in Fk as possible. By keeping the function Fk in the
subproblem in its entirety, we are keeping the curvature information nearly intact — the Hessian
of the subproblem is ∇2Fk + µI, and we can even choose µ = 0.

As described, the method is not yet well defined, since we have not described how the vectors atk
would change from iteration to iteration, and how one should choose µ. In order to get some insight
into how such a method might work, let us examine the optimality conditions. Asymptotically as
t → ∞, we would like atk to be such that the minimum of each subproblem is equal to w∗; the
minimizer of (8). Hence, we would wish for w∗ to be the solution of

∇Fk(w)− atk + µ(w − wt) = 0.

Hence, in the limit, we would ideally like to choose atk = ∇Fk(w∗)+µ(w∗−wt) ≈ ∇Fk(w∗), since
w∗ ≈ wt. Not knowing w∗ however, we cannot hope to be able to simply set atk to this value. Hence,
the second option is to come up with an update rule which would guarantee that atk converges to
∇Fk(w∗) as t→∞. Notice at this point that it has been long known in the optimization community
that the gradient of the objective at the optimal point is intimately related to the optimal solution
of a dual problem. Here the situation is further complicated by the fact that we need to learn K
such gradients. In the following, we show that DANE is in fact a particular instantiation of the
scheme above.

DANE. We present the Distributed Approximate Newton algorithm (DANE) [91], as Algo-
rithm 2. The algorithm was originally analysed for solving the problem of structure (7), with
nk being identical for each k — i.e., each computer has the same number of data points. Nothing
prevents us from running it in our more general setting though.

As alluded to earlier, the main idea of DANE is to form a local subproblem, dependent only
on local data, and gradient of the entire function — which can be computed in a single round
of communication (Line 3). The subproblem is then solved exactly (Line 4), and updates from
individual nodes are averaged to form a new iterate (Line 5). This approach allows any algorithm
to be used to solve the local subproblem (10). As a result, it often achieves communication efficiency
in the sense of requiring expensive local computation between rounds of communication, hopefully
rendering the time needed for communication insignificant (see Section 2.3.1). Further, note that
DANE belongs to the family of distributed method that operate via the quadratic perturbation
trick (9) with

atk = ∇Fk(wt)− η∇f(wt).
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Algorithm 2 Distributed Approximate Newton (DANE)

1: Input: regularizer µ ≥ 0, parameter η (default: µ = 0, η = 1)
2: for s = 0, 1, 2, . . . do
3: Compute ∇f(wt) = 1

n

∑n
i=1∇fi(wt) and distribute to all machines

4: For each node k ∈ {1, . . . ,K}, solve

wk = arg min
w∈Rd

{
Fk(w)−

(
∇Fk(wt)− η∇f(wt)

)T
w +

µ

2
‖w − wt‖2

}
(10)

5: Compute wt+1 = 1
K

∑K
k=1wk

6: end for

If we assumed that the method works, i.e., that wt → w∗ and hence ∇f(wt)→ ∇f(w∗) = 0, then
atk → ∇Fk(w∗), which agrees with the earlier discussion.

In the default setting when µ = 0 and η = 1, DANE achieves desirable property (D) (immediate
convergence when all local datasets are identical), since in this case ∇Fk(wt)− η∇f(wt) = 0, and
so we exactly minimize Fk(w) = f(w) on each machine. For any choice of µ and η, DANE also
achieves property (A), since in this case ∇f(wt) = 0, and wt is a minimizer of Fk(w)−∇Fk(wt) ·w
as well as of the regularization term. Unfortunately, DANE does not achieve the more federated
optimization-specific desirable properties (B) and (C).

The convergence analysis for DANE assumes that the functions are twice differentiable, and
relies on the assumption that each node has access to IID samples from the same underlying
distribution. This implies that that the Hessians of ∇2Fk(w) are similar to each other [91, Lemma
1]. In case of linear regression, with λ = O(1/

√
n)-strongly convex functions, the number of DANE

iterations needed to achieve ε-accuracy is O(K log(1/ε)). However, for general L-smooth loss, the
theory is significantly worse, and does not match its practical performance.

The practical performance also depends on the additional local regularization parameter µ. For
small number of nodes K, the algorithm converges quickly with µ = 0. However, as reported [91,
Figure 3], it can diverge quickly with growing K. Bigger µ makes the algorithm more stable at the
cost of slower convergence. Practical choice of µ remains an open question.

3.5 SVRG meets DANE

As we mentioned above, the DANE algorithm can perform poorly in certain settings, even without
the challenging aspects of federated optimization. Another point that is seen as drawback of DANE
is the need to find the exact minimum of (10) — this can be feasible for quadratics with relatively
small dimension, but infeasible or extremely expensive to achieve for other problems. We adapt
the idea from the CoCoA algorithm [57], in which an arbitrary optimization algorithm is used to
obtain relative Θ accuracy on a locally defined subproblem. We replace the exact optimization
with an approximate solution obtained by using any optimization algorithm.

Considering all the algorithms one could use to solve (10), the SVRG algorithm seems to be a
particularly good candidate. Starting the local optimization of (10) from point wt, the algorithm
automatically has access to the derivative at wt, which is identical for each node — ∇f(wt). Hence,
the SVRG algorithm can skip the initial expensive operation, evaluation of the entire gradient
(Line 3, Algorithm 1), and proceed only with the stochastic updates in the inner loop.
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It turns out that this modified version of the DANE algorithm is equivalent to a distributed
version of SVRG.

Proposition 1. Consider the following two algorithms.

1. Run the DANE algorithm (Algorithm 2) with η = 1 and µ = 0, and use SVRG (Algorithm 1)
as a local solver for (10), running it for a single iteration, initialized at point wt.

2. Run a distributed variant of the SVRG algorithm, described in Algorithm 3.

The algorithms are equivalent in the following sense. If both start from the same point wt, they
generate identical sequence of iterates {wt}.

Proof. We construct the proof by showing that single step of the SVRG algorithm applied to the
problem (10) on computer k is identical to the update on Line 8 in Algorithm 3.

The way to obtain a stochastic gradient of (10) is to sample one of the functions composing
Fk(w) = 1

nk

∑
i∈Pk

fi(w), and add the linear term ∇Fk(wt)− ηf(wt), which is known and does not
need to be estimated. Upon sampling an index i ∈ Pk, the update direction follows as[
∇fi(w)−∇Fk(wt)− f(wt)

]
−
[
∇fi(wt)−∇Fk(wt)− f(wt)

]
+∇f(wt) = ∇fi(w)−∇fi(wt)+∇f(wt),

which is identical to the direction in Line 8 in Algorithm 3. The claim follows by chaining the
identical updates to form identical iterate wt+1.

Algorithm 3 naive Federated SVRG (FSVRG)

1: parameters: m = # of stochastic steps per epoch, h = stepsize, data partition {Pk}Kk=1

2: for s = 0, 1, 2, . . . do . Overall iterations
3: Compute ∇f(wt) = 1

n

∑n
i=1∇fi(wt)

4: for k = 1 to K do in parallel over nodes k . Distributed loop
5: Initialize: wk = wt

6: for t = 1 to m do . Actual update loop
7: Sample i ∈ Pk uniformly at random
8: wk = wk − h

(
∇fi(wk)−∇fi(wt) +∇f(wt)

)
9: end for

10: end for
11: wt+1 = wt + 1

K

∑K
k=1(wk − wt) . Aggregate

12: end for

Remark 2. The algorithms considered in Proposition 1 are inherently stochastic. The statement
of the proposition is valid under the assumption that in both cases, identical sequence of samples
i ∈ Pk would be generated by all nodes k ∈ {1, 2, . . . ,K}.

Remark 3. In the Proposition 1 we consider the DANE algorithm with particular values of η and
µ. The Algorithm 3 and the Proposition can be easily gereralized, but we present only the default
version for the sake of clarity.

Since the first version of this paper, this connection has been mentioned in [78], which analyses
an inexact version of the DANE algorithm. We proceed by adapting the above algorithm to other
challenges arising in the context of federated optimization.
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3.6 Federated SVRG

Empirically, the Algorithm 3 fits in the model of distributed optimization efficiency described in
Section 2.3.1, since we can balance how many stochastic iterations should be performed locally
against communication costs. However, several modifications are necessary to achieve good perfor-
mance in the full federated optimization setting (Section 3.3). Very important aspect that needs
to be addressed is that the number of data points available to a given node can differ greatly from
the average number of data points available to any single node. Furthermore, this setting always
comes with the data available locally being clustered around a specific pattern, and thus not be-
ing a representative sample of the overall distribution we are trying to learn. In the Experiments
section we focus on the case of L2 regularized logistic regression, but the ideas carry over to other
generalized linear prediction problems.

3.6.1 Notation

Note that in large scale generalized linear prediction problems, the data arising are almost always
sparse, for example due to bag-of-words style feature representations. This means that only a
small subset of d elements of vector xi have nonzero values. In this class of problems, the gradient
∇fi(w) is a multiple of the data vector xi. This creates additional complications, but also potential
for exploitation of the problem structure and thus faster algorithms. Before continuing, let us
summarize and denote a number of quantities needed to describe the algorithm.

• n — number of data points / training examples / functions.
• Pk — set of indices, corresponding to data points stored on device k.
• nk = |Pk| — number of data points stored on device k.
• nj =

∣∣{i ∈ {1, . . . , n} : xTi ej 6= 0}
∣∣ — the number of data points with nonzero jth coordinate

• njk =
∣∣{i ∈ Pk : xTi ej 6= 0}

∣∣ — the number of data points stored on node k with nonzero jth

coordinate
• φj = nj/n — frequency of appearance of nonzero elements in jth coordinate
• φjk = njk/nk — frequency of appearance of nonzero elements in jth coordinate on node k

• sjk = φj/φjk — ratio of global and local appearance frequencies on node k in jth coordinate

• Sk = Diag(sjk) — diagonal matrix, composed of sjk as jth diagonal element

• ωj =
∣∣∣{Pk : njk 6= 0}

∣∣∣ — Number of nodes that contain data point with nonzero jth coordinate

• aj = K/ωj — aggregation parameter for coordinate j
• A = Diag(aj) — diagonal matrix composed of aj as jth diagonal element

With these quantities defined, we can state our proposed algorithm as Algorithm 4. Our
experiments show that this algorithm works very well in practice, but the motivation for the
particular scaling of the updates may not be immediately clear. In the following section we provide
the intuition that lead to the development of this algorithm.

3.6.2 Intuition Behind FSVRG Updates

The difference between the Algorithm 4 and Algorithm 3 is in the introduction of the following
properties.

1. Local stepsize — hk = h/nk.
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Algorithm 4 Federated SVRG (FSVRG)

1: parameters: h = stepsize, data partition {Pk}Kk=1,
diagonal matrices A,Sk ∈ Rd×d for k ∈ {1, . . . ,K}

2: for s = 0, 1, 2, . . . do . Overall iterations
3: Compute ∇f(wt) = 1

n

∑n
i=1∇fi(wt)

4: for k = 1 to K do in parallel over nodes k . Distributed loop
5: Initialize: wk = wt and hk = h/nk
6: Let {it}nk

t=1 be random permutation of Pk
7: for t = 1, . . . , nk do . Actual update loop
8: wk = wk − hk

(
Sk
[
∇fit(wk)−∇fit(wt)

]
+∇f(wt)

)
9: end for

10: end for
11: wt = wt +A

∑K
k=1

nk
n (wk − wt) . Aggregate

12: end for

2. Aggregation of updates proportional to partition sizes — nk
n (wk − wt)

3. Scaling stochastic gradients by diagonal matrix — Sk

4. Per-coordinate scaling of aggregated updates — A(wk − wt)

Let us now explain what motivated us to get this particular implementation.
As a simplification, assume that at some point in time, we have for some w, wk = w for all

k ∈ [K]. In other words, all the nodes have the same local iterate. Although this is not exactly the
case in practice, thinking about the issue in this simplified setting will give us insight into what
would be meaningful to do if it was true. Further, we can hope that the reality is not too far from
the simplification and it will still work in practice. Indeed, all nodes do start from the same point,
and adding the linear term ∇Fk(wt)−∇f(wt) to the local objective forces all nodes to move in the
same direction, at least initially.

Suppose the nodes are about to make a single step synchronously. Denote the update direction
on node k as Gk = ∇fi(w)−∇fi(wt) +∇f(wt), where i is sampled uniformly at random from Pk.

If we had only one node, i.e., K = 1, it is clear that we would have E[G1] = ∇f(wt). If K is
more than 1, the values of Gk are in general biased estimates of ∇f(wt). We would like to achieve

the following: E
[∑K

k=1 αkGk

]
= ∇f(wt), for some choice of αk. This is motivated by the general

desire to make stochastic first-order methods to make a gradient step in expectation.
We have

E

[
K∑
k=1

αkGk

]
=

K∑
k=1

αk
1

nk

∑
i∈Pk

[
∇fi(w)−∇fi(wt) +∇f(wt)

]
.

By setting αk = nk
n , we get

E

[
K∑
k=1

αkGk

]
=

1

n

K∑
k=1

∑
i∈Pk

[
∇fi(w)−∇fi(wt) +∇f(wt)

]
= ∇f(w).

This motivates the aggregation of updates from nodes proportional to nk, the number of data
points available locally (Point 2).
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Next, we realize that if the local data sizes, nk, are not identical, we likely don’t want to do
the same number of local iterations on each node k. Intuitively, doing one pass through data (or
a fixed number of passes) makes sense. As a result, the aggregation motivated above does not
make perfect sense anymore. Nevertheless, we can even it out, by setting the stepsize hk inversely
proportional to nk, making sure each node makes progress of roughly the same magnitude overall.
Hence, hk = h/nk (Point 1).

To motivate the Point 3, scaling of stochastic gradients by diagonal matrix Sk, consider the
following example. We have 1, 000, 000 data points, distributed across K = 1, 000 nodes. When
we look at a particular feature of the data points, we observe it is non-zero only in 1, 000 of them.
Moreover, all of them happen to be stored on a single node, that stores only these 1, 000 data points.
Sampling a data point from this node and evaluating the corresponding gradient, will clearly yield
an estimate of the gradient ∇f(w) with 1000-times larger magnitude. This would not necessarily
be a problem if done only once. However, repeatedly sampling and overshooting the magnitude of
the gradient will likely cause the iterative process to diverge quickly.

Hence, we scale the stochastic gradients by a diagonal matrix. This can be seen as an attempt
to enforce the estimates of the gradient to be of the correct magnitude, conditioned on us, algorithm
designers, being aware of the structure of distribution of the sparsity pattern.

Let us now highlight some properties of the modification in Point 4. Without any extra infor-
mation, or in the case of fully dense data, averaging the local updates is the only way that actually
makes sense — because each node outputs approximate solution of a proxy to the overall objective,
and there is no induced separability structure in the outputs such as in CoCoA [57]. However, we
could do much more in the other extreme. If the sparsity structure is such that each data point
only depends on one of disjoint groups of variables, and the data were distributed according to this
structure, we would efficiently have several disjoint problems. Solving each of them locally, and
adding up the results would solve the problem in single iteration — desired algorithm property (C).

What we propose is an interpolation between these two settings, on a per-variable basis. If a
variable appears in data on each node, we are going to take average. However, the less nodes a
particular variable appear on, the more we want to trust those few nodes in informing us about the
meaningful update to this variable — or alternatively, take a longer step. Hence the per-variable
scaling of aggregated updates.

3.7 Further Notes

Looking at the Proposition 1, we identify equivalence of two algorithms, take the second one and
try modify it to make it suitable for the setting of federated optimization. A question naturally
arise: Is it possible to achieve the same by modifying the first algorithm suitable for federated
optimization — by only altering the local optimization objective?

We indeed tried to experiment with idea, but we don’t report the details for two reasons. First,
the requirement of exact solution of the local subproblem is often impractical. Relaxing it gradually
moves us to the setting we presented in the previous sections. But more importantly, using this
approach we have only managed to get results significantly inferior to those reported later in the
Experiments section.
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4 Experiments

In this section we present the first experimental results in the setting of federated optimization.
In particular, we provide results on a dataset based on public Google+ posts8, clustered by user
— simulating each user as a independent node. This preliminary experiment demonstrates why
none of the existing algorithms are suitable for federated optimization, and the robustness of our
proposed method to challenges arising there.

4.1 Predicting Comments on Public Google+ Posts

The dataset presented here was generated based on public Google+ posts. We randomly picked
10, 000 authors that have at least 100 public posts in English, and try to predict whether a post
will receive at least one comment (that is, a binary classification task).

We split the data chronologically on a per-author basis, taking the earlier 75% for training and
the following 25% for testing. The total number of training examples is n = 2, 166, 693. We created
a simple bag-of-words language model, based on the 20, 000 most frequent words in dictionary
based on all Google+ data. This results in a problem with dimension d = 20, 002. The extra two
features represent a bias term and variable for unknown word. We then use a logistic regression
model to make a prediction based on these features.

We shape the distributed optimization problem as follows. Suppose that each user corresponds
to one node, resulting in K = 10, 000. The average nk, number of data points on node k is thus
roughly 216. However, the actual numbers nk range from 75 to 9, 000, showing the data is in fact
substantially unbalanced.

It is natural to expect that different users can exhibit very different patterns in the data gen-
erated. This is indeed the case, and hence the distribution to nodes cannot be considered an IID
sample from the overall distribution. Since we have a bag-of-words model, our data are very sparse
— most posts contain only small fraction of all the words in the dictionary. This, together with
the fact that the data are naturally clustered on a per-user basis, creates additional challenge that
is not present in the traditional distributed setting.

Figure 1 shows the frequency of different features across nodes. Some features are present
everywhere, such as the bias term, while most features are relatively rare. In particular, over 88%
of features are present on fewer than 1, 000 nodes. However, this distribution does not necessarily
resemble the overall appearance of the features in data examples. For instance, while an unknown
word is present in data of almost every user, it is far from being contained in every data point.

Naive prediction properties. Before presenting the results, it is useful to look at some of the
important basic prediction properties of the data. We use L2-regularized logistic regression, with
regularization parameter λ = 1/n. We chose λ to be the best in terms of test error in the optimal
solution.

• If one chooses to predict −1 (no comment), classification error is 33.16%.

• The optimal solution of the global logistic regression problem yields 26.27% test set error.

• Predicting the per-author majority from the training data yields 17.14% test error. That is,
predict +1 or −1 for all the posts of an author, based on which label was more common in

8The posts were public at the time the experiment was performed, but since a user may decide to delete the post
or make it non-public, we cannot release (or even permanently store) any copies of the data.
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Figure 1: Features vs. appearance on nodes. The x-axis is a feature index, and the y-axis represents
the number of nodes where a given feature is present.

that author’s training data. This indicates that knowing the author is actually more useful
than knowing what they said, which is perhaps not surprising.

In summary, this data is representative for our motivating application in federated optimization.
It is possible to improve upon naive baseline using a fixed global model. Further, the per-author
majority result suggests it is possible to improve further by adapting the global model to each
user individually. Model personalization is common practice in industrial applications, and the
techniques used to do this are orthogonal to the challenges of federated optimization. Exploring
its performance is a natural next step, but beyond the scope of this work.

While we do not provide experiments for per user personalized models, we remark that this
could be a good descriptor of how far from IID the data is distributed. Indeed, if each node has
access to an IID sample, any adaptation to local data is merely over-fitting. However, if we can
significantly improve upon the global model by per user/node adaptation, this means that the data
available locally exhibit patterns specific to the particular node.

The performance of the Algorithm 4 is presented below. The only parameter that remains to
be chosen by user is the stepsize h. We tried a set of stepsizes, and retrospectively choose one that
works best — a typical practice in machine learning.

In Figure 2, we compare the following optimization algorithms9:

• The blue squares (OPT) represent the best possible offline value (the optimal value of the
optimization task in the first plot, and the test error corresponding to the optimum in the
second plot).

• The teal diamonds (GD) correspond to a simple distributed gradient descent.

• The purple triangles (COCOA) are for the CoCoA+ algorithm [57].

• The green circles (FSVRG) give values for our proposed algorithm.

• The red stars (FSVRGR) correspond to the same algorithm applied to the same problem with
randomly reshuffled data. That is, we keep the unbalanced number of examples per node,
but populate each node with randomly selected examples.

9We thank Mark Schmidt for his prettyPlot function, available on his website.
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Figure 2: Rounds of communication vs. objective function (left) and test prediction error (right).

The first thing to notice is that CoCoA+ seems to be worse than trivial benchmark — dis-
tributed gradient descent. This behaviour can be predicted from theory, as the overall convergence
rate directly depends on the best choice of aggregation parameter σ′. For sparse problems, it is
upperbounded by the maximum of the values reported in Figure 1, which is K, and it is close to
it also in practice. Althought it is expected that the algorithm could be modified to depend on
average of these quantities (which could be orders of magnitude smaller), akin to coordinate descent
algorithms [79], it has not been done yet. Note that other communication efficient algorithms fail
to converge altogether.

The algorithm we propose, FSVRG, converges to optimal test classification accuracy in just
30 iterations. Recall that in the setting of federated optimization we introduced in Section 1.2,
minimization of rounds of communication is the principal goal. However, concluding that the
approach is stunningly superior to existing methods would not be completely fair nor correct. The
conclusion is that the FSVRG is the first algorithm to tackle federated optimization, a problem that
existing methods fail to generalize to. It is important to stress that none of the existing methods
were designed with these particular challenges in mind, and we formulate the first benchmark.

Since the core reason other methods fail to converge is the non-IID data distribution, we test
our method on the same problem, with data randomly reshuffled among the same number of nodes
(FSVRGR; red stars). Since the difference in convergence is subtle, we can conclude that the
techniques described in Section 3.6.2 serve its purpose and make the algorithm robust to challenges
present in federated optimization.

This experiment demonstrates that learning from massively decentralized data, clustered on a
per-user basis is indeed problem we can tackle in practice. Since the first version of this paper
[45], additional experimental results were presented in [62]. We refer the reader to this paper for
experiments in more challenging setting of deep learning, and a further discussion on how such
system would be implemented in practice.
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5 Conclusions and Future Challenges

We have introduced a new setting for distributed optimization, which we call federated optimization.
This setting is motivated by the outlined vision, in which users do not send the data they generate
to companies at all, but rather provide part of their computational power to be used to solve
optimization problems. This comes with a unique set of challenges for distributed optimization. In
particular, we argue that the massively distributed, non-IID, unbalanced, and sparse properties of
federated optimization problems need to be addressed by the optimization community.

We explain why existing methods are not applicable or effective in this setting. Even the
distributed algorithms that can be applied converge very slowly in the presence of large number
of nodes on which the data are stored. We demonstrate that in practice, it is possible to design
algorithms that work surprisingly efficiently in the challenging setting of federated optimization,
which makes the vision conceptually feasible.

We realize that it is important to scale stochastic gradients on a per-coordinate basis, differently
on each node to improve performance. To the best of our knowledge, this is the first time such
per-node scaling has been used in distributed optimization. Additionally, we use per-coordinate
aggregation of updates from each node, based on distribution of the sparsity patterns in the data.

Even though our results are encouraging, there is a lot of room for future work. One natural
direction is to consider fully asynchronous versions of our algorithms, where the updates are applied
as soon as they arrive. Another is developing a better theoretical understanding of our algorithm,
as we believe that development of a strong understanding of the convergence properties will drive
further research in this area.

Study of the federated optimization problem for non-convex objectives is another important
avenue of research. In particular, neural networks are the most important example of a machine
learning tool that yields non-convex functions fi, without any convenient general structure. Con-
sequently, there are no useful results describing convergence guarantees of optimization algorithms.
Despite the lack of theoretical understanding, neural networks are now state-of-the-art in many
application areas, ranging from natural language understanding to visual object detection. Such
applications arise naturally in federated optimization settings, and so extending our work to such
problems is an important direction.

The non-IID data distribution assumed in federated optimization, and mobile applications in
particular, suggest that one should consider the problem of training a personalized model together
with that of learning a global model. That is, if there is enough data available on a given node, and
we assume that data is drawn from the same distribution as future test examples for that node, it
may be preferable to make predictions based on a personalized model that is biased toward good
performance on the local data, rather than simply using the global model.
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A Distributed Optimization via Quadratic Perturbations

This appendix follows from the discussion motivating DANE algorithm by a general algorithmic
perturbation template (9) for λ-strongly convex objectives. We use this to propose a similar but
new method, which unlike DANE converges under arbitrary data partitioning {Pk}Kk=1, and we
highlight its relation to the dual CoCoA algorithm for distributed optimization.

For simplicity and ease of drawing the above connections we assume that nk is identical for all
k ∈ {1, 2, . . . ,K} throughout the appendix. All the arguments can be simply extended, but would
unnecessarily complicate the notation for current purpose.

A.1 New Method

We now present a new method (Algorithm 5), which also belongs to the family of quadratic per-
turbation methods (9). However, the perturbation vectors atk are different from those of DANE. In
particular, we set

atk
def
= ∇Fk(wt)− (η∇Fk(wt) + gtk),

where η > 0 is a parameter, and the vectors gtk are maintained by the method. As we show in
Lemma 4, Algorithm 5 satisfies

K∑
k=1

gtk = 0

for all iterations t. This implies that 1
K

∑K
k=1 a

t
k = (1 − η)∇f(wt). That is, both DANE and the

new method use a linear perturbation which, when averaged over the nodes, involves the gradient
of the objective function f at the latest iterate wt. Therefore, the methods have one more property
in common beyond both being of the form (9). However, as we shall see in the rest of this section,
Algorithm 5 allows an insightful dual interpretation. Moreover, while DANE may not converge for
arbitrary problems (even when restricted to ridge regression)—and is only known to converge under
the assumption that the data stored on each node are in some precise way similar, Algorithm 5
converges for any ridge regression problem and any data partitioning.

Let us denote by Xk the matrix obtained by stacking the data points xi as column vectors for
all i ∈ Pk. We have the following Lemma.

Lemma 4. For all t ≥ 0 we have
∑K

k=1 g
t
k = 0.

Proof. The statement holds for t = 0. Indeed,

K∑
k=1

gtk = η
K∑
k=1

(
K

n
Xkα

0
k − λw0

)
= 0,

where the last step follows from the definition of w0. Assume now that the statement hold for t.
Then

K∑
k=1

gt+1
k =

K∑
k=1

(
gtk + ηλ(wt+1

k − wt+1)
)

= ηλ
K∑
k=1

(wt+1
k − wt+1).

The first equation follows from the way gk is updated in the algorithm. The second equation
follows from the inductive assumption, and the last equation follows from the definition of wt+1 in
the algorithm.
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Algorithm 5 Primal Method

1: Input: σ ∈ [1,K]
2: Choose: α0

k ∈ R|Pk| for k = 1, 2, . . . ,K
3: Set: η = K

σ , µ = λ(η − 1)

4: Set: w0 = 1
λn

∑K
k=1Xkα

0
k

5: Set: g0
k = η(KnXkα

0
k − λw0) for k = 1, 2, . . . ,K

6: for t = 0, 1, 2, . . . do
7: for k = 1 to K do
8: wt+1

k = arg minw∈Rd Fk(w)−
(
∇Fk(wt)− (η∇Fk(wt) + gtk)

)T
w + µ

2‖w − w
t‖2

9: end for
10: wt+1 = 1

K

∑K
k=1w

t+1
k

11: for k = 1 to K do
12: gt+1

k = gtk + λη(wt+1
k − wt+1)

13: end for
14: return wt

15: end for

A.2 L2-Regularized Linear Predictors

In the rest of this section we consider the case of L2-regularized linear predictors. That is, we focus
on problem (1) with fi of the form

fi(w) = φi(x
T
i w) +

λ

2
‖w‖2,

where λ > 0 is a regularization parameter. This leads to L2 regularized empirical risk minimization
(ERM) problem

min
w∈Rd

{
f(w)

def
=

1

n

n∑
i=1

φi(x
T
i w) +

λ

2
‖w‖2

}
. (11)

We assume that the loss functions φi : R → R are convex and 1/γ-smooth for some γ > 0; these
are standard assumptions. As usual, we allow the loss function φi to depend on the label yi. For
instance, we may choose the quadratic loss: φi(t) = 1

2(t− yi)2 (for which γ = 1).
Let X = [x1, . . . , xn] ∈ Rd×n. As described in Section 3.3, we assume that the data (xi, yi)

n
i=1

is distributed among K nodes of a computer cluster as follows: node k = 1, 2, . . . ,K contains
pairs (xi, yi) for i ∈ Pk, where P1, . . . ,PK forms a partition of the set [n] = {1, 2, . . . , n}. Letting
X = [X1, . . . , XK ], where Xk ∈ Rd×|Pk| is a submatrix of A corresponding to columns i ∈ Pk, and
yk ∈ R|Pk| is the subvector of y corresponding to entries i ∈ Pk. Hence, node k contains the pair
(Xk, yk). With this notation, we can write the problem in the form (8), where

Fk(w) =
K

n

∑
i∈Pk

φi(x
T
i w) +

λ

2
‖w‖2. (12)

A.3 A Dual Method: Dual Block Proximal Gradient Ascent

The dual of (11) is the problem
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max
α∈Rn

{
D(α)

def
= − 1

2λn2
‖Xα‖2 − 1

n

n∑
i=1

φ∗i (−αi)

}
, (13)

where φ∗i is the convex conjugate of φi. Since we assume that φi is 1/γ smooth, it follows that φ∗i
is γ strongly convex. Therefore, D is a strongly concave function.

From dual solution to a primal solution. It is well known that if α∗ is the optimal solution of

the dual problem (11), then w∗
def
= 1

λnXα
∗ is the optimal solution of the primal problem. Therefore,

for any dual algorithm producing a sequence of iterates αt, we can define a corresponding primal
algorithm via the linear mapping

wt
def
=

1

λn
Xαt. (14)

Clearly, if αt → α∗, then wt → w∗. We shall now design a method for maximizing the dual function
D and then in Theorem 5 we claim that for quadratic loss functions, Algorithm 5 arises as an image,
defined via (14), of dual iterations of this dual ascent method.

Design of the dual gradient ascent method. Let ξ(α)
def
= 1

2‖Xα‖
2. Since ξ is a convex

quadratic, we have

ξ(α+ h) = ξ(α) + 〈∇ξ(α), h〉+
1

2
hT∇2ξ(α)h, ≤ ξ(α) + 〈∇ξ(α), h〉+

σ

2
‖h‖2B,

where ∇ξ(α) = XTXα and ∇2ξ(α) = XTX. Further, we define the block-diagonal matrix B
def
=

Diag(XT
1 X1, . . . , X

T
KXK), and a norm associate with this matrix:

‖h‖2B
def
=

K∑
k=1

‖Xkhk‖2.

By σ we refer to a large enough constant for which XTX � σB. In order to avoid unnecessary
technicalities, we shall assume that the matrices XT

k Xk are positive definite, which implies that
‖ · ‖B is a norm. It can be shown that 1 ≤ σ ≤ K. Clearly, ξ is σ-smooth with respect to the norm
‖ · ‖B. In view of the above, for all h ∈ Rn we can estimate D from below as follows:

D(αt + h) ≥ − 1

λn2

(
ξ(αt) + 〈∇ξ(αt), h〉+

σ

2

K∑
k=1

‖Xkhk‖2
)
− 1

n

n∑
i=1

φ∗i (−αti − hi)

= − 1

λn2
ξ(αt)−

K∑
k=1

 1

λn2
〈∇kξ(αt), hk〉+

σ

2λn2
‖Xkhk‖2 +

1

n

∑
i∈Pk

φ∗i (−αti − hi)

 ,
where ∇kξ(αt) corresponds to the subvector of ∇ξ(αt) formed by entries i ∈ Pk.

We now let ht = (ht1, . . . , h
t
K) be the maximizer of this lower bound. Since the lower bound is

separable in the blocks {htk}k, we can simply set

htk := arg min
u∈R|Pk|

Dt
k(u)

def
=

1

λn2
〈∇kξ(αt), u〉+

σ

2λn2
‖Xku‖2 +

1

n

∑
i∈Pk

φ∗i (−αti − ui)

 . (15)
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Algorithm 6 Dual Method

1: Input: σ ∈ [1,K]
2: Choose: α0

k ∈ R|Pk| for k = 1, 2, . . . ,K
3: for t = 0, 1, 2, . . . do
4: for k = 1 to K do
5: ht+1

k = arg minu∈R|Pk| Dt
k(u) . See (15)

6: end for
7: αt+1 = αt + ht

8: end for
9: return wt

Having computed htk for all k, we can set αt+1
k = αtk + htk for all k, or equivalently, αt+1 = αt + ht.

This is formalized as Algorithm 6. Algorithm 6 is a proximal gradient ascent method applied
to the dual problem, with smoothness being measured using the block norm ‖h‖B. It is known
that gradient ascent converges at a linear rate for smooth and strongly convex (for minimization
problems) objectives.

One of the main insights of this section is the following equivalence result.

Theorem 5 (Equivalence of Algorithms 5 and 6 for Quadratic Loss). Consider the ridge regression
problem. That is, set φi(t) = 1

2(t − yi)2 for all i. Assume α0
1, . . . , α

0
K is chosen in the same way

in Algorithms 5 and 6. Then the dual iterates αt and the primal iterates wt produced by the two
algorithms are related via (14) for all t ≥ 0.

Since the dual method converges linearly, in view of the above theorem, so does the primal
method. Here we only remark that the popular algorithm CoCoA+ [57] arises if Step 5 in Algo-
rithm 6 is done inexactly. Hence, we show that duality provides a deep relationship between the
CoCoA+ and DANE algorithms, which were previously considered completely different.

A.4 Proof of Theorem 5

In this part we prove the theorem.

Primal and Dual Problems. Since φi(t) = 1
2(t − yi)

2, the primal problem (11) is a ridge
regression problem of the form

min
w∈Rd

f(w) =
1

2n
‖XTw − y‖2 +

λ

2
‖w‖2, (16)

where X ∈ Rd×n and y ∈ Rn. In view of (13), the dual of (16) is

min
α∈Rn

D(α) =
1

2λn2
‖Xα‖2 +

1

2n
‖α‖2 − 1

n
yTα. (17)

Primal Problem: Distributed Setup. The primal objective function is of the form (8), where
in view of (12), we have Fk(w) = K

2n‖X
T
k w − yk‖2 + λ

2‖w‖
2. Therefore,

∇Fk(w) =
K

n
Xk(X

T
k w − yk) + λw (18)

and ∇f(w) = 1
K

∑
k∇Fk(w) = 1

K

∑
k

(
K
nXk(X

T
k w − yk) + λw

)
.
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Dual Method. Since D is a quadratic, we have

D(αt + h) = D(αt) +∇D(αt)Th+
1

2
hT∇2D(αt)h,

with

∇D(αt) =
1

λn2
XTXαt +

1

n
(αt − y), ∇2D(αt) =

1

λn2
XTX +

1

n
I.

We know that XTX � σDiag(XT
1 X1, . . . , X

T
KXK). With this approximation, for all h ∈ Rn we

can estimate D from above by a node-separable quadratic function as follows:

D(αt + h) ≤ D(αt) +

(
1

λn2
XTXαt +

1

n
(αt − y)

)T
h+

1

2n
‖h‖2 +

σ

2λn2

K∑
k=1

‖Xkhk‖2

= D(αt) +
1

n

[
1

λn
(Xαt)TXh+ (αt − y)Th+

1

2
‖h‖2 +

σ

2λn

K∑
k=1

‖Xkhk‖2
]

= D(αt) +
1

n

K∑
k=1

(
(wt)TXkhk + (αtk − yk)Thk +

1

2
‖hk‖2 +

σ

2λn
‖Xkhk‖2

)
.

Next, we shall define

htk
def
= arg min

hk∈R|Pk|

σ

2λn
‖Xkhk‖2 +

1

2
‖hk‖2 − (yk −XT

k w
t − αtk)Thk (19)

for k = 1, 2, . . . ,K and then set
αt+1 = αt + ht. (20)

Primal Version of the Dual Method. Note that (19) has the same form as (17), with X
replaced by Xk, λ replaced by λ/σ and y replaced by ck := yk −XT

k w
t − αtk. Hence, we know that

stk
def
=

1

(λ/σ)n
Xkh

t
k (21)

is the optimal solution of the primal problem of (22):

stk = arg min
s∈Rd

1

2n
‖XT

k s− ck‖2 +
λ/σ

2
‖s‖2. (22)

Hence, the primal version of method (20) is given by

wt+1 (14)
=

1

λn
Xαt+1 (20)

=
1

λn
X(αt + ht)

(14)
= wt +

1

λn

K∑
k=1

Xkh
t
k

=
1

K

K∑
k=1

(
wt +

K

σ

σ

λn
Xkh

t
k

)
(21)
=

1

K

K∑
k=1

(
wt +

K

σ
stk

)
.

With the change of variables w := wt + K
σ s (i.e., s = σ

K (w − wt)), from (22) we know that
wt+1
k := wt + K

σ s
t
k solves

wt+1
k = arg min

w∈Rd

{
Lk(w)

def
=

1

2n

∥∥∥XT
k

σ

K
(w − wt)− ck

∥∥∥2
+
λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥2
}

(23)
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and wt+1 = 1
K

∑K
k=1w

t+1
k .

Let us now rewrite the function in (23) so as to connect it to Algorithm 5:

Lk(w) =
1

2n

∥∥∥XT
k

σ

K
(w − wt)− ck

∥∥∥2
+
λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥2

=
1

2n

σ2

K2

∥∥∥∥∥∥∥∥∥(XT
k w − yk)−

(
XT
k w

t − yk +
K

σ
ck

)
︸ ︷︷ ︸

dk

∥∥∥∥∥∥∥∥∥
2

+
λσ2

2K3
‖w‖2 − λσ2

2K3
‖w‖2 +

λ/σ

2

∥∥∥ σ
K

(w − wt)
∥∥∥2

=
1

2n

σ2

K2

(∥∥XT
k w − yk

∥∥2
+ ‖dk‖2 − 2(XT

k w − yk)Tdk
)

+
λσ2

2K3
‖w‖2 − λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt∥∥2

=
σ2

K3

(
K

2n

∥∥XT
k w − yk

∥∥2
+
K

2n
‖dk‖2 −

K

n
(XT

k w − yk)Tdk
)

+
λσ2

2K3
‖w‖2

− λσ
2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt∥∥2

=
σ2

K3

(
K

2n

∥∥XT
k w − yk

∥∥2
+
λ

2
‖w‖2

)
︸ ︷︷ ︸

Fk(w)

+
σ2

K3

(
K

2n
‖dk‖2 −

K

n
(XT

k w − yk)Tdk
)

− λσ
2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt∥∥2

=
σ2

K3
Fk(w)− σ2

K2n
(XT

k w − yk)Tdk +
σ2

2nK2
‖dk‖2 −

λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt∥∥2

=
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)

Tw − λσ2

2K3
‖w‖2 +

λσ

2K2

∥∥w − wt∥∥2
+

(
σ2

2nK2
‖dk‖2 +

σ2

K2n
yTk dk

)
︸ ︷︷ ︸

β1

.

Next, since ‖w‖2 = ‖w − wt‖2 − ‖wt‖2 + 2(wt)Tw, we can further write
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Lk(w) =
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)

Tw − λσ2

2K3
(‖w − wt‖2 − ‖wt‖2 + 2(wt)Tw) +

λσ

2K2

∥∥w − wt∥∥2
+ β1

=
σ2

K3
Fk(w)− σ2

K2n
(Xkdk)

Tw − λσ2

K3
(wt)Tw +

(
λσ

2K2
− λσ2

2K3

)∥∥w − wt∥∥2
+
λσ2

2K3
‖wt‖2 + β1︸ ︷︷ ︸
β2

=
σ2

K3

(
Fk(w)−

(
K

n
Xkdk + λwt

)T
w +

λ

2

(
K

σ
− 1

)
‖w − wt‖2

)
+ β2

=
σ2

K3

(
Fk(w)−

(
∇Fk(wt)−

K2

σn
Xk(X

T
k w

t − yk + αtk)

)T
w +

µ

2
‖w − wt‖2

)
+ β2

=
σ2

K3

Fk(w)−

∇Fk(wt)− K

σ

K

n
Xk(X

T
k w

t − yk + αtk)︸ ︷︷ ︸
ztk


T

w +
µ

2
‖w − wt‖2

+ β2

=
σ2

K3

(
Fk(w)−

(
∇Fk(wt)− (η∇Fk(wt) + gtk)

)T
w +

µ

2
‖w − wt‖2

)
+ β2,

where the last step follows from the claim that ηztk = η∇Fk(wt) + gtk. We now prove the claim.
First, we have

ηztk = η
K

n
Xk(X

T
k w

t − yk + αtk)

= η
K

n
Xk(X

T
k w

t − yk) + η
K

n
Xkα

t
k

= η

(
K

n
Xk(X

T
k w

t − yk) + λwt
)

+ η

(
K

n
Xkα

t
k − λwt

)
(18)
= η∇Fk(wt) + η

(
K

n
Xkα

t
k − λwt

)
.

Due to the definition of g0
k in Step 5 of Algorithm 5 as g0

k = η(KnXkα
0
k − λw0), we observe that the

claim holds for t = 0. If we show that

gtk = η

(
K

n
Xkα

t
k − λwt

)
for all t ≥ 0, then we are done. This can be shown by induction. This finishes the proof of
Theorem 5.
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